This article in devoted to the study of the nonlocal dispersal equation
Registro Sencillo
Registro Completo
Autor | Cortazar, C. Coville, J. Elgueta, M. Martinez, S. |
Título | A nonlocal inhomogeneous dispersal process |
Revista | JOURNAL OF DIFFERENTIAL EQUATIONS |
ISSN | 0022-0396 |
ISSN electrónico | 1090-2732 |
Volumen | 241 |
Número de publicación | 2 |
Página inicio | 332 |
Página final | 358 |
Fecha de publicación | 2007 |
Resumen | This article in devoted to the study of the nonlocal dispersal equation u(t)(x, t) = R integral J(x - y/g(y))u(y, t)/g(y) dy-u(x, t) in R x [0, infinity), and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t -> infinity, showing that they converge locally to zero. (C) 2007 Elsevier Inc. All rights reserved. |
Derechos | acceso restringido |
DOI | 10.1016/j.jde.2007.06.002 |
Editorial | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Enlace | |
Id de publicación en WoS | WOS:000250674400007 |
Paginación | 27 páginas |
Palabra clave | integral equation nonlocal dispersal inhomogeneous dispersal TRAVELING-WAVES DIFFUSION EQUATIONS |
Tema ODS | 03 Good Health and Well-being |
Tema ODS español | 03 Salud y bienestar |
Tipo de documento | artículo |