
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

DERIVING CONFIGURABLE PROCESS

MODELS USING PROCESS MINING

MAURICIO JAVIER ARRIAGADA BENÍTEZ

Thesis submitted to the Office of Research and Graduate Studies in

partial fulfillment of the requirements for the Degree of

Doctor in Engineering Sciences

Advisors:

MARCOS SEPÚLVEDA FERNÁNDEZ

JORGE MUÑOZ GAMA

Santiago de Chile, April 2019

c©MMXIX, MAURICIO JAVIER ARRIAGADA BENÍTEZ

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

DERIVING CONFIGURABLE PROCESS

MODELS USING PROCESS MINING

MAURICIO JAVIER ARRIAGADA BENÍTEZ

Members of the Committee:

MARCOS SEPÚLVEDA FERNÁNDEZ

JORGE MUÑOZ GAMA

VALERIA HERSKOVIC MAIDA

KARIM PICHARA BAKSAI

BERNHARD HITPASS HEYL

HUGO SANTIAGO AGUIRRE MAYORGA

JORGE VÁSQUEZ PINILLOS

Thesis submitted to the Office of Research and Graduate Studies in

partial fulfillment of the requirements for the Degree of

Doctor in Engineering Sciences

Santiago de Chile, April 2019

c©MMXIX, MAURICIO JAVIER ARRIAGADA BENÍTEZ

i

To my family

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for giving me the strength, knowledge,

opportunity and perseverance to undertake this research study and complete it satisfactorily.

I never doubted about where he is leading me.

I would like to express my special thanks of gratitude to my advisors Prof. Sepúlveda

and Prof. Muñoz who always supported me during the research work. Both showed and

guided me on how to improve my research.

To my family who were at all times with me in each of the stages of these years of

studies. I will be eternally grateful for their unconditional support, especially to my mom

who taught me how to face new challenges, to my sister who always encouraged me to

achieve new challenges as well, and to my dad who taught me to be persistent at work. To

my wife for accompanying and supporting me in this important part of my life with all her

love and knowledge. All of you have all made a tremendous contribution in helping me

reach this stage in my life.

This thesis was supported by Comisión Nacional de Investigación y Tecnología CONI-

CYT - Ministry of Educacation, Chile, Ph.D. Student Fellowships Folio 21120850. I would

also like to express my sincere gratefulness to CONICYT.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . viii

RESUMEN . ix

ABSTRACT . x

1. INTRODUCTION . 2

1.1. Research question . 4

1.2. Hypothesis . 5

1.3. Objectives . 5

1.3.1. General objectives . 5

1.3.2. Specific objectives . 5

1.4. Methodology . 6

1.5. Proposed derivation framework . 7

1.6. Organization of the thesis . 7

2. STATE OF THE ART . 9

2.1. Configurable process models . 11

2.2. Process Mining . 12

2.3. Current Use Cases . 13

2.4. Related work . 16

3. PRELIMINARIES . 19

3.1. Set, Multiset, Sequence, and Concatenation 20

3.2. Event Log . 20

3.3. Process Tree . 21

3.4. Quality Metrics . 23

iv

4. FRAMEWORK . 26

4.1. Configurable Process Tree . 27

4.2. Proposed framework . 31

5. DERIVATION STRATEGIES . 32

5.1. Obtaining a configuration based on the exhaustive strategy 33

5.2. Obtaining a configuration based on the genetic strategy 36

5.3. Obtaining a configuration based on the greedy strategy 39

6. IMPLEMENTATION . 45

6.1. Creation of the configurable process model 46

6.2. Running the plug-ins . 50

6.2.1. Running the exhaustive strategy . 51

6.2.2. Running the genetic strategy . 53

6.2.3. Running the Greedy strategy . 55

7. EXPERIMENTS AND DISCUSSIONS . 57

7.1. Educational scenario . 58

7.1.1. Academic planning process . 58

7.2. Municipal scenario . 62

7.2.1. Real-life experiments . 63

7.3. Algorithms’ performance based on an empirical evaluation 69

7.3.1. Performance according to log complexity 69

7.3.2. Performance according to model complexity 76

8. CONCLUSIONS . 80

8.1. General Conclusions . 81

8.2. Limitations . 82

8.3. Future Work . 83

REFERENCES . 85

APPENDIX A. ACADEMIC PLANNING . 96

v

LIST OF FIGURES

1.1 BPM use cases related to configurable process models. 3

1.2 Overview of the proposed framework to derive a process model. 7

2.1 Use cases presented at BMP conference in 2015. 15

3.1 Example of a process tree model. 23

3.2 Quality metrics of a process model. 25

4.1 Example of a configurable process tree containing 4 configurable nodes. . . . 28

4.2 Running example that illustrates the derivation framework. 29

5.1 Overview of the Exhaustive strategy to derive a process tree. 35

5.2 Overview of the Genetic strategy to derive a process tree. 38

5.3 Different configurable node dependencies. 40

5.4 Overview of the Greedy strategy to derive a process tree. 43

6.1 Overview of the ProM framework. 46

6.2 Overview of the inputs of the ProM framework. 47

6.3 Overview of the strategies we created as plug-ins in the ProM framework. . . 48

6.4 Overview of the strategies we created as plug-ins in the ProM framework. This

figure shows the plug-ins that have a user interface. 49

6.5 Overview of the strategies we created as plug-ins in the ProM framework. This

figure shows the plug-ins that do not have a user interface. 49

6.6 Exhaustive strategy setting. 51

6.7 Summary obtained by the exhaustive strategy plug-in. 52

6.8 Derived process tree obtained by the exhaustive strategy plug-in. 52

vi

6.9 Genetic strategy setting. 53

6.10 Summary obtained by the genetic strategy plug-in. 54

6.11 Derived process tree obtained by the genetic strategy plug-in. 54

6.12 Greedy strategy setting . 55

6.13 Summary obtained by the greedy strategy plug-in. 56

6.14 Derived process tree obtained by the greedy strategy plug-in. 56

7.1 General model of the academic planning process of a university. 59

7.2 General idea of process model derivation for three different configurable sub-

processes. 60

7.3 Benchmarking of the performance of the three strategies. 62

7.4 Process trees originally discovered by the ETM on the WABO event logs. . . 64

7.5 CPTs based on the model discovered by the ETM Approach 3. 65

7.6 CPTs based on the model discovered by the ETM Approach 4. 66

7.7 Performance of the Exhaustive strategy when varying log complexity. 72

7.8 Performance of the Genetic strategy when varying log complexity. 73

7.9 Performance of the Greedy strategy when varying the log complexity. 74

7.10 Performance of the different strategies when varying the model complexity. . 78

A.1 Academic planning full model . 96

A.2 Prepare Academic Program sub-model . 97

A.3 Update Academic Program sub-model . 98

A.4 Adjust Academic Program sub-model . 99

A.5 Student Assistant Planning sub-model . 100

A.6 Thesis Planning sub-model . 101

vii

LIST OF TABLES

3.1 Sample of an event log . 21

6.1 Synthetic log of the running example. 50

7.1 Comparison of the proposed strategies for the three universities. 61

7.2 Results for CPT 3-A and the event logs corresponding to the five process variants 67

7.3 Results for CPT 3-B and the event logs corresponding to the five process variants 67

7.4 Results for CPT 4-A and the event logs corresponding to the five process variants 67

7.5 Results for CPT 4-B and the event logs corresponding to the five process variants 68

7.6 Results for CPT 4-C and the event logs corresponding to the five process variants 68

7.7 Different log settings for three universities 70

7.8 Results obtained for all algorithms considering different log complexity. . . . 75

7.9 Results obtained for all strategies considering different model complexity. . . 79

8.1 Weaknesses identified in the 289 papers analyzed by van der Aalst (2012) and

how they are overcome in this thesis. 82

viii

RESUMEN

Utilizado con frecuencia en grandes organizaciones con sucursales en diferentes ubi-

caciones, un modelo de proceso configurable reune las características más comunes que

se comparten entre diferentes sucursales. Este modelo de proceso configurable puede con-

figurarse para derivar un modelo de proceso específico para cada sucursal. El proceso de

configuración generalmente se realiza de forma manual, lo cual es un reto por dos razones.

Por un lado, cuando el número de puntos de configuración aumenta en el modelo de pro-

ceso configurable, el tamaño del espacio de búsqueda aumenta exponencialmente. Por otro

lado, la persona que realiza la configuración puede carecer de una perspectiva holística

para tomar la decisión correcta para todos los nodos configurables. Hoy en día, en muchos

escenarios de negocios, los sistemas de información que apoyan la ejecución de procesos

de negocios crean registros de eventos, que contienen datos que reflejan cómo se están re-

alizando los procesos. En esta tesis, proponemos tres estrategias que utilizan estos datos

de eventos para derivar automáticamente un modelo de proceso a partir de un modelo de

proceso configurable, tal que el modelo generado sea el que mejor representa las caracterís-

ticas del proceso en una sucursal específica. La primera estrategia se basa en una búsqueda

exhaustiva, la segunda se basa en un enfoque evolutivo genético y la tercera se basa en

una heurística codiciosa. Hemos implementado estas tres estrategias diferentes en ProM

como parte de nuestra propuesta para derivar un modelo de proceso. Hemos probado estas

estrategias utilizando registros de eventos realistas que representan el comportamiento de

diferentes variantes de proceso, tal como se registran en un sistema de educación superior,

y también utilizamos un caso real de municipalidades en Holanda.

Palabras Claves: minería de procesos, proceso de negocio, árbol de proceso, árbol de

proceso configurable, modelo de proceso configurable, registro de

eventos.

ix

ABSTRACT

Frequently used in large organizations with branches across different locations, a con-

figurable process model unifies the commonalities shared by all branches. This config-

urable process model can later be configured to derive a specific process model for each

branch. Configuration is usually done manually, which is challenging for two reasons. On

the one hand, when the number of configurable nodes in the configurable process model

grows, the size of the search space increases exponentially. On the other hand, the person

performing the configuration may lack the holistic perspective to make the right choice for

all configurable nodes. Nowadays, in many business scenarios, information systems that

support the execution of business processes create event logs, data reflecting how processes

are being performed. In this thesis, we propose three strategies that use this event data to

automatically derive a process model from a configurable process model that better repre-

sent the characteristics of the process in a specific branch. The first strategy is based on

an exhaustive search, the second one is based on a genetic evolutionary approach, and the

third one is based on a greedy heuristic. We have implemented these three different strate-

gies in ProM, as part of our proposed framework to derive a process model. We have tested

them using realistic event logs that represent the behavior of different process variants as

recorded in a higher educational ERP system, and also using a real case scenario of Dutch

municipalities.

Keywords: process mining, business processes, process tree, configurable process

tree, configurable process model, event logs.

x

1

2

1. INTRODUCTION

Business process models and other discrete event systems are widely used for anal-

ysis, optimization, monitoring, and even auditing, as they describe the operations of an

organization (van der Aalst, van Hee, van der Werf, & Verdonk, 2010). Often, variants

of the same process occur in large organizations as a result of legal restrictions, cultural

conditions, business strategies, and economical issues, among others. For example, banks

commonly have branches in different locations where they use similar processes that might

slightly differ in order to adapt to local conditions. Similarly, municipalities provide the

same services, but the processes might differ significantly depending on the size of the

population.

The challenge for these organizations is to balance standardization and a certain level

of flexibility in their business processes. A process model that describes both the common-

alities shared by all process variants and their differences is called a configurable process

model. Extensions of process modeling languages have been developed in order to rep-

resent configurable process models, such as C-YAWL (Gottschalk, van der Aalst, Jansen-

Vullers, & Rosa, 2008), C-BPEL (Ghedira & Mezni, 2006), C-EPC (Rosemann & van der

Aalst, 2007), C-PT (Schunselaar, Leopold, Verbeek, van der Aalst, & Reijers, 2014), and

C-BPMN (Sharma & Rao, 2014).

The importance of having a configurable process model to describe process variants

has been a subject of study in the literature. For example, three of the twenty Business

Process Management (BPM) use cases identified by van der Aalst (2012), involve con-

figurable process model: design configurable model (DesCM), merge models into config-

urable model (MerCM), and configure configurable model (ConCM) (see Figure 1.1). In

particular, the use case ConCM consists of deriving a process model from a configurable

process model so as to represent a particular process variant. As shown in Figure 1.11, the

original use cases a) manually design a configurable process model, b) merge collection of

process models to generate a configurable process model, and c) configure a configurable
1This figure also shows our proposal d) as a new use case: to derive a process model based on a configurable
process model and an event log.

3

process model to obtain a process model do not consider the usage of other sources of

information beyond manual configuration.

However, in the last few years, a new discipline called process mining has emerged,

which studies extracting and analyzing data recorded in information systems about pro-

cesses’ behavior (van der Aalst, 2016). More specifically, process discovery techniques

aim at creating a process model based on the historical behavior recorded in an event log.

Some process mining techniques have been applied to support the creation and derivation

of configurable process models (Buijs, van Dongen, & van der Aalst, 2013), allowing to

create a configurable process model based on several event logs (each containing the his-

torical behavior of a particular business scenario) and to obtain a derived process model for

each of the initial event logs. However, it does not allow to obtain a derived process model

from the configurable process model for a different event log.

CM ME

Configure configurable
model based on event log

(ConCMEV)

CM M

configure configurable
model

(ConCM)CM

merge models into
configurable model

(MerCM)MCM

design configurable
model

(DesCM)

a) b) c)

d)

FIGURE 1.1. BPM use cases related to configurable process models.

While analyzing the literature about configurable process models, we have identified

two main opportunities. As mentioned before, two separate approaches can be recognized:

on the one hand, automated process discovery, and on the other hand, manual configuration

of configurable process models. The first opportunity is to integrate these two approaches.

At the same time, there is a growing availability of event data in organizations, which also

4

promotes for having specialized, smart and efficient techniques to include historical data

for configuring a configurable process model.

1.1. Research question

Based on these opportunities, we would like to address two challenges. The first and

main challenge is to develop an automatic method to derive a process model from a con-

figurable model that better represents the observed behavior of a process variant (e.g., the

process execution in a target branch) as stored in a given event log, which can be applied

on real-life data.

It is also important that configuration decisions can be defined in a local context.

Hence, the second challenge is to create a simple representation for the different degrees of

freedom we want to allow in the configurable nodes (Schunselaar, Verbeek, van der Aalst,

& Reijers, 2012).

Therefore, the main research question in this thesis is the following:

How can a process model be derived automatically from a configured process model

and an event log?

The advantage of automatically deriving a process model from a configurable process

model that better represents the behavior observed in an event log (instead of discovering

a process model only based on the behavior observed in the event log) is that it is useful

when an organization has already defined a configurable process model in order to specify

a certain degree of standardization and flexibility among the different branches where the

process is being performed. If a new branch is incorporated, it would be desirable to obtain

a derived process model that is as similar as possible to the current way of executing the

process in such a branch, represented by an event log. While it is possible to use any process

discovery technique based on the event log to obtain a process model that will describe how

the process is currently executed in the branch, this model may not necessarily be compliant

with the desired standardization.

5

1.2. Hypothesis

The hypothesis of this thesis is that based on historical information stored in event logs

and in a configurable process model it is possible to obtain a configuration that allows the

derivation of a process model automatically using Process Mining techniques.

1.3. Objectives

There are three general objectives of this thesis, which are broken down into the spe-

cific objectives presented below.

1.3.1. General objectives

This thesis presents an approach with a threefold objective. First, we propose an addi-

tional use case to those presented by van der Aalst (2012), where we combine a configurable

process model (manually or automatically generated (Buijs et al., 2013)) and an event log

to derive a process model that better represents the observed behavior in the historical

data, depicted in Figure 1.1 d) as ConCMEV. Second, to support this use case extension,

we redefine the configurable process model representation, in particular how to represent

configurable process trees (Schunselaar et al., 2012), so as to generalize and simplify the

description of the configuration process. Third, we propose a derivation framework that

receives as input a configurable process model and an event log; as depicted in Figure 1.22,

both inputs are part of the extended configurable process model use case.

1.3.2. Specific objectives

The specific objectives of this research are:

(i) to conceptualize the problem in order to be able to propose solutions that are

applicable and allow us to generate satisfactory results.

(ii) to develop derivation strategies that explore configuration alternatives of a con-

figurable process model using a configurable process model.

2Three alternative derivation strategies allow to obtain a configuration that later on is used to derive a process
model from the configurable process model.

6

(iii) to implement derivation strategies automatically that allow finding a configura-

tion to be applied to a configurable process model.

(iv) to verify the proposed strategies using controlled experiments of a realistic data

set and finally to validate the strategies using a real-life data set.

1.4. Methodology

To address these objectives, we apply the following methodology:

• Literature review of state-of-the-art research in the field of derivation of process

models, tools used and how derivation of process models is performed.

• Conceptualization of the problem that allows us to propose different strategies

that solve the problem of automatic derivation of process models using an event

log and a configurable process model.

