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Abstract

In this work, a novel mechanism for spontaneous symmetry breaking is
presented. This mechanism allows to avoid quadratic divergencies and is
thus capable of addressing the hierarchy problem in gauge theories. Using
the scale-dependent effective action Γk minimally coupled to a gravitational
sector, variational parameter setting provides a mass and vacuum expecta-
tion value as a function of the constants arising in the low scale expansion
of Newtons’ and cosmological couplings. A comparison with experimental
data, such as the Higgs mass, allows putting restrictions on these constants.
This generic approach allows comparing with explicit candidates for an ef-
fective field theory of gravity. As an example, we use the asymptotic safety
scenario, where we find restrictions on the matter content of the theory.
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Chapter 1

Acronyms used

• GR: General Relativity

• SM: Standard Model

• EWSB: Electroweak Symmetry Breaking

• SSB: Spontaneous Symmetry Breaking

• VEV: Vacuum Expectation Value

• QFT: Quantum Field Theory

• RG: Renormalization Group

• AS: Asymptotic Safety

• FP: Fixed Point

• VPS: Variational Parameter Setting

• PMS: Principle of Minimal Sensitivity

• FRGE: Functional Renormalization Group Equation

• QED: Quantum Electrodynamics

• EEA: Effective Average Action.

3



Contents

Abstract 1

1 Acronyms used 3

2 Introduction 6
2.1 SSB, quadratic divergencies, and the hierarchy problem in a nutshell . . . . 6
2.2 SSB without quadratic divergencies . . . . . . . . . . . . . . . . . . . . . . . 8

3 Basics on Quantum Field Theory and Hierarchy Problem 10
3.1 Spontaneous Symmetry Breaking in U(1) gauge theory . . . . . . . . . . . . 10
3.2 Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 On Veltman’s condition and hierarchy problem . . . . . . . . . . . . . . . . 14

3.3.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Functional Renormalization Group and its Applications 21
4.1 Derivation of the scale dependent effective action . . . . . . . . . . . . . . . 21
4.2 Grafical representation, higher n-point functions and truncation . . . . . . . 27
4.3 Asymptotic Safety and Non-perturbative Renormalizability . . . . . . . . . 29
4.4 Predictivity and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 The background FRGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 The Einstein-Hilbert truncation . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Gaussian matter fields minimally coupled to an external metric . . . . . . . 37

5 Results 42
5.1 Scalar QED without quartic interaction . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Optimized effective action . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Values of parameter expansion from QED sector . . . . . . . . . . . 44

5.2 Gravitational sector minimally coupled to a charged scalar . . . . . . . . . . 45
5.3 Gauge boson masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Mass and vacuum expectation value of scalar and gauge fields . . . . 47
5.3.2 Benchmark of gravitational parameters . . . . . . . . . . . . . . . . 50

5.4 Comparison with the functional renormalization group . . . . . . . . . . . . 50

4



CONTENTS

6 Conclusions And Remarks 54

A Evaluation of traces and Q-functionals 55

B Spectral sum for the Dirac operator 59

C Fixed points and relevant directions 62

D Consistency of flow equations 64

5



Chapter 2

Introduction

The Standard Model describes the elementary particles and their interactions in a suc-
cessful way. However, there are good reasons for looking for physics beyond the Standard
Model. One such motivation is the subject of this paper; the so-called hierarchy problem
in theories with Spontaneous Symmetry Breaking (SSB) (1; 2; 3; 4; 5; 6).

2.1 SSB, quadratic divergencies, and the hierarchy problem
in a nutshell

The measurements of the Higgs boson at the Large Hadron Collider (7; 8) confirms that
its existence and properties are consistent with the Standard Model (SM). Unlike all other
particles of the SM the Higgs is a fundamental scalar, which gives rise to the question,
whether the SSB mechanism, which is induced by the Higgs field, is natural (9; 10; 11; 12;
13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23). The central issue is the strong sensitivity of masses
of scalar particles against radiative corrections, leading to the so-called hierarchy problem
and the failure of the notion of naturalness. It is, of course, possible that naturalness is
not always a good guiding principle for the understanding of nature (24), but if one would
have the choice, a natural description is certainly preferable.

The hierarchy problem affects only scalar particles since Dirac and gauge fields are
technically natural. Just as for scalar fields, the mass term associated with spin-1/2 or spin-
1 fields is invariant under a global symmetry, but there is further an enhanced symmetry
when the mass parameter goes to zero. Since, in this case, quantum corrections respect
the enhanced symmetry, the associated corrections will be proportional to the symmetry-
breaking term. As a consequence, the loop corrections to masses of Dirac and gauge fields
will be suppressed by the smallness of the tree-level parameter, and no fine-tuning is needed
when further corrections are incorporated.

Unfortunately, the same does not hold for the mass term for scalar particles. In the
SM, the term m2H†H, with H being the SU(2)L Higgs field doublet, is invariant under any
gauge or global symmetry acting on it. Further, no additional symmetry is enhanced when
m→ 0, and therefore the mass parameter is exposed to any contribution coming from the
UV sector. The fact that at the quantum level, it has the sensitivity to the physics in
the UV reflects the lack of arguments to justify the stability of the Higgs mass parameter
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CHAPTER 2. INTRODUCTION

against radiative corrections. Quite generally, in a theory with multiple mass-scales one
finds that the Higgs mass m accumulates quantum corrections from all (coupled) particles
at all energy scales. Thus, m is affected by heavy particles through the appearance of
quadratic divergences (unlike the technically natural spin-1

2 or spin-1 fields). As we will
see in the next chapter, in an effective field theory approach of the SM, where the momenta
of virtual particles are involved, the radiative corrections are cut-off at the scale Π. The
running of m from Π up to some experimental-scale µ is given in (3.37), and grows as (25),

m2
H (µ) = m2

0 (Π) + δm2, (2.1a)

δm2 =
Π2

16π

(
−4y2 + 4e2 + 4g2C2(�) + λ

)
, (2.1b)

where λ, y, e and g2 are the Higgs quartic, Yukawa, Abelian, and non-Abelian gauge cou-
plings, respectively. It is possible to provide a physical meaning for the cutoff Π. For
example, from a Wilsonian perspective, Π would represent the space-time lattice spacing.
Moreover, the quadratic divergences can be seen (at least approximately) as a placeholder
for a physical threshold, identifying the regulator with the heavy particles coupled to the
Higgs. Following (2.1a), an explanation of why the observed Higgs mass remains small
requires a large fine-tuning such that the tree-level parameter exactly cancels the huge
correction in (2.1b). If one starts with a bare action, the quadratic divergences for scalar
fields always arise when the quantum corrections are incorporated. Accordingly, a light
Higgs scalar cannot survive in a natural way if the theory is expected to hold up to large
energy scales, such as the Planck scale. This is referred to the fine-tuning, hierarchy, or
naturalness problem and turns out to be independent of the scheme one uses to renormalize
the theory.

Historically speaking, there are three traditional ways of addressing the problem of
quadratic divergences. The first one is embedding the SM into a new kind of symmetry,
which acts in such a way that the Higgs mass is protected by this symmetry, turning it
into a technically natural parameter. One possible option to implement this idea is based
on a new fermion-boson symmetry called supersymmetry (26; 27; 28; 29; 30), where a
cancellation between loops of different statistics takes place.

The second option invokes the possibility of bringing down the cutoff of the SM
through an electroweak symmetry breaking spawned by a dynamically generated vac-
uum condensate of a strongly coupled group, known as technicolor or Higgsless mod-
els (31; 4; 32; 33; 34). Nevertheless, the discovery of a light Higgs mass (7; 8) ruled most
of these models out. However, various extensions (35; 36; 37; 38; 39) suggest alternative
ways to preserve this idea.

The third option establishes a set of vacua of the SM, over which the Higgs mass varies
according to some statistical distribution (40; 41; 42). The anthropic principle provides a
guide for explaining the observed light Higgs boson mass and the closeness to the QCD
and weak scales without resorting to additional symmetries or a lower cutoff.

An incomplete list of more recent alternatives include:
4) NNaturalness (43; 44), which relies on multiples copies of the SM in the same universe,
each with a different vacuum expectation value.
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CHAPTER 2. INTRODUCTION

5) Twin Higgs (45; 46; 47) models are based on the incorporation of discrete symmetries
that allow different SM quantum numbers, and the representation of two Higgs doublets
into a fundamental SU(4).
6) Noncommutative perturbative dynamics (48) assumes the separation of UV and IR
physics, using a noncommutative theory. Here, non-trivial mixtures of UV and IR phe-
nomena can explain different hierarchies in nature.
7) Asymptotic Safety (49) works with a non-trivial UV fixed point for gravity. The ob-
served Higgs mass is predicted from supposing that the Standard Model plus gravity are
valid up to Planck scale energies and assuming that there are no new fundamental degrees
of freedom at intermediate scales.
8) Cosmological relaxation (50) is a model, where the cosmological evolution of the Uni-
verse is diving the Higgs boson mass to a much smaller value than the Planck scale.

2.2 SSB without quadratic divergencies

The goal of this work is to point out a novel way of inducing spontaneous symmetry
breaking. It allows to generate masses of gauge bosons without quadratic divergences. This
mechanism thus avoids the corresponding hierarchy problem mentioned in the previous
subsection 2.1.

For this purpose, the starting point will be a bare action without “dangerous” inter-
actions like the quartic Higgs coupling. Quantum corrections to this classical bare action
yield a scale dependence at the level of the gauge couplings contained in an effective action
Γk. The arbitrary renormalization scale cannot be part of physical observables. It will
be set following the Variational Parameter Setting (VPS) (51) prescription, which can be
understood as the principle of minimal sensitivity (52), applied to quantum field theory
background calculations. The VPS prescription allows to minimize the scale-dependent
effective action with respect to variations of its field- and parameter content, giving a set
of non-linear differential equations, frequently referred to as gap equations (53). These gap
equations are different from the equations one would obtain from the initial bare action.

It is possible to choose a bare action S(Φ) such that no quadratic divergences arise in
the effective action Γk(φ), where φ is the quantum expectation value of the field Φ. This
means for constant values of the renormalization scale k, there will be no terms, which
are usually necessary to generate SBB. However, in every quantum field theory calculation
the scale k has to be set in order to arrive at a testable prediction. This necessity is
a consequence of the incomplete nature of any perturbative or effective quantum field
theory approach. It depends on the observable one is interested in, whether one choses k
as a function of kinematic variables, renormalized parameters, or something else. Thus,
assuming the scale to be an independent constant was actually inconsistent. For example,
when one is interested in background configurations one way to proceed is the scale setting
of the “improving solutions” procedure, leading to Uehling-type potentials (56; 57; 58; 59;
60; 61; 62; 63; 64; 65). However, the scale setting in “improving solutions procedures”
leads to an anomalous violation of the underlying gauge symmetries. Fortunately, such
a breaking of gauge symmetries is not necessary. As shown in (51), the afore mentioned
VPS prescription allows to derive an optimal scale setting k → kopt, which preserves the
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CHAPTER 2. INTRODUCTION

underlying gauge symmetries of the effective action Γk. After the replacement k → kopt
the effective action Γk becomes an optimal effective action Γopt.

The main massage of this paper is that for SSB to occur, it is sufficient that it occurs at
the level of this optimal effective action Γopt, as opposed to the non-optimal effective action
Γk, or the bare action S. The advantage of this is that quadratic divergences arising from
quantum corrections of the bare action S in the standard SSB are absent when SSB only
occurs at the level of Γopt since the optimal effective action has all quantum corrections
already incorporated (67; 66). No additional quantum corrections have to be incorporated
into Γopt and thus no quadratic divergencies occur.

This idea is conceptually appealing. In section 5.1 it is implemented for scalar Quantum
Electro Dynamics (QED). It turns out that the resulting optimal effective action Γopt only
allows for SSB if the gauge fields form a condensate. Even though, this might be an
interesting possibility it deviates from our original intention. One realizes that for the
program to work, one needs a scale dependent vacuum contribution to the effective action.
This is the reason why we proceed with an effective description of quantum gravity, where
this vacuum contribution is given in terms of a cosmological constant. As example we
study the Asymptotic Safety (AS) approach. The AS (68) conjecture provides a consistent
description of gravity as a non-perturbatively renormalizable quantum field theory (69; 70;
71) and a scenario for testing the results of this work. Moreover, the scale dependence of
the gravitational and cosmological constant has been extensively studied, in (72; 73; 74; 75;
76; 77; 78) as well as properties and consequences of the scale-dependent Einstein Hilbert
action (79; 80; 81; 82; 83; 84) and Gaussian massless matter fields minimally coupled to
an external metric (85; 86; 87; 88; 89; 90; 91; 92).

The thesis is organized as follows: in chapter 3, the nature of the electromagnetic and
weak forces will be examined, providing a conceptual explanation of the standard SSB
mechanism. In chapter 4, the techniques of the functional renormalization group (FRG)
are studied, giving a derivation of the Wetterich equation and then proceed to introduce
the AS scenario for quantum gravity. With particular emphasis on the application of the
FRG to the Einstein-Hilbert action, the compatibility of minimally coupled matter degrees
of freedom with the AS program is explored. chapter 5 provides the mechanism where the
electromagnetic sector is minimally coupled to a metric field, conducing to a symmetry-
breaking potential without the necessity of a quartic self-interaction. Expressions for the
mass and VEV of the Higgs boson, as well as a benchmark between the gravitational
parameters coming from an infrared expansion, are worked out. Our results are compared
with those obtained in the context of the functional renormalization group. Finally, a
summary, some comments, and ideas for future work are given in chapter 6.
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Chapter 3

Basics on Quantum Field Theory
and Hierarchy Problem

3.1 Spontaneous Symmetry Breaking in U(1) gauge theory

The essential idea underlying the Higgs mechanism can be illustrated considering the
classical Abelian Yang-Mills theory. The U(1) gauge-invariant kinetic term for the gauge
field is,

Lkin = −1

4
FµνFµν , (3.1)

where Fµν = ∂µAν−∂νAµ. (3.8) is invariant under the local gauge transformation Aµ(x)→
A
′
µ(x) = Aµ(x) − ∂µη(x), for any η and x. Please note that the insertion of a mass term

for the gauge field in the Lagrangian breaks the local U(1) gauge symmetry. The addition
of a complex scalar field with charge −e that couples both, to itself and to the photon to
the Lagrangian (3.1) gives,

L = −1

4
FµνF

µν + (Dµφ)†(Dµφ)− V (φ) = −1

4
FµνF

µν + (Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2,

(3.2)
where Dµ = ∂µ − ieAµ and λ > 0 for the scalar potential to be bounded from below. It is
easily seen that this Lagrangian is invariant under the gauge transformation,

Aµ(x)→ A
′
µ(x) = Aµ(x)− ∂µη(x) ; φ(x)→ eiη(x)φ(x). (3.3)

At this point, there are two possibilities for the theory. If µ2 < 0, the state of minimum
energy is unique, located at the vacuum state φφ† = 0, and the potential preserve all the
symmetries of the Lagrangian, which describes massless electrodynamics with a massless
photon and a charged scalar field φ with mass µ.

The other scenario takes place when µ2 > 0, and the potential develops a non-trivial
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degeneracy of minimums, acquiring a vacuum expectation value different to zero,

〈φ〉 =

√
µ2

2λ
≡ v

2
. (3.4)

Now, the global U(1) gauge symmetry is spontaneously broken. One of the main
features of this breakdown in symmetry lies in the Lagrangian (3.2) can describe the
physics of a massive gauge boson. To see this, let’s pick the vacuum along the direction of
the real part of φ,

φ =
v + h√

2
e
iχ
v , (3.5)

where h and χ, which are the fields related to the Higgs and Goldstone bosons, respectively,
corresponds to scalar fields without VEV. Replacing (3.5) into (3.2),

L =

[
(∂µ − ieAµ(x))

(
v + h√

2
ei

χ
v

)]† [
(∂µ − ieAµ(x))

(
v + h√

2
ei

χ
v

)]
− 1

4
FµνF

µν + µ2

(
v + h√

2

)2

− λ
(
v + h√

2

)4

(3.6)

=−1

4
FµνF

µν +
e2v2

2
AµA

µ︸ ︷︷ ︸
massive gauge boson

+
1

2
∂µh∂

µh+ µ2h2︸ ︷︷ ︸
massive scalar field

+
1

2
∂µχ∂

µχ + evAµ∂
µχ︸ ︷︷ ︸

Goldstone boson

+..., (3.7)

where the dots represents interactions terms between h and χ. The Lagrangian (3.6)
describes the physics of a massive gauge field Aµ with mass mA = ev, a massive scalar
field h with mass mh =

√
2λv and a massless Goldstone boson χ. The gauge symmetry

allows removing the confuse Aµ−χ mixing by working in the unitary gauge. It is important
to note that the total counting of degrees of freedom (DOF) before and after the SSB is
the same. One starts with a massless vector field (two DOF) and one complex scalar field
(two DOF) and ends with a massive vector field (three DOF) and one real scalar field
(one DOF). This phenomenon is sometimes described as the vector field has eaten up the
Goldstone boson χ in the unitary gauge, becoming massive. In the next section, this toy
model will be expanded to a more realistic theory.

