Let K be a complete infinite rank valued field and E a K-Banach space with a countable orthogonal base. In [9] and [10] we have studied bounded (called Lipschitz) operators on E and introduced the notion of a strictly Lipschitz operator. Here we characterize them, as well as compact and nuclear operators, in terms of their (infinite) matrices. This results provide new insights and also useful criteria for constructing operators with given properties.
Registro Sencillo
Registro Completo
Autor | Ochsenius, H. Schikhof, W. H. |
Título | Matrix characterizations of Lipschitz operators on Banach spaces over Krull valued fields |
Revista | BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN |
ISSN | 1370-1444 |
Volumen | 14 |
Número de publicación | 2 |
Página inicio | 193 |
Página final | 212 |
Fecha de publicación | 2007 |
Resumen | Let K be a complete infinite rank valued field and E a K-Banach space with a countable orthogonal base. In [9] and [10] we have studied bounded (called Lipschitz) operators on E and introduced the notion of a strictly Lipschitz operator. Here we characterize them, as well as compact and nuclear operators, in terms of their (infinite) matrices. This results provide new insights and also useful criteria for constructing operators with given properties. |
Derechos | acceso abierto |
DOI | 10.36045/bbms/1179839213 |
Editorial | BELGIAN MATHEMATICAL SOC TRIOMPHE |
Enlace | |
Id de publicación en WoS | WOS:000248792900001 |
Paginación | 20 páginas |
Palabra clave | Lipschitz operators Hilbert spaces Krull valued fields HILBERT-SPACES |
Tema ODS | 04 Quality Education |
Tema ODS español | 04 Educación y calidad |
Tipo de documento | artículo |