• Development of derivation strategies. We consider three alternative strategies:

– Exhaustive strategy that evaluates all possible configurations in a config-

urable process model to finally select the optimal configuration.

– Genetic strategy that has as a representation of a configuration that can be

used for the evolutionary process. The aim of this strategy, based on an

evolutionary algorithm, is to converge to a final optimal configuration.

– Greedy that allows to look for local solutions with the intent of finding a

good final solution.

• Verification and validation of proposed strategies using:

– Realistic case study based on a university academic programming software.

This experimental set will allow us to verify if the strategies produce ex-

pected results.

– Real case study based on the building permits process of five Dutch mu-

nicipalities. The purpose of applying this experimental set is to validate the

behavior of the proposed strategies, where our results will be compared with

those of Buijs (Buijs, 2014b).

7

1.5. Proposed derivation framework

The proposed framework incorporates three derivation strategies: an exhaustive method,

used as a reference approach that finds an optimal configuration in a wide search space, a

genetic evolutionary method, designed as a smart technique that evolves until it finds a

good configuration, and a greedy method, designed as a heuristic to find a satisfying con-

figuration in a short computing time. The configuration obtained by any of these three

strategies is then applied to the configurable process model in order to derive a process

model. Additionally, we have tested the feasibility and applicability of the framework us-

ing two different sets of experiments: an educational process and a real-life municipality

scenario.

CM

M

E
Event Log

Configurable
Process Model Derivation

Derived
Process Model

Genetic algorithm

Exhaustive algorithm

Greedy algorithm Configuration

C

Derivation strategies

FIGURE 1.2. Overview of the proposed framework to derive a process model.

1.6. Organization of the thesis

This thesis is organized as follows: state of the art is presented in chapter 2, where we

also introduce a new use case in which we based this thesis. Later, chapter 3 introduces the

theoretical foundation of the proposed framework. In chapter 4, we present the framework.

The three strategies (exhaustive, genetic, and greedy) that allow finding the best configura-

tion in order to derive a process tree from a configurable process tree that better represents

the observed behavior in an event log are presented in chapter 5. The implementation of

8

the framework is described in chapter 6. Results and discussions are presented in chapter 7.

Finally, conclusions and future work are presented in chapter 8.

The results of this thesis have been partially published in (Arriagada-Benítez, Sepúlveda,

Munoz-Gama, & Buijs, 2017):

Strategies to Automatically Derive a Process Model From a Configurable Process Model

Based on Event Data

Mauricio Arriagada-Benítez, Marcos Sepúlveda, Jorge Munoz-Gama and Joos C. A. M.

Buijs

Applied Science 2017, 7, 1023.

9

2. STATE OF THE ART

This chapter shows the state of the art of configurable process models through a litera-

ture review.

10

Large volumes of information are generated on a daily basis. One of the reasons for

this exponential increase in data has been the adoption of new information technologies

that allow not only to generate, but also to store and manage, data through information

systems. In many cases, information is systematized through models that allow capturing

data from a specific domain, understanding that a model is an abstract representation of

reality that allows us to describe and understand the functioning of a system. The use of

models facilitates the study of a system. Some of the advantages of using a model include

the low cost of implementation, the time efficiency of modeling, and the opportunities

offered by simulation. It is possible to classify different types of models depending on the

study area. For example, there are models designed in some study fields such as statistics,

mathematics, physics or economics.

In business process management, much of the recorded data is obtained from a series

of activities that are carried out during the process. Dumas, Van der Aalst, and Ter Hofstede

(2005) point out that there are specialized software systems managing not only activities

but also processes such as ERP (Enterprise Resource Planning) systems, BPM (Business

Process Management) systems, and CRM (Customer Relationship Management) systems.

Nowadays, many companies are using process models to implement their information sys-

tems. This is because process models represent not only the activities that are performed

in a process, but also the interactions between those activities. This type of model allows,

first, to describe a business process which is made up of a logically related set of activities

that uses the resources of the organization, then, to provide defined results, and finally, to

achieve the objectives of the business.

According to van der Aalst (2016), the process models are used for different purposes:

insight, discussion, documentation, verification, performance analysis, animation, speci-

fication and configuration. This research focuses on this last topic, the configuration of

configurable process models.

11

2.1. Configurable process models

Today, it is possible to find that the same business process runs differently in differ-

ent business divisions. These variants are presented in the same business process that is

performed in different geographic areas, such as retail premises, or even in different areas

of work within the same location, such as faculties of the same university. The challenge

for organizations is to maintain a degree of flexibility and standardization of their business

processes.

A configurable process model is a representation of possible variants of a business

process that can be visualized in a single model (van der Aalst, Dreiling, Gottschalk,

Rosemann, & Jansen-Vullers, 2005; Gottschalk, van der Aalst, & Jansen-Vullers, 2007;

Gottschalk, Wagemakers, Jansen-Vullers, van der Aalst, & Rosa, 2009). These variants

represent the best practices of how the process should be performed (Rosa, Dumas, ter

Hofstede, Mendling, & Gottschalk, 2008).

A configurable process model presents points of variation on which it is possible to

apply a certain configuration: enable, hide and block tasks (van der Aalst, Lohmann, &

Rosa, 2012). These configuration points allow to select variants of the configurable model.

After configuring the variation points of a model, a derived model is obtained.

The utility of integrated representation of multiple variants is the flexibility provided

by the configurable model to derive process models, where each derived model represents

a possible way of executing the process. Finally, having a configurable process model

facilitates not having to redefine a business process model that is repeated several times

within the organization (Rosa, Dumas, ter Hofstede, & Mendling, 2011).

According to Seidel, Rosemann, Hofstede, and Bradford (2006), the importance of

having a configurable business model is that it allows us to identify how the same process

could be executed in different scenarios. As an example, we can mention the scope of

municipalities, where despite of the same regulations, some processes are executed differ-

ently in different municipalities. In some cases the differences in the models are reasonable

variants that are a consequence of unique characteristics of municipalities, for example,

12

large municipalities, rural municipalities or municipalities with fewer resources. In other

cases, the differences between models reflect bad practices. Therefore, it would be benefi-

cial to have a model with all reasonable variants of how you can run municipality business

processes.

Based on configuration points on a configurable process model, it is possible to derive

a process model that satisfies business needs for a given division. In the past, this deriva-

tion was done manually either directly from a configurable process model using process

modeling tools specially adapted for this purpose, or using questionnaires that allowed the

derivation to be made in a more intuitive way. The difficulty of using those two techniques

was that obtaining a process model from a configurable process model required the knowl-

edge of domain experts. The desire to resolve this difficulty was the main drive behind this

research, which proposes strategies to derive a process model automatically by finding the

best configuration based on a event log.

Nowadays, not only data scientists, but also professionals from different fields work

on strategies to obtain better results of processing and visualizing large volumes of infor-

mation. For this analysis, where events are being recorded as part of processes that take

place in organizations, there is a discipline called process mining, whose purpose is to use

event data to extract information related to processes.

2.2. Process Mining

Process Mining is a new discipline that integrates machine intelligence, data mining,

modeling and process analysis, which allows to discover, monitor and improve organiza-

tions’ business processes by extracting knowledge from event data (event log, see Chapter

3) available in corporate information systems (van der Aalst, 2016). The extraction of

knowledge from event logs allows to discover models and analyze to what extent the way

in which a process is performed in reality corresponds with what is defined in the preex-

isting models. Some techniques for process modeling in Process Mining are presented in

13

Tiwari, Turner, and Majeed (2008); van der Aalst et al. (2003); van der Aalst and Weijters

(2004).

There are three types of Process Mining. The first type is process discovery, in which

models are constructed to reflect the log of events of a business process. Some of the algo-

rithms used are Alpha Miner (van der Aalst, Weijters, & Maruster, 2004), represented by

Petri nets; Heuristic Miner (A. Weijters, Aalst, & A K Medeiros, 2006), Flexible Heuris-

tic Miner (A. J. M. M. Weijters & Ribeiro, 2011), whose representation are causal net-

works (Annex B); and Fuzzy Miner (Günther & van der Aalst, 2007). (van der Aalst,

Dumas, Ouyang, Rozinat, & Verbeek, 2008) where fitness quality measure was introduced

by Rozinat and van der Aalst (2005, 2008) to assess the discovered process model. The

second type is to verify if the actual business process and information systems are aligned.

In the research of Rozinat and van der Aalst (2008), the quality of a process model is mea-

sured with respect to the observed behavior as recorded in an event log. The last type is

enhancement, where the main task is to extend or improve a process model with additional

information that can be found in an event log. In this area, performance analysis could be

used to identify bottlenecks, frequencies, and service levels (van der Aalst, 2016).

Process mining as a discipline of study has been applied in different domains: analyz-

ing treatment processes in hospitals, process analysis in municipalities, improving customer

service processes in multinational corporations, understanding the browsing behavior of

customers, among others (van der Aalst, 2016).

2.3. Current Use Cases

Over time, several papers on the Business Process Management field have been pre-

sented at BPM conferences. van der Aalst conducted a research where he analyzed papers

sent to BPM conferences from 2003 to 2011 (van der Aalst, 2012). He identified the twenty

use cases shown in Figure 2.1. Some use cases involved the participation of people in the

process. For example, the use case Design Model (DesM) is related to the creation of a

process model by a person. Alternatively, the use case Discover model from event data

14

(Disc) represents how a model can be created automatically based on event data, for ex-

ample, using process mining techniques. If a model is created by the use case DesM, then

the model is Descriptive (D), Normative (N), and/or Executable (E). A model discovered

through process mining (DiscM), on the other hand, is typically not normative since it is

based on observed behavior (it can be D, and eventually E).

Of the 20 use cases identified by van der Aalst (2012), use cases related to configurable

models are: Design Configurable Model (DesCM), Merge models into Configurable Model

(MerCM), and Configure Configurable Model (ConCM). The two most frequently used use

cases are design model (DesM) and enact model (EnM) since they are for general purposes,

whereas the use cases related to configurable models have low use frequency, since they

are very specific.

15

FIGURE 2.1. Use cases presented at BMP conference in 2015.

(van der Aalst, 2012)

16

It is possible to compose a use case by chaining other use cases. Thus, in this thesis

we propose a new use case, called Configure Configurable Model based on Event Log

(ConCMEV) which considers a configurable process model and a event log as input and

a derived process model as output (see Figure 1.1). Although it is based on observed

behavior, the derived process model is restricted to the processes that can be derived from

the configurable model. Therefore, the obtained model is an interesting trade-off between

a normative model (N) and a descriptive (D) one.

During his research, van der Aalst also found that despite of the good quality of the

set of 289 BPM papers analyzed, some weaknesses could be identified in all of them. This

information can be found in Table 8.1, in chapter Conclusions.

2.4. Related work

The majority of research in the area of configurable process models has addressed the

issue of describing a configurable process model, or the issue of manually obtaining such

a configurable process model (Rosa, Dumas, Uba, & Dijkman, 2010; Mendling & Simon,

2006; Gottschalk, 2009; Rosa, Dumas, Uba, & Dijkman, 2013; Gottschalk, van der Aalst,

& Jansen-Vullers, 2008a; Schunselaar et al., 2012). Manual process model configuration

(i.e., configuration performed by the user) has been addressed by Schunselaar et al. (2012);

Rosa, van der Aalst, Dumas, and ter Hofstede (2009). In Rosa et al. (2009), for example, a

questionnaire-driven approach for configuring a reference model is taken, guiding the user

in defining a configuration. The work by Schunselaar et al. (2012) uses a configurable tree-

like representation which is sound by construction. Applied in the Configurable Services

for Local Governments (CoSeLoG) project (Buijs, 2014a), this approach merges variants

of different municipalities to create a configurable process model. The same author under-

lines in (Schunselaar et al., 2014) the difficulty of creating a configuration since the user

needs a high abstraction level about the process. Hence, the author uses a meta-model to

automatically construct an abstraction that helps the end user to apply configurations. The

same author has also extended the work to consider several qualitative process aspects such

17

as performance, cost, and satisfaction indicators. The results are then presented to the end

user, who inspects the proposed configurations and selects one to be applied.

A configurable process model allows a reference model to be adapted to different busi-

ness scenarios where the process is being executed (e.g., different branches of a large

organization or different companies belonging to a corporate group). A complementary

approach aims at adapting a general process model to different modeling views that are

needed for the integrated modeling of business processes and information systems (Becker,

Delfmann, & Knackstedt, 2007; Becker, Delfmann, Dreiling, Knackstedt, & Kuropka,

2004).

Event data has been used to create process models through the use of different tech-

niques. For example, the research driven by van Oirschot (2014) uses an event log to

discover a process model based on the observed behaviour of traces using clustering tech-

nique and a tree-like representation. However, event data is not often used to configure a

configurable process model. One of the few approaches using this is the Evolutionary Tree

Miner (Buijs, 2014b), which is able to discover a process model including configurations,

when given multiple event logs. Nevertheless, the performance of the Evolutionary Tree

Miner is not optimal. Because it is an evolutionary algorithm, and the configuration aspect

adds many possibilities, the task of discovering a configurable process model and several

configurations becomes challenging. Moreover it is not possible to extend it to the use case

proposed in this thesis.

The main limitation of existing approaches is the restricted number of configurations

a configurable process model can have. The approach proposed in this thesis aims to en-

hance the work already done in configurable process models by allowing a large number of

configurations. This research also provides a framework that allows to combine a config-

urable process model and an event log to derive a process model that better represents the

observed behavior in the event log.

New investigations related to models of configurable processes are oriented on how to

create a better creation of these. In the investigation of (Derguech, Bhiri, & Curry, 2017)

18

only the configurable process model is created, but the next step that is the configurations

is not addressed

Similar to existing approaches, we implemented our techniques in the open source

process mining tool ProM.

19

3. PRELIMINARIES

In this chapter, we introduce the theoretical foundation of the proposed framework,

such as event log, process tree, configurable process tree, and how to measure the quality

of a derived process tree to represent the observed behavior in an event log.

20

Our proposal is based on obtaining the best configuration delivered by each of the

strategies we propose. To achieve this, we formally present what is the data that our strate-

gies use such as set, multiset, event log, and process tree.

3.1. Set, Multiset, Sequence, and Concatenation

A multiset (or a bag) is a generalization of the concept of set, where its elements may

appear multiple times. For a given set A, B(A) is the set of all multisets over A. For a

multiset b ∈ B(A), b(a) denotes the number of times the element a ∈ A appears in b.

For example, b1 = [], b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], b5 = [x3, y2, z]

are multisets over A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist of three

elements, and b4 = b5 since the order of the elements is irrelevant; b5 representation is

preferred because it is a more compact way of representing the same elements. Note that

sets are written using curly brackets while multisets are written using square brackets.

For a given set A,A∗ is the set of all finite sequences over A. A finite sequence of length

n, ρ = 〈a1, a2, a3, ..., an〉 ∈ A∗, is a mapping {1, ..., n} → A. Its length is denoted by

|ρ| = n and the element at position i (ai) is denoted as ρi. Also, 〈 〉 is the empty sequence.

Note that sequences are written using angle brackets. For two sequences, ρ1 and ρ2, ρ1 · ρ2
denotes the concatenation of two sequences. For example, 〈a, b, c〉·〈m,n〉 = 〈a, b, c,m, n〉.

3.2. Event Log

Information systems record event data in the form of event logs that register events

related to the execution of processes within an organization. Each event is identified as part

of a trace (a process instance) that is executed for a given process.

Definition 3.1 (Trace, Event log). Let A be a set of activities over a universe of activ-

ities. A trace σ ∈ A∗ is a sequence of activities. L ∈ B(A∗) is an event log, i.e., a multiset

of traces.

21

For instance, 〈a, b, c, e, g〉 is a trace that belongs to an event log L1 = [〈a, b, c, e, g〉3,

〈a, c, b, e, g〉4, 〈a, d, f, g〉2].

Definition 3.2 (Projection). Let A be a set and A′ ⊆ A one of its subsets. σ�A′ denotes

the projection of σ ∈ A∗ on A′, e.g., 〈a, a, b, c〉�{a,c}= 〈a, a, c〉. The projection can also be

applied to multisets, e.g., [x3, y, z2]�{x,y}= [x3, y].

Projection can be used to obtain a sublog of an event log. For instance, L1 �{a,e,g}=

[〈a, e, g〉7, 〈a, g〉2].

As an example of an event log, we present the Table 3.1 that contains information of

case id, activity name, timestamp, and role.