3.2 Electroweak Symmetry Breaking

In this section, the nature of weak forces is analyzed. At high energies, the standard
model is invariant under a SU(2)⊗ U(1) gauge group. However, the U(1) gauge group at
such energies is not the electromagnetic U(1)em. To make the distinction, at high energies,
the gauge group U(1) turns out to be the Abelian group U(1)Y hypercharge. As one lowers
the energy, this symmetry breaks into,

SU(2)L ⊗ U(1)Y → U(1)em. (3.8)
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One calls the SU(2)L ⊗ U(1)Y the electroweak symmetry, and the process of breaking
symmetry at low energy is called electroweak symmetry breaking (EWSM).

One of the great achievements of the SM is the explanation of the EWSM process.
EWSB decodes how to go from SU(2)L ⊗ U(1)Y to U(1)em at low energies through the
Higgs mechanism. The central problem associated with EWSB can be summarized as
the masses of the mediators of the Weak force, the gauge bosons. Experimentally, weak
bosons have masses. The only way, however, to introduce masses for the gauge bosons
without spoiling unitarity and renormalizability. Consequently, it is not possible to write
these mass terms directly in the SM Lagrangian without violating gauge invariance. The
simplest way to solve this mass problem is through the Higgs mechanism.

To see how the Higgs mechanism provides mass to gauge bosons, consider the SM
Lagrangian.

LSM = Lkin + Lint (3.9)

Typically, the interaction terms contain,

Lint = LY ukawa − V (φ), (3.10)

where the potential V (φ) contains only scalar terms related to the Higgs field φ, whose
shape is responsible for the EWSB,

V (φ) = µ2Φ†Φ + λ
(

Φ†Φ
)2
, (3.11)

with Φ being a scalar doublet field. For µ2, λ > 0, the potential has a minimum different
to zero which occurs at the vacuum expectation value (VEV),

|Φ|2 =
µ2

2λ
≡ v2

2
. (3.12)

All these minimum configurations are connected by gauge transformations which change
the phase of the complex field Φ without affecting its modulus. It is important to note that
the Lagrangian (3.9) is still invariant under gauge transformations and all its characteristic
properties, as current conservation, still stand in place.

Expanding the Higgs doublet around the minimum v,

Φ =

(
φ+

φ0

)
=

1√
2

exp

[
iσiθ

i(x)

v

](
0

h(x) + v

)
, (3.13)

where h(x) represents fluctuations around v, and the θi’s shift φ(x) along the flat minimum
of the Higgs’ potential. These θi’s are known as Nambu-Goldstone, massless particles
associated with v 6= 0 symmetry breaking. Rotating the fields θi(x) by a SU(2)L gauge
transformation so that θi(x) = 0 (the so-called unitary gauge), the kinetic term for the
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Higgs field will be,

LH,kin =
1

2

(
0 h+ v

) (
∂µ − igTaWµ,a − ig′BµY

)† (
∂µ − igTaW a

µ − ig
′
BµY

)( 0
h+ v

)
,

(3.14)
where T a = 1

2σ
a and Y are the generators of the SU(2)L and U(1)Y gauge group, respec-

tively. The covariant derivative contains the gauge field of U(1)Y (Bµ) and SU(2)L (Wµ).
Collecting the terms containing only the interaction among the Higgs and gauge fields,

LH,kin 3
g2v2

8
(Wµ

1 Wµ,1 +Wµ
2 Wµ,2) +

v2

8

(
Wµ

3 Bµ
)( g2 −gg′

−gg′ g
′2

)(
Wµ,3

Bµ

)
. (3.15)

Defining the charged W−µ , and its complex conjugate as,

W−µ =
1√
2

(W 1
µ + iW 2

µ) (3.16a)

W+
µ =

1√
2

(W 1
µ − iW 2

µ). (3.16b)

Inserting (3.16) into (3.15),

LH,kin 3
g2v2

4
(W+µW−µ +

v2

8

(
Wµ

3 Bµ
)( g2 −gg′

−gg′ g
′2

)(
Wµ,3

Bµ

)
, (3.17)

thereby, the weak bosons acquire a mass gv
2 through this mechanism. The remaining task

is to calculate the mass of Bµ and W3 fields, which are mixed through the coupling’s matrix
in (3.17). The two remaining neutral gauge bosons Z and A are defined in terms of the

weak mixing angle tan θw = g
′

g ,

Zµ ≡ cos θwWµ,3 − sin θwBµ

=
1√

g2 + g′
2
(gW 3

µ − g
′
Bµ) (3.18a)

Aµ ≡ sin θwWµ,3 + cos θwBµ

=
1√

g2 + g′
2
(g
′
W 3
µ + g

′
Bµ). (3.18b)

After the identification of (3.18) in (3.17), one obtains,

LH,kin 3
g2v2

4
W+µW−µ +

v2

8
(g2 + g

′2
)ZµZµ. (3.19)

The kinetic part of the Lagrangian includes a mass for the Z boson v
2

g
cos θw

while the
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photon’s mass remains vanish. The gauge bosons acquire a mass through their interaction
with the VEV. The fact that three goldstone bosons have been obtained mass is closely
related to the election of the unitary gauge to absorb the Nambu-Goldstone bosons. Three
θi(x) have been ”eaten up” by three gauge bosons.

Although the Higgs mechanism is embedding the SM an explanation for how EWSB can
provide a mass for the gauge bosons, the discovery of light Higgs bosons raises new questions
about its origin. Before the discovery of this particle, two kinds of fundamental fields were
known: fermions with half-integer spin and bosons with spin-1. The Higgs, however, is
the only fundamental spin-0 scalar particle observed, and this leads to a problem with the
quantum corrections and the corresponding divergences associated with scalar fields. The
next section is devoted to calculating these divergences explicitly.

3.3 On Veltman’s condition and hierarchy problem

In this section, we will briefly discuss what the hierarchy problem in the light of a
computation of the self-energy for fermions, gauge, and scalar fields.

3.3.1 Fermions

The physical mass for the fermion field is given by,

m2
ψ = m2

ψ,0 + δm2
ψ, (3.20)

where mψ,0 is the bare mass parameter appearing in the Lagrangian, and δmψ represents
the quantum contribution due to loop corrections. At one loop, the main contribution is,

Figure 3.1: One loop contribution to the fermion self energy

The second diagram of Figure 3.1 gives the following contribution,
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=

∫
d4k

(2π)4
(−iy)

i(/k +mψ)

k2 −m2
ψ

(−iy)
i

k2 −m2
φ

=y2

∫ 1

0
dx

∫
d4k

(2π)4

/k +mψ[
k2 − xm2

ψ − (1− x)m2
φ

]2

=
iy2

(4π)2

∫ 1

0
dx

∫ Π2

0
dk2

E

mψk
2
E[

k2
E + xm2

ψ + (1− x)m2
φ

]2

=
iy2

(4π)2

mψ

m2
ψ −m2

φ

(
m2
ψ log

Π2 +m2
ψ

m2
ψ

−m2
φ log

Π2 +m2
φ

m2
φ

)
(3.21)

In writing down (3.21) we made use of a Wick rotation. The third diagram of Figure 3.1
gives,

=

∫
d4k

(2π)4
(ieγν)

i(/k +mψ)

k2 −m2
ψ

−igµν
k2 − µ2

(ieγµ)

=− e2

∫ 1

0
dx

∫
d4k

(2π)4

−2/k + 4mψ[
k2 − xm2

ψ − (1− x)µ2
]2

=
−ie2

(4π)2

∫ 1

0
dx

∫ Π2

0
dk2

E

4mψk
2
E[

k2
E + xm2

ψ + (1− x)µ2
]2

=
−ie2

(4π)2
mψ log

Π2 +m2
ψ

m2
ψ

, (3.22)

where to get to the last line, it has been applied the limit µ → 0. The non-Abelian
gauge boson contribution to the fermion self-energy is identical to the contribution from
the Abelian gauge boson, except for the quadratic Casimir factor C2(�) coming from the
SU(N) non-Abelian gauge group theory,

=
−ig2

(4π)2
C2(�)mψ log

Π2 +m2
ψ

m2
ψ

, (3.23)

3.3.2 Gauge Bosons

The quantum corrections to the Abelian and non-Abelian gauge boson masses are
shown in Figure 3.2

Fortunately, evaluating all these diagrams is unnecessary because the gauge symmetry
protects gauge boson masses. To see how the mechanism works, the process will be em-
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Figure 3.2: One loop contribution to the Abelian gauge bosons

Figure 3.3: One loop contribution to the non-Abelian gauge bosons

ployed on Abelian gauge bosons, but a similar arguments protect non-Abelian gauge boson
mass. The Abelian gauge transformation,

φ(x)→ eiα(x)φ(x), (3.24)

implies that terms like φφ∗ are invariant. The covariant derivative is constructed such that
both, the mass and kinematic terms are invariant under gauge transformations.

Dµφ ≡ (∂µ − ieAµ)φ

→ i∂µαe
iαφ+ eiα∂µφ− ieA

′
µφ

= eiα
(
∂µ − ie

[
A
′
µ +

1

e
∂µα

])
φ. (3.25)

If Aµ transform under the local gauge transformation as,

Aµ → A
′
µ = Aµ −

1

e
∂µα, (3.26)

then the kinetic term (3.25) is,

Dµφ→ eiα (∂µ − ieAµ)φ

= eiαDµφ, (3.27)
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and DµφD
µφ† is invariant under (3.24) and (3.26). With this gauge transformation in

mind, the bare gauge boson mass in the Lagrangian (3.9) must respect the symmetry
(3.24). For the mass term of the gauge boson,

L 3MγAµA
µ, (3.28)

the gauge transformation (3.26) yields,

mγA
µAµ → mγ

(
Aµ − 1

e
∂µα

)(
Aµ −

1

e
∂µα

)
= mγA

µAµ −
2

e
mγA

µ∂µα+
1

e2
mγ∂

µα∂µα. (3.29)

The problem with (3.29) is that it depends explicitly on an unphysical gauge parameter
α. The only possibility to keep the gauge invariance is by setting Mγ = 0. Even though
this analysis was carried out to tree-level, the quantum corrections respect the original
symmetries of the theory, so the one-loop contribution to the self-energy of the gauge
boson mass cannot have huge contributions in its mass term.

3.3.3 Scalars

The physical mass for the scalar field is given by,

m2
φ = m2

φ,0 + δm2
φ. (3.30)

At one loop, the main contribution will be,

Figure 3.4: One loop contribution to the scalar self energy

The third diagram of Figure 3.4 gives the fermion contribution to the self-energy,
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=

∫
d4k

(2π)4
(−1)Tr

[
(−iy)

i(/k +mφ)

k2 −m2
φ

(−iy)
i/k

k2 −m2
φ

]

=− 4y2

∫
d4k

(2π)4

k2 +m2
ψ(

k2 −m2
ψ

)2

=− 4iy2

(4π)2

∫ Π2

0
dk2

E

k2
E(−k2

E +m2
ψ)(

k2
E +m2

ψ

)2

=
iy2

(4π)2

(
Π2 − 3m2

ψ log
Π2 −m2

ψ

m2
ψ

+ finite terms

)
. (3.31)

The fourth diagram of Figure 3.4 gives,

=

∫
d4k

(2π)4
(ieγν)

i

k2 −m2
φ

(ieγµ)
−igµν
k2 − µ2

=− 4e2

∫ 1

0
dx

∫
d4k

(2π)4

1[
x(k2 −m2

φ) + (1− x)µ2
]2

=− 4ie2

(4π)2

∫ 1

0
dx

∫ Π2

0
dk2

E

k2
E[

k2
E + xm2

φ + (1− x)µ2
]2

=− ie2

4π2

1

m2
φ − µ2

m2
φ log

Π2 +m2
φ

m2
φ

. (3.32)

To arrive to the last line in (3.32) the µ→ 0 limit has been applied. The evaluation of
the sixth diagram of Figure 3.4 gives,

=

∫
d4k

(2π)4
(−2ie2γµν)

−igµν

k2 − µ2

=− 4e2

∫
d4k

(2π)4

1

k2 − µ2

=
4ie2

(4π)2

∫ Π2

0
dk2

E

k2
E[

k2
E + µ2

]2
=
ie2

4π2
Π2. (3.33)
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The non-Abelian contribution coincides with the Abelian one expect of group theory
factors,

=
−ig2

4π2
C2(�) log

Π2 +m2
φ

m2
φ

(3.34)

=
−ig2

4π2
C2(�)Π2. (3.35)

The quartic scalar self coupling is,

=

∫
d4k

(2π)4
(−iλ)

i

k2 −m2
φ

=− iλ

(4π)2

∫
dk2

E

k2
E

k2
E +m2

φ

=
iλ

(4π)2

(
−Π2 +m2

φ log
Π2 +m2

φ

m2
φ

+ finite terms

)
. (3.36)

The total one-loop contribution to the scalar self-energy depends quadratically on the
cut-off Π,

=− i

(4π)2

(
−4y2 + 4e2 + 4g2C2(�) + λ

)
Π2 +O(log Π2) + finite terms

∼ Π2. (3.37)

The last formula is known as ”Veltman condition” in his attempt to solve the hierarchy
problem. Now, suppose the standard model is viewed as an effective field theory (EFT)
up to the Planck scale Π = MPl ∼ 1019, then the quantum corrections are O(M2

Pl).
For the case of scalar particles with masses much smaller than the Planck scale, (3.30)
implies a significant and incredibly precise value of the bare mass parameter to cancel the
contribution of quantum corrections and then reproducing a light-type particle. Tuning
non-physical parameters to reproduce certain physical phenomena seems to be forced a
theory to fit nature, and, at the same time, seems contrary to the scientific’s goal of
using theoretical models for naturally describing physical phenomena. The problem of
this quadratic divergence in the quantum corrections of scalar particles is referred to as
”hierarchy, fine-tuning problem or quadratic divergences.” The problem can be reformulated
in terms of the enormous difference between the weak and the Planck scale.
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Two questions naturally arise from this analysis. The first question is whether the SM
needs to be treated as an EFT. Suppose that the SM could run up to arbitrarily high
energies. If this were the case, it would hit the Landau pole in the hypercharge coupling.
One of the main consequences of the divergent behavior of the coupling in the SM lies in
the formation of non-zero vacuum condensates of fermions in the UV (around 1041 GeV),
which is inconsistent with the long-range degrees of freedom in the infrared. The SM needs
to be an EFT at some cutoff Π to avoid that kind of inconsistency whether or not one is
concerned about the implication of quantum gravity.

The second question is what to think about the quadratic divergence and if a different
renormalization scheme might avoid (or, at least, alleviate) the hierarchy problem. In QFT,
one deals with divergences by introducing counterterms in the Lagrangian and fix their
coefficients according to some renormalization scheme, and then use this scheme to perform
finite predictions for observables at other scales. Following this criterion, one might not be
worried by the quadratic divergence. But even if one does not ascribe physical significance
to the quadratic divergence alone, it gives signals for the existence of sensitivity to UV
physics, understanding the quadratic divergence as a placeholder for physical threshold.
In fact, from a Wilsonian perspective, the fundamental theory is finite, and divergences in
the effective field theory are physical (for example, the cutoff is equivalent to the lattice
spacing, or could be represented mass scale of particles rendering the Higgs mass finite).
The counterterms added to the original Lagrangian just manifest fine-tuning processes.
Formulated in this way, it is clear that it does not matter what scheme one is using to do
the calculation. For instance, dimensional regularization hides the explicit dependence on
Π2 in its intermediate results, but the dependence on the high-energy parameters is still
there.
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Chapter 4

Functional Renormalization Group
and its Applications

The standard model of particle physics, together with gravity, describes a set of inter-
actions capable of expressing a vast number of physical phenomena from those occurring
in particle colliders at LHC to everyday physics as the projectile motion thrown near the
Earth’s surface. Nevertheless, it would be absurd trying to explain how the train machin-
ery works in terms of gluons and photons, as well as an astronomer, wouldn’t want to
understand the laws of a macroscopic universe in terms of every single star in the cosmos.
Instead, a description of a physical system suitable for a length scale we are interested
in is highly desirable. Thus, the aim lies in covering an effective description on different
scales, going from physics at short distances scales to a characterization of the vast array
of phenomena observed at larger distances scales. The connection is from the microscopic
to macroscopic dynamics since different microscopic theories can lead to the same effective
description of lower energy scales. The goal of this chapter is to derive a systematic ap-
proach to work with this question by deducing a well-suited formalism that allows dealing
with both the perturbative (QED) and the nonperturbative (QCD and gravity) scenarios.

