Browsing by Author "Ayala, Marlene"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemCalcium Sprays and Crop Load Reduction Increase Fruit Quality and Postharvest Storage in Sweet Cherry (Prunus avium L.)(MDPI, 2022) Matteo, Maritza; Zoffoli Guerra, Juan Pablo; Ayala, MarleneIn many fruit trees, the thinning of buds, flowers, or fruits is used to increase the leaf area-to-fruit ratio (LA:F) and reduce competition for carbohydrates. Meanwhile, calcium (Ca) sprays during fruit development are also used to increase fruit quality and postharvest storage. Such practices have been recommended to increase fruit firmness and reduce fruit cracking in sweet cherries. To understand the effects of foliar Ca sprays and crop load reductions in the combination 'Lapins'/'Colt', trained as the Kym Green Bush, a factorial experiment to determine the interactions between both managements was established in the Central Valley of Chile during the 2018/2019 growing season. Two levels of crop load (CL) were established-thinned (50% crop load) and unthinned (100% crop load) during Stage I of fruit development (31 days after full bloom, DAFB). Three timings of foliar applications of CaCl2 (TFA; 0.8%) were evaluated: early 26 DAFB, later 39 DAFB, or late 62 DAFB. Natural fruit contents and concentrations of Ca were determined on unsprayed control trees. Fruit from the thinned trees were significantly larger and heavier and had a higher titratable acidity than unthinned trees did. Significant interactions between TFA and CL were observed for SSC, without a clear trend. Thinned trees were less affected by pedicel detachment, browning, and fruit decay after 45 d of storage (0 degrees C). In unthinned trees, a foliar CaCl2 spray at Stage I allowed a higher fruit firmness than CaCl2 sprays at Stage II and III of fruit development. The CaCl2 applications at 39 or 62 DAFB reduced the incidence of cracking in thinned trees. Natural Ca concentrations decreased during fruit development, indicating a cessation of Ca import and a dilution by subsequent growth. Our results suggest that the early reduction of crop load has positive effects on fruit quality and condition during storage, and early Ca sprays (Stage I) improve fruit textural properties, even under high crop loads.
- ItemEco-physiological response, water productivity and fruit quality of sweet cherry trees under high tunnels(ELSEVIER, 2021) Blanco, Victor; Pablo Zoffoli, Juan; Ayala, MarleneIt is known that high tunnels modify sweet cherry physiological and agronomical response; however, horticultural practices such as irrigation have usually not been adapted to this cultivation system because there is no information about the effects of sweet cherry growing under this controlled environment on fruit tree water relations, water productivity and the possibility of saving water. The present work aims to assess the positive and negative impacts of irrigation regime and protective cultivation on tree water status, agronomical and physiological responses of the sweet cherry tree combination 'Santina'/'Colt' in Mediterranean dry weather conditions of Central Valley of Chile. Two treatments were imposed, plastic covered trees under multi-bay high tunnels and uncovered trees under open field conditions. Within each environment, two irrigation treatments were assayed, a conventional treatment, which followed growers' normal irrigation practices in the region, and a reduced irrigation treatment, which was irrigated the 75 % of the conventional treatment. High tunnel increased maximum air temperature, relative humidity and altered light radiation in relation to the environmental conditions in the open. Overall, trees under high tunnel showed higher values of soil matric potential, midday stem water potential (-0.8 MPa) and stomatal conductance (250 mmol m(-2) s(-1)). In the open, trees under reduced irrigation showed soil matric potential values below -150 kPa. Thus, soil water deficit affected tree water status, decreased vegetative growth and fruit size. Covered trees blossomed 7 d earlier than those in the open and were harvested 10 d earlier. Total tree yield did not show significant differences among treatments (11.9 kg tree(-1)); however, when the tree was divided into bottom and top canopy layers, it was found that the top layer of covered trees resulted in significantly lower yield. The cherries from the covered trees were significantly larger (10.4 g) and less firm (75 Durofel units) than those from uncovered trees (8.4 g and 82 Durofel units). The reduced irrigation strategy did not negatively affect tree yield or fruit quality of covered trees and increased water productivity compared with those irrigated with the conventional irrigation. The results obtained highlighted the possibility of decreasing the irrigated water applied to sweet cherry trees under high tunnels by 25 % compared to conventional irrigation.
