In this article, we study the existence and uniqueness of outgoing solutions for the Helmholtz equation in locally perturbed half-planes with passive boundary. We establish an explicit outgoing radiation condition which is somewhat different from the usual Sommerfeld's one due to the appearance of surface waves. We work with the help of Fourier analysis and a half-plane Green's function framework. This is an extended and detailed version of the previous article Duran et al.
Registro Sencillo
Registro Completo
Autor | Duran, Mario Muga, Ignacio Nedelec, Jean Claude |
Título | The Helmholtz equation in a locally perturbed half-plane with passive boundary |
Revista | IMA JOURNAL OF APPLIED MATHEMATICS |
ISSN | 0272-4960 |
Volumen | 71 |
Número de publicación | 6 |
Página inicio | 853 |
Página final | 876 |
Fecha de publicación | 2006 |
Resumen | In this article, we study the existence and uniqueness of outgoing solutions for the Helmholtz equation in locally perturbed half-planes with passive boundary. We establish an explicit outgoing radiation condition which is somewhat different from the usual Sommerfeld's one due to the appearance of surface waves. We work with the help of Fourier analysis and a half-plane Green's function framework. This is an extended and detailed version of the previous article Duran et al. |
Derechos | acceso restringido |
DOI | 10.1093/imamat/hxl023 |
Editorial | OXFORD UNIV PRESS |
Enlace | |
Id de publicación en WoS | WOS:000242474200004 |
Paginación | 24 páginas |
Palabra clave | Helmholtz equation on half-plane Green's function radition condition HOMOGENEOUS IMPEDANCE PLANE GREEN-FUNCTION PROPAGATION SPACE |
Tema ODS | 03 Good Health and Well-being |
Tema ODS español | 03 Salud y bienestar |
Tipo de documento | artículo |