4.1 Derivation of the scale dependent effective action

Consider a scalar theory with fields ψa, a = 1, ..., N , and d Euclidean dimensions.
Starting with the generating functional of the n-point correlation functions in the path
integral representation,

Z[J ] =

∫
Dψexp

(∫
x
Jψ − S[ψ]

)
, (4.1)

one defines a scale dependent generating functional by inserting artificially a cutoff term
∆Sk[ψ],
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Zk[J ] =

∫
ψexp

(
−S[ψ] +

∫
x
Jψ −∆Sk[ψ]

)
. (4.2)

The target of the new term consists in suppressing the low momenta modes p2 � k2.
For this purpose, the required form of the cutoff term has to be at most quadratic in the
field ψ,

∆Sk[ψ] =
1

2

∫
q
ψ∗(q)Rk(q)ψ(q), (4.3)

where Rk[ψ] is called cutoff function and can be viewed as a momentum-dependent mass
term. A cutoff term quadratic in the fields ensures that a one-loop equation can be ex-
act (93). In general, there is a freedom in the choice of the specific shape of Rk except for
a few basic requirements,

i In the deep infrared,
lim
k2

q2
→0

Rk(q)→ 0,

which implies that the regulator ∆Sk[ψ] vanishes for k → 0, for all q. As a consequence,
one ensures the standard generating functional as well as the full quantum effective
action.

ii Rk must be continuous and monotonically decreasing in q and monotonically increasing
in k.

iii For q2 � k2

lim
q2

k2→0

Rk(q) > 0.

It implies that Rk(q) must be an infrared regulator that suppress dynamics of low
momentum modes by a soft mass-like infrared cutoff.

iv For k → Λ (k →∞ when Λ→∞) no modes integrated out yet and

lim
k2→Λ→∞

Rk(q)→∞,

which induces that the functional integral is dominated by the stationary point of the
action in this limit.

For practical calculations, it is useful to give some examples of common used shapes of
cutoff profiles. The exponential cutoff (94) is given by,

Rk(q) =
q2

exp q2

k2 − 1
, (4.4)
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while the optimized cutoff (95),

Rk(q) =
(
k2 − q2

)
Θ

(
1− q2

k2

)
, (4.5)

allows to do almost all the integral involved in the rest of the next sections analytically,
which is why we will adopt it in the rest of this thesis. Even though the fixed points
obtained in 4.6 and 4.7 have a dependence of the shape of Rk, variations on the position
in theory space are too small, and regardless of the form of Rk, the value always remains
in the first quadrant. Return to the generating functional, the scale-dependent Wk[J ] for
the connected Green functions is defined by,

Zk[J ] = exp (Wk[J ]) . (4.6)

Employing a modified Legendre transformation,

Γk[φ] = −Wk[J ] +

∫
x
J(x)φ(x)−∆Sk[φ], (4.7)

the variation condition on the action over the fields gives the equation of motion for φ(x),

δΓk[φ]

δφ(x)
=−

∫
y

δWk[J ]

δJ(y)

δJ(y)

δφ(x)
+

∫
y

δJ(y)

δφ(x)
φ(y) + J(x)− δ∆Sk[φ]

δφ(x)

=−
∫
y
φ(y)

δJ(y)

δφ(x)
+

∫
y

δJ(y)

δφ(x)
φ(y) + J(x)− δ∆Sk[φ]

δφ(x)

=J(x)− δ∆Sk[φ]

δφ(x)

=J(x)−Rk(x)φ(x).

(4.8)

Now we turn to the derivation of the flow equation. It describes the change of the
scale-dependent effective with a change of the renormalization group scale k, and thus how
the effective action on different scales are connected. Defining the renormalization group
time t as,

t = log

(
k

Λ

)
⇒ ∂t =

∂

∂t
= k

∂

∂k
= k∂k. (4.9)

To get the flow equation, the first step consists in taking the derivative of the Average
Effective Action (EAA) with respect to t, with constant field φ and variable current J ,
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∂tΓk[φ] = −∂tWk[J ]−
∫
x

δWk[J ]

δJ(x)︸ ︷︷ ︸
φ(q)

∂tJ +

∫
x
φ(x)∂tJ(x)− ∂t∆Sk[φ]

= −∂tWk[J ]− ∂t∆Sk[φ]. (4.10)

.
In order to find the explicit flow equation, the derivative of the cutoff term is required,

∂t∆Sk[φ] =∂t
1

2

∫
q
φ∗(q)Rk(q)φ(q)

=
1

2

∫
q
φ∗(q) (∂tRk(q))φ(q). (4.11)

Performing the derivatives of the modified generator of the connected Green’s functions
explicitly, one gets,

∂tWk[J ] = 1 ∂tWk[J ]

= exp (−Wk[J ]) exp (Wk[J ]) (∂tWk[J ])

= exp (−Wk[J ]) ∂texp (Wk[J ]) , (4.12)

the properties of the previous part of the flow are analyzed in a better way going back
to the path integral representation since the scale dependence appears only in the cutoff
term,

∂tWk[J ] = exp (−Wk[J ]) (∂texp (Wk[J ]))

= exp (−Wk[J ]) ∂tZk[J ]

= exp (−Wk[J ]) ∂t

∫
DψeI

= exp (−Wk[J ])

∫
Dψ (−∂t∆Sk[ψ]) eI

= exp (−Wk[J ])

∫
Dψ

(
−1

2

∫
q
ψ∗(q) (∂tRk(q))ψ(q)

)
eI

= −1

2

∫
q

(∂tRk(q)) exp (−Wk[J ])

∫
Dψψ∗(q)ψ(q)eI , (4.13)

where it has been defined,

I ≡ −S[ψ] +

∫
x
J(x)ψ(x)−∆Sk[ψ]. (4.14)
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The term ψ∗(q)ψ(q) appearing in (4.13) suggests expressing the integral over the scalar
fields together with the generating functional in terms of the connected Green’s functions,

exp (−Wk[J ])
δ2

δJ(q)δJ∗(q)
exp (Wk[J ]) = exp (−Wk[J ])

δ

δJ(q)

(
exp (Wk[J ])

δWk[J ]

δJ∗(q)

)
=
δWk[J ]

δJ(q)︸ ︷︷ ︸
φ(q)

δWk[J ]

δJ∗(q)︸ ︷︷ ︸
φ∗(q)

+
δ2Wk[J ]

δJ(q)δJ∗(q)︸ ︷︷ ︸
<ψ∗(q)ψ(q)>

= φ(q)φ∗(q)+ < ψ∗(q)ψ(q) >k,connected

= φ(q)φ∗(q) +Gk(q, q), (4.15)

where Gk(q, q) are the Green functions of connected k. Inserting (4.15) into (4.13),

∂tWk[J ] = −1

2

∫
q

(∂tRk(q)) (Gk(q, q) + φ∗(q)φ(q))

= −1

2

∫
q

(∂tRk(q))Gk(q, q)−
1

2

∫
q
φ∗(q) (∂tRk(q))φ(q)︸ ︷︷ ︸

∂t∆Sk[φ]

= −1

2

∫
q

(∂tRk(q))Gk(q, q)− ∂t∆Sk[φ]. (4.16)

Collecting all ingredients, the flow equation for the scale-dependent effective action can
be obtained in terms of the Green function for fixed φ and variable source,

∂tΓk[φ] = −∂tWk[J ]− ∂t∆Sk[φ]

=
1

2

∫
q

(∂tRk(q))Gk(q, q) + ∂t∆Sk[φ]− ∂t∆Sk[φ]

=
1

2

∫
q

(∂tRk(q))Gk(q, q). (4.17)

What remains to do in order to obtain a closed functional differential equation such
that it only involves Γk is to express G(q, q) in terms of the effective action and relate the
flow equation with the two-point function effective action. The green function is defined
by,

G(p, q) =
δ2Wk[J ]

δJ∗(p)δJ(q)
. (4.18)

From the modified Legendre transformation (4.7), the second functional derivative is
applied to find the variation of the source term with respect to the field,
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δJ(q)

δφ∗(q′)
=

δ2Γk[φ]

δφ∗(q′)δφ(q)
+Rk(q)δ(q − q

′
). (4.19)

equation (4.18) implies the following identity for the delta function,

δ(q
′ − q) =

δφ∗(q)

δφ∗(q′)

=
δ

δφ∗(q′)

δWk[J ]

δJ(q)

=

∫
q′′

δ

δφ∗(q′)

δWk[J ]

δJ(q)

δJ(q
′′
)

δJ(q′′)

=

∫
q′′

δ2Wk[J ]

δJ(q′′)δJ(q)

[
δ2Γk[φ]

δφ∗(q′)δφ(q′′)
+Rk(q

′′
)δ
(
q
′′ − q′

)]
. (4.20)

Thus, the scale-dependent inverse propagator has a cutoff function and a second func-
tional derivative. Using (4.20), the functional renormalization group equation (FRGE),
a.k.a. Wetterich equation (57), is dictated by,

∂tΓk =
1

2
Tr

(
∂tRk

Γ
(2)
k [φ] +Rk

)
, (4.21)

where the trace is extended to every index, so it includes integration over continuous indices
as well as different kind of fields (taking bosons with a plus and fermions with a minus
sign). At this point, several comments are in order.

• Even though the FRGE (4.21) has a structure of an one-loop equation, it corresponds
to an exact equation. In fact, it is possible to demonstrate that the action at scale k
is related to the full quantum effective action Γk→0[φ] = Γ[φ] and the classical action
Γk→∞[φ] = S[φ].

• The trace of (4.21) is UV-finite due to the introduction of the cutoff term in the EAA.
The derivative ∂tRk ensures the UV regularization since its predominant support lies
on a smeared momentum shell near q2 ∼ k2.

• The solution of (4.21) corresponds to an RG trajectory in the so-called theory space
or the space of all functionals of φ parametrized by the dimensionless couplings of
the theory. The two ends of the path (if any) are the full quantum effective action
and the bare action. Possible trajectories concerning the last point will be analyzed
in the next chapter.
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4.2 Grafical representation, higher n-point functions and
truncation

Before going on with the derivation and implications of the correlation functions, it is
useful to give a graphical representation for ∂tΓk and understand the FRGE in the sense
of Feynman diagrams. To do that, for each modified propagator and RG-time derivative
cutoff insertion, one can assign a straight line and crossed circle, respectively, showed in
Figure 4.1, where we have defined Gk through the following identity,

Figure 4.1: Graphical represetation of the modified propagator Gk (left figure) and the RG time
derivative of the cutoff function (right figure).

1 =
(

Γ
(2)
k [φ] +Rk

)
Gk. (4.22)

The previous prescription allows representing the right-hand side (r.h.s.) of (4.21) by
a loop with a cutoff insertion,

∂tΓk = . (4.23)

This diagrammatic representation emphasizes that the flow equation does not contain
any functional integrals. As discussed above, the FRGE is an exact one-loop equation;
however, from a practical point of view is, in general, impossible to get exact solutions of
(4.22). The reason behind this idea can be observed from a geometrical point of view. The
flow equation generates a vector field with non-vanishing components in (possible infinitely)
directions in theory space. Solving this kind of system is, in general impossible, since the
FRGE constitutes a system of an infinite number of coupled differential equations. More
concretely, the n-point vertex function provides an example that shows the impossibility
previously discussed. The 1 -point functions,

δ

δφ
∂tΓk[φ] = −1

2
Tr

{
(∂tRk)

[
Γ

(2)
k +Rk

]−1
Γ

(3)
k

[
Γ

(2)
k +Rk

]−1
}
, (4.24)

has a graphical representation given by,
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∂tΓ
(1)
k = . (4.25)

while the two-point function is obtained applying one more functional derivative,

δ2

δφδφ
∂tΓ

(2)
k =Tr

{
(∂tRk)

[
Γ

(2)
k +Rk

]−1
Γ

(3)
k

[
Γ

(2)
k +Rk

]−1
Γ

(3)
k

[
Γ

(2)
k +Rk

]−1
}

− 1

2
Tr

{
(∂tRk)

[
Γ

(2)
k +Rk

]−1
Γ

(4)
k

[
Γ

(2)
k +Rk

]−1
}
. (4.26)

The graphical representation is splitted into two diagrams, one for each line in the r.h.s.
of (4.26),

∂tΓ
(2)
k = . (4.27)

What does this imply? The main implication of both, diagrammatic and analytical
representation, is the so-called hierarchy of the flow equation: the flow of the n-point

function involves the knowledge of Γ
(n+1)
k [φ] and Γ

(n+2)
k [φ], i.e., it is always necessary to

know the structure of the higher-order terms. To deal with this kind of infinite tower of
differential equations is, in general impossible.

—Usually, a solution to the lack of exact solutions consists of truncating the theory
space by choosing an ansatz and setting the remaining directions (or couplings) to zero.
Therefore, the flow equation in this truncation. Generally, the selection of a particular
truncation and the following justification of why the chosen truncation encapsulates the
physics successfully behind the problem we are interested in turns out to be a non-trivial
problem. To judge the quality of the truncation, one can study the stability of the re-
sults under an extension of the truncation and then analyzing the effects of the neglected
operators. The limitations of this check become evident. The results obtained may be
very stable under several successive enlargements of the truncation, concluding that these
results are close enough to the exact one. However, there must always be a possibility of
ignoring an operator, which has the potential to spoil this picture dramatically.

Just as the perturbative approach neglects operators corresponding to higher powers
of the coupling, a suitable guiding principle for a non-perturbative regime resides in doing
a derivative expansion sort operator by the number of derivatives they posses. In the
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next three sections, a particular truncation using up to two derivatives shall be adopted
to explore the gravitational sector with matter minimally coupled to a metric field.

4.3 Asymptotic Safety and Non-perturbative Renormaliz-
ability

What happens with the terms that help to describe the different forces of nature?
It is well known that the couplings involved in theories like quantum electrodynamics
grow out of control as energy increases, hitting a Landau pole in the far-ultraviolet (UV).
However, if one stays away from such energies, perturbation theory has bestowed upon the
best predictions for experimental measurements that physics has ever known. Similarly,
general relativity may be seen as an effective quantum field theory (96; 97; 98). Although
the fact that gravity is a non-renormalizable theory (99), it is possible to compute quantum
effects due to graviton loops while keeping the momenta of particles in the loops up to some
reference cut-off scale. As an example, it has been possible to compute quantum corrections
to the Newtonian potential (100) unambiguously. The problems arise when one pushes the
cut-off to some energy regimes like the Planck scales, or beyond. For a generic theory
not necessarily restricted to gravity, a UV completion faces two kinds of problems: the
finiteness of the couplings at arbitrary energy-scales and the predictivity if the theory
under consideration is non-perturbative.

For answering these questions, the starting point will be an effective action which is
constituting by an arbitrary number of monomials, each made up of a combination of fields
compatible with the symmetries of the theory and multiplying by the running couplings,

Γk [φ] =

∫
ddx

∞∑
n=0

∑
i

g
(n)
i (k)O(n)

i (φ) , (4.28)

where φ denotes a generic field for carrying the discussion as general as possible, g
(n)
i (k)

are the running couplings defined at energy scale k, and O(n)
i are all possible operators

constructed with the field φ and its derivatives compatible with the symmetries of the

theory. If d is the canonical dimension of g
(n)
i (k), the dimensionless couplings have the

following scaling structure,

g̃
(n)
i (k) = k−dg

(n)
i (k) . (4.29)

where g̃ represents the dimensionless version of the running coupling. Let Q be an abstract
notation for some physical quantity (cross-section, decay rates, or anything else). For any
shape or physical meaning associated with Q, it will be a function of the renormalization
scale k (appearing in the renormalization procedure of the theory), the kinematical pa-
rameters of the process (momentas, angles, etc.) and the running couplings. Suppose the
structure of Q is not so intricate such that one can extract suitable powers of k. The most
general expression of an on-shell physical quantity can be expressed in its dimensionless
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form as,

Q̃ = kDQ
(
K, g̃

(n)
i (k)

)
, (4.30)

where K stands for any dimensionless kinematical quantities and their ratios, for a canon-
ical dimension of Q equal to D. From (4.30) is clear that the UV behavior of the physical

quantity is governed by the dimensionless running couplings g̃
(n)
i . A healthy UV limit of

Q implies the g̃
(n)
i ’s renormalization group trajectories reach finite values, or fixed points

(FP) at infinite energy scale,

lim
k→∞

g̃i (k) = g̃∗i (4.31)

measured in units of k. If a particular theory meets the conditions (4.31), the dimensionless
physical quantities will not blow up when the cutoff approaches to arbitrarily high energies.

To answer the second question, one needs to investigate the various RG trajectories
which present finite UV-limit. At this stage, it is useful to introduce the theory space, as
space spanned by the essential dimensionless couplings. Essential couplings mean all the
couplings which cannot be removed by a field redefinition. The set of asymptotically safe
trajectories and the corresponding existence of an FP give a criterion for selecting a QFT
description at any energy scale. However, in this scenario, two kinds of problems associated
with the predictivity of the asymptotic safe theory may occur. Suppose a vast number of
essential couplings posses RG trajectories that hit a finite value when k →∞. For seeking
the proper RG flow of the real world, an infinite number of initial conditions have to be
determined by resorting to experiments (as many measures as essential couplings posses
the theory), so the theory would lose predictivity. On the other hand, the theory can have
a maximal predictive power if there is a single trajectory that arrives at the FP in the
UV regime. An acceptable intermediate stage arises when those RG trajectories ending
at finite values correspond to a reasonably limited number of essential couplings. Those
conditions (finite and predictive) define the so-called ”asymptotic safety” scenario or the
non-perturbative renormalizability. Understanding this second condition implies a more
in-depth knowledge of the characteristics of the FP.

