This paper presents monthly streamflow prediction using artificial neural networks (ANN) on mountain watersheds. The procedure addresses the selection of input variables, the definition of model architecture and the strategy of the learning process. Results show that spring and summer monthly streamflows can be adequately represented, improving the results of calculations obtained using other methods. Better streamflow prediction methods should have significant benefits for the optimal use of water resources for irrigation and hydroelectric energy generation.
Registro Sencillo
Registro Completo
Autor | Dolling, OR Varas, EA |
Título | Artificial neural networks for streamflow prediction |
Revista | JOURNAL OF HYDRAULIC RESEARCH |
ISSN | 0022-1686 |
ISSN electrónico | 1814-2079 |
Volumen | 40 |
Número de publicación | 5 |
Página inicio | 547 |
Página final | 554 |
Fecha de publicación | 2002 |
Resumen | This paper presents monthly streamflow prediction using artificial neural networks (ANN) on mountain watersheds. The procedure addresses the selection of input variables, the definition of model architecture and the strategy of the learning process. Results show that spring and summer monthly streamflows can be adequately represented, improving the results of calculations obtained using other methods. Better streamflow prediction methods should have significant benefits for the optimal use of water resources for irrigation and hydroelectric energy generation. |
Derechos | acceso restringido |
DOI | 10.1080/00221680209499899 |
Editorial | TAYLOR & FRANCIS LTD |
Enlace | |
Id de publicación en WoS | WOS:000179153100001 |
Paginación | 8 páginas |
Tema ODS | 13 Climate Action 06 Clean Water and Sanitation |
Tema ODS español | 13 Acción por el clima 06 Agua limpia y saneamiento |
Tipo de documento | artículo |