It is thought that the ability of human mesenchymal stem cells (hMSC) to deliver neurotrophic factors might be potentially useful for the treatment of neurodegenerative disorders. The aim of the present study was to characterize signals and/or molecules that regulate brain-derived neurotrophic factor (BDNF) protein expression/delivery in hMSC cultures and evaluate the effect of epigenetically generated BDNF-secreting hMSC on the intact and lesioned substantia nigra (SN). We tested 4 different culture media and found that the presence of fetal bovine serum (FBS) decreased the expression of BDNF, whereas exogenous addition of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to serum-free medium was required to induce BDNF release (125 +/- 12 pg/day/10(6) cells). These cells were called hM(N)SC. Although the induction medium inhibited the expression of alpha smooth muscle actin (ASMA), an hMSC marker, and increased the nestin-positive subpopulation of hMSC cultures, the ability to express BDNF was restricted to the nestin-negative subpopulation. One week after transplantation into the SN, the human cells integrated into the surrounding tissue, and some showed a dopaminergic phenotype. We also observed the activation of Trk receptors for neurotrophic factors around the implant site, including the BDNF receptor TrkB. When we transplanted these cells into the unilateral lesioned SN induced by striatal injection of 6-hydroxydopamine (6-OHDA), a significant hypertrophy of nigral tyrosine hydroxylase (TH)(+) cells, an increase of striatal TH-staining and stabilization of amphetamine-induced motor symptoms were observed. Therefore, h MSC cultures exposed to the described induction medium might be highly useful as a vehicle for neurotrophic delivery to the brain and specifically are strong candidates for future therapeutic application in Parkinson's disease.
Registro Sencillo
Registro Completo
Autor | Somoza, Rodrigo Juri, Carlos Baes, Mauricio Wyneken, Ursula Javier Rubio, Francisco |
Título | Intranigral Transplantation of Epigenetically Induced BDNF-Secreting Human Mesenchymal Stem Cells: Implications for Cell-Based Therapies in Parkinson's Disease |
Revista | BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION |
ISSN | 1083-8791 |
ISSN electrónico | 1523-6536 |
Volumen | 16 |
Número de publicación | 11 |
Página inicio | 1530 |
Página final | 1540 |
Fecha de publicación | 2010 |
Resumen | It is thought that the ability of human mesenchymal stem cells (hMSC) to deliver neurotrophic factors might be potentially useful for the treatment of neurodegenerative disorders. The aim of the present study was to characterize signals and/or molecules that regulate brain-derived neurotrophic factor (BDNF) protein expression/delivery in hMSC cultures and evaluate the effect of epigenetically generated BDNF-secreting hMSC on the intact and lesioned substantia nigra (SN). We tested 4 different culture media and found that the presence of fetal bovine serum (FBS) decreased the expression of BDNF, whereas exogenous addition of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to serum-free medium was required to induce BDNF release (125 +/- 12 pg/day/10(6) cells). These cells were called hM(N)SC. Although the induction medium inhibited the expression of alpha smooth muscle actin (ASMA), an hMSC marker, and increased the nestin-positive subpopulation of hMSC cultures, the ability to express BDNF was restricted to the nestin-negative subpopulation. One week after transplantation into the SN, the human cells integrated into the surrounding tissue, and some showed a dopaminergic phenotype. We also observed the activation of Trk receptors for neurotrophic factors around the implant site, including the BDNF receptor TrkB. When we transplanted these cells into the unilateral lesioned SN induced by striatal injection of 6-hydroxydopamine (6-OHDA), a significant hypertrophy of nigral tyrosine hydroxylase (TH)(+) cells, an increase of striatal TH-staining and stabilization of amphetamine-induced motor symptoms were observed. Therefore, h MSC cultures exposed to the described induction medium might be highly useful as a vehicle for neurotrophic delivery to the brain and specifically are strong candidates for future therapeutic application in Parkinson's disease. |
Derechos | acceso restringido |
Agencia financiadora | Fundacion Andes Universidad del Desarrollo Anillo |
DOI | 10.1016/j.bbmt.2010.06.006 |
Editorial | ELSEVIER SCIENCE INC |
Enlace | |
Id de publicación en Pubmed | MEDLINE:20542127 |
Id de publicación en WoS | WOS:000283830800004 |
Paginación | 11 páginas |
Palabra clave | Mesenchymal stem cell transplantation Neurotrophins Trk receptors Substantia nigra Unilateral 6-hydroxydopamine lesion MARROW STROMAL CELLS BONE-MARROW NEUROTROPHIC FACTOR DOPAMINERGIC-NEURONS SUBSTANTIA-NIGRA TYROSINE-HYDROXYLASE CEREBRAL-ISCHEMIA NEURAL PROGENITOR GROWTH-FACTOR ADULT-RAT |
Tema ODS | 03 Good Health and Well-being |
Tema ODS español | 03 Salud y bienestar |
Tipo de documento | artículo |