4.4 Predictivity and Fixed Points

What is the relation between predictivity and the study of the FP’s? As in the case of
perturbative renormalizability, the theory under consideration must have a finite number
of parameters that can be measured experimentally.

Consider N essential couplings and an FP’s of their respective flows. These FP’s come
in two types: Gaussian FP, which forms a ~0-vector (g̃1 = 0, g̃2 = 0, ..., g̃N = 0) and Non-
Gaussian FP, where at least one of them is different to zero, g̃i 6= 0. The properties of both
types of points will be discussed at the end of this section. In theory space, it would be
possible to identify a subspace consisting of all the trajectories that reach an attractive FP

30



CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP AND ITS
APPLICATIONS

in the UV, called the ”critical surface” C. By definition, no matter where is the location
of the starting point of the flow, it will always find the FP. Otherwise, if the locus of the
starting point is outside of C, the trajectory will, in general, exhibit divergences for k →∞.
Then, using the finiteness in the far UV allows discarding RG trajectories not belonging
to C. The numbers of parameters that can be chosen to approach the FP must be equal
to the dimensionality of C.

In general, the simplest way to investigate the dimension of C is by determining its
tangent space at the FP after having linearized the flow of the coordinates. Suppose the
variation of g̃i’s concerning to the RG time are known for all the relevant couplings,

βi (g̃j) = ∂tg̃i. (4.32)

Condition (4.31) requires that all beta functions vanishing at the FP,

βi
(
g̃∗j
)

= 0. (4.33)

Linearizing the beta functions in the vicinity of the FP,

βi (g̃j) = βi
(
g̃∗j
)

+
∑
j

Mij

(
g̃∗j
) (
g̃j − g̃∗j

)
(4.34)

where,

Mij =
∂βi
∂g̃j

(4.35)

is the stability matrix. The first term of (4.34) is zero by construction, and the new
coordinate center y = (g̃j − g̃∗j ) is small enough at the neighbourhood of the FP for
neglecting second order and higher corrections. By diagonalizing (4.35), an eigenvector Vi
associated to M and their corresponding eigenvalues θi give a solution of the system of
first order differential equation (4.34). Integrating (4.34), the general solution written as
a function of V and θ is,

g̃i(k) = g̃∗i +
∑
n

cnV
n
i k

θn , (4.36)

where the cn are free integration parameters. Due to the stability matrix M is not mani-
festly symmetric, its eigenvalues may come out as complex conjugate pairs. In order to get
physical information out of these equations, one has to note three cases. If Re(θ < 0) the
sum (4.36) goes to zero for k → ∞. Directions that come with a negative sign are called
relevant directions, and they allow to keep unconstrained the constant cn (corresponding
to the free parameters of the theory). Provided that the numbers of relevant directions (or
the dimensionality of our subspace C) with θn < 0 remains finite leads to a predictive the-
ory in the sense of the previous discussion. To have a well-defined UV limit, the irrelevant
directions, θn > 0, yield cn = 0. Those conditions define the UV critical surface unequiv-
ocally for the gravitational case. Finally, the third option with eigenvalues θn = 0 implies
going beyond the linearized analysis for establishing whether it is marginally relevant or
irrelevant.

31



CHAPTER 4. FUNCTIONAL RENORMALIZATION GROUP AND ITS
APPLICATIONS

We conclude this chapter by mentioning the physical difference between GFP and
NGFP. General features known in perturbative renormalizability are valid in a neighbor-
hood of the GFP, and the relevant critical exponents are equal to the canonical mass
dimension of the couplings providing the flow studied. Following (4.29), by dimensional
analysis one can write the beta function of dimensionful couplings as,

βi (g̃j) = −dig̃j + αi(g̃j), (4.37)

where the first term contains the classical scaling while the second one incorporates the
quantum fluctuations coming from the loop corrections, with αi(g̃j) = βi(gik

−dj ). Since
the region of interest is nearing the FP, a Taylor expand of αi in (4.37) is carried out,

αi (g̃j) = αij g̃j + αijkg̃j g̃k +O(g̃3). (4.38)

Combining (4.37) and (4.38) into (4.35), the stability matrix elements,

Mij = −diδij + αij , (4.39)

evaluated at the FP will be diagonal with minus the canonical dimension as eigenval-
ues. As a consequence, C is spanned by the relevant couplings that are power-counting
renormalizable. The AS scenario at the GFP recovers the perturbative renormalizable
and asymptotically free characteristic of most of the quantum field theories. The most
exciting feature appears when one is facing an NGFP since the scaling exponents, in this
case, may receive large contributions of loop corrections. This scenario turns out especially
interesting in the case of gravity, which is non-perturbative renormalizable.

4.5 The background FRGE

The main aim of this and the next section is to derive the one-loop beta function of
the gravitational couplings contained in the so-called Einstein-Hilbert truncation using the
FRGE in the context of the AS program. To define the functional RG for the single metric
flow equation to dynamical gravity, we shall employ the background field method, splitting
the metric field into a fixed background and a quantum fluctuation,

gµν = gµν + hµν . (4.40)

Even when the form of the average effective action is not specified, one assumes that the
complete action is a function of the full metric S(gµν , hµν) and the gauge fixing and ghost
action break the quantum gauge invariant but preserve background gauge transformations.
The later means that the cutoff Rk in (4.3) can no longer be a function of q but must be
defined through a covariant differential operator. The choice is not unique, and it will be
discussed in the next subsection.

As shown in chapter 4, to obtain a well-defined EEA, the cutoff action must be quadratic
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in the quantum field. Adding to the Euclidean partition function,

eW (j,σ,σ) =

∫
(dhdcdc) e−{S(h;g)+SGF (h;g)+Sgh(c,c;g)+

∫
dx
√
g(jµνhµν+σµcµ+σνcν)}, (4.41)

where all quantum fields have been linearly coupled to source terms, the quadratic cutoff
action given by,

∆Sk =
1

2

∫
ddx
√
ghµνR

µνργ
k (g)hργ −

∫
ddx
√
gcνg

µνRghk (g)cµ. (4.42)

The EEA corresponds to the Legendre transformation minus the cutoff ∆Sk,

Γk (h, c, c; g) = −Wk(j, σ, σ; g)+

∫
ddx
√
g (jµνhµν + σµcµ + σνc

ν)−∆Sk(h, c, c; g). (4.43)

This functional obeys the FRGE (4.21),

dΓk
dt

=
1

2
Tr

(
1√
g

δ2 (Γk + ∆Sk)

δϕδϕ

)−1
d

dt

∆Sk
δϕδϕ

, (4.44)

where ϕ = hµν , cν , cν and
√
g is needed to cancel out tensorial objects. Until now, (4.44)

is a closed equation for Γk, but it’s still intractable since the modified inverse propagator
and the cutoff term are unknown. Since ∆Sk does not contain mixed h− c nor h− c terms,
the trace can be written as the sum of two parts,

dΓk
dt

=
1

2
Tr

(
1√
g

δ2 (Γk + ∆Sk)

δϕδϕ

)−1

hh

dRk
dt
− Tr

(
1√
g

δ2 (Γk + ∆Sk)

δϕδϕ

)−1

cc

dRghk
dt

. (4.45)

In order to study the hessian of Γk in the FRGE, let Γk(g) ≡ Γk(0, 0, 0; g) be the
gauge invariant functional obtained by putting all the quantum expectation values to zero.
Hence, the full EAA can be splitted into a gauge invariant part and the remainder,

Γk(h, c, c; g) = Γk(g + h) + Γ̂k(h, c, c; g). (4.46)

The next aim is writing down the flow equation for the gauge-invariant part of the
action. We start by deriving the general form of the hessian for Γk. Although the ghost
action is bilinear in the ghost field, the covariant derivative appearing in the Faddeev-
Popov operator carried the full metric field gµν , introducing mixed h−ghost terms. Hence
the hessian takes the form,

δ2Γk
δϕδϕ

=

 δ2Γk
δhδh

δ2Γk
δhδc

δ2Γk
δhδc

δ2Γk
δcδh 0 δ2Γk

δcδc
δ2Γk
δcδh

δ2Γk
δcδc 0

 . (4.47)

Since we are interested in the flow equation of the functional when all quantum expec-
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tation values are set to zero, ∇µ → ∇µ in the Faddeev-Popov operator and the interactions
between the metric fluctuation and the ghost fields go to zero, leaving (4.47) as,

δ2Γk
δϕδϕ

=

 δ2Γk
δhδh 0 0

0 0 δ2Γk
δcδc

0 δ2Γk
δcδc 0

 . (4.48)

The structure (4.48) implies that (4.44) simplifies to,

dΓk
dt

=
1

2
Tr

(
1√
g

δ2Γk
δhδh

+Rk

)−1
dRk
dt
− Tr

(
1√
g

δ2Γk
δcc

+Rk

)−1
dRghk
dt

. (4.49)

The main trouble with (4.49) consists in we are dealing with different functionals. On
the left-hand side (l.h.s.), one is varying the gauge-invariant part Γk, while the traces on the
right-hand side (r.h.s.) involve the full action Γk, and thus (4.49) is not a closed equation.
To solve the r.h.s. of the Wetterich equation, the information about the hessian of Γ̂k is
required. To get some insights on Γ̂k, consider the one-loop EEA at vanishing fluctuation,

Γ
(1)
k (g) = S(g) +

1

2
Tr log

(
1√
g

δ2 (S + SGF )

δhδh
+Rk

)
h=0

− Tr log

(
1√
g

δ2Sgh
δcδc

+Rghk

)
= S(g) +

1

2
Tr log

(
1√
g

(
δ2S

δgδg
+
δ2SGF
δhδh

)
+Rk

)
− Tr log

(
1√
g

δ2Sgh
δcδc

+Rghk

)
,

(4.50)

where we have applied that S is a quadratic functional of the full metric field, and the
gauge fixing condition is linear in h, thus its action is quadratic in h. Performing an ”RG-
improvement” by replacing the scale-dependent action S → Γk in the r.h.s. of (4.50) and
taking the RG-time derivative one gets,

dΓk
dt

=
1

2
Tr

(
1√
g

(
δ2Γk
δgδg

+
δ2SGF
δhδh

)
+Rk

)−1
dRk
dt
− Tr

(
1√
g

δ2Sgh
δcδc

+Rghk

)−1
dRghk
dt

.

(4.51)
A comparison between (4.49) and (4.51) suggests,

Γ̂k(h, c, c; g) = SGF (h; g) + Sgh(c, c; g), (4.52)

which is also consistent with (4.46) because when all the quantum expectation values
go to zero it follows,

Γ̂k(0, 0, 0; g) = 0. (4.53)
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4.6 The Einstein-Hilbert truncation

As a first step towards the inclusion of quantum gravitational effects using the definition
of non-perturbative renormalizability, the RG flow for a particularly simple truncation will
be discussed. In the Einstein-Hilbert truncation, the gauge-invariant part of the action,

Γk =
1

2κ2

∫
ddx
√
g (2Λk −R) , κ =

√
8πGk, (4.54)

together with the ghost and gauge fixing action (4.52). Before proceeding to compute
the beta functions for the scale-dependent gravitational couplings, it is necessary to define
the different types of cutoffs. For concrete calculations, the shape of Rk in (4.42) needs
to be specified. In general, one has some freedom in this choice (as long as it meets the
requirements given in section 4.1). Traditionally, the argument of the cutoff function Rk
is a differential operator of the form,

∆ = −∇2 + E, (4.55)

where ∆ is the Levi-Civita connection of g, ∇ a covariant derivative acting on both the
gravitational field and other gauge connections coupled to the internal degrees of freedom of
the field, and E a linear map acting on the quantum fields. Let us split the endomorphism
into E = E1 + E2, where E1 does not include any coupling and E2 only contains terms
associated with couplings. One can distinguish three different types of cutoffs,

• Type I, if the operator is the Bochner Laplacian -∇2

• Type II, if the operator is −∇2 + E1. Note that this choice depends on the fields we
are working with.

• Type III, if the operator is the full connection −∇2 + E1 + E2.

In this thesis, all the following calculations will be performed using the type II cutoff
since it is technically simpler than type III, whereas type I gives rise to difficulties with
fermion fields (see Appendix B).

The first step to compute the RG flow is to define the bilinear action of the graviton.
The quadratic part of the Einstein-Hilbert action is greatly simplified in the Feynman
gauge due to the cancellation between the non-minimal terms in the Hessian and gauge
fixing. Expanding up to second order in the quantum fluctuation, the terms in (4.46)
become (139),

Γk + SGF =
1

64πGk

∫
ddx
√
ghµνK

µναβ∆ρσ
(h)αβhρσ,

Sgh = −
∫
ddx
√
gcµ

(
−∇2

δµν −R
µ
ν

)
cν . (4.56)

Here ∆ρσ
(h)αβ = −∇2

1µνρσ +Wµν
ρσ , where W is a tensor structure linear in curvature, and
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K is a tensor involving the background metric,

Kµνρσ =
1

4

(
gµαgνβ + gµβgνα − gµνgαβ

)
. (4.57)

This definition coincides with (72) except that the cosmological constant present in
the operator ∆ρσ

(h)αβ has been removed. The operators Rµνρσk and Rµν,k(gh) used for charac-
terizing the evolution between low and high energy modes are necessary to compute the
trace,

Rµνρσk = ZNK
µνρσRk

(
∆(h)

)
(4.58a)

R
(gh)µ
kν = δµνRk

(
∆(gh)

)
, (4.58b)

for gravitons and ghosts, respectively. The wave function renormalization of the graviton
is defined by the Einstein’s constant, ZN = (16πGk)

−1. Modified inverse propagators(
Γ(2) +Rk

)−1
can be expressed as,

1√
g

δ2Γk
δhµνδhρσ

+Rµνρσk = ZNK
µνρσ

(
∆ρσ

(h)αβ +Rk(∆(h))
)

(4.59a)

1√
g

δ2Γk
δcµδcµ

+R
(gh)µ
k,ν = δνµ∆(gh) + δνµRk

(
∆(gh)

)
. (4.59b)

Once defined the modified inverse propagator in the trace of the Wetterich equation,
all that remains to do is to calculate the derivative of the cutoff function with respect to
the RG time,

dRµνρσk

dt
= ZNK

µνρσ (∂tRk − ηNRk) (4.60a)

dR
(gh)µ
kν

dt
= ∂tRkδ

µ
ν , (4.60b)

where ηN = 1
ZN

dZ
dt is the anomalous dimension of the field Gk. Only results up to one-

loop, i.e., neglecting the scale dependence of the gravitational coupling contained within
the trace, are taken into account in the derivation of cutoff with respect to the RG time.
In the local behavior, an asymptotic expansion of the heat kernel is valid for an arbitrary
function ζ of some operator ∆ (see Appendix A),

Trζ(∆) =
1

(4π)
d
2

∞∑
n=0

Q d
2
−n(ζ)B2n(∆), (4.61)

where Q is a functional that depends on the gamma function, and B is a function of
scalars composed from curvatures and its respective covariant derivatives. In Appendix A,
we present a detailed calculation of the traces and Q-functionals for the optimized cutoff.
Evaluating the Q-functional and extracting the heat kernel coefficients, the beta functions
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for dimensionless Newton and cosmological constants in d dimensions are,

βg = (d− 2)g +B1g
2 (4.62a)

βλ = −2λ+
A1

2
g +B1gλ, (4.62b)

with,

A1 =
16π(d− 3 + 8λ)

(4π)
d
2 Γ
[
d
2

]
(1− 2λ)

(4.63a)

B1 = −4π(5d5 − 3d+ 24− 8λ(d+ 6))

3(4π)
d
2 Γ
[
d
2

]
(1− 2λ)

. (4.63b)

To leading order in the small cosmological constant, A1 and B1 are just numbers. After
solving the differential equations in four dimensions, one gets,

βg = 2g − 23

3π
g2 (4.64a)

βλ = −2λ+
1

2π
g +

8

3π
gλ. (4.64b)

which have a non-trivial fixed point at,

g∗ =
6π

23
, λ∗ =

3

62
. (4.65)

The flow is shown in Figure 4.2. All the RG trajectories in the plane g > 0 are being
attracted to this NGFP, from which one concludes that a nontrivial UV-attractive FP in the
λ−g plane appears already at the lowest level in perturbation theory. It is easy to see that
the eigenvalues of the stability matrix defined in (4.35) are θ1 = −4, θ2 = −2 (two relevant

directions), while their eigenvectors are V1 =

(
1
0

)
,V2 =

( −23
124π

1

)
. An important observation

is pointed out: when different types of cutoffs (or different covariant differential operators
adopted as an argument of the infrared regulator function Rk) are used to compute the
beta functions, only the B1 coefficient will change.

