Describes a systematic methodology based on artificial neural networks for model identification and its application to the prediction of water chemical properties under normal operation conditions in a power plant. The model obtained allows detection of incipient anomalies by comparison between the real and predicted values.
Registro Sencillo
Registro Completo
Autor | Sáez Hueichapan, Doris Andrea Sanz-Bobi, M. A. Cipriano, Aldo |
Título | Prediction of water chemical properties in the cycle of a coal power plant using artificial neural networks |
ISSN | 1098-7576 |
ISBN | 780348591 |
Fecha de publicación | 1998 |
Resumen | Describes a systematic methodology based on artificial neural networks for model identification and its application to the prediction of water chemical properties under normal operation conditions in a power plant. The model obtained allows detection of incipient anomalies by comparison between the real and predicted values. |
Derechos | acceso restringido |
DOI | 10.1109/IJCNN.1998.687163 |
Editorial | IEEE |
Enlace | https://doi.org/10.1109/IJCNN.1998.687163 |
Palabra clave | Water Chemicals Power generation Input variables Predictive models Power system modeling Neural networks Artificial neural networks Fault detection Equations |
Publicado en / Colección | IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (1998 : Anchorage, AK, Estados Unidos) |
Tipo de documento | comunicación de congreso |