TABLE 3.1. Sample of an event log

case id activity user timestamp role
1 a user 1 21-05-18 14:12 receptionist
1 b user 12 21-05-18 14:32 analist
1 d user 5 21-05-18 15:01 analist
1 e user 4 21-05-18 15:09 technician
1 f user 9 21-05-18 15:11 technician
1 g user 3 21-05-18 15:18 cashier
1 h user 2 21-05-18 15:23 dispatcher
2 a user 1 21-05-18 15:31 receptionist
2 b user 5 21-05-18 15:47 analist
2 d user 12 21-05-18 15:50 analist
2 g user 4 21-05-18 15:57 technician
2 e user 4 21-05-18 16:05 technician
2 f user 3 21-05-18 16:15 cashier
2 h user 2 21-05-18 16:20 dispatcher
3 a user 1 21-05-18 16:33 receptionist
3 b user 4 21-05-18 16:35 technician
3 c user 2 21-05-18 16:46 dispatcher

3.3. Process Tree

Playing an important role in organizations, a process model can be used to represent

a workflow task execution in a certain process (van der Aalst, 2016). The use of Petri

22

nets as modeling notation is common in both Discrete Event Systems and Process Mining

literature (van der Aalst, 2016). In our framework we use the different, but still related,

process tree notation to represent a process, similar to other approaches in configurable

process models literature (Buijs, 2014b). A process tree (van der Aalst, Buijs, & van Don-

gen, 2011; Buijs, 2014b) is a tree-structured process model, where the leaf nodes represent

the activities, and the non-leaf nodes represent control-flow operators, e.g., sequence (→),

exclusive choice (×), inclusive choice (∨), parallelism (∧) and loop (). A silent activity

is denoted by τ and cannot be observed; it is used to model processes where an activ-

ity can be skipped under some specific circumstances.The process tree notation ensures

soundness, and it is used by a wide range of process mining techniques, such as Evolution-

ary Tree Miner (Buijs, van Dongen, & van der Aalst, 2012b), Inductive Miner (Leemans,

Fahland, & van der Aalst, 2013a) and Inductive Miner-infrequent (Leemans, Fahland, &

van der Aalst, 2013b). Its formal definition is as follows:

Definition 3.3 (Process tree). LetA be a finite set of activities, with τ 6∈ A representing

a silent activity. ⊕ = {→,×,∨,∧,	} is the set of process tree operators. A process tree

is recursively defined as follows (van der Aalst, 2016):

• if a ∈ A ∪ {τ}, then Q = a is a process tree,

• if Q1, Q2, . . . , Qn are process trees where n ≥ 1, and ⊕ ∈ {→,×,∨,∧}, then

Q = ⊕(Q1, Q2, . . . , Qn) is a process tree, and

• if Q1, Q2, . . . , Qn are process trees where n ≥ 2, then Q =	 (Q1, Q2, . . . , Qn)

is a process tree.

The nodes of a process tree, both operator and activity nodes, are denoted as N(Q).

Notice that both Petri net and process tree modeling notations are closely related, and

that conclusions obtained in one model can be easily extrapolated to the other. More-

over, van der Aalst (2016) presents a mapping between process tree and Petri net-based

workflow nets, and it can be easily adapted for other representations such as BPMN,

YAWL, EPCs, among others (van der Aalst, 2016). However, process trees also preserve

23

interesting properties for the analysis and the verification, such as soundness by construc-

tion, and the block-structured (van der Aalst, 2016).

Figure 3.1 shows an example of a process tree model Q1 that contains 7 activities and

5 operators. This process tree contains a sequence operator (→) as a root node, i.e., its

branches will be executed from left to right. Hence, the first activity to be executed will be

a. Then, there is a loop operator (). Its leftmost branch represent the do part of the loop,

it will be executed at least once and the loop execution will always starts and ends with it.

In this case, there is an exclusive choice operator (×) in the leftmost branch, indicating that

either the activity b or the parallel (∧) activities c and d will be executed. The rightmost

branch of the loop operator () represents the redo part of the loop, which in this case

contains only the activity e. The process ends with a exclusive choice operator (×) that

indicates the final activity will be f or g.

II

III

a

b

c d

e f gIII

Q =1

FIGURE 3.1. Example of a process tree model.

Assessing the quality of a process model is very challenging and is characterized by

four different dimension: fitness, simplicity, precision, and generalization.

3.4. Quality Metrics

Several configurations can be applied to a configurable process tree. In order to assess

the quality of a derived process tree to represent the observed behavior in an event log, a

quality metric must be defined. Quality is usually measured considering a trade-off among

24

the following four quality criteria: fitness, precision, generalization, and simplicity (van der

Aalst, 2016; Buijs et al., 2012b; Munoz-Gama, Carmona, & van der Aalst, 2013).

Fitness Fitness quantifies the extent to which the behavior of the event log can be

replayed in the process model. There exist various methods to calculate the fitness met-

ric. The most common known methods are: Alignment-based (Adriansyah, Munoz-Gama,

Carmona, van Dongen, & van der Aalst, 2012) replay and Token-based (Rozinat & van der

Aalst, 2005) replay. In this thesis we used the method based on alignment since it works

better on process tree models.

Precision Precision indicates how much additional behavior the process model allows

that is not seen in the event log. However, enumerating all possible traces of the process

model is not feasible for larger process models, especially when they have many parallel ac-

tivities. Moreover, in case of loops, the allowed behavior is infinite. Therefore estimations

of the allowed behavior of a process model need to be made (Buijs, 2014b).

Generalization Generalization estimates how well the process model describes the

behavior of the (unknown) process, and not only the event log with the observed system

behavior. Thus, a process model should generalize and not restrict behavior. A process

model that does not generalize is “overfitting”. Overfitting is the problem that a very spe-

cific model is generated whereas it is obvious that the log only holds example behavior, i.e.,

the model explains the particular sample event log, but a next sample event log of the same

process may produce a completely different process model. Process mining algorithms

need to strike a balance between “overfitting” and “underfitting”. A model is overfitting

if it does not generalize and only allows for the exact behavior recorded in the log. This

means that the corresponding mining technique assumes a very strong notion of complete-

ness: “If the sequence is not in the event log, it is not possible!”. An underfitting model

over-generalizes the things seen in the event log, i.e., it allows for more behavior even when

there are no indications in the event log that suggest this additional behavior (van der Aalst,

2016).

25

fitness
(f)

simplicity
(s)

precision
(p)

generalization
(g)

process
discovery

FIGURE 3.2. Quality metrics of a process model.

Simplicity The quality dimension of simplicity quantifies the simplicity of the process

model and therefore is the only quality dimension that is not necessarily related to the

behavior of the process model or event log. Simplicity of the process model is defined by

two aspects. The first aspect is related to Occam’s Razor, which states that one should not

increase, beyond what is necessary, the number of entities required to explain anything.

Since the other three quality dimension already evaluate what is necessary in the process

model, simplicity mainly focusses on reducing the size of the process model. The second

aspect that can be considered in the simplicity dimension is the simplicity of the process

model as perceived by a user. However, this aspect is hard to capture and measure, since

this is related to the understandability of the process model.

26

4. FRAMEWORK

In this chapter we present the general framework used to develop our strategies based

on the chained use case we proposed.

27

Our framework receives a log and a configurable process tree as input. A process tree

was already presented in chapter 3. We introduced the basis of configurable process tree.

However we have not given a formal definition of a configurable process tree.

4.1. Configurable Process Tree

Extensive work on representing configurable process models as process trees has been

addressed by Buijs et al. (2013); Schunselaar et al. (2012). We have slightly redefined the

definition of configurable process trees described by them on our proposed framework, in

order to allow greater flexibility and expressiveness in the configurable nodes. A config-

urable process tree (CPT) represents a family of process models (Rosa et al., 2011). All

processes of a family share the same tree topology, while differences are handled using con-

figurable nodes. Applying a particular configuration to these configurable nodes produces

a variant of the configurable process model, a derived process model. A configurable node

can be set to enable (or allow), hide or block. Enable (allow) means the node is enabled to

be visited, hide means the node can be skipped over, and block means the node cannot be

reached. Foundation of configurable process tree is described in Schunselaar et al. (2012),

and also applied in Buijs et al. (2013).

Definition 4.1. (Process tree configurators)

	 = {H,B,E} is the set of process tree configurators, and	× = {{H}, {B}, {E}, {H,B}

, {H,E}, {B,E}, {H,B,E}} is the set of all subsets of the process tree configurators,

where:

• H: hide a node. It makes a node unobservable, replacing it by a τ node.

• B: block a node. It makes the leading path to this node unreachable. When

blocking a node, several cases might occur; details can be found in (Buijs,

2014b).

• E: enable a node. It essentially allows a node to be performed, either an oper-

ator or an activity, so as it behaves normally.

28

Definition 4.2. (Configurable process tree)

A configurable process tree Qα = (Q,α) is comprised of a process tree Q with N(Q)

nodes, and a partial configuration function α : N(Q) 9 	× defining a configuration

set for some nodes. Nα(Qα) ⊆ N(Q) is the set of configurable nodes, i.e., Nα(Qα) =

domain(α). For the sake of clarity, let us assume an ordering among the configurable

nodes, i.e., n1, n2, . . . , n|Nα(Qα)|. C(Qα) is the set of all possible configurations of Qα, i.e.,

C(Qα) = {〈c1, c2, . . . , c|Nα(Qα)|〉|ci ∈ α(ni)}.

Figure 4.1 is an example of a configurable process tree Qα
1 that contains 4 configurable

nodes, listed from 1 to 4. Configurable nodes 1, 3 and 4 can be either hidden or enabled,

whereas the configurable node 2 can be either blocked or enabled.

II

III

a

b

c d

e f gII

1 2

3 4

Q =1
⍺

Configurator
notation

Hide
Block
Enable

FIGURE 4.1. Example of a configurable process tree containing 4 configurable nodes.

It is possible to apply a configuration to a configurable process tree in order to obtain

a process tree, known as a derived process tree, as follows:

Definition 4.3. (Derived process tree)

Let Qα be a configurable process tree, and let c ∈ C(Qα) be a possible configuration.

derive(Qα, c) = Qc is the function that generates a derived process tree Qc from Qα by

applying the configuration c, using the rules defined in (Buijs, 2014b).

29

Figure 4.2 presents a running example of the execution of the derivation framework

shown in Figure 1.2. A configurable process tree and an event log are the inputs, depicted in

a) and b), respectively. The implemented derivation strategies use a common data structure

to represent all the feasible configurations for all configurable nodes, shown in c). Each

derivation strategy allows to obtain a configuration, shown in d), which is then used to

derive a process tree, shown in e). Figure 4.2 also depicts the notation for the process tree

configurators and the model activities in f) and g), respectively.

II

III

a

b

c d

e f gIII

Configurable Process Tree

Configurations for each
configurable node

HE BE HE HE, , , ,c =

1

{<a,c,d,e,c,d,f>,
 <a,c,d,e,d,c,g>,
 <a,d,c,e,c,d,e,c,d,f>}

Event Log

Derived Process Tree

Obtained
Configuration

II

III

a

c d

e f gII

H E E Ebest =

Configurator
notation

Hide
Block
Enable

1 2

3 4

τ

L = 1

a
b
c
d
e
f
g

=
=
=
=
=
=
=

regular student letter request
check by area
check by financial department
check by faculty department
include more stamps
send document automatically
send document manually

Derivation strategies

a)

c)

g)

f)

b)

e)

d)

Derive

Model activities

Derivation
process

Q =⍺1

Q =best

n 2n 3n 4n 1n 2n 3n 4n

FIGURE 4.2. Running example that illustrates the derivation framework.

Conformance checking is a subdiscipline of process mining that allows to compare the

behavior allowed by a process model with the behavior recorded in an event log to find

30

commonalities and discrepancies, and also to compute metrics for each of the four quality

criteria (Munoz-Gama, 2016).

Definition 4.4. (Conformance)

Let Q be a process tree and let L be an event log. Let f , p, g , s be the fitness, precision,

generalization, and simplicity metrics as defined in (Buijs, 2014b) with a range [0,1], being

1 the target value, and let W = (wf , wp , wg , ws) be the weights given to each metric,

respectively. Conformance is defined as:

conformance(Q,L,W) =
f (Q,L) · wf + p(Q,L) · wp + g(Q,L) · wg + s(Q,L) · ws

wf + wp + wg + ws

(4.1)

In this article, we have defined the conformance metric based on (Buijs, 2014b) and

used the corresponding implementation to evaluate the quality of a given process model.

However, the proposed framework is generic and independent of the conformance metric

used.

An optimal configuration is the one that allows to obtain a derived process tree that

better represent a given event log.

Definition 4.5. (Optimal configuration)

LetQα be a configurable process tree, let L be an event log, and letW be the weights of the

quality metrics. A configuration c ∈ C(Qα) is an optimal configuration if and only if there

is not another configuration c′ ∈ C(Qα) such that conformance(derive(Qα, c′), L,W) >

conformance(derive(Qα, c), L,W).

Our goal is to automatically obtain a configuration to derive a process tree from a

configurable process tree that maximizes the conformance function for a given event log.

To accomplish this goal, we have implemented three strategies, which are detailed in the

next section.

31

4.2. Proposed framework

To derive a configuration, we proposed three different strategies. We formally present

them in chapter Framework. The framework has two inputs: an event log and a config-

urable process tree. The output of the framework is a derived process model. The big box

of Figure 1.2 shows the internal procedure to obtain a configuration through one of the

strategies.

The usage of the framework depends on the option that the user set to derive a process

model.

There are couple of steps to follow in order to derive a configuration an thus obtain a

process model:

(i) The user inputs a configurable process tree and an event log.

(ii) The user has to select one of the three implemented strategies.

(iii) The framework obtains the best configuration based on the selected strategy.

(iv) The framework applies the configuration to the configurable process tree to ob-

tain a process model that represent such configuration.

32

5. DERIVATION STRATEGIES

In this chapter, we present the three strategies we implemented to derive a configuration

out of a configurable process tree and an event log.

33

As part of the proposed framework, we have designed three different derivation strate-

gies that are able to find a suitable configuration in order to derive a process tree. The first

strategy is based on an exhaustive approach, guaranteeing to find an optimal configuration.

The other two strategies are based on heuristics that find a configuration that allows to de-

rive a reasonably good process tree in a faster time. Each of these strategies is described

hereafter. Notice that the approach proposed in this article is different to the one proposed

in (Buijs, 2014b). In (Buijs, 2014b), the input is a collection of event logs and the output is

a configurable process model. In our case, the inputs are an already existing configurable

process model and an event log. The output is a feasible configuration of the input config-

urable process model, so as the derived process model obtained with such a configuration

better represents the input event log.

5.1. Obtaining a configuration based on the exhaustive strategy

The first strategy in the proposed framework is the exhaustive strategy, whose relevance

is that it ensures obtaining the best configuration among all possible ones. In general,

an exhaustive strategy is a brute-force method to a problem involving the search for a

solution among all possible ones, e.g., those obtained from combinatorial objects, such as

permutations or combinations. In this case, for a configurable process tree Qα, we analyze

all possible configurations that belong to C(Qα). Algorithm 1 presents the exhaustive

strategy, which can be described as follows:

• Generate the set of all possible configurations, C(Qα), in a systematic manner,

using the Cartesian product of the configuration sets for all configurable nodes.

• Loop over all configurations. At each iteration, the function derive(Qα,c) is used

to obtain a derived model m from the CPT Qα, given the configuration c.

• The model m is evaluated using the conformance function defined in Equa-

tion 4.1.

34

• All potential configurations are evaluated, keeping track of the best solution

found.

• After all configurations have been processed, the algorithm returns the configu-

ration with the highest conformance.

Figure 5.11 presents an illustrative example of the exhaustive strategy. Given the CPT

Qα
1 and the log L1, shown in a) and b), the framework finds the best configuration and the

corresponding derived process tree. The CPT Qα
1 , shown in a), has 4 configurable nodes,

where the activity node b can be either H or E, the operator node ∧ can be either B or E, the

activity node f can be either H or E, and the activity node g can be either H or E. The set

of configurations C(Qα) contains 24 = 16 different configurations. The framework checks

every configuration c ∈ C(Qα), shown in c). Among all possible feasible configurations,

the algorithm selects c15 as the best configuration, shown in d). Once the best configuration

is obtained, the framework applies it to the CPT Qα
1 to derive the process tree Q15, shown

in e).

1The algorithm generates all possible configurations, in order to find an optimal configuration. This configu-
ration is used to obtain an optimal derived process tree.

35

II

III

a

b

c d

e f gII

L = {<a,c,d,e,c,d,f>,
 <a,c,d,e,d,c,g>,
 <a,d,c,e,c,d,e,c,d,f>}

Event Log

2

3 4
All Possible Configurations

H B H Hc = 1

E E E E16

. . .

1

Derived Process Model

Optimal Configuration

H E E E

Exhaustive strategy

e)

d)

Derivation

II

III

a

c d

e f gII

τ

Q =1

Configurable Process Modela)

b)

Q =15

15

c)

⍺

1n 2n 3n 4n
c =

c =

FIGURE 5.1. Overview of the Exhaustive strategy to derive a process tree.