4.7 Gaussian matter fields minimally coupled to an external
metric

Once calculated the flow equation for the dimensionless gravitational couplings, we
proceed to analyze the contribution of the matter fields to these beta functions. The
matter degrees of freedom induce divergences related to the external metric. When the
metric becomes dynamic, they will also contribute to the RG flow for Gk and Λk. Consider
NS scalar fields, ND Dirac fields, and NV Abelian vector fields, all of them minimally
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Figure 4.2: The Einstein-Hilbert flow in the λ−g plane in four dimensions using the Feynman-de
Donder gauge with type II cutoff

coupled to a dynamical metric field. The action is given by,

Γmatter = SS(φ, g) + SD(ψ, ψ̄, g) + SV (A, c, c̄, g), (4.66)

where,

SS(φ, g) =
1

2

∫
ddx
√
ggµν

NS∑
i

∂µφ
i∂νφ

i

SD(A, c, c̄, g) =i

∫
ddx
√
g

ND∑
i

ψ̄iD/ψ
i

SV (A, c, c̄, g) =
1

4

∫
ddx
√
g

NV∑
i=1

gµνgκλF iµκF
i
νλ +

1

2ξ

∫
ddx
√
g

NV∑
i=1

(
gµν∇µAiν

)2
+

∫
ddx
√
g

NV∑
i=1

c̄i(−∇2)ci,1

Since the action consists of kinetic terms of massless field, the modified inverse propa-
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gator will involve kinetic operators for each type of field,

Pk(∇2) = −∇2 + E1 +Rk(∇2). (4.68)

The endomorphism E1 for both scalar and ghost fields is E1 = 0. For Dirac fields,
E2 = R

4 1, and for Maxwell fields in the Feynman gauge is given by the Ricci tensor acting
on vectors. The FRGE (4.21) with the truncation (4.64) plus gauge fixing and ghost terms
is,

dΓk
dt

=
NS

2
Tr

(
∂tRk

(
∇2
S

)
Pk
(
∇2
S

) )− ND

2
Tr

(
∂tRk

(
∇2
D

)
Pk
(
∇2
D

) )

+
NV

2
Tr

(
∂tRk

(
∇2
V

)
Pk
(
∇2
V

) )−NV Tr

∂tRk
(
∇2
gh

)
Pk

(
∇2
gh

)
 , (4.69)

where the vectorial part has been split into a part with the ghost fields and the remainder.
Applying (4.61), the trace corresponding to the scalar kinetic operator in four dimensions
reads,

Tr

(
∂tRk

(
∇2
S

)
Pk
(
∇2
S

) ) =

∫ √
gd4x

(4π)2

{
Q2

(
∂tRk

(
∇2
S

)
Pk
(
∇2
S

) )+
R

6
Q1

(
∂tRk

(
∇2
S

)
Pk
(
∇2
S

) )+O(R2)

}
.

(4.70)

The trace involving the Dirac field is,

Tr

(
∂tRk

(
∇2
D

)
Pk
(
∇2
D

) ) =

∫ √
gd4x

(4π)2

{
4Q2

(
∂tRk

(
∇2
D

)
Pk
(
∇2
D

) )− R

3
Q1

(
∂tRk

(
∇2
D

)
Pk
(
∇2
D

) )+O(R2)

}
,

(4.71)

while the trace associated with Maxwell and scalar ghost fields are given by,

Tr

(
∂tRk

(
∇2
V

)
Pk
(
∇2
V

) ) =

∫ √
gd4x

(4π)2

{
4Q2

(
∂tRk

(
∇2
V

)
Pk
(
∇2
V

) )− R

3
Q1

(
∂tRk

(
∇2
V

)
Pk
(
∇2
V

) )+O(R2)

}
(4.72a)

Tr

∂tRk
(
∇2
gh

)
Pk

(
∇2
gh

)
 =

∫ √
gd4x

(4π)2

2Q2

∂tRk
(
∇2
gh

)
Pk

(
∇2
gh

)
+

R

3
Q1

∂tRk
(
∇2
gh

)
Pk

(
∇2
gh

)
+O(R2)

 .

(4.72b)

Inserting (4.70), (4.71) and (4.72) into (4.69) together the evaluation of the Q-functional
obtained from Appendix A, the projection of the flow equation in the first power of the
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Figure 4.3: The flow corresponding to an Einstein Hilbert term with massless matter degrees
of freedom minimally coupled to the metric field in the λ − g plane in four dimensions using the
Feynman-de Donder gauge with type II cutoff

Ricci scalar reduces to,

dΓk
dt

=
1

2(4π)2

∫ √
gd4x

{
(NS − 4ND + 2NV )k4 +

1

3
k2R(NS + 2ND − 4NV )

}
(4.73)

Comparing the l.h.s. of the FRGE, written for the action (4.54) with the r.h.s. given
in (4.73) together with (4.64), the beta function for the dimensionless cosmological and
Newton’s constant are,

βg = 2g +
1

6π
g2 (NS + 2ND − 4NV − 46) , (4.74a)

βλ = −2λ+
1

4π
g (NS − 4ND + 2NV + 2) +

1

6π
λg (NS + 2ND − 4NV − 16) , (4.74b)

which have a non-trivial fixed point at,

g∗ = − 12π

NS + 2ND − 4NV − 46
, λ∗ = −3

4

NS − 4ND + 2NV + 2

NS + 2ND − 4NV − 31
, (4.75)
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Please note that in absent of matter degrees of freedom, the fixed point in the λ − g
plane reduces to (4.65). For the matter content of the SM (NS = 4, ND = 45

2 and NV = 12),
the flow is shown in Figure 4.3.

The following comments are in order. First, the calculation has been done without
specifying the external metric. Hence, the result of the beta function is background-
independent. Second, the sum over the heat kernel coefficient is closely related to the
optimized cutoff. In particular, in this framework, the sum in (4.62) terminates in the third
term to d = 4. For more general cutoffs, a calculation of beta function for curvature scalars
of cubic and higher-order would require the knowledge of a higher heat kernel coefficient.
Third, the beta functions for both the metric and matter sector were calculated in the
so-called type II cutoff. The only difference with the type I is in the gravitational and
the Abelian gauge fields contribution. The 46 is replaced by 22 in (4.74a) and -16 by 8 in
(4.74b) for the graviton’s fluctuation, while 4NV is replaced by NV .

The set (4.74) will be used in the next chapter to provide a comparison of the result
obtained in this thesis with those found in this chapter.
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Chapter 5

Results

5.1 Scalar QED without quartic interaction

As first example one can consider a theory that contains charged spin-zero particles
that interact with photons. The bare action is given by,

S(Aµ,Φ) =

∫
d4x

(
ab
2

(DµΦ)∗(DµΦ)− m2
b

2
Φ∗Φ− 1

4e2
b

FµνF
µν

)
, (5.1)

where Dµ = ∂µ − iAµ, Fµν = ∂µAν − ∂νAµ, and Φ is a complex scalar field.

5.1.1 Optimized effective action

Following Wilson’s idea (101), one can define an average effective action Γk as the func-
tional obtained after integrating out the quantum fluctuations, which contain momenta
q2 > k2. By changing k, this scale-dependent effective action can be seen as a smooth in-
terpolation between the microscopic ultraviolet action Γk→∞ and the full quantum effective
action in the infrared limit Γk→0. The effective action for (5.1) reads,

Γk =

∫
d4x

(
ak
2

(Dµφ)∗(Dµφ)− mk

2
φ∗φ− 1

4e2
k

FµνF
µν

)
. (5.2)

This effective action has no hierarchy problem, but also no standard SSB. The couplings
(ak,mk, ek) are now scale-dependent quantities. To avoid the logarithmic divergences ap-
pearing in the QED couplings due to deep infrared scale k → 0, the Renormalizaton
Group (RG) scale is split into its reference fixed part k0 = m0 and its variable part k

′
as

k = m0 + k
′
. Identifying the reference scale as m0 and defining the gravitational couplings

in the infrared limit at this scale as shown in Figure 5.1, the couplings can be expanded
in the vicinity of m0 using the dimensionless quantity k

k0
as the expansion parameter.

By using the dimensionless quantity k
k0

as the expansion parameter, the couplings can be
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expanded, in the vicinity of the infrared scale k0

ak = a0 + ξa,1
k
′

m0
+ ξa,2

k
′2

m2
0

+O

(
k
′

m0

)3

(5.3a)

m2
k = m2

0 + ξm,1
k
′

m0
+ ξm,2

k
′2

m2
0

+O

(
k
′

m0

)3

(5.3b)

1

e2
k

=
1

e2
0

+ ξe,1
k
′

m0
+ ξe,2

k
′2

m2
0

+O

(
k
′

m0

)3

. (5.3c)

The set of coefficients (ξij) with i = (a,m, e) and j = (1, 2) is obtained from the beta
functions of (5.1). Those beta functions further depend on the renormalization scheme.

It is desirable that physical observables are independent of the particular renormaliza-
tion scheme used to renormalize the theory and the corresponding unphysical parameters
involved in this process. However, if the prediction, calculated by a series of approxima-
tions, depends on unphysical parameters, then the parameters should be chosen such that
variations will minimize the sensitivity of the observable on those parameters. Following
this criterion, one looks for a scale setting of the renormalization scale as a function of
physical variables k = k(φ, ξi, Fµν , ...). This identification results from applying the vari-
ational principle to k by promoting the scale k to a field (51) at the level of the effective
action. As shown in (62; 102; 51), this minimization can be written as

δΓ (Aµ, φ(x), k(x), ak,mk)

δk
= 0 (5.4)

⇒ dL (Aµ, φ(x), k(x), ak,mk)

dk

∣∣∣
k=kopt

= 0.

In contrast to most other scale settings, the above procedure allows maintaining the original
gauge symmetries, such as gauge and/or diffeomorphism invariance (51). The philosophy
underlying this procedure has been developed in (62; 102; 51) and it has been successfully
applied in different contexts (103; 104; 105; 106; 107; 108). For consistency, with the
expansion (5.3), also the effective action has been expanded up to k2. The condition (5.4)
allows resolving the renormalization-point ambiguity by selecting a single scale and fix it
as a function of dynamical field variables,

kopt →
−ξe,1FµνFµν + 2ξa,1 |Dµφ|2 − 2ξm,1φ

2

2
(
ξe,2FµνFµν − 2ξa,2 |Dµφ|2 + 2ξm,2φ2

) . (5.5)

Since there are no new undetermined integration constants in (5.5), one can insert the
solution k = kopt back into (5.2). This gives an optimal effective action independent of the
arbitrary scale k,
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Γopt =

∫
d4x

{
2ξe,1ξe,2ξm,1 − 4m2

0ξ
2
e,2 − ξ2

e,1ξm,2

8ξ2
e,2

φ2+ (5.6)

(ξe,2ξm,1 − ξe,1ξm,2)2

4FµνFµνξ3
e,2

φ4 + Lkin + Lconst +O(φ5)

}
,

where the potential has been expanded to order φ4 in a weak field approximation. Kinetic
factors of φ and Aµ are contained in Lkin and quantities without any field factor φ are
assembled into Lconst. One notes that (5.6) has a quadratic and a quartic term in φ, which
is necessary for the standard SSB mechanism to take place. However, one also notes that
the quartic coupling is only well behaved for a finite electromagnetic background field,
< FµνF

µν >6= 0. Even though this is an interesting feature, it is not the type of SSB we
are interested in.

5.1.2 Values of parameter expansion from QED sector

It is instructive to calculate the explicit values of the parameters ξe,j , ξm,j . Those ξ’s
have some scheme dependence and can be obtained by applying perturbative methods.
When the integral for obtaining an explicit expression of the coupling as a function of
the scale is carried out, the lower limit (unlike the case of gravity) cannot be zero, which

explains the expansion around k0 instead of 0 in (5.3). Expressing k ∂α∂k , with α ≡ e2

4π ,
in terms of the known scalar QED β-function up to one loop in the minimal subtraction
scheme (109) gives the RG equation.

k
dα

dk
=
α2

6π
. (5.7)

Integrating this equation between the initial and an intermediate scale, the running cou-
pling takes the form,

α(k2) =
α(k0)

1− 1
3πα(k0)ln

(
k
k0

) . (5.8)

The expansion for the running coupling ek around k = k0 by imposing ek → ek0 ≡ e0 for
the first term of the series (see Figure 5.1) and rearranging (5.8) gives,

1

e2
k

=
1

e2
0

− 1

24π2

(
k
′

m0

)
+

1

48π2

(
k
′2

m2
0

)
+O

(
k
′

m0

)3

. (5.9)

The one-loop contribution to the anomalous mass dimension in Lorentz gauge (109), γm =

− 3e2

8π2 , follows the same treatment. Integrating γm with the initial condition in k0, an
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expansion (like (5.9)) for the running coupling mk is obtained,

m2
k = m2

0 −
3e2

0m
2
0

8π2

(
k
′

m0

)
+m2

0e
2
0

(
24π2 + e2

0(9π − 1)

128π3

)(
k
′

m0

)2

+O

(
k
′

m0

)3

. (5.10)

Thus, the set of parameters (ξi,j) from the scalar sector can be identified from a comparison
between (5.3), (5.9) and (5.10) as,

ξe,1 = − 1

24π2
(5.11a)

ξe,2 =
1

48π2
(5.11b)

ξm,1 = −3e2
0m

2
0

8π2
(5.11c)

ξm,2 = m2
0e

2
0

(
24π2 + e2

0(9π − 1)

128π3

)
. (5.11d)

The set of equations (5.11) is valid only for scalar QED up to one loop in perturbation
theory in the Lorentz gauge, in the minimal subtraction scheme. Possible contributions on
these U(1) coefficients coming from the gravitational sector will be discussed in section 5.3.

Figure 5.1: Graphic representation of reference scale used in this work.

5.2 Gravitational sector minimally coupled to a charged scalar

As explained in the introduction, a cosmological term is important for the implemen-
tation of our ideas. Thus, let’s consider a gravitational sector coupled to matter. In the
leading order truncation (meaning that higher-order dipheomorphism invariant operators
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like R2, RµνR
µν ,... are neglected), the simplest effective action of gravity coupled to a

charged scalar reads,

Γk =

∫
d4x
√
−g
{
κ(2Λk −R) +

m2
k

2
φ∗φ +

ak
2

(Dµφ)∗(Dµφ)− 1

4e2
k

FµνFµν + cfLkin,ψ
}
.

(5.12)
One notes that all couplings (κk, Λk, mk, ak, ek), except the one of the sterile fermions
cf (fermions which only interact with the metric field), are scale dependent quantities.
In this action, Λk stands for the scale-dependent cosmological constant, R is the Ricci
scalar, and κ = (16πGk)

−1, where Gk is the running counterpart of the gravitational
coupling. In addition to (5.3), an expansion around the infrared zone k → k0 in the
gravitational coupling is needed to get an optimal scale. In order to maintain consistency
with the expansion (5.3), the effective action (5.12) and the gravitational couplings also are
expanded to the same order. We examine the solutions of the gravitational couplings with
an Einstein-Hilbert truncation in the deep infrared. In this limit, one finds, independent
of the implementation of the Wilsonian renormalization procedure, an RG running of
Newton’s and the cosmological constant of the form,

G(k) = G0

(
1 + C1G0k

2 + C2G
2
0k

4
)

+O(k6) (5.13)

Λ(k) = Λ0 + C3Λ0G0k
2 + C4ζ (G0Λ0) k4 +O(k6), (5.14)

with C1,2,3,4 being real numbers. Depending on the sign of C1, (5.13) shows screening or
anti-screening property of gravity. When an expansion is made around k0 instead of zero,
one can redefine the constants Ci giving

Λ̃k = Λ̃0 + ξΛ̃,1

(
k
′

m0

)
+ ξΛ̃,2

(
k
′

m0

)2

+O(k
′
)3, (5.15)

where a change of the cosmological variable Λ̃k = Λk
Gk

has been applied. Please note that
if one is interested in the effective Higgs potential, (5.15) is enough to get an overview of
the gravitational’s contribution to this model. In particular, Gk from (5.13) is not needed,
because this part of the action is proportional to R, which does not take part in the SSB
process. Based on a study on field-parametrization dependence of the renormalization
group flow in the vicinity of non-Gaussian fixed points in quantum gravity, a beta function
derived from EH action can be used to fix the parameters ξi in (5.15). One can further
look at how the massless-matter fields affect asymptotically safe quantum gravity. In this
case, the parameters ξi would have a dependence on the number and the nature of matter
fields. For now, the gravitational parameter set ξΛ̃,j is kept arbitrary. In the next section,
a physical benchmark for this set ξΛ̃,j will be worked out.