- ItemEffects of fruiting spur thinning on fruit quality and vegetative growth of sweet cherry (Prunus avium)(2009) Ayala, Marlene; Andrade, Maria P.M. Ayala, and M.P. Andrade. 2009. Effects of fruiting spur thinning on fruit quality and vegetative growth of sweet cherry (Prunus avium). Cien. Inv. Agr. 36(3):443-450. High density sweet cherry (Prunus avium) orchards using highly productive cultivars and dwarfing rootstocks usually require crop load regulation to achieve high quality fruit. Among the strategies used to reduce crop load in highly productive combinations, fruiting spur thinning (FST, spur extinction) before budbreak has been suggested to be an effective way to improve fruit size. Currently, there is little information about the effect of spur thinning on sweet cherry orchards using self-fertile cultivars grafted on vigorous rootstocks. For this reason, the objective of the present study was to evaluate the effects of manual FST on fruit quality and vegetative growth of the cultivar 'Lapins' grafted on the rootstock 'Mazzard F-12/1' with 0, 50 and 75% spur removal. Spur removal was carried out 28 days before full bloom (August 23). FST had no beneficial effects on fruit size, total soluble solids or fruit weight. However, there were significant differences in the foliar development of current season growth and fruiting and non-fruiting spurs. Although the leaf area to fruit ratio was high in all treatments, this parameter increased with the removal of 50 and 75% of fruiting spurs. Fruit quality did not increase, suggesting a possible sink limitation of 'Lapins' grafted on 'Mazzard F-12/1' or the presence of an alternative vegetative sink that is stronger than the fruit. However, further research is needed to clarify this point.
- ItemPruning effects on vegetative growth and fruit quality of 'Bing'/'Gisela (R) 5' and 'Bing'/'Gisela (R) 6' sweet cherry trees (Prunus avium)(PONTIFICIA UNIV CATOLICA CHILE, FAC AGRONOMIA INGENIERIA FORESTAL, 2012) Villasante, Macarena; Godoy, Soledad; Pablo Zoffoli, Juan; Ayala, MarleneM. Villasante, S. Godoy, J.P. Zoffoli, and M. Ayala. 2012. Pruning effects on growth and fruit quality of 'Bing'/'Gisela (R) 5' and 'ffingTGisela@6' sweet cherry trees (Prunus ovum:). Cien. Inv. Agr. 39(1): 117-126. Annual pruning is one of the most efficient ways to regulate crop load and renew fruiting wood in highly productive sweet cherry (Prunus (whim L.) combinations. Although Chilean growers did not previously prune cherry trees of more vigorous combinations, in recent years, the adoption of more dwarfing rootstocks and self-fertile cultivars has led to the inclusion of annual pruning as a practice in modem orchards. At first, this alteration in orchard management practices was not considered by growers, and thus, many of the initially established cherry orchards were not pruned as intensively as they should have been. As a consequence, many trees showed a reduction in fruit quality after 4 or 5 years of being planted, as they became overcropped and, consequently, registered reductions in their vegetative growth. There are only a few studies related to the effect of corrective pruning on dwarfing combinations that display an imbalance between reproductive and vegetative growth due to a reduction in the leaf area to fruit ratio of the tree. For this reason, the objective of this research was to study the effect of pruning in an orchard consisting of the dwarfing combinations 'Bing'/'Gisela (R) 5' ('Bing'/'GI (R) 5') and 'Bing'/'Gisela (R) 6' ('Bing'/'GI (R) 6'), which shown a reduction in vigor, fruit quality and yield. Trees of both combinations were treated with a medium intensity pruning in late winter (early September). Several vegetative (shoot length, leaf area of spurs and shoots, trunk cross sectional area) and reproductive (total yield per tree, fruit growth and quality) parameters were evaluated after pruning. One of the most important effects of pruning for both combinations was an increase in the total current season shoot (CSS) growth, which was 112.5 and 125.6% for 'Bing'/'GI (R) 5' and 'Bing'/'GI (R) 6', respectively. Additionally, the average shoot length increased by 820.0 and 325.4% for 'Bing'/'GI (R) 5' and 'Bing'/GI (R) 6', respectively. Furthermore. CSSs developed a higher leaf number in the pruned trees. There was no change in leaf number for reproductive spurs, but these had bigger leaves in the pruned trees, demonstrating increased total leaf area per spur. Additionally, pruning allowed crop load regulation and increased fruit size by 8.5 and 6.1% for 'Bing'/'GI (R) 5' and 'Bing'/'GI (R) 6', respectively. However, fruits from pruned trees showed a higher susceptibility to mechanical damage compared with unpruned trees of both combinations.
