We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition. (c) 2006 Elsevier Inc. All rights reserved.
Registro Sencillo
Registro Completo
Autor | Cortazar, Carmen Elgueta, Manuel Rossi, Julio D. Wolanski, Noemi |
Título | Boundary fluxes for nonlocal diffusion |
Revista | JOURNAL OF DIFFERENTIAL EQUATIONS |
ISSN | 0022-0396 |
Volumen | 234 |
Número de publicación | 2 |
Página inicio | 360 |
Página final | 390 |
Fecha de publicación | 2007 |
Resumen | We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition. (c) 2006 Elsevier Inc. All rights reserved. |
Derechos | acceso abierto |
DOI | 10.1016/j.jde.2006.12.002 |
Editorial | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Enlace | |
Id de publicación en WoS | WOS:000245182700002 |
Paginación | 31 páginas |
Palabra clave | nonlocal diffusion boundary value problems CAHN-HILLIARD EQUATION CONVOLUTION MODEL PHASE-TRANSITIONS BLOW-UP |
Tema ODS | 03 Good Health and Well-being |
Tema ODS español | 03 Salud y bienestar |
Tipo de documento | artículo |