As in (5.5), the scale setting is performed by demanding (5.12) to be insensitive under
infinitesimal changes of k, giving

kopt =
HR,1 +HF,1 + C1 − 2ξm,1φ

2 + 2|Dφ|2ξa,1
HR,2 +HF,2 + C2 + 4G3

0 (ξm,2φ2 − ξa,2|Dφ|2)
. (5.16)
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Herein, the functionsHR andHF have as arguments the Ricci tensor R and electromagnetic
tensor FµνF

µν , respectively, in addition to the infrared value of the running Gk. The
constants C1,2 only contain infrared couplings and electromagnetic constants ξe,m,.... When
the optimal scale is inserted back into the effective action (5.12) (that includes gravitational
effects), one gets an optimal effective action independent of k,

Γopt =

∫
d4x
√
−g
{

+
µ2

2
|φ|2 − λ

4
|φ|4 − 1

4ẽ
FµνF

µν (5.17)

+Lkin + Lcoup + Lconst +O(φ6)
}
,

where Lkin contains kinetic terms for the real scalar and gauge fields. Couplings with
higher-order factors and Ricci scalar quantities are collected into Lcoup, and the Lagrangian
part independent of Ricci scalar, electromagnetic strength and scalar field are named Lconst.
The effective potential has again been expanded up to order φ4. The optimal effective
action (5.17) is written following the usual notation with µ and λ appearing in the Abelian
Higgs mechanism,

µ2

2
=
m2

0

2
+
ξΛ̃,1

(
ξm,2ξΛ̃,1 − 2ξm,1ξΛ̃,2

)
8ξ2

Λ̃,2

(5.18a)

λ

4
=

(
ξm,2ξΛ̃,1 − ξm,1ξΛ̃,2

)2

32ξ3
Λ̃,2

. (5.18b)

If those parameters have the correct values, then the field φ acquires a VEV, and the U(1)
global symmetry will be spontaneously broken. Thus, (5.17) shows that, even if one starts
with a model like (5.12), which has not SSB, it is possible to get this feature for the optimal
effective action Γopt. This is particularly true if µ2, λ > 0.

5.3 Gauge boson masses

In this section, restrictions on the RG parameters ξi will be studied.

5.3.1 Mass and vacuum expectation value of scalar and gauge fields

The parameters ξm,1 and ξm,2 appearing in (5.18) can be obtained studying the changes
of the anomalous mass dimension. Since the action (5.12) considers the Einstein-Hilbert
contribution, the gravitational sector may, in principle, have an impact on the behavior
of electromagnetic couplings. Gravitational corrections to the beta function in quantum
field theories have been analyzed in (110; 111; 112; 113; 114; 115; 116; 117; 118; 119).
Non-Abelian gauge fields coupled to gravity in (3+1) dimensions give rise to an additional
term in the one-loop beta function proportional to the inverse square of Planck scale, im-
proving the asymptotic freedom of N= 4 Super Yang-Mills theory (120; 121). In (122) it
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is pointed out that quadratic divergences coming from the gravitational sector are respon-
sible for asymptotic freedom of QED beta function in a gauge-independent context with
energy scale near the Planck scale. For the case where a complex scalar field is minimally
coupling to perturbative quantized Einstein gravity with an explicit gauge dependence in
the photon and graviton propagator, the total vacuum polarization tensor depends on the
gauge parameters, surface terms, a dimensionless constant, and the ultraviolet momentum
cutoff, as explained in (123; 124). In the last case, there are several reasons for neglecting
the gravitational contribution to the usual beta function of the U(1) gauge coupling,

• Choosing the gauge parameter, ξ appearing in the graviton propagator in (124), equal
to 5

13 , a cancellation of a gravitational contribution to be takes place.

• Using dimensional regularization instead of a momentum cutoff, such that arbitrary
parameter contained in the gravitational term is set to 0 (123).

• Some studies (125; 126; 127) have shown the beta function of scalar electrodynamics
possesses no contribution coming from gravitational interactions.

• In the infrared k ≈ k0 all gravitational contributions to the beta functions of matter
will be strongly suppressed by the Planck-scale. This is the reason why the standard
model without gravity is a successful quantum field theory in the first place.

Given the arguments expressed above, the gravitational contribution to the electromagnetic
beta functions will be neglected. One condition on the effective potential in (5.17) for
producing positive Higgs parameters and then SSB was that λ > 0. This determines the
sign of ξΛ̃,2. This can be seen by replacing (5.11c) and (5.11d) in (5.18b) and demanding
λ > 0. For a negative value of ξΛ̃,2 one has to solve the inequality[

e4
0 (9π − 1) ξΛ̃,1 + 24e2

0π
2
(
ξΛ̃,1 + 2m2

0ξΛ̃,2

)]2
< 0, (5.19)

which has no solution for e0, ξΛ̃,1 ∈ IR. Thus, the requirement for the field φ to acquire
a VEV is ξΛ̃,2 > 0. From (5.17) and (5.18), the vacuum expectation value (VEV) of the
scalar field is,

φ2
V EV =

2
(

4m2
0ξ

2
Λ̃,2

+ ξΛ̃,1

(
ξm,2ξΛ̃,1 − 2ξm,1ξΛ̃,2

))
ξΛ̃,2(

ξm,2ξΛ̃,1 − ξm,1ξΛ̃,2

)2 . (5.20)

Suppose that the scalar potential in (5.17) is near one of the minima (say the positive one),
then it is convenient to define a fluctuation of the scalar field φ(x) = φV EV + η(x). The
squared mass of the complex scalar field η(x) is then

m2
η = 2

m2
0 +

ξΛ̃,1

(
ξm,2ξΛ̃,1 − 2ξm,1ξΛ̃,2

)
4ξ2

Λ̃,2

 . (5.21)
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Further, the U(1) coupling is no longer constant because the scale setting condition (5.4)
implies a dependence on the field φ,

1

ẽ2
=

1

e2
0

+

(
4ξΛ̃,1 + ξm,1φ

2
V EV

)(
4ξe,2ξΛ̃,1 − 8ξe,1ξΛ̃,2 + hφ2

)
4
(

4ξΛ̃,2 + ξm,2φ2
)2 , (5.22)

where h = ξe,2ξm,1 − 2ξe,1ξm,2. The mass term for the gauge bosons is obtained through
the product between the inverse of (5.22) and the VEV of the scalar field (5.20),

m2
A =

64ξ3
Λ̃,2

(
F1

4ξ2
Λ̃

−m2
0

)
(
ξm,2ξΛ̃,1 − ξm,1ξΛ̃,2

)2

 4

e2
0

+
F3

(
ξe,2F3 + 6ξe,1ξm,2ξΛ̃,2F1 − 4ξe,1F2

)
(

3ξ2
m,2ξ

2
Λ̃,1
ξΛ̃,2 − 6ξm,1ξm,2ξΛ̃,1ξ

2
Λ̃,2

+ 2F2

)2


−1

,

(5.23)
with,

F1 = ξΛ̃,1

(
2ξm,1ξΛ̃,2 − ξm,2ξΛ̃,1

)
(5.24a)

F2 = ξ3
Λ̃,2

(
ξ2
m,1 + 2m2

0ξm,2
)

(5.24b)

F3 = 2ξ2
m,2ξ

3
Λ̃,1
− 3ξm,1ξm,2ξ

2
Λ̃,1
ξΛ̃,2 + 4m2

0ξm,1ξ
3
Λ̃,3
. (5.24c)

After insertion of the set of U(1) parameters (5.11) into (5.20) and (5.21), the mass and
VEV of Higgs field are determined as a function of gravitational parameters appearing in
the infrared expansion of Λk

Gk
and m0,

v2 = 256π3ξΛ̃,2

e4
0 (9π − 1) ξ2

Λ̃,1
+ 512m2

0π
3ξ2

Λ̃,2
+ 24e2

0π
2ξΛ̃,1ζ1

e4
0

(
e2

0 (9π − 1) ξΛ̃,1 + 24π2ζ2

)2

 , (5.25a)

m2
η =

1

256π3ξ2
Λ̃,2

(
e4

0 (9π − 1) ξ2
Λ̃,1

+ 512π3m2
0ξ

2
Λ̃,2

+ 24e2
0π

2ξΛ̃,1ζ1

)
, (5.25b)

with ζ1 =
(
ξΛ̃,1 + 4m0ξΛ̃,2

)
and ζ2 =

(
ξΛ̃,1 + 2m0ξΛ̃,2

)
. At this point, it is important to

mark a few comments about the result obtained in (5.25). The initial action (5.17) has
no elements to produce mass for the U(1) gauge boson since the quartic interaction is
missing. After applying the VPS procedure, to get an optimal effective action, a symmetry
breaking effective potential appears when the gravitational sector is taken into account. As
a result, masses are driven by gravitational parameters. However, these parameters must
also meet certain requirements. The hermicity of the optimal scale Lagrangian implies that
the parameters in (5.18) must be real, and thus this Lagrangian respects charge, parity,
and time-reversal symmetries. Mimicking the usual Higgs mechanism for SSB, the sign of
the mass term is chosen negative. Moreover, the effective coupling λ must be positive as
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a requirement for the scalar potential to be bounded from below. As shown above, this
implies that ξΛ̃,2 > 0.

5.3.2 Benchmark of gravitational parameters

Due to the dependence on infrared coefficients ξi provided in the expansion of the
couplings involved in the theory, one can expect to get restrictions from physically observed
gauge boson masses. This exercise is done despite the fact that the model presented
in (5.17) is more a conceptual case study rather than a competitive phenomenological
model since it has neither electro-weak nor Yukawa couplings implemented. Observed
experimental values of the Higgs mass and VEV will be employed to get a better idea about
the distribution of the allowed parameters ξΛ̃,1, ξΛ̃,2 in agreement with the observations.
The quantities mη and v in (5.25) have four free parameters, e0, m0, ξΛ̃,1 and ξΛ̃,2. We
impose that,

• e0 =
√

4πα ≈ 0.3028 (128). The U(1) coupling e0 in (5.12) takes the value of the
vertex function in spinor electrodynamics when all three particles (one incoming
fermion, incoming photon and outgoing fermion) are on shell, i.e. the elementary
charge e. In the deep infrared, this choice k

′ → 0 is justified due to the long-range
character of QED. One confirms numerically that the difference between ẽ and e0 is
negligible.

• v =
(√

2GF
)− 1

2 = 246.2197GeV (129), because the experimental uncertainty on
the Higgs mass mH is much larger than the uncertainty on the VEV of the Higgs
field measured in the muon decay vH , only the best fit value v = 246.2197 will be
considered to fix m0 as a function of the gravitational parameters ξΛ̃,1 and ξΛ̃,2.

• ξΛ̃,2 > 0. Although the parameters ξΛ̃,1 and ξΛ̃,2 are arbitrary, when the two preceding
points are applied to (5.25b), the bound on ξΛ̃,2 arises from imposing real values for
mη.

The boundaries for the gravitational parameters ξΛ̃,1 and ξΛ̃,2 can be obtained by
associating the limits of the Higgs boson mass with the limits of mη in (5.25b), and the
result is shown in Figure 5.2. Parameters enclosed in the shadow region ensure completion
of experimental requirements previously discussed.

5.4 Comparison with the functional renormalization group

Up to now, our calculations never made use of a specific shape of gravitational beta
functions. Now, it would be useful to perform a comparison with explicit realizations of
those beta functions and exploring the constraints imposed such that the proposed model
takes place. The evolution of the scale-dependent dimensionless couplings is dictated by
the functional renormalization group equation (a.k.a. Wetterich equation),

dΓk
dt

=
1

2
STr

(
∂tRk

Γ
(2)
k [φ] +Rk

)
. (5.26)
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Figure 5.2: Allowed parameter range in the gravitational parameter ξΛ̃,1 and ξΛ̃,2. The orange
region represents gravitational parameters which give a mass for the U(1) gauge boson lower than
mη = 125.33 GeV while the blue region represents parameters greater than mη = 124.85 (lower
and upper experimental limit of the mass of the Higgs boson).

The Wetterich equation is formulated such that it depends on renormalization group

time t = ln k
k0

, the modified inverse propagator Γ
(2)
k [φ] +Rk involving a second functional

derivative of the scale-dependent effective action with respect to the fields and the momen-
tum cutoff Rk chosen in such a way to suppress the contributions of field modes smaller
than the cutoff scale k2 (57; 130; 131; 132). The notation STr represents a generalization
where the trace is performed over momenta as well as particle species and spacetime or
internal indices, including a factor (−1) for fermionic fields. Despite the fact that the
Wetterich equation (5.26) is an exact one-loop equation, for practical computations, one
deals with the necessity to truncate the theory space to avoid recursive solutions coming
from an infinite tower of coupled differential equations.

To perform the comparison between (5.13), (5.18) and the functional renormalization
group, equation (5.26), a matter sector presented in section 4.7 is required in addition
to the usual Einstein-Hilbert truncation derived in section 4.6. In the following analysis,
the results from section 5.2 will be compared with the evolution of gravitational couplings
using the FRGE. To find suitable conditions for the relevant variables involved in the
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comparison, one shall vary the numbers of fields ND, NS , and NV such that the conditions
encountered in the AS scenario are met. The flow equations (4.74a) and (4.74b) can be
integrated analytically, and the dimensionful running version of the Newton coupling turns
out to be,

GN =
Gk

1 + 1
2C1k2Gk

, (5.27)

where GN is the Newton constant measured in the deep infrared k → 0. The dimensionful
running version of the cosmological constant gives

Λk =− C2

C3 (C1 + C3)

(
2 + (C1 + C3) k2Gk

Gk

)
+

Λ0GN
(
2 + C1k

2Gk
)1+

C1
C3

2
1+
C3
C1Gk

+
2
−C3C1 C2

(
2 + C1k

2Gk
)1+

C3
C1

C3 (C1 + C3)Gk
. (5.28)

In (5.27) and (5.28) we have defined

C1 =
1

6π
(NS + 2ND − 4NV − 46) , (5.29a)

C2 =
1

4π
(NS − 4ND + 2NV + 2) , (5.29b)

C3 =
1

6π
(NS + 2ND − 4NV − 16) . (5.29c)

Consider the expansion around the quantity k = (k
′
+m0)/m0 (see Figure 5.1). By working

out at the infrared the system of differential equations (4.74a) and (4.74b) according to 5.1,

the modified running Λ̃ up to order k
′2

reads,

Λ̃k = Λ̃0 +m4
0C2 ·

(
k
′

m0

)
+ 3 · 2−C1m4

0C2 ·

(
k
′

m0

)2

+O (G0,Λ0) . (5.30)

Since the crucial requirement of the method described in the two previous sections on
the gravitational parameters generated in (5.15) is ξΛ̃,2 < 0, the compatibility will be
dictated by the sign of C2. To compare our result with those found in the AS program, the
requirements that the gravitational parameters (ξΛ̃,1, ξΛ̃,2) need to meet can be summarized
as follows,

1. Positive Newton’s fixed point g∗ > 0: The low value (k .Mpl,) of Newton’s gravita-
tional coupling, is restricted by observations based on laboratory experiments at the
scale klab w 10−5eV .

2. Relevant directions: Insofar as the corresponding fixed points for the gravitational
couplings of a pure gravity-theory have two relevant directions (89), one expects that
the addition of a small number of matter degrees of freedom does not change this
behavior and the subsequent parametrization in theory space.
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Figure 5.3: Dynamical matter degrees of freedom compatible with a gravitational fixed point with
two relevant directions for NV = 1 (explicit values are listed in Appendix C), represented by black
bullets. The shaded blue region represents a zone where a negative Newton’s fixed point takes place
while the shaded red area contains points associated with ξΛ̃,2 < 0.

3. Positive value of ξΛ̃,2 > 0: As discussed before, the requirement to ensure that our
model guarantees SSB at the level of the effective action needs λ > 0 in (5.18b), or
equivalently, C2 > 0 in (5.30).

The first two criteria were already pointed out in (89), and they are shown in Appendix C
for different matter field configurations, while the third selection criterium is necessary
for the validity in (5.18b). These conditions determine how many fields NS , ND, . . . may
be incorporated such that the proposed mechanism for SSB is in agreement with the
requests of AS. Figure 5.3 shows the region in the NS-ND-plane where a fixed point with
the demands previously enumerated exist for NV = 1 at one-loop approximation in the
anomalous dimension using a type II cutoff. The addition of sterile fermionic degrees of
freedom carries a single prediction ND = 1 for numbers of Dirac fermions can be inferred
from Figure 5.3 while the numbers of scalar fields keep unchanged (NS = 2), maintaining
the same sign ξΛ̃,2 > 0.
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Chapter 6

Conclusions And Remarks

In the present work, a novel mechanism for spontaneous symmetry breaking is suggested
that circumvents the appearance of quadratic divergences by avoiding the breaking to take
place at the classical level. It is shown that SSB still can occur at the quantum level,
namely after setting the renormalization scale k of the effective quantum action Γk. As
scale setting procedure, the VPS method is used. This allows arriving at an optimized
effective quantum action Γopt, which, under certain conditions, produces SSB.

Despite the fact that the toy models of our study do not contain Yukawa, weak, or
strong couplings, the underlying mechanism can be expected to work also for models
containing these features. It is shown that within this type of model, one can impose
phenomenological conditions on Γopt. These conditions (in particular, the requirement
ξΛ̃,2 > 0) do then allow to put restrictions on the free parameters and the number of
scalar, vector, and Dirac fields. For the example of asymptotically safe quantum gravity
coupled to matter, it is shown that, for a given number of scalar fields, these conditions
impose an upper and a lower bound on the number of Dirac fields, as shown in Figure 5.3.

We further analyze to which extent the results depend on the gauge choice, the trun-
cation, and the shape of the cut-off function in Appendix B. The inclusion of graviton
and ghost anomalous dimension, as well as the anomalous dimension of the matter fields,
derived in (89), does not affect the findings discussed above. Note further, that the results
for the masses of the Abelian and scalar fields obtained in section 4 are entirely indepen-
dent of the existence of UV fixed points and the respective UV completion proposed in the
AS scenario.

