We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they are all algebraizable in the sense of Blok and Pigozzi in [31 but not finitely algebraizable. A characterization of the finitely algebraizable logics defined by LPP-matrices is given.
Registro Sencillo
Registro Completo
Autor | Hirsh, Eduardo Lewin, Renato A. |
Título | Algebraization of logics defined by literal-paraconsistent or literal-paracomplete matrices |
Revista | MATHEMATICAL LOGIC QUARTERLY |
ISSN | 0942-5616 |
Volumen | 54 |
Número de publicación | 2 |
Página inicio | 153 |
Página final | 166 |
Fecha de publicación | 2008 |
Resumen | We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they are all algebraizable in the sense of Blok and Pigozzi in [31 but not finitely algebraizable. A characterization of the finitely algebraizable logics defined by LPP-matrices is given. We also make an algebraic study of the equivalent algebraic semantics of the logics associated to the matrices M-2,2(3), M-2,1(3), M-1,1(3), M-1,(3)(3) and M-4 appearing in [11] proving that they are not varieties and finding the free algebra over one generator. 1 Introduction and preliminaries (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Derechos | acceso restringido |
DOI | 10.1002/malq.200710021 |
Editorial | WILEY-V C H VERLAG GMBH |
Enlace | |
Id de publicación en WoS | WOS:000255079900003 |
Paginación | 14 páginas |
Palabra clave | algebraizable logic matrix semantics paraconsistency paracompleteness |
Tema ODS | 04 Quality Education |
Tema ODS español | 04 Educación y calidad |
Tipo de documento | artículo |