We consider the problem Delta u + \u\(4/n-2) u = 0 in Omega(epsilon), u = 0 on partial derivative Omega(epsilon), where Omega(epsilon) := Omega \ B (0, epsilon) and Omega is a bounded smooth domain in R(N), which contains the origin and is symmetric with respect to the origin, N >= 3 and epsilon is a positive parameter. As epsilon goes to zero, we construct sign changing solutions with multiple blow up at the origin. (C) 2006 Elsevier Masson SAS. All rights reserved.
Registro Sencillo
Registro Completo
Autor | Musso, Monica Pistoia, Angela |
Título | Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains |
Revista | JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES |
ISSN | 0021-7824 |
Volumen | 86 |
Número de publicación | 6 |
Página inicio | 510 |
Página final | 528 |
Fecha de publicación | 2006 |
Resumen | We consider the problem Delta u + \u\(4/n-2) u = 0 in Omega(epsilon), u = 0 on partial derivative Omega(epsilon), where Omega(epsilon) := Omega \ B (0, epsilon) and Omega is a bounded smooth domain in R(N), which contains the origin and is symmetric with respect to the origin, N >= 3 and epsilon is a positive parameter. As epsilon goes to zero, we construct sign changing solutions with multiple blow up at the origin. (C) 2006 Elsevier Masson SAS. All rights reserved. |
Derechos | acceso restringido |
DOI | 10.1016/j.matpur.2006.10.006 |
Editorial | GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Enlace | |
Id de publicación en WoS | WOS:000243143900005 |
Paginación | 19 páginas |
Palabra clave | critical Sobolev exponent sign changing solution multiple blow up BREZIS-NIRENBERG PROBLEM MINIMAL NODAL SOLUTIONS VARIATIONAL PROBLEM SYMMETRIC DOMAIN CRITICAL GROWTH EQUATIONS TOPOLOGY HOLES COMPACTNESS EXISTENCE |
Tipo de documento | artículo |