Consider a unitary operator U-0 acting on a complex separable Hilbert space H. In this paper we study spectral properties for perturbations of U-0 of the type,
Registro Sencillo
Registro Completo
Autor | Astaburuaga, M. A. Cortes, V. H. |
Título | Spectral properties for perturbations of unitary operators |
Revista | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
ISSN | 0022-247X |
ISSN electrónico | 1096-0813 |
Volumen | 380 |
Número de publicación | 2 |
Página inicio | 511 |
Página final | 519 |
Fecha de publicación | 2011 |
Resumen | Consider a unitary operator U-0 acting on a complex separable Hilbert space H. In this paper we study spectral properties for perturbations of U-0 of the type, U-beta = U(0)e(iK beta), with K a compact self-adjoint operator acting on H and beta a real parameter. We apply the commutator theory developed for unitary operators in Astaburuaga et al. (2006) [1] to prove the absence of singular continuous spectrum for U-beta. Moreover, we study the eigenvalue problem for U-beta when the unperturbed operator U-0 does not have any. A typical example of this situation corresponds to the case when U-0 is purely absolutely continuous. Conditions on the eigenvalues of K are given to produce eigenvalues for U-beta for both cases finite and infinite rank of K, and we give an example where the results can be applied. (C) 2011 Elsevier Inc. All rights reserved. |
Derechos | acceso restringido |
Agencia financiadora | Fondecyt |
DOI | 10.1016/j.jmaa.2011.03.067 |
Editorial | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Enlace | |
Id de publicación en WoS | WOS:000290067000010 |
Paginación | 9 páginas |
Palabra clave | Point spectrum Unitary operators |
Tema ODS | 04 Quality Education |
Tema ODS español | 04 Educación y calidad |
Tipo de documento | artículo |