In a future study, we plan to perform an implementation with all couplings necessary
to arrive at the Glashow-Weinberg-Salam model (133; 134; 135) coupled to gravity.
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Appendix A

Evaluation of traces and
Q-functionals

This appendix is devoted to showing how to evaluate the traces appearing in the r.h.s.
of (4.45). The trace is typically a general function of a differential operator, where in
general, the spectrum of the operator is unknown. Here we present a series of tools to deal
with this complicate situation using a derivative expansion.

Consider the trace of some function W of the covariant Laplace ∆,

TrW (∆) =
∑
n

W (λn), (A.1)

where λn are the eigenvalues. Introducing the Laplace anti-transform W̃ ,

W (z) =

∫ ∞
0

dse−zsW̃ (s). (A.2)

Replacing (A.2) into (A.1),

TrW (z) =
∑
n

∫ ∞
0

dse−λnsW̃ (s)

=

∫ ∞
0

dsTrK(s)W̃ (s), (A.3)

where λn are the eigenvalues. Introducing the Laplace anti-transform W̃ , where TrK(s)
corresponds to the trace of the heat kernel of ∆. In order to find a manageable expression
for TrK(s), one first thinks in a flat d-dimensional space where the heat kernel can be
calculated using Fourier analysis. The Fourier transform of K(~x, ~y; t) on the first coordinate
is a function K̃(~q, ~y; t) satisfying the equation,

d

dt
K̃(~q, ~y; t) + q2K̃(~q, ~y; t) = 0, (A.4)

55



APPENDIX A. EVALUATION OF TRACES AND Q-FUNCTIONALS

with the initial condition,

K̃(~q, ~y; 0) = e−~q·~y. (A.5)

The solution of (A.4) is K̃(~q, ~y; t) = e−i~q·~y−q
2t. The inverse Fourier transform gives

back the heat kernel K,

K(~x, ~y; t) =

∫
d~q

(2π)d
e−q

2t+i~q·(~x−~y)

=
1

(4πt)
d
2

e−
|~x−~y|2

4t , (A.6)

where we have used the Gaussian integral to get the second line of (A.5). In flat space, if
V denotes the volume,

TrK(t) =
V

(4πt)
d
2

. (A.7)

In the case of a curved manifold, they look locally like Euclidean space. Hence, in
the limit t → 0, the trace of the heat kernel K must reduce to (A.7) in flat space. The
deviations from this form must be proportional to the curvature invariants since they take
into account the variations of the metric from a flat background. The trace of the heat
kernel has an asymptotic expansion around t→ 0 of the form,

TrK(t) ≈ 1

(4πt)
d
2

[
B0(∆) + tB2(∆) + t2B4(∆) + ...

]
, (A.8)

where,

Bn(∆) =

∫
d4x
√
gTrbn(∆), (A.9)

and bn(∆) are scalars constructed from the curvature and their covariant derivatives. Each
bn contains n-derivatives of the metric, such that b0 ∝ R0, b1 ∝ R and so on. Using the
expansion (A.8), one can rewrite (A.3) as,

TrW (∆) =

∫ ∞
0

dsW̃ (s)
1

(4πs)
d
2

[
B0(∆) + sB2(∆) + s2B4(∆) + ...

]
=

1

(4π)
d
2

∫ ∞
0

dsW̃ (s)
[
B0(∆)s−

d
2 +B2(∆)s−

d
s

+1 +B4(∆)s−
d
2

+2 + ...
]

=
1

(4π)
d
2

[
Q d

2
(W̃ )B0(∆) +Q d

2
−1(W̃ )B2(∆) + ...+Q0(W̃ )Bd(∆) + ...

]
, (A.10)
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where the Q-functionals are defined as,

Qn(W̃ ) =

∫ ∞
0

dss−nW̃ (s). (A.11)

To get an explicit relation between theQ-functional andW , consider the i−th derivative
of W with respect to z,

W (i)(z) = (−1)i
∫ ∞

0
dssie−szW̃ (s). (A.12)

The application to the Q-functional to (A.12) gives the following relation,

Qn(W (i)) = (−1)iQn−i(W̃ ). (A.13)

By other hand, the gamma function is defined as,

1 =
1

Γ(n)

∫ ∞
0

dzzn−1e−z. (A.14)

The definition of Γ(n) allows relating Q and W through a Mellin transformation,

Qn(W ) =
1

Γ(n)

∫ ∞
0

∫ ∞
0

dsdzs−nzn−1e−zW̃ (s)

=
1

Γ(n)

∫ ∞
0

dzzn−1

∫ ∞
0

dss−nW̃ (s)e−z

=
1

Γ(n)

∫ ∞
0

dzzn−1

∫ ∞
0

dse−zsW̃ (s)︸ ︷︷ ︸
W (z)

=
1

Γ(n)

∫ ∞
0

dzzn−1W (z). (A.15)

In writing down the third line of (A.15), we have performed the change of variable
z → zs. For m ≥ 0,

Q−m(W ) = (−1)mW (m)(0). (A.16)

The equations (A.15) and (A.16) can be emerged from a general formula. If n ≥ 0,
(A.15) works, while if n < 0 one can choose a positive integer r such that n+ r > 0, then,

Qn(W ) =
(−1)r

Γ(n+ r)

∫ ∞
0

dzzn+r−1W (r)(z). (A.17)

Now we can calculate the integrals appearing in chapter 4. We restrict ourselves to the
type II cutoff (∆ = −∇2 + q21) and the optimized cutoff function (4.5). It is convenient
to measure the cutoff and the modified inverse propagator in units of k2. Let us define
the dimensionless variable y by z = k2y. The cutoff function Rk and the modified inverse
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propagator Pk(z) are,

Rk(z) = k2r(y) , Pk(z) = k2(y + r(y)), (A.18)

for some function r. In the particular case of the optimized cutoff, r(y) takes the form,

r(y) = (1− y)Θ(1− y). (A.19)

The Q-functional are,

Qn

(
∂tRk

(Pk + q)

)
=

1

Γ(n)

∫ ∞
0

dzzn−1

(
∂tRk

(Pk + q)

)
=

1

Γ(n)

∫ ∞
0

k2(n−l+1)dyyn−1

(
r(y)− yr′(y)

(y + r(y) + q̃)l

)

=
2k2(n−l+1)

Γ(n)

{∫ ∞
0

dy
yn−1r(y)

(y + r(y) + q̃)l
−
∫ ∞

0
dy

ynr
′
(y)

(y + r(y) + q̃)l

}

=
2k2(n−l+1)

Γ(n)

{
(1 + q̃)−l

n(n+ 1)
+

(1 + q̃)−l

1 + n

}
=

2k2(n−l+1)

n!(1 + q̃)l
, (A.20)

where q̃ = qk−2. For the Einstein-Hilbert term, the Q-functionals of the ghost term are,

Q1

(
∂tRk(∆gh)

Pk(∆gh)

)
= 2k2 , Q2

(
∂tRk(∆gh)

Pk(∆gh)

)
= k4, (A.21)

while in the general case for the metric fluctuations, the cosmological constant Λ and the
anomalous dimension ηn in the arguments of the inverse propagator and cutoff function,
respectively, are given by,

Q1

(
∂tRk(∆h)− ηNRk(∆h)

Pk(∆h)− 2Λ

)
=

k2

(1− 2λ)

(
2− ηN

2

)
, (A.22a)

Q2

(
∂tRk(∆h)− ηNRk(∆h)

Pk(∆h)− 2Λ

)
=

k4

(1− 2λ)

(
1− ηN

6

)
, (A.22b)

with λ being the dimensionless version of the cosmological constant. The traces of the
scalars bn of (A.10) are taken from (139).
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Appendix B

Spectral sum for the Dirac
operator

To decide which class of cutoff gives the correct contribution to the Newton running
coupling in four dimensions, the r.h.s. of the FRG equation is evaluated with an indepen-
dent method. To make the discussion more concrete, the contribution of fermionic fields
to the relevant terms of βg in d = 4 with the optimized cutoff are,

− ND

96π2

∫
d4√gR , for the type I cutoff (B.1a)

ND

48π2

∫
d4√gR , for the type II cutoff. (B.1b)

These values differ not only in the number but even in the sign. The one-loop EEA
can be defined in terms of the Dirac operator,

Γk = −Tr log
(
| /D|+RDk (| /D|)

)
. (B.2)

The argument of RDk has to be the modulus of the Dirac operator since one wants to
suppress the modes depending on the wavelength of the corresponding eigenfunctions. For
convenience, we choose,

RDk (z) = (k − z)Θ(k − z). (B.3)

The heat kernel calculation employed in chapter 4 does not put any restriction on the
background. In the particular case of spherical background, however, the calculations are
greatly simplified due to the spectrum of the Dirac operator is known, and the r.h.s. of
the FRG equation reads,

Tr

[
∂tR

D
k (| /D|)

PDk (| /D|)

]
=
∑
n

mn
∂tR

D
k (| /D|)

PDk (| /D|)
=
∑
n

mnΘ(k − |λn|), (B.4)

with λn and mn the eigenvalues and the multiplicities of the Dirac operator in Sd, respec-
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tively,

λ±n = ±

√
R

d(d− 1)

(
d

2
+ n

)
, mn = 2[ d2 ]

(
n+ d− 1

n

)
, n = 0, 1, 2, ... (B.5)

where the square parenthesis denotes the integer part. The sum in (B.4) can be computed
using the Euler-Maclaurin formula,

n∑
i=0

f(i) =

∫ n

0
f(x)dx−B1 (f(n)− f(0)) +

p∑
k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(0)

)
+C, (B.6)

where Bi are the Bernoulli’s numbers, and C is a remainder. After collecting the volume
factor, only terms involving the zeroth and the first powers of the curvature scalar R are
needed for computing Newton’s constant flow. In (B.6), only the integral contains terms
proportional to R; thus it is enough to compute the integral,

n∑
i=0

mnΘ(k − |λn|) =

∫ n

0
mnΘ

(
k −

√
R

d(d− 1)

(
d

2
+ n

))
dn

= 2[ d2 +1]
∫ k√ d(d−1)

R
− d2
(
n+ d− 1

n

)
dn. (B.7)

Changing variables to n→ n
′ − d

2 , (B.7) can be written as,

n∑
i=0

Θ(k − |λn|) = 2[ d2 ]+1

∫ k
√
d(d−1)
R

0

(
n
′
+ d

2 − 1

n′ − d
2

)
dn

= 2[ d2 ]+1

∫ k
√
d(d−1)
R

0

(n
′
+ d

2 − 1)!

(n′ − d
2)!(d− 1)!

dn
′

=
2[ d2 ]+1

(d− 1)!

∫ k
√
d(d−1)
R

0

(
n
′
+
d

2
− 1

)
...

(
n
′ − d

2
+ 1

)
dn
′
. (B.8)

As will become clear later, the terms we are interested in coming from the integral of
the two highest powers of n

′
,

(
n
′
+
d

2
− 1

)
...

(
n
′ − d

2
+ 1

)
︸ ︷︷ ︸

d−1times

= n′d−1 − n′d−3

[ d−1
2 ]∑

k=1

(
d

2
− k
)2

+O(n′d−5). (B.9)
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Rewriting the sum as
∑[ d−1

2 ]
k=1

(
d
2 − k

)2
= 1

24d(d−1)(d−2), the integral in (B.8) becomes,

n∑
0

mnΘ (k − |λn|) =
2[ d2 ]+1

(d− 1)!

∫ k
√
d(d−1)
R

0

(
n′d−1 − n′d−3

24
d(d− 1)(d− 2)

)
dn
′

=
2[ d2 ]+1

d!

(
k

√
d(d− 1)

R

)d
− 2[ d2 ]+1

24(d− 2)!

d

24

(
k

√
d(d− 1)

R

)d−2

=
2[ d2 ]+1d

d
2 (d− 1)

d
2

d!

(
kd

R
d
2

− d

24

kd−2

R
d
2
−1

)
. (B.10)

By other hand, the volume of a n-dimensional Euclidean sphere with radius r is given
by,

Vd = (4π)
d
2

Γ(d2)

Γ(d)
rd. (B.11)

The scalar curvature R is related with the radius of the sphere r by R = ±d(d−1)
r , thus

(B.11) is,

Vd =
2π

d+1
2

Γ(d+1
2 )

(
d(d− 1)

R

) d
2

. (B.12)

Collecting a volume factor, the trace in (B.4) is,

n∑
i=0

mnΘ(k − |λn|) =
2[ d2 ]

Γ
(
d
2 + 1

)
(4π)

d
2

Vd

(
kd − d

24
kd−2R

)
. (B.13)

In four dimensions, the corresponding contribution to the fermionic fields exactly agrees
(except for Vd) with (B.1b). The agreement of the spectral sum with the type II cutoff
heat kernel calculation represents a useful consistency check. It suggests that the later
gives the correct result, whereas the type I cutoff does not.
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Fixed points and relevant
directions
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Ns ND g∗ λ∗ θ1 θ2

0 1 0.7891 -0.0355 3.4679 1.8295

4 1 0.7874 0.0474 3.3244 1.9828

8 1 0.7712 0.1323 3.3392 2.1429

12 1 0.7985 0.2119 4.7225 1.6221

16 1 1.984 0.236 16.0381 4.2369

20 1 5.8534 0.1827 59.1008 15.8484

25 1 27.9783 0.0831 468.104 56.6011

30 1 -7.4924 -3.0458 4.3406 3.0051

35 1 -4.3416 -2.2382 4.2789 2.7502

0 2 0.9061 -0.1388 3.6279 1.6733

4 2 0.9255 -0.0513 3.5503 1.7274

8 2 0.9161 0.0457 3.5004 1.8615

12 2 0.8959 0.1407 3.8755 1.9107

16 2 1.0522 0.2183 7.004 1.1397

20 2 2.9317 0.2021 23.4523 5.4593

25 2 13.2672 0.0905 139.134 16.5161

30 2 -6.5262 -2.1898 4.6413 2.9661

35 2 -3.951 -1.7535 4.4352 2.7362

0 4 1.2332 -0.4412 3.8211 1.4862

4 4 1.3634 -0.3722 3.8152 1.4125

8 4 1.4801 -0.2736 3.8299 1.3405

12 4 1.5275 -0.1386 3.9264 1.3165

16 4 1.4747 0.0126 4.1321 1.6424

20 4 1.5462 0.1276 6.4885 1.4076

25 4 4.5202 0.0938 24.9725 2.0416

0 6 1.7796 -0.9772 3.919 1.3963

4 6 2.2679 -1.073 3.9343 1.2565

8 6 3.2689 -1.3068 3.9642 1.0238

12 6 10.5941 -3.5853 3.9829 0.3888

0 8 2.8677 -2.096 3.9688 1.3603

4 8 5.0095 -3.304 3.984 1.1922

8 8 63.0118 -112.51 2.1179 -1.0674

0 9 3.9567 -3.2412 3.9837 1.3547

2 9 5.6446 -4.423 3.99 1.2799

4 9 10.5569 -7.9074 3.9964 1.1821

6 9 3.72x107 -1087.061 1.25x109 6.22x108

0 10 6.1542 -5.5762 3.9945 1.3547

2 10 11.888 -10.3525 4 1.2801

4 10 712554.8395 490.2162 3.487x106 1.74x106

0 11 12.9664 -12.8612 4.0024 1.3589

Table C.1: Selected gravitational fixed points and relevant directions for NV = 1 for type II cutoff,
Feynman-de Donder gauge and one loop approximation. The first and second column indicate the
matter content. The third and fourth column are the fixed points for the Newton’s and cosmological
constant. The fifth and sixth column represents the minus of the critical exponents.
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Appendix D

Consistency of flow equations

Formulations of the FRGE require the inclusion of an IR regulator to ensure the inte-
gration of all degrees of freedom of fields possessing fluctuations of momenta higher than
k. The choice of the arguments of the cut-off function Rk gives rise to diversity in the
shape of the couplings’ flow involved in the theory. However, physical results must remain
independent of the selection of the shape and the corresponding endomorphism used in
the cut-off function. The last sentence shall be used to check the result obtained in this
work. Since the criteria for discriminating the result of the presented mechanism has to do
with the sign of C2, different truncations with various types of cut-off and expansion of the
cosmological constant were investigating setting NS = 2, NV = 1 and the number of Dirac
fields being a number between 2 and 9, where we know the model works while fulfilling the
conditions required by the AS. The results are presented in Table D.1, confirm that this
analysis is robust under changes in the truncation procedure.

Furthermore, the characterization of C2 number is quite general because in an ultra-
local parametrization described in (138) is independent of the gauge choice. Due to the
structure of the C2 term in (5.29b), the sign of ξΛ̃,2 is also independent of how many scalar
fields are incorporated while keeping ND at some fixed number.