Algorithm 1 Obtain a configuration based on the exhaustive strategy
1: procedure EXHAUSTIVE(LOG L, CPT Qα, WEIGHTS W)

2: best ← null

3: C(Qα)← CartesianProduct(α(n1), α(n2), . . . , α(n|Nα(Qα)|))

4: for all c ∈ C(Qα) do

5: m← derive(Qα, c)

6: if conformance(m,L,W) > conformance(derive(Qα, best), L,W) then

7: best ← c

8: return best

36

5.2. Obtaining a configuration based on the genetic strategy

The exhaustive strategy requires a long time to find an optimal solution. Motivated to

find a solution in less computing time, we have designed a second strategy to find a rea-

sonable good configuration, based on a genetic evolutionary approach. Genetic algorithms

(GA) are search algorithms that imitate the process of natural selection in nature, belonging

to the class of evolutionary algorithms (Mitchell, 1998). They have successfully applied in

the context of process mining for finding a process model that better represent the observed

behavior in an event log (Buijs, van Dongen, & van der Aalst, 2012a; Lee, Choy, Ho, &

Lam, 2016; Vázquez-Barreiros, Mucientes, & Lama, 2015). In this subsection, we present

a GA approach to find a suitable configuration for a CPT model given a specific event log.

The elements that define a GA are: representation of individuals, initialization, selection,

crossover, mutation, and termination condition. Next, we present the setting of each of

these elements in our configuration scenario. Figure 5.22 illustrates these main elements.

• Representation : In GA, a chromosome represents a potential solution and it

is formed by a genes chain. Genes represent distinct aspects of the solution as

a whole, just as human genes represent distinct aspects of people, such as their

gender or eye color. A potential value of a gene is called an allele. In our case,

a chromosome represents a configuration c ∈ C(Qα), see Figure 5.2 b), where

each gene ci corresponds to a configurable node ni, and an allele is a configura-

tor (B,H , or E) assigned to that particular configurable node, ci ∈ α(ni), for all

i ∈ 1, . . . , |Nα(Qα)|.

• Initialization : An initial population is generated randomly, where each indi-

vidual represents a randomly created configuration c using valid alleles, i.e.,

ci ∈ α(ni). Population size is a parameter that determines the number of indi-

viduals in the first generation (Michalewicz, 1996).

2The internal configuration representation allows this evolutionary algorithm to use crossover and mutation
operations to generate new candidate configurations to be assessed.

37

• Selection : In each generation, the best candidates are selected to move forward

to the next generation, and some of them are also selected to be recombined.

Each individual is evaluated using the conformance function3 that evaluates the

quality of a chromosome to either be selected for the next generation or to be dis-

carded. We refer to the literature (Mitchell, 1998) to illustrate different selection

strategies.

• Crossover : The crossover operation combines two parent chromosomes in or-

der to generate two offspring chromosomes, as it is shown in Figure 5.2 c). Given

two chromosomes a and b and a cutting point 1 ≤ i < |Nα(Qα)|, the offspring

chromosomes are 〈a1, . . . , ai, bi+1, . . . , b|Nα(Qα)|〉 and 〈b1, . . . , bi, ai+1, . . . , a|Nα(Qα)|〉.

Notice that, the proposed chromosome representation combined with the de-

fined crossover operation produce only valid solutions, i.e., the offspring chro-

mosomes are always valid configurations, according to the definitions presented

in section 4.1.

• Mutation : A mutation produces a random change in one of the genes of the

chromosome. In order not to produce spurious chromosomes, the mutation of a

gene is restricted to the valid alleles of the gene, i.e., ci ∈ α(ni), where i is the

mutated gene.

• Termination conditions : The most common alternatives for GA to terminate

are: an upper limit for the number of generations, an upper limit for the con-

formance function (1 in our case), when the likelihood of achieving significant

improvements in the next generation is very low, or when a given number of

generation does not get any improvements (Mitchell, 1998).

3In GA theory, the function that evaluates the quality of a chromosome is called fitness. This fitness func-
tion does not correspond to the fitness function presented in Equation 4.1, but to the conformance function.
Therefore and for the sake of clarity, we refer to it as conformance function.

38

mutation

II

III

a

b

c d

e f gII

Configurable Process Tree Configurators for each
 configurable node

HE BE HE H E, , , ,Conf :

Crossover and mutation

1
2

3 4

chromosome

E B E Hch 1

E H B Hch p

.

.

.

generation 1

E H H Ech jH B B Ech i

E H B Ech mE B H Ech n

mutation

chromosome parent
in generation k

chromosome offsprings
in generation k+1

Gene

p = population size
g = generations

E B E Hch 1

E H B Hch p

.

.

.

best
configuration

Parameters

. . .

c)

a) b)

H E E H

Alleles

Q =1
⍺

1n 2n 3n 4n

1n 2n 3n 4n

chromosome

generation g

FIGURE 5.2. Overview of the Genetic strategy to derive a process tree.

Algorithm 2 describes the basic GA strategy. The main inputs are a configurable pro-

cess model and an event log. The initialization of chromosomes is made in initialPopula-

tion(), then all chromosomes of the initial population pop are evaluated using the confor-

mance function in bestIndividual(pop), in order to obtain the best individual. The popula-

tion evolves over several generations until a termination condition is reached. In each gen-

eration, the algorithm selects qualified individuals through elitism in selectParents(pop).

Later, the function crossover(parents) recombines pairs of parents to create new individu-

als, in this way, a new population pop’ is obtained. Mutation is then applied randomly to

this new population, obtaining the new generation pop”. The best individual in the pop-

ulation pop” is then compared to the best configuration obtained so far. At the end, the

39

algorithm returns the best individual (configuration) obtained using this evolutionary ap-

proach. For the sake of generality, Algorithm 2 describes the most generic GA strategy.

More sophisticated techniques for each step of the algorithm are also possible (e.g., tourna-

ment, elitism, among others). Please refer to the literature (Buijs, 2014b; Mitchell, 1998)

for more details.

Algorithm 2 Obtain a configuration based on the genetic strategy
1: procedure GENETIC(LOG L, CPT Qα, WEIGHTS W)

2: pop ← initialPopulation(Qα)

3: best ← bestIndividual(pop)

4: while not TerminationCondition() do

5: parents ← selectParents(pop)

6: pop
′ ← crossover(parents)

7: pop
′′ ← mutate(pop

′
)

8: m← derive(Qα, bestIndividual(pop
′′
))

9: if conformance(m,L,W) > conformance(derive(Qα, best), L,W) then

10: best ← bestIndividual(pop
′′
)

11: return best

5.3. Obtaining a configuration based on the greedy strategy

The above described evolutionary strategy is able to find a good configuration (poten-

tially an optimal one (Mitchell, 1998)) in less time than the exhaustive strategy, but it is still

time consuming. In order to reduce the time even more, but at the same time to be able to

find a reasonably good configuration, we present a third strategy, based on a greedy heuris-

tic. A greedy strategy is a heuristic search that creates a feasible solution incrementally,

always making the choice that looks best at the moment of making a local choice. Some-

times these local choices lead to a global optimal solution (Cormen, Leiserson, Rivest, &

Stein, 2009). Depending on the problem and search space, this strategy does not result in

finding one of the optimal solutions, however for many problems they provide a close to

optimal solution (even an optimal one) in a reasonable computing time.

40

Greedy algorithms usually divide the problem in small sub-problems; each sub-problem

is then solved independently and in an incremental fashion. In our case, we can take sub-

trees from the configurable process tree and process each of them independently, and make

good local choices in the hope that they result in an optimal solution when we apply all

these local configuration choices to the configurable process model.

In a configurable process tree, two (or more) configurable nodes are dependent if one

of them is under or above the other one in a tree branch or if they both have a common

ancestor that is a 	 operator. If so, the configuration of one of these nodes might affect the

configuration of the other one. On the other hand, a configurable node is independent if it

is not dependent of any other configurable node.

We can identify three scenarios in a configurable process tree depending on the de-

pendency among its configurable nodes. The configurable process tree can have only

independent configurable nodes, as shown in Figure 5.3 (a); it can have only dependent

configurable nodes, as shown in Figure 5.3 (b); or it can combine both independent and

dependent configurable nodes, as shown in Figure 5.3 (c).

(b) Dependent(a) Independent (c) Mixed

IIIII II II IIIII II IIIII

f g e h i

cb

f g e h i

cb

f g e h i

cb

FIGURE 5.3. Different configurable node dependencies.

Algorithm 3 describes the proposed greedy strategy, which consists of the following

steps:

41

• The configurable process tree is traversed to obtain a sorted list of all config-

urable nodes. A hierarchical order is achieved by applying the following rules:

– Dependent configurable nodes have a higher priority than independent con-

figurable nodes.

– Among configurable nodes of the same type (dependent or independent con-

figurable nodes), a deeper configurable node has a higher priority.

– Among configurable nodes in the same level, an operator node has a higher

priority than an activity node; otherwise, they are sorted from left to right.

• Every configurable node is then processed accordingly to its priority. For each

configurable node, a subtree and a sublog are obtained to compute the local

conformance:

– To obtain a subtree for a configurable node, a new root has to be considered.

If a configurable node is an activity node, the new root is its direct parent, so

that a subtree always has an operator as a root; otherwise, if it is an operator

node, the new root is the own operator node.

If the configurable node has some ancestors that are loop operators, then

the new root is the loop operator ancestor that is closer to the original root.

Such a new subtree might contain other pending configurable nodes; they

are temporarily set to τ in order to postpone any decision about their con-

figuration.

– To obtain a sublog, we get the projection of the event log on the set of

activities contained in the subtree.

42

• For the selected configurable node, all possible configurators are evaluated, ob-

taining different derived process subtrees. The local conformance between each

of those process subtrees and the event sublog is computed. The best configu-

rator is saved and then set in the best configuration for the original configurable

process tree.

• At the end, the best configuration for the whole configurable process tree is re-

turned.

Figure 5.44 illustrates the greedy strategy to find a configuration for the configurable

process tree Qα
1 . The derivation process is shown on the bottom part of the figure for

two logs, L1 and L2, where, for every configurable node, the best configurator is selected

among all feasible configurations for each configurable node. First, the order in which the

configurable nodes will be processed is decided. n1 and n2 are dependent nodes because

they have a common ancestor that is a 	 operator. Meanwhile, n3 and n4 are independent

nodes. Hence, n1 and n2 have a higher priority than n3 and n4. Since n2 is an operator

node, it has a higher priority than n1. n3 and n4 are both activity nodes, so they are prior-

itized from left (n3) to right (n4). Therefore, the order is n2, n1, n3, n4, regardless of the

event log that will be considered. For the event log L1, the algorithm starts from the deeper

node n2. n1 is set to τ and all possible configurators (B and E) for n2 are then evaluated,

considering the subtree that has as a root the loop operator that is an ancestor of n2, and

the sublog obtained projecting the original log L1 on the activities contained in the subtree:

c, d, e. The best configuration for n2 is E. Later, having the configuration of n2, in a similar

way n1 is analyzed and configured to E. Afterwards, n4 is set to τ while n3 is configured to

E. Finally, once n3 is already configured, the last node n4 is configured to H. The final con-

figuration for L1 is then obtained, and represented as the best configuration. For the event

log L2, the algorithm proceeds in a similar way. Notice that since the log L2 contains fewer

activities that the configurable process tree Qα
1 , the projection of the activities contained

4There are two event log inputs to show different subtrees and sublogs scenarios to finally derive a process
tree.

43

in the subtrees creates very simple sublogs, even an empty event log, such as the obtained

when processing the configurable node n2. The best configuration in this case considers

to block the configurable node n2 and hide the configurable node n4, illustrating how the

algorithm adapts to different scenarios. As a result, Q1 is the derived process tree from Qα
1

and L1, and Q2 is the derived process tree from Qα
1 and L2.

II
III

a

b

c d

e f gII

Configurable Process Tree Configurators for each
configurable node

HE BE HE HE, , , ,c =

1 2

3 4

E B E H

b

L =

L ={<a,b,f>}

{<a,c,d,e,c,d,f>,
 <a,c,d,e,d,c,g>,
 <a,d,c,e,c,d,e,c,d,f>}

Event Log

IIa

b

e fII τ

II

III

c d

e fII

g

τ

subTree

subLog {< >}

eII

subLog {}

subTree subTree

subLog {<f>}

τ

II

f

subTree

subLog {<f>}

g

best configuration

Derived Process Tree

Event Log

III

c d

eII

τ

subTree

subLog
{<c,d,e,c,d>
 <c,d,e,d,c>
 <d,c,e,c,d,e,c,d>}

b

eII

subTree

subLog
{<c,d,e,c,d>
 <c,d,e,d,c>
 <d,c,e,c,d,e,c,d>}

III

c d

H E E E

IIa

e fII

II

f

subTree

subLog {<f>
 < >
 <f>}

τ

II

f

subTree

subLog {<f>
 <g>
 <f>}

E

g

Derived Process Tree

best configuration

III

c d

τ

2

1

Q =

Q =

Q =1
⍺

1n 2n 3n 4n

1n 2n 3n 4n

1n 2n 3n 4n

1

2

2c E 1c H 3c E 4c

H4c3c E1c E2c B

FIGURE 5.4. Overview of the Greedy strategy to derive a process tree.

44

Algorithm 3 Obtaining a configuration based on the greedy strategy
1: procedure GREEDY(LOG L, CPT Qα, WEIGHTS W)

2: configurableNodeList ← getPrioritizedConfigurableNodes(Qα)

3: bestConfiguration ← emptyConfiguration()

4: for all cn ∈ configurableNodeList do

5: sQα ← getSubTreeFromConfigurableNode(Qα, cn)

6: activityList← getActivityNodes(sQα)

7: sL← L�activityList

8: best← null

9: for all configurator ∈ α(cn) do

10: m← derive(sQα, configurator)

11: if conformance(m, sL,W) > conformance(derive(sQα, best), sL,W)

then

12: best ← configurator

13: bestConfigurationcn ← best

14: return bestConfiguration

15:

16: procedure getSubTreeFromConfigurableNode(CPT Qα, CONFIGURABLENODE

cn)

17: if IsActivityNode(Qα, cn) then

18: nodeRoot ← getParent(Qα, cn)

19: else if IsOperatorNode(Qα, cn) then

20: nodeRoot ← cn

21: for all n ∈ Ancestors(Qα, nodeRoot) do

22: if IsLoopOperatorNode(Qα, n) then

23: nodeRoot ← n

24: sQα ← getSubTree(Qα, nodeRoot)

25: for all n ∈ Descendants(sQα, nodeRoot) do

26: if n 6= cn && IsConfigurableNode(sQα, n) then

27: n← τ

28: return sQα

45

6. IMPLEMENTATION

In this chapter we present the implementation of the exhaustive, genetic and greedy

strategies in the open-source framework for process mining ProM (Verbeek, Buijs, van

Dongen, & van der Aalst, 2010), (van der Aalst et al., 2009).

46

6.1. Creation of the configurable process model

We have implemented the three strategies: exhaustive, genetic, and greedy, as three

plug-ins of the ProM process mining framework (van der Aalst et al., 2009), within the

ConfigurableProcesses package1. The genetic evolutionary strategy is implemented using

JGAP, a Java library for GA; this flexible library fits in our genetic evolutionary approach.

All experiments have been performed in a laptop with an Intel Core i5 CPU at 2,7 GHz,

8GB RAM, running OS X El Capitan 64 bits.

The process model used in this research is based on a process tree representation. Thus,

the ConfigurableProcesses package uses the ProcessTree package2 to represent our model.

As presented in Figure 1.2, the framework requires to use the step Derivation Strategies

to obtain a configuration. In order to evaluate the quality of the derived process tree based

on the obtained configuration, each strategy applies conformance checking on the derived

process tree. Conformance checking is implemented in the ProcessTreeReplay package3,

also included in our package.

FIGURE 6.1. Overview of the ProM framework.

1Available in the ProM nightly-builds http://www.promtools.org/prom6/nightly
2https://svn.win.tue.nl/trac/prom/browser/Packages/ProcessTree/Trunk
3https://svn.win.tue.nl/trac/prom/browser/Packages/ProcessTreeReplayer/
Trunk

http://www.promtools.org/prom6/nightly
https://svn.win.tue.nl/trac/prom/browser/Packages/ProcessTree/Trunk
https://svn.win.tue.nl/trac/prom/browser/Packages/ProcessTreeReplayer/Trunk
https://svn.win.tue.nl/trac/prom/browser/Packages/ProcessTreeReplayer/Trunk

47

The main interface of ProM framework is shown in Figure 6.1, where it is possible to

upload files such as a CPT and an event log, using the import button. Once the files are

uploaded, the main tab of the framework shows the uploaded elements that are ready to use

by pressing the play button (play icon), as depicted in Figure 6.2.

FIGURE 6.2. Overview of the inputs of the ProM framework.

