We consider the nonlocal evolution Dirichlet problem u(t)(x, t) = f(Omega) J(x-y/g(y)) u(y, t)/g(y)(N) dy- u(x, t), x is an element of Omega, t > 0; u = 0, x is an element of R-N\Omega, t >= 0; u(x, 0) = u(0)(x), x is an element of R-N; where Omega is a bounded domain in R-N, J is a Holder continuous, nonnegative, compactly supported function with unit integral and g is an element of C((Omega) over bar) is assumed to be positive in Omega. We discuss existence, uniqueness, and asymptotic behavior of solutions as t -> |infinity. Moreover, we prove the existence of a positive stationary solution when the inequality g(x) <= delta(x) holds at every point of Omega, where delta(x) = dist(x, partial derivative Omega). The behavior of positive stationary solutions near the boundary is also analyzed.
Registro Sencillo
Registro Completo
Autor | Cortazar, Carmen Elgueta, Manuel Garcia Melian, Jorge Martinez, Salome |
Título | EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS |
Revista | SIAM JOURNAL ON MATHEMATICAL ANALYSIS |
ISSN | 0036-1410 |
ISSN electrónico | 1095-7154 |
Volumen | 41 |
Número de publicación | 5 |
Página inicio | 2136 |
Página final | 2164 |
Fecha de publicación | 2009 |
Resumen | We consider the nonlocal evolution Dirichlet problem u(t)(x, t) = f(Omega) J(x-y/g(y)) u(y, t)/g(y)(N) dy- u(x, t), x is an element of Omega, t > 0; u = 0, x is an element of R-N\Omega, t >= 0; u(x, 0) = u(0)(x), x is an element of R-N; where Omega is a bounded domain in R-N, J is a Holder continuous, nonnegative, compactly supported function with unit integral and g is an element of C((Omega) over bar) is assumed to be positive in Omega. We discuss existence, uniqueness, and asymptotic behavior of solutions as t -> |infinity. Moreover, we prove the existence of a positive stationary solution when the inequality g(x) <= delta(x) holds at every point of Omega, where delta(x) = dist(x, partial derivative Omega). The behavior of positive stationary solutions near the boundary is also analyzed. |
Derechos | acceso restringido |
Agencia financiadora | Ministerio de Ciencia e Innovacion FEDER, (Spain) CONICYT (FONDECYT Cooperacion Internacional) FONDECYT Fondap de Matematicas Aplicadas (Chile). |
DOI | 10.1137/090751682 |
Editorial | SIAM PUBLICATIONS |
Enlace | |
Id de publicación en WoS | WOS:000277835100013 |
Paginación | 29 páginas |
Palabra clave | nonlocal inhomogeneous asymptotic diffusion dispersal INTEGRODIFFERENTIAL EQUATIONS MONOSTABLE NONLINEARITY PHASE-TRANSITIONS DIRICHLET PROBLEM TRAVELING-WAVES UNIQUENESS DISPERSAL MODEL STABILITY OPERATORS |
Tema ODS | 03 Good Health and Well-being |
Tema ODS español | 03 Salud y bienestar |
Tipo de documento | artículo |