We develop and analyze a discontinuous Petrov-Galerkin method with optimal test functions (DPG method) for a shallow shell model of Koiter type. It is based on a uniformly stable ultraweak formulation and thus converges robustly quasi-uniformly. Numerical experiments for various cases, including the Scordelis-Lo cylindrical roof, elliptic and hyperbolic geometries, illustrate its performance. The built-in DPG error estimator gives rise to adaptive mesh refinements that are capable to resolve boundary and interior layers. The membrane locking is dealt with by raising the polynomial degree only of the tangential displacement trace variable.
Registro Sencillo
Registro Completo
Autor | Fuhrer, Thomas Heuer, Norbert Niemi, Antti H. |
Título | A DPG method for shallow shells |
Revista | NUMERISCHE MATHEMATIK |
ISSN | 0029-599X |
ISSN electrónico | 0945-3245 |
Volumen | 152 |
Número de publicación | 1 |
Página inicio | 67 |
Página final | 99 |
Fecha de publicación | 2022 |
Resumen | We develop and analyze a discontinuous Petrov-Galerkin method with optimal test functions (DPG method) for a shallow shell model of Koiter type. It is based on a uniformly stable ultraweak formulation and thus converges robustly quasi-uniformly. Numerical experiments for various cases, including the Scordelis-Lo cylindrical roof, elliptic and hyperbolic geometries, illustrate its performance. The built-in DPG error estimator gives rise to adaptive mesh refinements that are capable to resolve boundary and interior layers. The membrane locking is dealt with by raising the polynomial degree only of the tangential displacement trace variable. |
Derechos | acceso restringido |
DOI | 10.1007/s00211-022-01308-w |
Editorial | SPRINGER HEIDELBERG |
Enlace | |
Id de publicación en WoS | WOS:000841046300001 |
Palabra clave | 74S05 74K25 35J35 65N30 35J67 |
Tema ODS | 11 Sustainable Cities and Communities |
Tema ODS español | 11 Ciudades y comunidades sostenibles |
Tipo de documento | artículo |