After pressing the play button, a new window in the ProM framework will display the

different algorithms available to use, as shown in Figure 6.3. Each algorithm guides the

user on how to use such algorithm giving information of the different input needed and

also what is the expected output. Thus, after loading a CPT and an event log, our strategies

appear in green color as available plug-ins to use.

48

FIGURE 6.3. Overview of the strategies we created as plug-ins in the ProM framework.

It is possible to run the strategies using a user interface, as shown in Figure 6.4, or

without using a parameter setting file where values are specified for all parameters, as

shown in Figure 6.5. The main difference between both ways to run the strategies is that

the plug-in without user interface facilitates automatic testing.

49

FIGURE 6.4. Overview of the strategies we created as plug-ins in the ProM frame-
work. This figure shows the plug-ins that have a user interface.

FIGURE 6.5. Overview of the strategies we created as plug-ins in the ProM frame-
work. This figure shows the plug-ins that do not have a user interface.

50

6.2. Running the plug-ins

The ConfigurableProcesses package has been tested using the running example of the

configurable process model presented on chapter 3 (Figure 4.1). The synthetic log was

created using the Log Generator plug-in implemented by vanden Broucke, De Weerdt,

Baesens, and Vanthienen (2012) that uses our process model, in a Petri Net representation,

as input. The summary of the artificial log is shown in Table 6.1.

TABLE 6.1. Synthetic log of the running example.

trace #traces

ABG 7

ABF 7

ADCG 7

ABEBF 4

ACDF 3

ADCF 3

ACDEDCG 1

ACDG 2

ADCEBF 2

ACDEBEDCF 1

ACDEDCF 1

ACDEBEBG 1

ABEDCF 1

ACDECDF 1

ABEDCEBG 1

ACDEDCEBF 1

ACDEBG 1

ABEDCG 1

ABECDEBG 1

ABECDG 1

ACDECDG 1

ACDEBF 1

51

6.2.1. Running the exhaustive strategy

Given a configurable process tree and a log, the exhaustive plugin explores exhaus-

tively all possible configurations and selects the most conformant one. Once the two inputs

are entered, the plugin pops up a windows with the conformace parameters to be set. By

default, we considered 90% of fitness and 10% of precision, as shown in Figure 6.6. These

values follow the recommendations made by (Buijs et al., 2012b), in which it was calcu-

lated using Pareto front that these values allow to obtain a good balance between fitness

and precision.

FIGURE 6.6. Exhaustive strategy setting.

The outputs of this plug-in are both a summary of the configuration and a configured

process model, as shown in Figure 6.7 and Figure 6.8, respectively.

52

FIGURE 6.7. Summary obtained by the exhaustive strategy plug-in.

FIGURE 6.8. Derived process tree obtained by the exhaustive strategy plug-in.

Figure 6.7 depicts that the exhaustive strategy took 642 milliseconds to derive a process

tree with a conformance of 0.98. It also shows the four quality metrics that the derived

process tree has: fitness 1, precision 0.796, generalization 0.734, and simplicity 1. In

addition, this summary gives the number of configurations that the configurable process

model has. In this case, it has 4 configurations. Finally, it shows each configurable node

and its found configuration. In this example, node F is enabled, node G is hidden, node

And(C,D) is enabled, and node B is hidden, as expected. The derived process tree is shown

in 6.8.

53

6.2.2. Running the genetic strategy

Given a configurable process tree and a log, the genetic plug-in explores the configu-

rations and selects the most conformant one. Once the two inputs are entered, the plug-in

pops up a windows with the conformace parameters to be set. By default, we considered

90% of fitness and 10% of precision. Genetic strategy also allows to set the number of

generation and population. We have set by default 20 generations and a population of 10

individuals, as shows in Figure 6.9.

FIGURE 6.9. Genetic strategy setting.

The outputs of this plug-in are both a summary of the configuration and a configured

process model, as shown in Figure 6.10 and Figure 6.11, respectively.

54

FIGURE 6.10. Summary obtained by the genetic strategy plug-in.

FIGURE 6.11. Derived process tree obtained by the genetic strategy plug-in.

Figure 6.10 depicts that the genetic strategy took 1 second and 574 milliseconds to de-

rive a process trees with a conformance of 0,98. It also shows the four quality metrics that

that derived process tree has: fitness 1, precision 0.796, generalization 0.734, and simplic-

ity 1. In addition, this summary gives the number of configurations that the configurable

process model has. In this case it has 4 configurations. Finally, this summary shows each

configurable node and its found configuration. In this example, node F is enabled, node G

is hidden, node And(C,D) is enabled, and node B is hidden, as expected. The same result

was found with the previous strategy. Since this is a small example—a small configurable

process model with a few configurable nodes—this strategy takes more time than the ex-

haustive strategy due to the large number of configuration to check due to the others two

parameters that this strategy considers: population and generations. When a configurable

55

process model has large configurable nodes to configure, this strategy takes less time than

the exhaustive strategy. The derived process tree is shown in 6.11.

6.2.3. Running the Greedy strategy

Given a configurable process tree and a log, the greedy plug-in explores the configura-

tions and selects the most conformant one in a short time. Once the two inputs are entered,

the plug-in pops up a windows with the conformace parameters to be set. By default, we

considered 90% of fitness and 10% of precision, as shows in Figure 6.12.

FIGURE 6.12. Greedy strategy setting

The outputs of this plug-in are both a summary of the configuration and a configured

process model, as shown in Figure 6.13 and Figure 6.14, respectively.

56

FIGURE 6.13. Summary obtained by the greedy strategy plug-in.

FIGURE 6.14. Derived process tree obtained by the greedy strategy plug-in.

Figure 6.13 depicts that the genetic strategy took 669 milliseconds to derive a process

trees with a conformance of 0.98. It also shows the four quality metrics that the derived

process tree has: fitness 1, precision 0.796, generalization 0.734, and simplicity 1. In addi-

tion, this summary gives the number of configurations that the configurable process model

has. In this case it has 4 configurations. Finally, this summary shows each configurable

node and its found configuration. In this example, node F is enabled, node G is hidden,

node And(C,D) is enabled, and node B is enabled. We were expecting to have the node B

as hidden. This strategy finds the best local solution for every single node, but it might not

represent the best global solution. When a configurable process model has large config-

urable nodes to configure, this strategy takes a considerable less time than the exhaustive

and genetic strategies. The derived process tree is shown in 6.14.

57

7. EXPERIMENTS AND DISCUSSIONS

In this chapter we describe the two experimental scenarios considered: a realistic sce-

nario based on the adoption of a higher educational ERP system by some universities

(see section 7.1), and a scenario that represents a real-life registration process (Gottschalk

et al., 2009), which is executed on a daily basis by Dutch municipalities (see section 7.2).

Afterwards, in section 7.3, we analyze the algorithm’s performance based on an empirical

evaluation.

58

7.1. Educational scenario

Educational institutions such as universities are spread along cities in a country with

the purpose of granting academic degrees in various subjects. When the owner of a network

of universities decides to standardize the higher educational ERP system to be used for all

the universities belonging to the network, the first step is to know how suitable the software

is for each university.

The ERP system provides support for different processes, and it can be configured to

suit how each process is executed in the university where it will be installed. The diversity

of process variants the ERP supports can be represented through a configurable process

model. The decisions that are made to adapt the software to the way the process is executed

in each university corresponds to the configuration that allows to generate a derived process

model specific for each university. The derived process model will probably not be exactly

the same as the process model that represents how the process is currently executed, but it

will be the closest process variant the software is able to support.

If a university is currently running the process using other software, we can assume an

event log is currently recording how each process is being executed.

The framework proposed in this thesis takes as input the configurable process model

that represents the different parameterizations provided by the ERP system for the process

and the event log that represents the current execution of the process in a university. Based

on them, the framework generates a derived process model that represents how the process

could be run in the future using the ERP system.

7.1.1. Academic planning process

Beyond their organizational structure, universities share some common processes, such

as planning academic courses. The planning of academic courses in a university is a com-

plex process due to several factors such as government regulations, internal policies, dy-

namic changes of knowledge in certain domains, economic and human resources, among

others. In this process, both administrative personnel and faculty members, sometimes from

59

different departments, are involved in each stage of the process. This process, in general,

considers some similar stages across universities such as course planning, student assistant

planning, thesis planning, among others. To deal with its complexity, it can be modeled at

a high-level. Figure 7.1 depicts a general process model that includes sub-processes that

group common activities in the academic planning process. We refer to appendix A to

observe details of the subprocesses of the Figure 7.11.

start

Academic
planning
start

Academic
planning

end end

Prepare
academic
program

Update
academic
program

Publish
academic
program

Student
assistant
planning

Thesis
planning

Adjust
academic
program

FIGURE 7.1. General model of the academic planning process of a university.

We have used this process model as a reference process model for three different uni-

versities located along a country. For the sake of simplicity, we call them: Northern Univer-

sity, Central University, and Southern University, according to their location in the country.

Each university executes a different process variant of the reference model according to its

policies, regulations, socio-demographic characteristics, and geographic needs. For exam-

ple, the Northern University is a low-income university, so there are some courses that do

not have student assistants, whereas in the other two high-income universities there is more

than one student assistant in some courses. The Southern University does not have a proper

internal information system, so selecting student assistants is a manual task.

The configurable process tree contains 70 activities, which can be simplified into 6 sub-

processes and 2 activities shown in Figure 7.1, and 9 configurable nodes that have mixed

dependencies. The configurable process model is considerably large, making it impractical

1It includes parallel flows that contain sub-processes.

60

to show it completely. To illustrate how the configuration is performed, Figure 7.2 shows

a scheme of the configuration process. The upper boxes represent partial configurable

process trees for three different sub-processes of the process reference model. The lower

process trees, inside the dash line boxes, are derived process trees where the corresponding

configurable nodes have been configured as hide.

EMR
EMRA
MAWA
MAWF
SMRA

Prepare
academic
program

SMRA

MAWA

EMRA

EMR

SMRA

MAWF MAWA

EMRA

EMR

: extra management request
: end manage records of assistants
: manage assistants within area
: manage assistants within faculty
: start manage records of assistants

(A) Northern University.
Update

academic
program

AAFUS
RTGTVE
RTGTVL
RTGTVS

RTGTVE RTGTVL AAFUS

RTGTVE RTGTVT RTGTVL AAFUS

: automatic allocation for the university system
: report teachers that guide thesis via email
: report teachers that guide thesis via letter
: report teachers that guide thesis via phone

(B) Central University.
Publish

academic
program

CHAS
CHFCA
CHSC
EVCA

CHFCA

CHSC

EVCA

CHFCA

CHAS CHSC

EVCA

: check audiovisual support
: check faculty classroom availability
: check student capacity
: end verify classroom availability

(C) Southern University.

FIGURE 7.2. General idea of process model derivation for three different config-
urable sub-processes.

Having a reference process model, whose overall view is shown in Figure 7.1, and an

academic planning event log per university, it was possible to derive a process model for

61

each university. We applied the proposed exhaustive, genetic, and greedy strategies to the

three universities. The results are shown in Table 7.1, including fitness, precision, and the

conformance metric, calculated as 90% fitness and 10% precision.

It is possible to observe in Table 7.1 that both Northern University and Central Univer-

sity have a high conformance, and also a high fitness. We can assert that both universities

have a high percentage of commonality with the configurable process model. However, that

is not the case for Southern University, which has a lower conformance and a lower fitness.

One of the reasons for this is the considerable amount of activities that are being executed

at Southern University that are not found in the reference model. A decision maker would

probably decide the ERP system that is desired to acquire is not suitable for this university

or that the process must be completely changed in Southern University.

TABLE 7.1. Comparison of the proposed strategies for the three universities.

Northern Central Southern
fitness precision conformance fitness precision conformance fitness precision conformance

Exhaustive 0.981 0.398 0.922 0.986 0.510 0.939 0.690 0.510 0.672
Genetic 0.981 0.398 0.922 0.986 0.510 0.939 0.690 0.510 0.672
Greedy 0.981 0.370 0.920 0.986 0.500 0.938 0.690 0.500 0.671

Table 7.1 shows that all three strategies obtained process trees with the same fitness.

However, the greedy strategy obtained a process tree with a lower precision. Taking the

Northern University as an example, a qualitative analysis between the process tree obtained

by the exhaustive strategy and the greedy strategy suggests that the exhaustive strategy finds

a configuration of the model where the activity Assign Classroom Automatically (ACA) is

always performed (as observed in the event log), while the greedy strategy finds a config-

uration of the model where the activity ACA can either be performed or skipped (that was

never observed in the event log), obtaining a lower precision.

The performance of the three strategies is depicted in Figure 7.3. It is possible to

observe that the time required by the exhaustive strategy was considerably higher than the

time required by the genetic and greedy strategies. Moreover, the greedy approach was able

to obtain a derived process model in seconds whereas the other two algorithms required

minutes and even hours. The time required in the case of the Southern University is higher

62

due to the alignment technique used to obtain the conformance metric. As it was mentioned

before, at the Southern University, many activities are being executed that are not found in

the reference model; in those cases, the alignment technique takes longer (Adriansyah,

2014).

exhaustive genetic greedy

Northern

Central

Southern

Ti
m

e
 (

h
h

:m
m

)

0:00

0:30

01:00

01:30

02:00

02:30

03:00

FIGURE 7.3. Benchmarking of the performance of the three strategies.

In conclusion, the greedy strategy is able to obtain in a short time a derived process

model that has a quite good conformance, in comparison to the conformance obtained with

the other two strategies.

7.2. Municipal scenario

In order to evaluate the performance of the techniques on real-life data, we applied all

three strategies on a real-life dataset. The data used contains event data from the building

permits process of five Dutch municipalities (Van Dongen, 2015; Buijs, 2014a). There

are five event logs, each describing a different process variant, which were extracted from

the IT systems of the corresponding municipality. The same data has been used to eval-

uate the performance of configurable process discovery of the Evolutionary Tree Miner

(ETM) (Buijs, 2014b, pages 250 and 251). In this experiment, we create some CPTs based

on two of the models discovered by the ETM on this dataset. We then allow each of the

63

three strategies to configure the CPTs to come to the best solution they can achieve. We

then compare these results with the results obtained by the ETM on the same dataset.

7.2.1. Real-life experiments

We use CPTs based on the models discovered by the ETM on this dataset, which

are shown in Figure 7.4. Figure 7.5 shows the two CPTs created based on the model

shown in Figure 7.4a. The CPT in Figure 7.5a has two configurable nodes while the CPT

in Figure 7.5b has eight configurable nodes, all randomly chosen. Notice that we could not

create a CPT similar to Figure 7.4a because we are not considering the downgrade operator

used in (Buijs, 2014b). Figure 7.6 shows the three CPTs created based on the model shown

in Figure 7.4b. The CPT in Figure 7.6a is equivalent to the one shown in Figure 7.4b. The

CPT in Figure 7.6b has six configurable nodes while the model in Figure 7.6c has twelve

configurable nodes, all randomly chosen. All configurable nodes can be set to enable (or

allow), hide or block. We allow each of the three strategies to configure all CPTs to come to

the best solution they can achieve. We then compare these results with the results obtained

by the ETM on the same dataset.

64

∨

×

770 765 ∨

→

550 ×

τ ∨

×

∨

→

600 610

740 770

630

560

755

×

→

550_1 755 766

590

×

540 ∧

540 770

∨

630 730

[∧ ,-,-,-,-]

[← ,B,-,→ ,→]

[∧ ,-,→ ,-,-]

[-,→ ,← ,→ ,→]

[→ ,→ ,∧ ,× ,∧]

(A) ETM - Approach 3
→

×

630 540 →

×

770 540 →

630 730 755

×

τ 540 →

550 560 630 730

→

630 730

×

τ 765

×

τ 770

[-,H,-,-,-]

(B) ETM - Approach 4

FIGURE 7.4. Process trees originally discovered by the ETM on the WABO event logs.

65

∨

×

770 765 ∨

→

550 ×

τ ∨

×

∨

→

600 610

740 770

630

560

755

×

→

550_1 755 766

590

×

540 ∧

540 770

∨

630 730

(A) CPT 3-A, contains 2 configurable nodes
∨

×

770 765 ∨

→

550 ×

τ ∨

×

∨

→

600 610

740 770

630

560

755

×

→

550_1 755 766

590

×

540 ∧

540 770

∨

630 730

(B) CPT 3-B, contains 8 configurable nodes

FIGURE 7.5. CPTs based on the model discovered by the ETM Approach 3.

66

→

×

630 540 →

×

770 540 →

630 730 755

×

τ 540 →

550 560 630 730

→

630 730

×

τ 765

×

τ 770

(A) CPT 4-A, contains 1 configurable node
→

×

630 540 →

×

770 540 →

630 730 755

×

τ 540 →

550 560 630 730

→

630 730

×

τ 765

×

τ 770

(B) CPT 4-B, contains 6 configurable nodes
→

×

630 540 →

×

770 540 →

630 730 755

×

τ 540 →

550 560 630 730

→

630 730

×

τ 765

×

τ 770

(C) CPT 4-C, contains 12 configurable nodes

FIGURE 7.6. CPTs based on the model discovered by the ETM Approach 4.