- ItemPruning effects on vegetative growth and fruit quality of 'Bing'/'Gisela®5' and 'Bing'/'Gisela®6' sweet cherry trees (Prunus avium) = Efecto de la poda en el crecimiento vegetativo y la calidad de fruta en cerezo dulce (Prunus avium), en las combinaciones(2012) Villasante, Macarena; Godoy, Soledad; Zoffoli, Juan Pablo; Ayala, Marlene
- ItemStudy of Mineral Composition and Quality of Fruit Using Vascular Restrictions in Branches of Sweet Cherry(MDPI, 2023) Quiroz, Maria Paz; Blanco, Victor; Zoffoli Guerra, Juan Pablo; Ayala, MarleneCalcium (Ca) and carbohydrate (CHO) supply in sweet cherry have been associated with fruit quality at harvest and during storage. There is little published information integrating CHO and Ca availability and distribution in sweet cherry and their effects on fruit quality. Accordingly, in the 2019-20 season, vascular restrictions were imposed on the phloem (girdling, G, stopping phloem flow) and xylem (transverse incision, S, cutting 50% of xylem cross-section area) of individual vertical branches of the sweet cherry combination 'Lapins'/Colt trained as Kym Green Bush system to modify mineral and CHO composition in fruit and associate such changes with quality at harvest and storage. The girdling to the phloem was used to induce changes in CHO distribution. The transverse incision to the xylem was a tool to modify Ca distribution. Five treatments (TR) were implemented: TR1-CTL = Control (without vascular restriction), TR2-G, at its base, TR3-G + G: at its base, and G further up at the change of year between the second and the third years of growth TR4--S and TR5-S + G. The vegetative (i.e., shoot and leaf growth), reproductive (i.e., fruit set and yield) development and stomatal conductance were monitored. Each branch was divided into the upper (1-and 2-year-old wood) and the lower (3-and 4-year-old wood) segments of the restriction applied. The quality and mineral composition (Ca, Mg, K, and N) of fruit borne on each segment were measured at harvest. The upper segment of TR3-G + G branches were harvested 10 d before the lower segment. The fruit from the upper segment of TR3-G + G was the largest, the sweetest, and had the higher titratable acidity concentration. However, fruits of this segment were the softest, had the lowest Ca concentrations, and had the highest ratios of N:Ca and K:Ca, compared with the other TRs. TR3-G + G branches developed the highest number of lateral current season shoots including shoots below the second girdling in the lower segment of the branch. This vegetative flow of growth would explain the mineral unbalance produced in the fruit from the upper segment of the branch. TR2-G did not register changes in fruit quality and mineral concentration compared with TR1-CTL. Surprisingly, the fruit from the branches with xylem restriction did not show changes in Ca concentration, suggesting that the xylem stream was enough to supply the fruit in branches without lateral shoot development. Fruit firmness was positively related to fruit Ca concentration and negatively related to the ratios of K:Ca and N:Ca.