We propose a fully nonparametric modelling approach for time-to-event regression data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times and the determination of the occurrence of the event is subject to misclassification. The covariate-dependent time-to-event distributions are modelled using a linear dependent Dirichlet process mixture model. A general misclassification model is discussed, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. An advantage of the proposed model is that the underlying time-to-event distributions and the misclassification parameters can be estimated without any external information about the latter parameters.
Registro Sencillo
Registro Completo
Autor | Jara, Alejandro Garcia Zattera, María José Komárek, Arnost |
Título | Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data |
ISBN | 978-3-319-19517-9 |
Página inicio | 247 |
Página final | 267 |
Fecha de publicación | 2015 |
Cómo citar este documento | Alejandro Jara, María José García-Zattera, Arnost Komárek. Fully Nonparametric Regression Modelling of Misclassified Censored Time-to-Event Data. In: Riten Mitra and Peter Mueller,editors. Nonparametric Bayesian Inference in Biostatistics. Springer; 2015. p. 247-267. |
Resumen | We propose a fully nonparametric modelling approach for time-to-event regression data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times and the determination of the occurrence of the event is subject to misclassification. The covariate-dependent time-to-event distributions are modelled using a linear dependent Dirichlet process mixture model. A general misclassification model is discussed, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. An advantage of the proposed model is that the underlying time-to-event distributions and the misclassification parameters can be estimated without any external information about the latter parameters. |
Derechos | acceso restringido |
Agencia financiadora | FONDECYT |
DOI | 10.1007/978-3-319-19518-6_12 |
Enlace | |
Id de publicación en WoS | WOS:000376610800013 |
Palabra clave | Hazard Function Dirichlet Process Accelerate Failure Time Model Gamma Process Dirichlet Process Mixture |
Publicado en / Colección | Nonparametric Bayesian Inference in Biostatistics |
Tema ODS | 03 Good health and well-being |
Tema ODS español | 03 Salud y bienestar |
Temática | Matemática física y química |
Tipo de documento | capítulo de libro |