67

The results of the experiments with the CPTs created based on the model discovered

by the ETM Approach 3 are shown in Table 7.2 and Table 7.3. Table 7.4, Table 7.5 and Ta-

ble 7.6 show the results of the experiments with the CPTs created based on the model

discovered by the ETM Approach 4. In all the tables there are 5 variants of the CPT

corresponding to 5 event records of 5 different municipalities. All tables include fitness,

precision, and the conformance metric, calculated as 90% fitness and 10% precision.

TABLE 7.2. Results for CPT 3-A and the event logs corresponding to the five pro-
cess variants

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

f p fpc f p fpc f p fpc f p fpc f p fpc

Exhaustive 0.941 0.745 0.921 0.962 0.768 0.943 0.936 0.646 0.907 0.985 0.751 0.962 0.950 0.797 0.935

Genetic 0.941 0.745 0.921 0.962 0.768 0.943 0.936 0.646 0.907 0.985 0.751 0.962 0.950 0.797 0.935

Greedy 0.878 0.720 0.862 0.908 0.802 0.897 0.855 0.635 0.833 0.973 0.748 0.951 0.907 0.753 0.892

ETM 0.948 0.842 0.937 0.948 0.979 0.951 0.927 0.729 0.907 0.984 0.917 0.977 0.957 0.909 0.952

f = fitness, p = precision, fpc = conformance

TABLE 7.3. Results for CPT 3-B and the event logs corresponding to the five pro-
cess variants

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

f p fpc f p fpc f p fpc f p fpc f p fpc

Exhaustive 0.958 0.730 0.935 0.962 0.912 0.957 0.945 0.648 0.915 0.993 0.849 0.979 0.954 0.931 0.952

Genetic 0.958 0.730 0.935 0.962 0.912 0.957 0.945 0.648 0.915 0.993 0.849 0.979 0.954 0.931 0.952

Greedy 0.944 0.737 0.923 0.960 0.789 0.943 0.934 0.644 0.905 0.996 0.750 0.971 0.943 0.781 0.927

ETM 0.948 0.842 0.937 0.948 0.979 0.951 0.927 0.729 0.907 0.984 0.917 0.977 0.957 0.909 0.952

f = fitness, p = precision, fpc = conformance

TABLE 7.4. Results for CPT 4-A and the event logs corresponding to the five pro-
cess variants

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

f p fpc f p fpc f p fpc f p fpc f p fpc

Exhaustive 0.913 0.921 0.914 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952

Genetic 0.913 0.921 0.914 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952

Greedy 0.913 0.921 0.914 0.980 0.962 0.978 0.948 0.894 0.943 0.985 0.895 0.976 0.949 0.975 0.952

ETM 0.913 0.921 0.914 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952

f = fitness, p = precision, fpc = conformance

68

TABLE 7.5. Results for CPT 4-B and the event logs corresponding to the five pro-
cess variants

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

f p fpc f p fpc f p fpc f p fpc f p fpc

Exhaustive 0.911 0.951 0.915 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952

Genetic 0.911 0.951 0.915 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952

Greedy 0.911 0.951 0.915 0.970 0.970 0.970 0.938 0.911 0.935 0.985 0.899 0.976 0.947 0.976 0.950

ETM 0.913 0.921 0.914 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952

f = fitness, p = precision, fpc = conformance

TABLE 7.6. Results for CPT 4-C and the event logs corresponding to the five pro-
cess variants

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5
f p fpc f p fpc f p fpc f p fpc f p fpc

Exhaustive 0.915 0.951 0.919 0.980 0.962 0.978 0.957 0.894 0.951 0.986 0.978 0.985 0.949 0.975 0.952
Genetic 0.915 0.951 0.919 0.980 0.962 0.978 0.957 0.894 0.951 0.986 0.978 0.985 0.949 0.975 0.952
Greedy 0.915 0.951 0.919 0.952 0.893 0.946 0.948 0.911 0.944 0.975 0.903 0.968 0.945 0.976 0.948
ETM 0.913 0.921 0.914 0.980 0.962 0.978 0.948 0.894 0.943 0.986 0.978 0.985 0.949 0.975 0.952
f = fitness, p = precision, fpc = conformance

It can be observed that in all cases the different strategies obtained desirable range.

Since the exhaustive strategy always obtains the best possible result, we can highlight that

the genetic strategy always finds the best result, and that the greedy strategy in general ob-

tains very good results, in many cases matching those obtained with the exhaustive strategy.

When comparing the results with those obtained by the ETM, we can point out that

in the only case where the CPT is equivalent to the one used by the ETM (Table 7.4

corresponding to CPT 4-A, shown in Figure 7.6a), the results obtained with the ETM and

the results obtained with the exhaustive and genetic strategies are the same. On the other

hand, the greedy strategy obtained the best results in four of the five variants, except on

Variant 4.

When the CPTs have greater flexibility than the CPT used by ETM (CPTs based on

ETM Approach 4, CPT 4-B and CPT 4-C, shown in Figure 7.6b and Figure 7.6c, respec-

tively), the search space is larger, so eventually there could be a better configuration. This

actually occurs in Variant 1 in Table 7.5, and Variant 1 and Variant 3 in Table 7.6. More-

over, in these highlighted cases, all three strategies are able to find better configurations.

69

However, in general, the same results were obtained as those obtained by the ETM, as

shown for the other variants in Table 7.5 and Table 7.6.

When the CPTs have a different flexibility than the CPT used by ETM (CPTs based

on ETM Approach 3, CPT 3-A and CPT 3-B, shown in Figure 7.5a and Figure 7.5b, re-

spectively), the search spaces are not directly comparable. Therefore, in some cases the

strategies obtain better results, in other cases the ETM obtains better results, and in others

the results are equivalent, as shown in Table 7.2 and Table 7.3.

In this experimental setting, the CPTs are small and the event logs do not contain many

variants, therefore when the CPTs do not contain many configurable nodes, the experiments

run very fast for all strategies. However, due to the exponential nature of the search space,

when the number of configurable nodes grows, the exhaustive strategy may take a long

time, such as in CPT 4-C, in which the exhaustive strategy took between 37 minutes (for

Variant 3) and almost 3 hours (for Variant 5).

7.3. Algorithms’ performance based on an empirical evaluation

To validate the performance of the proposed strategies, a set of controlled experiments

was created based on the original reference process model for the universities. The ex-

periments focused on testing the performance of the strategies depending on both the log

complexity and the model complexity.

7.3.1. Performance according to log complexity

The event log complexity depends mainly on the number of trace variants and on how

many times each trace variant is repeated in the event log. A trace variant is a particular

sequence of activities that can occur multiple times in the event log. This set of experi-

ments evaluates how the algorithms perform under different event log settings: varying the

number of trace variants and varying the number of repetitions of each trace variant in the

event log. Notice that alignments were computed for each trace variant and reused for all

70

cases of this variant. Therefore, no significant impact is to be expected when varying the

number of repetitions of each trace variant.

The configurable process tree contains 9 configurable nodes that have mixed dependen-

cies. There are 8 configurable nodes that include {H,E} as configurators, and 1 config-

urable node that has {H,B,E} as configurators. The set of feasible configurations allowed

by the configurable process model, can be generated based on the Cartesian product, ob-

taining 28 · 31 = 768 feasible configurations. Three different target models (universities

A, B and C) derived from the original configurable process model were used for experi-

mentation; the number of activities for the models corresponding to universities A, B and

C are 66, 65 and 55, respectively. Based on these target models, different event logs were

simulated.

Table 7.7 summarizes the experiments. In the first set of experiments, the number of

trace variants is diverse. In this case, a random number of trace repetitions between 10 and

20 is considered for each trace variant. The final number of traces is therefore different for

each university. In the second set of experiments, the number of trace variants is fixed to

100, and then the number of trace repetitions is varied. A synthetic event log was created

per each experiment, thus 21 event logs were tested with each algorithm. Table 7.8 displays

the results obtained with each algorithm when varying the log complexity.

TABLE 7.7. Different log settings for three universities

#trace variants #trace repetirions

#trace in the event

log for a target

model A

#trace in the event

log for a target

model B

#trace in the event

log for a target

model C

Different trace variants

50

10-20

747 500 500

100 1466 1543 1000

500 7448 7456 7450

Different trace repetitions 100

10 1000 1000 1000

20 2000 2000 2000

50 5000 5000 5000

100 10000 10000 10000

71

7.3.1.1. Exhaustive strategy evaluation

As a brute-force method, this strategy searches over all possible configurations that

can be applied to the configurable process model. As seen in Figure 7.7a, computing time

increases linearly when increasing the number of trace variants. For event logs with 500

trace variants, the algorithm takes several hours; in the worst case scenario, the university

C, it takes more than 40 hours to obtain the optimal derived process model. Figure 7.7b

shows how the algorithm performs if we set the number of traces to 100 and we vary the

number of trace repetitions. In this case, the computing time is not proportional to the

log size as when we vary the number of variants; in fact, the computing time is almost

constant. This is a feature of the conformance method applied in our implementation to

compute the conformance metric. It uses a cache table: if a trace variant has already been

evaluated, it is not evaluated again. Therefore, we can observe that the computing time is

only proportional to the number of trace variants in the event log, regardless of the number

of trace repetitions.

72

0 100 200 300 400 500 600

Computing	 time	vs	number	of	trace	variants

A B C

0:00
5:00

10:00
15:00
20:00
25:00
30:00
35:00
40:00

50:00
45:00

Ti
m

e
 (

h
h

:m
m

)

(A) Trace variants complexity

0 2000 4000 6000 8000 10000 12000

Computing	 time	vs	number	of	traces

A B C

0:00

3:00

6:00

9:00

12:00

15:00

Ti
m

e
 (

h
h

:m
m

)

(B) Trace repetitions complexity

FIGURE 7.7. Performance of the Exhaustive strategy when varying log complexity.

7.3.1.2. Genetic strategy evaluation

As a heuristic method to search for a desirable configuration, the genetic method has

some parameters. We set the maximum number of generations to 20 and the population

size to 10. For all experiments, the genetic strategy found an optimal configuration, which

allows to obtain an optimal derived process model; in fact, it obtained the same results as the

exhaustive strategy. Figure 7.8a shows there is a linear dependency between the computing

time of the genetic strategy and the number of trace variants. Meanwhile, Figure 7.8b

depicts the computing time of the genetic strategy, which is nearly constant when varying

the number of trace repetitions while keeping constant the number of trace variants. As

73

previously mentioned, this is a feature of the conformance method applied to compute the

conformance metric.

0 100 200 300 400 500 600

A B C

Computing time vs number of trace variants

Ti
m

e
 (

h
h

:m
m

)

2:00

0:00

4:00

6:00

8:00

10:00

12:00

14:00

(A) Trace variants complexity

0 2000 4000 6000 8000 10000 12000

Computing time vs number of traces

0:00

0:30

1:00

1:30

2:00

2:30

3:00

3:30

4:00

Ti
m

e
 (

h
h

:m
m

)

A B C

(B) Trace repetitions complexity

FIGURE 7.8. Performance of the Genetic strategy when varying log complexity.

7.3.1.3. Greedy strategy evaluation

The greedy strategy uses a local subtree configuration heuristic to derive the best pro-

cess subtree for every configurable node. This strategy found a reasonable configuration,

and the corresponding derived process model, in all experiments. The solutions are similar

to the optimal derived process models obtained by the exhaustive and genetic strategies.

Figure 7.9a shows the computing time varies linearly with the number of trace variants. It

also illustrates that the greedy algorithm is very fast; it took about 7 minutes in the most

74

complex scenario, corresponding to the university C with 500 trace variants. Figure 7.9b il-

lustrates a slight ascending computing time when increasing the number of trace repetitions

while keeping the number of trace variants constant.

0 100 200 300 400 500 600

0:00

1:30

3:00

4:30

6:00

7:30

9:00

Computing time vs number of trace variants

Ti
m

e
 (

m
m

:s
s)

A B C

(A) Trace variants complexity

0:00

0:15

0:30

0:45

1:00

1:15

1:30

1:45

2:00

0 2000 4000 6000 8000 10000 12000

Computing time vs number of traces

Ti
m

e
 (

m
m

:s
s)

A B C

(B) Trace repetitions complexity

FIGURE 7.9. Performance of the Greedy strategy when varying the log complexity.

In summary, the greedy strategy finds a reasonable derived process model, which is

very close to the optimal process model in a short computing time, whereas the exhaustive

and genetic strategies find an optimal derived process model, but require more computing

time. In all cases, the performance of the algorithms vary linearly with the number of trace

variants, and it does not depend on the number of trace repetitions. In addition, Table 7.8

shows that the genetic strategy obtains the same conformance as the exhaustive strategy

75

in all experiments for the three universities, except in one case (100t 10rep), in which the

results are quite similar. By contrast, the conformance of the greedy for University C is

below the conformance obtained by the other two strategies. The strategies applied to the

event log of the University C do not reach 0.8 of conformance, meaning that providing a

model for this location could be reconsidered.

TABLE 7.8. Results obtained for all algorithms considering different log complexity.

A B C

Strategy Log complexity
time

(hh:mm:ss)
conformance

time

(hh:mm:ss)
conformance

time

(hh:mm:ss)
conformance

50t 10-20rep 02:28:23 0,922 00:27:36 0,939 02:41:04 0,672

100t 10-20rep 04:08:03 0,923 01:10:33 0,935 10:04:35 0,784

500t 10-20rep 27:40:27 0,924 05:55:05 0,941 44:14:38 0,787

Exhaustive 100t 10rep 04:04:22 0,923 00:50:08 0,939 13:36:03 0,782

100t 20rep 05:10:53 0,921 02:00:30 0,939 11:49:07 0,783

100t 50rep 04:50:08 0,924 01:20:34 0,939 10:04:29 0,788

100t 100rep 04:21:51 0,924 02:32:39 0,935 10:36:01 0,784

50t 10-20rep 00:56:10 0,922 00:16:08 0,939 00:56:43 0,672

100t 10-20rep 01:34:54 0,923 00:41:19 0,935 03:13:04 0,784

500t 10-20rep 07:57:34 0,924 03:56:26 0,941 14:40:04 0,787

Genetic 100t 10rep 01:21:56 0,923 00:28:26 0,939 03:39:13 0,781

100t 20rep 01:37:05 0,921 00:47:12 0,939 03:30:46 0,783

100t 50rep 01:30:28 0,924 00:37:23 0,939 02:46:14 0,788

100t 100rep 01:20:15 0,924 01:01:52 0,935 03:07:46 0,784

50t 10-20rep 00:00:18 0,920 00:00:08 0,938 00:00:29 0,671

100t 10-20rep 00:00:32 0,920 00:00:23 0,933 00:01:16 0,784

500t 10-20rep 00:04:10 0,922 00:02:11 0,940 00:07:19 0,786

Greedy 100t 10rep 00:00:30 0,920 00:00:14 0,938 00:01:22 0,780

100t 20rep 00:00:45 0,919 00:00:25 0,937 00:01:32 0,782

100t 50rep 00:01:05 0,921 00:00:37 0,938 00:01:30 0,787

100t 100rep 00:01:28 0,922 00:01:13 0,934 00:02:06 0,784

76

7.3.2. Performance according to model complexity

Process model derivation does not only depend on the log complexity, but also on the

model complexity. This set of experiment evaluates how the strategies perform under differ-

ent configurable process model topologies and different configurable node dependencies.

Based on the original configurable process model, three configurable process models were

built with different topological characteristics: models that only include × and ∧ operator

nodes, models that only include × and 	 operator nodes, and models that consider all op-

erator nodes (×, ∧ and). In addition, for each one of these three configurable process

models, three different configurable node dependencies were created: independent, depen-

dent and mixed (as described in section 5.3). In total, there are 9 different configurable

process models Qα
i , where i = 1, . . . , 9; they are summarized in Table 7.9.

Three different target models derived from each of these 9 configurable process models

were used for experimentation. Based on these 27 target models, 27 different event logs

were simulated. In Table 7.9, they are represented as Li_1, Li_2 and Li_3, for i = 1, . . . , 9.

We applied the exhaustive, genetic, and greedy strategies to all 9 configurable process

models with their corresponding 3 event logs. The results are shown in Table 7.9, including

the computing time and the conformance metric. The computing time required for all

strategies is shown in Figure 7.10, where the average computing time required for the 3

event logs created for each configurable process model is displayed.

Figure 7.10a depicts how much time requires the exhaustive strategy to evaluate all

possible configurations in order to derive the best process tree in each case. The results

obtained suggest that if the configurable process model has parallelism, the computing

time required to get a derived process model increases, such as in the case of models with

topologies that contain × and ∧ operators or ×, ∧ and 	 operators. This is due to the

conformance method requires more time to handle parallelism, because the traces to be

processed are usually longer (Munoz-Gama, 2016). Whereas models with a topology that

only contains× and 	 operators require a lower computing time to derive a process model.

