3.10 Tesis doctorado
Permanent URI for this collection
Browse
Browsing 3.10 Tesis doctorado by Author "Bañados, Máximo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAspects of quantum gravity in AdS3/CFT2(2019) Reyes Raffo, Ignacio Andrés; Erdmenger, Johanna; Koch, Benjamin; Bañados, Máximo; Ströhmer, Raimund; Pontificia Universidad Católica de Chile. Facultad de FísicaThe quest for finding a unifying theory for both quantum theory and gravity lies at the heart of much of the research in high energy physics. Although recent years have witnessed spectacular experimental confirmation of our expectations from Quantum Field Theory and General Relativity, the question of unification remains as a major open problem. In this context, the perturbative aspects of quantum black holes represent arguably the best of our knowledge of how to proceed in this pursue. In this thesis we investigate certain aspects of quantum gravity in 2 + 1 dimensional anti-de Sitter space (AdS3), and its connection to Conformal field theories in 1 + 1 dimensions (CFT2), via the AdS/CFT correspondence. We study the thermodynamics properties of higher spin black holes. By focusing on the spin-4 case, we show that black holes carrying higher spin charges display a rich phase diagram in the grand canonical ensemble, including phase transitions of the Hawking-Page type, first order inter-black hole transitions, and a second order critical point. We investigate recent proposals on the connection between bulk codimension-1 volumes and computational complexity in the CFT. Using Tensor Networks we provide concrete evidence of why these bulk volumes are related to the number of gates in a quantum circuit, and exhibit their topological properties. We provide a novel formula to compute this complexity directly in terms of entanglement entropies, using techniques from Kinematic space. We then move in a slightly different direction, and study the quantum properties of black holes via de Functional Renormalisation Group prescription coming from Asymptotic safety. We avoid the arbitrary scale setting by restricting to a narrower window in parameter space, where only Newton’s coupling and the cosmological constant are allowed to vary. By one assumption on the properties of Newton’s coupling, we find black hole solutions explicitly. We explore their thermodynamical properties, and discover that very large black holes exhibit very unusual features.The quest for finding a unifying theory for both quantum theory and gravity lies at the heart of much of the research in high energy physics. Although recent years have witnessed spectacular experimental confirmation of our expectations from Quantum Field Theory and General Relativity, the question of unification remains as a major open problem. In this context, the perturbative aspects of quantum black holes represent arguably the best of our knowledge of how to proceed in this pursue. In this thesis we investigate certain aspects of quantum gravity in 2 + 1 dimensional anti-de Sitter space (AdS3), and its connection to Conformal field theories in 1 + 1 dimensions (CFT2), via the AdS/CFT correspondence. We study the thermodynamics properties of higher spin black holes. By focusing on the spin-4 case, we show that black holes carrying higher spin charges display a rich phase diagram in the grand canonical ensemble, including phase transitions of the Hawking-Page type, first order inter-black hole transitions, and a second order critical point. We investigate recent proposals on the connection between bulk codimension-1 volumes and computational complexity in the CFT. Using Tensor Networks we provide concrete evidence of why these bulk volumes are related to the number of gates in a quantum circuit, and exhibit their topological properties. We provide a novel formula to compute this complexity directly in terms of entanglement entropies, using techniques from Kinematic space. We then move in a slightly different direction, and study the quantum properties of black holes via de Functional Renormalisation Group prescription coming from Asymptotic safety. We avoid the arbitrary scale setting by restricting to a narrower window in parameter space, where only Newton’s coupling and the cosmological constant are allowed to vary. By one assumption on the properties of Newton’s coupling, we find black hole solutions explicitly. We explore their thermodynamical properties, and discover that very large black holes exhibit very unusual features.The quest for finding a unifying theory for both quantum theory and gravity lies at the heart of much of the research in high energy physics. Although recent years have witnessed spectacular experimental confirmation of our expectations from Quantum Field Theory and General Relativity, the question of unification remains as a major open problem. In this context, the perturbative aspects of quantum black holes represent arguably the best of our knowledge of how to proceed in this pursue. In this thesis we investigate certain aspects of quantum gravity in 2 + 1 dimensional anti-de Sitter space (AdS3), and its connection to Conformal field theories in 1 + 1 dimensions (CFT2), via the AdS/CFT correspondence. We study the thermodynamics properties of higher spin black holes. By focusing on the spin-4 case, we show that black holes carrying higher spin charges display a rich phase diagram in the grand canonical ensemble, including phase transitions of the Hawking-Page type, first order inter-black hole transitions, and a second order critical point. We investigate recent proposals on the connection between bulk codimension-1 volumes and computational complexity in the CFT. Using Tensor Networks we provide concrete evidence of why these bulk volumes are related to the number of gates in a quantum circuit, and exhibit their topological properties. We provide a novel formula to compute this complexity directly in terms of entanglement entropies, using techniques from Kinematic space. We then move in a slightly different direction, and study the quantum properties of black holes via de Functional Renormalisation Group prescription coming from Asymptotic safety. We avoid the arbitrary scale setting by restricting to a narrower window in parameter space, where only Newton’s coupling and the cosmological constant are allowed to vary. By one assumption on the properties of Newton’s coupling, we find black hole solutions explicitly. We explore their thermodynamical properties, and discover that very large black holes exhibit very unusual features.
- ItemLoops in Holographic Correlators(2023) Muñoz Sandoval, Iván Ignacio; Bañados, Máximo; Pontificia Universidad Católica de Chile. Instituto de FísicaIn the context of the Anti de-Sitter (AdS)/Conformal Field Theory (CFT) correspondence, we investigate the computation of holographic correlation functions for quantum fields in the bulk. Unlike the semi-classical approach, quantum computations involve Infra-Red (IR) and Ultra-Violet (UV) divergences. However, consistent with the semiclassical approximation, we find that IR infinities correspond to boundary divergences, while UV divergences correspond to the bulk. We present a systematic procedure for solving the perturbative quantum problem in the bulk. To illustrate our approach, we consider a Φ4 scalar field on a fixed AdS background and obtain the boundary correlation function in position and momentum space. In position space, we use two approximations: (i) we assume that the field is composed of the classical solution plus a quantum fluctuation, and we solve the classical part before using the holographic dictionary to obtain the quantum correction to the 2- and 4-point functions, requiring UV and IR renormalizations;(ii) using the quantum effective action, we renormalize the UV divergence from the equation of motions and then use the holographic dictionary to obtain the dual correlation function. Both formulations lead to the same conclusions and demonstrate that the bulk theory is renormalizable up to AdS7. Meanwhile, in momentum space, we use the background field method and renormalize the two-point function up to one loop, finding exact agreement with the position space computation. Finally, we provide a general set-up for obtaining the off-shell graviton bulk propagator, which is crucial for obtaining correlation functions for more realistic models.