Most of the findings presented in this appendix might seem evident, but some issues
appear when one gets solutions of the FRGE with one or the other of the kinetic operator.
In particular, (139; 140; 137) shows that the spectrum of ∇2 (type I cut-off) and ∇2 − R

4
(type II cut-off) may turn out in ambiguities in the sign of the fermionic contribution to
the running of Newton’s constant. In other words, the background-field dependence of
Rk can alter results in the background approximation of physical observables. Since only
type II cut-off gives the sign according to the infrared observation of G, the beta functions
eq. 5.25a. This result has been corroborated by employing a completely independent
method to evaluate the r.h.s. of (5.26) (140). However, the SSB through PMS takes place
whatever the inverse propagator or gauge specifies employed in obtaining the flow equation
for the gravitational running couplings.

64



APPENDIX D. CONSISTENCY OF FLOW EQUATIONS

Ref Truncation Gauge Specifics sgn(ξΛ̃,2)

(89) EH with SM matter α = β = 1 type Ia cutoff lowest order in Λ Positive
(89) EH with SM matter α = β = 1 type Ia cutoff first order in Λ Positive
(89) EH with SM matter α = β = 1 type Ib cutoff lowest order in Λ Positive
(89) EH with SM matter α = β = 1 type Ib cutoff first order in Λ Positive
(89) EH with SM matter α = β = 1 type II cutoff lowest order in Λ Positive
(89) EH with SM matter α = β = 1 type II cutoff first order in Λ Positive
(136) EH with SM matter α = 0, β = 1 type II cutoff lowest order in Λ Positive*
(136) EH with SM matter α = 0, β = 1 type II cutoff first order in Λ Positive*
(137) f(R) to R9 with SM matter α = 0, β = −∞ type I cutoff lower order in Λ Positive
(137) f(R) to R9 with SM matter α = 0, β = −∞ type I cutoff first order in Λ Positive
(137) f(R) to R9 with SM matter α = 0, β = −∞ type II cutoff lower order in Λ Positive
(137) f(R) to R9 with SM matter α = 0, β = −∞ type II cutoff first order in Λ Positive

Table D.1: The compatibility of the result obtained in (5.17) is investigated for various studies
of the gravitational RG flow in the presence of SM massless matter fields minimally coupled to an
external metric. blueIn the third column, different gauge (labeled by the gauge parameters α and
β) are explored the second The information exhibited in the column ”specifies” contains the choice
of the covariant differential operator used as the argument of the cutoff function and the expansion
of the cosmological constant, explained in the references of the first column. The fifth column gives
the sign of the relevant parameter involved in the process of SSB in (5.18b)

65



Bibliography

[1] G. ’t Hooft, NATO Sci. Ser. B 59, 135 (1980).

[2] A. de Gouvea, D. Hernandez and T. M. P. Tait, Phys. Rev. D 89, no. 11, 115005
(2014) doi:10.1103/PhysRevD.89.115005 [arXiv:1402.2658 [hep-ph]].

[3] H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).
doi:10.1103/PhysRevLett.33.451

[4] L. Susskind, Phys. Rev. D 20, 2619 (1979). doi:10.1103/PhysRevD.20.2619

[5] M. Dine, Ann. Rev. Nucl. Part. Sci. 65, 43 (2015) doi:10.1146/annurev-nucl-102014-
022053 [arXiv:1501.01035 [hep-ph]].

[6] G. F. Giudice, In *Kane, Gordon (ed.), Pierce, Aaron (ed.): Perspectives on LHC
physics* 155-178 doi:10.1142/9789812779762-0010 [arXiv:0801.2562 [hep-ph]].

[7] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)
doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].

[8] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012)
doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].

[9] F. Vissani, Phys. Rev. D 57, 7027 (1998) doi:10.1103/PhysRevD.57.7027 [hep-
ph/9709409].

[10] R. Foot, A. Kobakhidze, K. L. McDonald and R. R. Volkas, Phys. Rev. D 76, 075014
(2007) doi:10.1103/PhysRevD.76.075014 [arXiv:0706.1829 [hep-ph]].

[11] R. Foot, A. Kobakhidze, K. L. McDonald and R. R. Volkas, Phys. Rev. D 77, 035006
(2008) doi:10.1103/PhysRevD.77.035006 [arXiv:0709.2750 [hep-ph]].

[12] A. Grinbaum, Found. Phys. 42, 615 (2012) doi:10.1007/s10701-012-9629-9
[arXiv:0903.4055 [physics.hist-ph]].

[13] C. Wetterich, Phys. Lett. B 718, 573 (2012) doi:10.1016/j.physletb.2012.11.020
[arXiv:1112.2910 [hep-ph]].

[14] A. R. Vieira, B. Hiller, M. C. Nemes and M. D. R. Sampaio, Int. J. Theor. Phys. 52,
3494 (2013) doi:10.1007/s10773-013-1652-x [arXiv:1207.4088 [hep-ph]].

66



BIBLIOGRAPHY

[15] M. Farina, D. Pappadopulo and A. Strumia, JHEP 1308, 022 (2013)
doi:10.1007/JHEP08(2013)022 [arXiv:1303.7244 [hep-ph]].

[16] M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Mod.
Phys. Lett. A 29, 1450077 (2014) doi:10.1142/S0217732314500771 [arXiv:1304.7006
[hep-ph]].

[17] G. Marques Tavares, M. Schmaltz and W. Skiba, Phys. Rev. D 89, no. 1, 015009
(2014) doi:10.1103/PhysRevD.89.015009 [arXiv:1308.0025 [hep-ph]].

[18] A. Farzinnia, H. J. He and J. Ren, Phys. Lett. B 727, 141 (2013)
doi:10.1016/j.physletb.2013.09.060 [arXiv:1308.0295 [hep-ph]].

[19] A. Kobakhidze and K. L. McDonald, JHEP 1407, 155 (2014)
doi:10.1007/JHEP07(2014)155 [arXiv:1404.5823 [hep-ph]].

[20] N. Haba, H. Ishida, R. Takahashi and Y. Yamaguchi, Nucl. Phys. B 900, 244 (2015)
doi:10.1016/j.nuclphysb.2015.09.004 [arXiv:1412.8230 [hep-ph]].

[21] N. Craig, A. Katz, M. Strassler and R. Sundrum, JHEP 1507, 105 (2015)
doi:10.1007/JHEP07(2015)105 [arXiv:1501.05310 [hep-ph]].

[22] F. Jegerlehner, arXiv:1503.00809 [hep-ph].

[23] G. M. Pelaggi, F. Sannino, A. Strumia and E. Vigiani, Front. in Phys. 5, 49 (2017)
doi:10.3389/fphy.2017.00049 [arXiv:1701.01453 [hep-ph]].

[24] S. Hossenfelder, Synthese (2019) doi:10.1007/s11229-019-02377-5 [arXiv:1801.02176
[physics.hist-ph]].

[25] M. J. G. Veltman, Acta Phys. Polon. B 12, 437 (1981).

[26] J. Wess and B. Zumino, Phys. Lett. 49B, 52 (1974). doi:10.1016/0370-2693(74)90578-
4

[27] J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974). doi:10.1016/0550-3213(74)90355-
1

[28] P. Fayet, Phys. Lett. 69B, 489 (1977). doi:10.1016/0370-2693(77)90852-8

[29] E. Witten, Nucl. Phys. B 188, 513 (1981). doi:10.1016/0550-3213(81)90006-7

[30] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985). doi:10.1016/0370-
1573(85)90051-1

[31] S. Weinberg, Phys. Rev. D 13, 974 (1976) Addendum: [Phys. Rev. D 19, 1277 (1979)].
doi:10.1103/PhysRevD.19.1277, 10.1103/PhysRevD.13.974

[32] C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003) Erratum: [Phys. Rept.
390, 553 (2004)] doi:10.1016/S0370-1573(03)00140-6 [hep-ph/0203079].

67



BIBLIOGRAPHY

[33] C. Csaki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Phys. Rev. D 69, 055006
(2004) doi:10.1103/PhysRevD.69.055006 [hep-ph/0305237].

[34] C. Csaki, C. Grojean, L. Pilo and J. Terning, Phys. Rev. Lett. 92, 101802 (2004)
doi:10.1103/PhysRevLett.92.101802 [hep-ph/0308038].

[35] W. D. Goldberger, B. Grinstein and W. Skiba, Phys. Rev. Lett. 100, 111802 (2008)
doi:10.1103/PhysRevLett.100.111802 [arXiv:0708.1463 [hep-ph]].

[36] J. Fan, W. D. Goldberger, A. Ross and W. Skiba, Phys. Rev. D 79, 035017 (2009)
doi:10.1103/PhysRevD.79.035017 [arXiv:0803.2040 [hep-ph]].

[37] A. Martin, Subnucl. Ser. 46, 135 (2011) doi:10.1142/9789814340212-0004
[arXiv:0812.1841 [hep-ph]].

[38] F. Sannino, Acta Phys. Polon. B 40, 3533 (2009) [arXiv:0911.0931 [hep-ph]].

[39] Z. Chacko, R. Franceschini and R. K. Mishra, JHEP 1304, 015 (2013)
doi:10.1007/JHEP04(2013)015 [arXiv:1209.3259 [hep-ph]].

[40] V. Agrawal, S. M. Barr, J. F. Donoghue and D. Seckel, Phys. Rev. Lett. 80, 1822
(1998) doi:10.1103/PhysRevLett.80.1822 [hep-ph/9801253].

[41] M. Tegmark, A. Vilenkin and L. Pogosian, Phys. Rev. D 71, 103523 (2005)
doi:10.1103/PhysRevD.71.103523 [astro-ph/0304536].

[42] J. F. Donoghue, K. Dutta, A. Ross and M. Tegmark, Phys. Rev. D 81, 073003 (2010)
doi:10.1103/PhysRevD.81.073003 [arXiv:0903.1024 [hep-ph]].

[43] N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook, H. D. Kim and D. Pin-
ner, Phys. Rev. Lett. 117, no. 25, 251801 (2016) doi:10.1103/PhysRevLett.117.251801
[arXiv:1607.06821 [hep-ph]].

[44] T. Cohen, R. T. D’Agnolo and M. Low, Phys. Rev. D 99, no. 3, 031702 (2019)
doi:10.1103/PhysRevD.99.031702 [arXiv:1808.02031 [hep-ph]].

[45] Z. Chacko, H. S. Goh and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006)
doi:10.1103/PhysRevLett.96.231802 [hep-ph/0506256].

[46] R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, JHEP 1508, 161 (2015)
doi:10.1007/JHEP08(2015)161 [arXiv:1501.07803 [hep-ph]].

[47] M. Low, A. Tesi and L. T. Wang, Phys. Rev. D 91, 095012 (2015)
doi:10.1103/PhysRevD.91.095012 [arXiv:1501.07890 [hep-ph]].

[48] S. Minwalla, M. Van Raamsdonk and N. Seiberg, JHEP 0002, 020 (2000)
doi:10.1088/1126-6708/2000/02/020 [hep-th/9912072].

[49] M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196 (2010)
doi:10.1016/j.physletb.2009.12.022 [arXiv:0912.0208 [hep-th]].

68



BIBLIOGRAPHY

[50] P. W. Graham, D. E. Kaplan and S. Rajendran, Phys. Rev. Lett. 115, no. 22, 221801
(2015) doi:10.1103/PhysRevLett.115.221801 [arXiv:1504.07551 [hep-ph]].

[51] B. Koch, P. Rioseco and C. Contreras, Phys. Rev. D 91, no. 2, 025009 (2015)
doi:10.1103/PhysRevD.91.025009 [arXiv:1409.4443 [hep-th]].

[52] P. M. Stevenson, Phys. Rev. D 23, 2916 (1981). doi:10.1103/PhysRevD.23.2916

[53] J. Avan and H. J. de Vega, Phys. Rev. D 29, 2891 (1984).
doi:10.1103/PhysRevD.29.2891

[54] E. A. Uehling, Phys. Rev. 48, 55 (1935). doi:10.1103/PhysRev.48.55

[55] W. Dittrich and M. Reuter, Lect. Notes Phys. 220, 1 (1985).

[56] A. Bonanno and M. Reuter, Phys. Rev. D 60, 084011 (1999)
doi:10.1103/PhysRevD.60.084011 [gr-qc/9811026].

[57] C. Wetterich, Phys. Lett. B 301, 90 (1993) doi:10.1016/0370-2693(93)90726-X
[arXiv:1710.05815 [hep-th]].

[58] M. Reuter and C. Wetterich, Nucl. Phys. B 417, 181 (1994). doi:10.1016/0550-
3213(94)90543-6

[59] M. Reuter and C. Wetterich, Nucl. Phys. B 391, 147 (1993). doi:10.1016/0550-
3213(93)90145-F

[60] A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008 (2000)
doi:10.1103/PhysRevD.62.043008 [hep-th/0002196].

[61] D. F. Litim and T. Plehn, Phys. Rev. Lett. 100, 131301 (2008)
doi:10.1103/PhysRevLett.100.131301 [arXiv:0707.3983 [hep-ph]].

[62] B. Koch and I. Ramirez, Class. Quant. Grav. 28, 055008 (2011) doi:10.1088/0264-
9381/28/5/055008 [arXiv:1010.2799 [gr-qc]].

[63] C. Contreras, B. Koch and P. Rioseco, Class. Quant. Grav. 30, 175009 (2013)
doi:10.1088/0264-9381/30/17/175009 [arXiv:1303.3892 [astro-ph.CO]].

[64] B. Koch and F. Saueressig, Class. Quant. Grav. 31, 015006 (2014) doi:10.1088/0264-
9381/31/1/015006 [arXiv:1306.1546 [hep-th]].

[65] C. Pagani and M. Reuter, arXiv:1906.02507 [gr-qc].

[66] O. J. Rosten, Phys. Rept. 511, 177 (2012) doi:10.1016/j.physrep.2011.12.003
[arXiv:1003.1366 [hep-th]].

[67] M. Reuter and F. Saueressig, doi:10.1017/CBO9780511712135.008 arXiv:0708.1317
[hep-th].

[68] S. Weinberg, Chap. 16 in S. W. Hawking and W. Israel, “General Relativity : An
Einstein Centenary Survey,”

69



BIBLIOGRAPHY

[69] M. Niedermaier, Class. Quant. Grav. 24, R171 (2007) doi:10.1088/0264-
9381/24/18/R01 [gr-qc/0610018].

[70] M. Niedermaier and M. Reuter, Living Rev. Rel. 9, 5 (2006). doi:10.12942/lrr-2006-5

[71] R. Percacci, arXiv:1110.6389 [hep-th].

[72] M. Reuter, Phys. Rev. D 57, 971 (1998) doi:10.1103/PhysRevD.57.971 [hep-
th/9605030].

[73] D. Dou and R. Percacci, Class. Quant. Grav. 15, 3449 (1998) doi:10.1088/0264-
9381/15/11/011 [hep-th/9707239].

[74] M. Reuter and H. Weyer, JCAP 0412, 001 (2004) doi:10.1088/1475-7516/2004/12/001
[hep-th/0410119].

[75] N. Christiansen, D. F. Litim, J. M. Pawlowski and A. Rodigast, Phys. Lett. B 728,
114 (2014) doi:10.1016/j.physletb.2013.11.025 [arXiv:1209.4038 [hep-th]].

[76] J. Biemans, A. Platania and F. Saueressig, Phys. Rev. D 95, no. 8, 086013 (2017)
doi:10.1103/PhysRevD.95.086013 [arXiv:1609.04813 [hep-th]].

[77] C. Wetterich, Phys. Lett. B 773, 6 (2017) doi:10.1016/j.physletb.2017.08.002
[arXiv:1704.08040 [gr-qc]].

[78] F. Canales, B. Koch, C. Laporte and A. Rincon, arXiv:1812.10526 [gr-qc].

[79] W. Souma, Prog. Theor. Phys. 102, 181 (1999) doi:10.1143/PTP.102.181 [hep-
th/9907027].

[80] O. Lauscher and M. Reuter, Phys. Rev. D 65, 025013 (2002)
doi:10.1103/PhysRevD.65.025013 [hep-th/0108040].

[81] M. Reuter and F. Saueressig, Phys. Rev. D 65, 065016 (2002)
doi:10.1103/PhysRevD.65.065016 [hep-th/0110054].

[82] D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004) doi:10.1103/PhysRevLett.92.201301
[hep-th/0312114].

[83] P. Fischer and D. F. Litim, Phys. Lett. B 638, 497 (2006)
doi:10.1016/j.physletb.2006.05.073 [hep-th/0602203].

[84] A. Codello and R. Percacci, Phys. Rev. Lett. 97, 221301 (2006)
doi:10.1103/PhysRevLett.97.221301 [hep-th/0607128].

[85] R. Percacci and D. Perini, Phys. Rev. D 67, 081503 (2003)
doi:10.1103/PhysRevD.67.081503 [hep-th/0207033].

[86] R. Percacci and D. Perini, Phys. Rev. D 68, 044018 (2003)
doi:10.1103/PhysRevD.68.044018 [hep-th/0304222].

70



BIBLIOGRAPHY

[87] A. Eichhorn and H. Gies, New J. Phys. 13, 125012 (2011) doi:10.1088/1367-
2630/13/12/125012 [arXiv:1104.5366 [hep-th]].

[88] A. Eichhorn, Phys. Rev. D 86, 105021 (2012) doi:10.1103/PhysRevD.86.105021
[arXiv:1204.0965 [gr-qc]].
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