It can be noticed that this is independent of the configurable node dependencies.

77

A similar behavior can be observed in Figure 7.10b for the genetic strategy and in Fig-

ure 7.10c for the greedy strategy. In all cases, more computing time is required when the

configurable process models have parallelism, regardless of the configurable nodes depen-

dencies.

Figure 7.10c also depicts that the greedy strategy to derive a process model, requires

considerable less computing time than the other two strategies.

78

-A

Exhaustive

II , II III, IIIII , ,
0:00

1:00

2:00

3:00

4:00

5:00

Ti
m

e
 (

h
h

:m
m

)

operators: operators: operators:

independent mixed dependent

(A) Exhaustive strategy

Genetic

0:00
0:150:15
0:30
0:45
1:00
1:15
1:30
1:45
2:00
2:15

Ti
m

e
 (

h
h

:m
m

)

-AII , II III, IIIII , ,operators: operators: operators:

independent mixed dependent

(B) Genetic strategy

Greedy

0:00

0:10

0:15

0:20

0:30

0:40

0:50

1:00

Ti
m

e
 (

m
m

:s
s)

-AII , II III, IIIII , ,operators: operators: operators:

independent mixed dependent

(C) Greedy strategy

FIGURE 7.10. Performance of the different strategies when varying the model
complexity.

79

TABLE 7.9. Results obtained for all strategies considering different model complexity.

Strategies

Exhaustive Genetic Greedy

Configurable model

topology

Configurable Node

dependencies

Event

log

time

(hh:mm:ss)
conformance

time

(hh:mm:ss)
conformance

time

(hh:mm:ss)
conformance

Qα
1

L1_1 00:08:15 0,98 00:01:46 0,98 00:00:04 0,98

Independent L1_2 00:06:43 0,99 00:01:03 0,99 00:00:02 0,98

L1_3 00:12:47 0,84 00:02:42 0,84 00:00:05 0,84

Qα
2

L2_1 00:07:05 0,98 00:01:35 0,98 00:00:03 0,97

operators: ×,	 Mixed L2_2 00:05:25 0,98 00:01:19 0,98 00:00:02 0,97

L2_3 00:09:17 0,84 00:02:49 0,84 00:00:05 0,83

Qα
3

L3_1 00:07:51 0,98 00:02:15 0,98 00:00:05 0,98

Dependent L3_2 00:06:20 0,98 00:01:56 0,98 00:00:04 0,98

L3_3 00:08:18 0,89 00:03:37 0,89 00:00:06 0,87

Qα
4

L4_1 03:47:51 0,93 01:01:16 0,93 00:00:25 0,93

Independent L4_2 02:54:15 0,95 00:45:41 0,95 00:00:14 0,94

L4_3 04:49:52 0,87 01:29:55 0,87 00:00:47 0,87

Qα
5

L5_1 02:43:11 0,95 01:06:10 0,95 00:00:19 0,95

operators: ×, ∧ Mixed L5_2 01:57:22 0,95 00:48:31 0,95 00:00:09 0,95

L5_3 05:18:59 0,89 01:44:15 0,89 00:00:36 0,89

Qα
6

L6_1 01:59:09 0,94 00:49:10 0,94 00:00:24 0,94

Dependent L6_2 01:32:55 0,96 00:37:14 0,96 00:00:12 0,96

L6_3 02:49:35 0,87 01:24:52 0,87 00:00:43 0,89

Qα
7

L7_1 04:32:13 0,93 01:02:33 0,93 00:00:31 0,92

Independent L7_2 01:32:53 0,93 00:48:54 0,93 00:00:26 0,93

L7_3 07:52:15 0,82 02:36:41 0,82 00:01:16 0,81

Qα
8

L8_1 04:08:03 0,92 01:34:54 0,92 00:00:32 0,92

operators: ×, ∧, 	 Mixed L8_2 01:10:33 0,94 00:41:19 0,94 00:00:23 0,93

L8_3 10:04:35 0,78 03:13:04 0,78 00:01:16 0,78

Qα
9

L9_1 03:55:53 0,92 01:35:44 0,92 00:00:44 0,88

Dependent L9_1 01:05:22 0,92 00:35:24 0,92 00:00:27 0,91

L9_3 08:12:41 0,83 02:50:31 0,83 00:01:20 0,82

80

8. CONCLUSIONS

In this chapter we summarize our findings and present the improvements that have to

be done as future work. We also present the limitations of this research.

81

8.1. General Conclusions

In this thesis, we propose a framework to derive a process tree from a configurable

process tree based on the historical behavior of a process stored in a given event log.

Through three different strategies, exhaustive, genetic and greedy, we allow to derive a

process model that better conforms to the event log. The exhaustive strategy searches

among all possible derived process models given by the Cartesian product of all possible

configurations. This strategy finds an optimal configuration, which is used to derive the

best possible process model, but not in a suitable time. The genetic strategy also finds a

quasi-optimal configuration (sometimes even the optimal one) to derive a process model,

but in less time than the exhaustive approach. Although in a general case optimality is not

guaranteed, in our experiments it was always able to find an optimal configuration. More-

over, in our experiments the genetic strategy did not have to iterate for many generations; it

converges in less than 20 generations. Meanwhile, the greedy strategy finds a good approx-

imate configuration to derive a process model in a very short time compared to the other

two algorithms. We have validated the applicability of our framework using both realistic

and real life processes. The proposed strategies allow to find a very good derived process

model in a short time, using the greedy strategy, or an optimal derived process model using

the exhaustive or the genetic strategies.

Table 8.1 summarizes van der Aalst’s findings and also shows our contribution to the

state-of-the-art in configurable process models.

82

TABLE 8.1. Weaknesses identified in the 289 papers analyzed by van der Aalst
(2012) and how they are overcome in this thesis.

Weakness 289 BPM papers This thesis

Many papers introduce a new modeling lan-

guage

Only used for the paper or the

need is not justified

We use an existing model-

ing language: process tree

Many papers cannot be linked to one of the

20 use cases found on Figure 2.1

Authors seem to focus on

originality rather than rele-

vance and show little concern

for real-life use cases

We present a new compos-

ite use case, called Con-

CMEV

Many papers describe implementation effort In many cases, implementa-

tion is not available

We implement our strate-

gies on ProM, which is a

publicly available process

mining tool

Many papers include case studies In many cases the case studies

are artificial

We address both a realistic

use case and a real life use

case

8.2. Limitations

Our work is restricted to the new use case presented in chapter 1 that seeks to obtain

a configuration to derive a process model from a configurable process model which maxi-

mizes the conformance function for a given event log. In this context, our research presents

the following limitations. First, a configurable process model that contains independent

configurable nodes must be available, including a set of feasible configurations for each

configurable node. Second, the event log must be representative of the executed process,

i.e., it must contain traces representing all possible behaviors of the process; otherwise,

the unobserved behavior could be left out of the derived process model. Notice that this

is a common limitation of all process discovery techniques used in process mining. Third,

each strategy has its own limitations, since the three proposed strategies seek to balance

two opposing goals: to obtain optimal solutions versus to obtain solutions quickly. As

83

observed in the analysis of chapter 7, the exhaustive strategy allows to obtain an optimal

solution, but taking a considerable time. In contrast, the greedy strategy allows to obtain a

solution quickly, although not necessarily an optimal one. An intermediate approach is the

genetic strategy, which allows to obtain a very good—even potentially optimal—solution

in a shorter time than the exhaustive strategy. Finally, the three strategies seek to find

a single process model that maximizes the conformance function, which in turn weighs

the four quality criteria. In contrast, there are discovery techniques that use Pareto Front

(Buijs, 2014b) to obtain a set of process models that represent the best possible solutions

for different weights of the four quality criteria. However, this work does not consider it.

The proposed approach does not address privacy issues that usually emerge in cross-

organizational business process settings (Liu et al., 2016). We assume both the configurable

process model and the event log belong to the same organization, which might be a corpo-

rate group that wants to have a common reference model (a configurable process model) for

a given process among all the companies it owns, and also might be interested in obtaining

a derived process model for a (new) company by using the approach proposed in this thesis.

8.3. Future Work

The main future works that can be performed to extend this research are following

underlined. First of all, user-defined rules can be used to guide the configuration pro-

cess (Schunselaar et al., 2014). These rules can constrain the search space, reducing the

computing time required to derive a process model. Second, large configurable process

models could be configured in successive stages through a decomposition approach (de

Leoni, Munoz-Gama, Carmona, & van der Aalst, 2014). When a configurable process

model is large, it can be decomposed in sub-process models that can be configured inde-

pendently, in order to reduce complexity and improve performance. Third, on the greedy

strategy, we used a bottom-up approach. A top-down approach could also be explored.

Fourth, including operator downgrading as another way to configure a node. By down-

grading an operator, the behavior of the operator is restricted to a subset of the initially

possible behavior (Buijs, 2014b). Finally, when the conformance obtained by the derived

84

process model is not good enough, you might think the event log contains knowledge about

the process that is not considered in the configurable process model (e.g., activities that are

observed in the event log, but do not exist in the configurable process model). In that case,

you could use the event log to first enrich the configurable process model, before tackling

the derivation task.

85

References

Adriansyah, A. (2014). Aligning Observed and Modeled Behavior (Unpublished doc-

toral dissertation). Eindhoven University of Technology.

Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B. F., & van der Aalst,

W. M. (2012). Alignment based precision checking. In International conference on

business process management (pp. 137–149).

Arriagada-Benítez, M., Sepúlveda, M., Munoz-Gama, J., & Buijs, J. C. (2017). Strate-

gies to automatically derive a process model from a configurable process model based

on event data. Applied Sciences, 7(10), 1023.

Bäck, T., de Graaf, J. M., Kok, J. N., & Kosters, W. A. (2001). Theory of genetic

algorithms. In Current trends in theoretical computer science (pp. 546–578).

Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., & Kuropka, D. (2004). Config-

urative process modeling–outlining an approach to increased business process model

usability. In Proceedings of the 15th irma international conference (pp. 1–12).

Becker, J., Delfmann, P., & Knackstedt, R. (2007). Adaptive reference modeling:

integrating configurative and generic adaptation techniques for information models.

Reference Modeling, 27–58.

Buijs, J. C. A. M. (2014a). Environmental permit application process (wabo), coselog

project. https://data.4tu.nl/repository/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270.

Eindhoven University of Technology. doi: 10.4121/uuid:26aba40d-8b2d-435b-b5af

-6d4bfbd7a270

86

Buijs, J. C. A. M. (2014b). Flexible Evolutionary Algorithms for Mining Structured

Process Models (Unpublished doctoral dissertation). Eindhoven University of Tech-

nology.

Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst, W. M. P. (2012a). A ge-

netic algorithm for discovering process trees. In Proceedings of the IEEE congress

on evolutionary computation, CEC 2012, brisbane, australia, june 10-15, 2012 (pp.

1–8).

Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst, W. M. P. (2012b). On the role of

fitness, precision, generalization and simplicity in process discovery. In R. Meersman

et al. (Eds.), OTM 2012 (Vol. 7565, pp. 305–322). Springer.

Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst, W. M. P. (2013). Mining

configurable process models from collections of event logs. In F. Daniel, J. Wang, &

B. Weber (Eds.), Bpm 2013 (Vol. 8094, pp. 33–48). Springer.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms (3. ed.). MIT Press.

Deb, K., & Deb, D. (2014). Analysing mutation schemes for real-parameter genetic

algorithms. IJAISC, 4(1), 1–28.

de Leoni, M., Munoz-Gama, J., Carmona, J., & van der Aalst, W. M. P. (2014).

Decomposing alignment-based conformance checking of data-aware process models.

In OTM conferences (Vol. 8841, pp. 3–20). Springer.

Derguech, W., Bhiri, S., & Curry, E. (2017). Designing business capability-aware

configurable process models. Information Systems, 72, 77–94.

87

Dijkman, R. M., Rosa, M. L., & Reijers, H. A. (2012). Managing large collections of

business process models - current techniques and challenges. Computers in Industry,

63(2), 91–97.

Dumas, M., Van der Aalst, W. M., & Ter Hofstede, A. H. (2005). Process-aware

information systems: bridging people and software through process technology. John

Wiley & Sons.

Ghedira, C., & Mezni, H. (2006). Through personalized web service composition

specification: from bpel to c-bpel. Electronic Notes in Theoretical Computer Science,

146(1), 117–132.

Gottschalk, F. (2009). Configurable process models (Unpublished doctoral disserta-

tion). Eindhoven University of Technology.

Gottschalk, F., van der Aalst, W. M., & Jansen-Vullers, M. H. (2007). Config-

urable process models –a foundational approach. In Reference modeling (pp. 59–77).

Springer.

Gottschalk, F., van der Aalst, W. M. P., & Jansen-Vullers, M. H. (2008a). Merg-

ing event-driven process chains. In OTM conferences (1) (Vol. 5331, pp. 418–426).

Springer.

Gottschalk, F., van der Aalst, W. M. P., & Jansen-Vullers, M. H. (2008b). Mining

reference process models and their configurations. In OTM workshops (Vol. 5333, pp.

263–272). Springer.

Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers, M. H., & Rosa, M. L. (2008).

Configurable workflow models. Int. J. Cooperative Inf. Syst., 17(2), 177–221.

88

Gottschalk, F., Wagemakers, T. A. C., Jansen-Vullers, M. H., van der Aalst, W. M. P.,

& Rosa, M. L. (2009). Configurable process models: Experiences from a munici-

pality case study. In Advanced information systems engineering, 21st international

conference, caise 2009, proceedings (pp. 486–500).

Günther, C. W., & van der Aalst, W. M. P. (2007). Fuzzy mining - adaptive process

simplification based on multi-perspective metrics. In BPM (Vol. 4714, pp. 328–343).

Springer.

Jansen-Vullers, M. H., van der Aalst, W. M. P., & Rosemann, M. (2006). Mining

configurable enterprise information systems. Data Knowl. Eng., 56(3), 195–244.

Lee, C., Choy, K. L., Ho, G. T., & Lam, C. H. (2016). A slippery genetic algorithm-

based process mining system for achieving better quality assurance in the garment

industry. Expert Systems with Applications, 46, 236–248.

Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2013a). Discovering block-

structured process models from event logs - A constructive approach. In J. M. Colom

& J. Desel (Eds.), PETRI NETS 2013 (Vol. 7927, pp. 311–329). Springer.

Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2013b). Discovering

block-structured process models from event logs containing infrequent behaviour. In

N. Lohmann, M. Song, & P. Wohed (Eds.), Bpm 2013 (Vol. 171, pp. 66–78). Springer.

Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2014). Discovering block-

structured process models from incomplete event logs. In Petri nets (Vol. 8489, pp.

91–110). Springer.

89

Liu, C., Duan, H., Qingtian, Z., Zhou, M., Lu, F., & Cheng, J. (2016). Towards com-

prehensive support for privacy preservation cross-organization business process min-

ing. IEEE Transactions on Services Computing.

Meffert, K., Rotstan, N., Knowles, C., & Sangiorgi, U. (2008). Jgap-java genetic

algorithms and genetic programming package. URL: http://jgap. sf. net.

Mendling, J., & Simon, C. (2006). Business process design by view integration. In

J. Eder & S. Dustdar (Eds.), Bpm 2006 (Vol. 4103, pp. 55–64). Springer.

Michalewicz, Z. (1996). Genetic algorithms and data structures - evolution programs

(3. ed.). Springer.

Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge, MA, USA:

MIT Press.

Munoz-Gama, J. (2016). Conformance checking and diagnosis in process mining -

comparing observed and modeled processes (Vol. 270). Springer.

Munoz-Gama, J., Carmona, J., & van der Aalst, W. M. P. (2013). Conformance

checking in the large: Partitioning and topology. In BPM (Vol. 8094, pp. 130–145).

Springer.

Munoz-Gama, J., Carmona, J., & van der Aalst, W. M. P. (2014). Single-entry single-

exit decomposed conformance checking. Inf. Syst., 46, 102–122.

Munoz-Gama, J. (2014). Conformance Checking and Diagnosis in Process Mining

(Unpublished doctoral dissertation). Universitat Politècnica de Catalunya.

90

Rosa, M. L., Dumas, M., ter Hofstede, A. H. M., & Mendling, J. (2011). Configurable

multi-perspective business process models. Inf. Syst., 36(2), 313–340.

Rosa, M. L., Dumas, M., ter Hofstede, A. H. M., Mendling, J., & Gottschalk, F.

(2008). Beyond control-flow: Extending business process configuration to roles and

objects. In ER (Vol. 5231, pp. 199–215). Springer.

Rosa, M. L., Dumas, M., Uba, R., & Dijkman, R. M. (2010). Merging business pro-

cess models. In R. Meersman, T. S. Dillon, & P. Herrero (Eds.), On the move to

meaningful internet systems: OTM 2010 (Vol. 6426, pp. 96–113). Springer.

