We consider the following nonlocal equation:
Registro Sencillo
Registro Completo
Autor | Cortazar, Carmen Elgueta, Manuel Garcia Melian, Jorge Martinez, Salome |
Título | Stationary Sign Changing Solutions for an Inhomogeneous Nonlocal Problem |
Revista | INDIANA UNIVERSITY MATHEMATICS JOURNAL |
ISSN | 0022-2518 |
ISSN electrónico | 1943-5258 |
Volumen | 60 |
Número de publicación | 1 |
Página inicio | 209 |
Página final | 232 |
Fecha de publicación | 2011 |
Resumen | We consider the following nonlocal equation: integral(R)J (x - y/g(y)) u(y)/g(y) dy - u(x) = 0 x epsilon R, where J is an even, compactly supported, Holder continuous probability kernel, g is a continuous function, bounded and bounded away from zero in R. We prove the existence of a sign changing solution q(x) which is strictly positive when x > K and strictly negative for x < -K, provided that K is chosen large enough. The solution q(x) so constructed verifies a(1) <= q(x)/x <= a(2) for positive constants a(1), a(2) and large vertical bar x vertical bar. In addition, we show that all solutions with polynomial growth are of the form Aq(x) + Bp (x), where p is the unique normalized positive (bounded) solution of the equation. In the particular case where g = 1 we also construct solutions with exponential growth. |
Derechos | registro bibliográfico |
Agencia financiadora | Ministerio de Ciencia e Innovacion FEDER (Spain) FONDECYT Basal project CMM U. de Chile CAPDE Anillo (Chile) |
DOI | 10.1512/iumj.2011.60.4385 |
Editorial | INDIANA UNIV MATH JOURNAL |
Enlace | |
Id de publicación en WoS | WOS:000303134000010 |
Paginación | 24 páginas |
Palabra clave | nonlocal diffusion sign changing solution uniqueness ASYMPTOTIC-BEHAVIOR DIRICHLET PROBLEM TRAVELING-WAVES EQUATION UNIQUENESS EXISTENCE MODEL DISPERSAL |
Tema ODS | 03 Good Health and Well-being |
Tema ODS español | 03 Salud y bienestar |
Tipo de documento | artículo |