Rosa, M. L., Dumas, M., Uba, R., & Dijkman, R. M. (2013). Business process model

merging: An approach to business process consolidation. ACM Trans. Softw. Eng.

Methodol., 22(2), 11.

Rosa, M. L., & Gottschalk, F. (2009). Synergia - comprehensive tool support for

configurable process models. In A. K. A. de Medeiros & B. Weber (Eds.), Bpmdemos

2009 (Vol. 489). CEUR-WS.org.

Rosa, M. L., van der Aalst, W. M. P., Dumas, M., & ter Hofstede, A. H. M. (2009).

Questionnaire-based variability modeling for system configuration. Software and Sys-

tem Modeling, 8(2), 251–274.

Rosemann, M., & van der Aalst, W. M. P. (2007). A configurable reference modelling

language. Inf. Syst., 32(1), 1–23.

Rozinat, A., & van der Aalst, W. M. P. (2005). Conformance testing: Measuring

the fit and appropriateness of event logs and process models. In Business process

management workshops (Vol. 3812, pp. 163–176).

91

Rozinat, A., & van der Aalst, W. M. P. (2008). Conformance checking of processes

based on monitoring real behavior. Inf. Syst., 33(1), 64–95.

Safe, M. D., Carballido, J. A., Ponzoni, I., & Brignole, N. B. (2004). On stopping

criteria for genetic algorithms. In A. L. C. Bazzan & S. Labidi (Eds.), Advances in

artificial intelligence - SBIA 2004 (Vol. 3171, pp. 405–413). Springer.

Schunselaar, D. M. M., Leopold, H., Verbeek, H. M. W., van der Aalst, W. M. P.,

& Reijers, H. A. (2014). Configuring configurable process models made easier: An

automated approach. In F. Fournier & J. Mendling (Eds.), Bpm 2014 (Vol. 202, pp.

105–117). Springer.

Schunselaar, D. M. M., Verbeek, E., van der Aalst, W. M. P., & Reijers, H. A.

(2012). Creating sound and reversible configurable process models using cosenets.

In W. Abramowicz, D. Kriksciuniene, & V. Sakalauskas (Eds.), Bis 2012 (Vol. 117,

pp. 24–35). Springer.

Seidel, S., Rosemann, M., Hofstede, A. t., & Bradford, L. (2006). Developing a busi-

ness process reference model for the screen business−a design science research case

study. ACIS 2006 Proceedings, 39.

Sharma, D. K., & Rao, V. (2014). Configurable business process modeling notation.

In Advance computing conference (iacc), 2014 ieee. (pp. 1424–1429).

Tiwari, A., Turner, C., & Majeed, B. (2008). A review of business process mining:

state−of−the−art and future trends. Business Process Management Journal, 14(1),

5-22. doi: 10.1108/14637150810849373

92

vanden Broucke, S. K. L. M., De Weerdt, J., Baesens, B., & Vanthienen, J. (2012).

Improved artificial negative event generation to enhance process event logs. In J. Ra-

lyté, X. Franch, S. Brinkkemper, & S. Wrycza (Eds.), Advanced information sys-

tems engineering: 24th international conference, caise 2012, gdansk, poland, june

25-29, 2012. proceedings (pp. 254–269). Berlin, Heidelberg: Springer Berlin Hei-

delberg. Retrieved from https://doi.org/10.1007/978-3-642-31095

-9_17 doi: 10.1007/978-3-642-31095-9_17

van der Aalst, W. M. P. (2011a). Process mining - discovery, conformance and en-

hancement of business processes. Springer.

van der Aalst, W. M. P. (2011b). Using process mining to bridge the gap between BI

and BPM. IEEE Computer, 44(12), 77–80.

van der Aalst, W. M. P. (2012). A Decade of Business Process Management Confer-

ences: Personal Reflections on a Developing Discipline. In A. P. Barros, A. Gal, &

E. Kindler (Eds.), Bpm 2012 (Vol. 7481, pp. 1–16). Springer.

van der Aalst, W. M. P. (2013a). Business Process Management: A Comprehensive

Survey. ISRN Software Engineering, 2013.

van der Aalst, W. M. P. (2013b). Decomposing petri nets for process mining: A

generic approach. Distributed and Parallel Databases, 31(4), 471–507. doi: 10.1007/

s10619-013-7127-5

van der Aalst, W. M. P. (2016). Process mining - data science in action, second edi-

tion. Springer.

https://doi.org/10.1007/978-3-642-31095-9_17
https://doi.org/10.1007/978-3-642-31095-9_17

93

van der Aalst, W. M. P., Buijs, J. C. A. M., & van Dongen, B. F. (2011). Towards

improving the representational bias of process mining. In K. Aberer, E. Damiani, &

T. S. Dillon (Eds.), SIMPDA 2011 (Vol. 116, pp. 39–54). Springer.

van der Aalst, W. M. P., Dreiling, A., Gottschalk, F., Rosemann, M., & Jansen-

Vullers, M. H. (2005). Configurable process models as a basis for reference modeling.

In C. Bussler & A. Haller (Eds.), BPM 2005 (Vol. 3812, pp. 512–518).

van der Aalst, W. M. P., Dumas, M., Ouyang, C., Rozinat, A., & Verbeek, E. (2008).

Conformance checking of service behavior. ACM Trans. Internet Techn., 8(3), 13:1–

13:30.

van der Aalst, W. M. P., Lohmann, N., & Rosa, M. L. (2012). Ensuring correctness

during process configuration via partner synthesis. Inf. Syst., 37(6), 574–592.

van der Aalst, W. M. P., Lohmann, N., Rosa, M. L., & Xu, J. (2010). Correctness

ensuring process configuration: An approach based on partner synthesis. In R. Hull,

J. Mendling, & S. Tai (Eds.), Bpm 2010 (Vol. 6336, pp. 95–111). Springer.

van der Aalst, W. M. P., van Dongen, B. F., Günther, C. W., Rozinat, A., Verbeek, E.,

& Weijters, T. (2009). Prom: The process mining toolkit. In BPM (demos) (Vol. 489).

CEUR-WS.org.

van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., &

Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches.

Data Knowl. Eng., 47(2), 237–267.

94

van der Aalst, W. M. P., van Hee, K. M., van der Werf, J. M. E. M., & Verdonk,

M. (2010). Auditing 2.0: Using process mining to support tomorrow’s auditor. IEEE

Computer, 43(3), 90–93.

van der Aalst, W. M. P., & Weijters, A. J. M. M. (2004). Process mining: a research

agenda. Computers in Industry, 53(3), 231–244.

van der Aalst, W. M. P., Weijters, T., & Maruster, L. (2004). Workflow mining: Dis-

covering process models from event logs. IEEE Trans. Knowl. Data Eng., 16(9),

1128–1142.

Van Dongen, B. (2015). Bpi challenge 2015.

http://dx.doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1. Eind-

hoven University of Technology. doi: 10.4121/uuid:31a308ef-c844-48da-948c

-305d167a0ec1

van Oirschot, Y. (2014). Using trace clustering for configurable process discovery

explained by event log data (Unpublished master’s thesis). Eindhoven University of

Technology.

Vázquez-Barreiros, B., Mucientes, M., & Lama, M. (2015). Prodigen: Mining com-

plete, precise and minimal structure process models with a genetic algorithm. Infor-

mation Sciences, 294, 315–333.

Verbeek, H. M. W., Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst, W. M. P.

(2010). Xes, xesame, and prom 6. In Caise forum (Vol. 72, pp. 60–75). Springer.

Weijters, A., Aalst, W. M. P., & A K Medeiros, A. (2006). Process mining with the

heuristics miner-algorithm (Vol. 166).

95

Weijters, A. J. M. M., & Ribeiro, J. T. S. (2011). Flexible heuristics miner (FHM).

In Computational intelligence and data mining (cidm), 2011 ieee symposium on (pp.

310–317). IEEE.

Wolffensperger, R. (2014). Static and dynamic visualization of quality and perfor-

mance dimensions on process trees (Unpublished master’s thesis). Eindhoven Uni-

versity of Technology.

96

APPENDIX A. ACADEMIC PLANNING

Figure A.1 represents the overview of the Academic Planning full model containing

the 70 activities.

In
ic

io
 p

ro
g

ra
m

a
r

cu
rs

o
s

In
ic

io
a
d

m
in

is
tr

a
r

re
g
is

tr
o

d
e

a
y
u
d

a
n
te

s

Fi
n
 p

ro
g

ra
m

a
r

cu
rs

o
s

P
u
b

lic
a
r

p
ro

g
ra

m
a
ci

ó
n

P
ro

g
ra

m
a
r

te
si

s
g
e
n
e
ri

ca
 p

o
r

u
n
id

a
d
 a

ca
d
e
m

ic
a

In
sc

ri
b
ir

 t
e
si

s
g
e
n
e
ri

ca

In
fo

rm
a
r

d
o
ce

n
te

s
q
u
e
 g

u
ia

n
 t

e
si

s
v
ia

e
m

a
il

P
ro

g
ra

m
a
r

te
si

s
p
o
r

ca
d
a

d
o
ce

n
te

 g
u
ia

A
si

g
n
a
r

n
o
m

b
re

s
d
e
 t

e
si

s
y
 a

lu
m

n
o
s

te
si

st
a
s

Tr
a
sp

a
so

 d
e

a
lu

m
n
o
s

a
 s

e
cc

io
n

d
e
 t

e
si

s
d
e
l

d
o
ce

n
te

 m
a
n
u
a
l

In
fo

rm
a
r

d
o
ce

n
te

s
q
u
e
 g

u
ia

n
 t

e
si

s
v
ia

ca
rt

a

In
fo

rm
a
r

d
o
ce

n
te

s
q
u
e
 g

u
ia

n
 t

e
si

s
v
ia

te
le

fo
n
ic

a

A
si

g
n
a
ci

o
n

a
u
to

m
a
ti

ca
 p

o
r

si
st

e
m

a
d
e

la
U

n
iv

e
rs

id
a
d

Tr
a
sp

a
so

 d
e

a
lu

m
n
o
s

a
 s

e
cc

io
n

d
e
 t

e
si

s
d
e
l

d
o
ce

n
te

a
u
to

m
a
ti

co

In
ic

io
p
re

p
a
ra

r
p
ro

g
ra

m
a
ci

ó
n

a
ca

d
é
m

ic
a

C
o
n
fi
g
u
ra

r
p
e
rí

o
d
o
 a

p
ro

g
ra

m
a
r

H
a
b
ili

ta
r

a
cc

e
so

s

In
ic

io
 p

la
n
 d

e
lo

g
ís

ti
ca

 d
e

cu
rs

o
s

e
 i
n
su

m
o
s

D
e
te

rm
in

a
r

cu
rs

o
s

y
v
a
ca

n
te

s
a
 s

o
lic

it
a
r

a
o
tr

a
s

U
A

V
e
ri

fi
ca

r
re

g
is

tr
o

d
e
 d

o
ce

n
te

s
y

a
y
u
d
a
n
te

s

S
o
lic

it
a
r

in
su

m
o
s

d
e

p
ro

g
ra

m
a
ci

ó
n

E
n
v
ia

r
in

su
m

o
s

d
e

p
ro

g
ra

m
a
ci

ó
n

Fi
n
 p

la
n
 d

e
lo

g
ís

ti
ca

 d
e

cu
rs

o
s

e
 i
n
su

m
o
s

S
o
lic

it
a
r

cu
rs

o
s

y
v
a
ca

n
te

s
a

U
A

E
st

im
a
r

p
ro

g
ra

m
a
ci

ó
n

C
o
n
su

lt
a
r

p
ro

g
ra

m
a
ci

ó
n

a
ca

d
é
m

ic
a

Fi
n
 p

re
p
a
ra

r
p
ro

g
ra

m
a
ci

ó
n

a
ca

d
é
m

ic
a

S
o
lic

it
a
r

a
 U

A
v
a
ca

n
te

s
e
n

cu
rs

o
s

In
ic

io
 a

ju
st

a
r

p
ro

g
ra

m
a
ci

o
n

M
o
n
it

o
re

a
r

in
sc

ri
p
ci

o
n

H
a
b
ili

ta
r

a
cc

e
so

s

A
ju

st
a
r

v
a
ca

n
te

s
y

re
se

rv
a

d
e

v
a
ca

n
te

s

E
lim

in
a
r

se
cc

io
n

C
re

a
r

se
cc

io
n

D
e
sh

a
b
ili

ta
r

a
cc

e
so

s

In
ic

io
 A

ju
st

a
r

a
si

g
n
a
ci

o
n
 d

e
sa

la
s

Fi
n
 a

ju
st

a
r

p
ro

g
ra

m
a
ci

o
n

H
a
b
ili

ta
r

a
cc

e
so

s

In
g
re

sa
r

a
y
u
d
a
n
te

s
m

a
n
u
a
lm

e
n
te

A
ct

u
a
liz

a
r

d
o
ce

n
te

s

D
e
sh

a
b
ili

ta
r

a
cc

e
so

s

S
e
le

cc
io

n
a
r

a
y
u
d
a
n
te

s
a
u
to

m
a
ti

ca
m

e
n
te

V
e
ri

fi
ca

r
d
is

p
o
n
ib

ili
d
a
d
 d

e
sa

la
s

fa
cu

lt
a
d

V
e
ri

fi
ca

r
d
is

p
o
n
ib

ili
d
a
d
 d

e
sa

la
s

e
n

e
sc

u
e
la

V
e
ri

fi
ca

r
d
is

p
o
n
ib

ili
d
a
d

d
e

sa
la

s
d
e

a
re

a
s

C
h
e
q
u
e
a
r

a
p
o
y
o

a
u
d
io

v
is

u
a
l

C
h
e
q
u
e
a
r

ca
p
a
ci

d
a
d

a
lu

m
n
o
s

Fi
n
 v

e
ri

fi
ca

r
d
is

p
o
n
ib

ili
d
a
d

d
e
 s

a
la

s

Fi
n

a
ju

st
a
r

a
si

g
n
a
ci

o
n

d
e
 s

a
la

s

In
ic

io
 v

e
ri

fi
ca

ci
o
n

cu
rs

o
s

y
re

se
rv

a

V
e
ri

fi
ca

r
p
ro

g
ra

m
a
ci

o
n
 d

e
cu

rs
o
s

y
 r

e
se

rv
a
 d

e
v
a
ca

n
te

s
so

lic
it

a
d
a
s

a
o
tr

a
s

U
A

V
e
ri

fi
ca

r
re

se
rv

a
 d

e
v
a
ca

n
te

s

In
ic

io
 d

e
fi
n
ir

a
si

g
n
a
ci

o
n

re
su

rs
o
s

C
re

a
r

o
 a

ct
u
a
liz

a
r

se
cc

io
n

A
si

g
n
a
r

v
a
ca

n
te

s
y

re
se

rv
a

A
si

g
n
a
r

a
ct

iv
id

a
d
e
s

y
h
o
ra

ri
o
s

A
si

g
n
a
r

d
o
ce

n
te

s
y

a
y
u
d
a
n
te

s
S
u
g
e
ri

r
o
 a

si
g
n
a
r

sa
la

s
In

ic
io

 a
si

g
n
a
r

sa
la

D
e
fi
n
ir

 b
lo

q
u
e
s

d
e

cu
rs

o
s

C
o
n
fi
g
u
ra

r
b
lo

q
u
e
s

d
e

cu
rs

o
s

R
e
se

rv
a
 d

e
 v

a
ca

n
te

s
p
a
ra

a
lu

m
n
o
s

n
u
e
v
o
s

A
si

g
n
a
r

sa
la

m
a
n
u
a
l

Fi
n
 a

si
g
n
a
r

sa
la

D
e
sh

a
b
ili

ta
r

a
cc

e
so

Fi
n
 d

e
fi
n
ir

a
si

g
n
a
ci

o
n

re
su

rs
o
s

A
si

g
n
a
r

sa
la

a
u
to

m
a
ti

co

A
d
m

in
is

tr
a
ci

o
n
 e

n
a
re

a
s

A
d
m

in
is

tr
a
ci

o
n
 e

n
fa

cu
lt

a
d

Fi
n
 a

d
m

in
is

tr
a
r

re
g
is

tr
o
 d

e
a
y
u
d
a
n
te

s

S
o
lic

it
u
d
 d

e
a
d
m

in
is

tr
a
ci

o
n

e
x
tr

a

FIGURE A.1. Academic planning full model

97

FIGURE A.2. Prepare Academic Program sub-model

98

FIGURE A.3. Update Academic Program sub-model

99

FIGURE A.4. Adjust Academic Program sub-model

100

FIGURE A.5. Student Assistant Planning sub-model

101

FIGURE A.6. Thesis Planning sub-model

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	RESUMEN
	ABSTRACT
	1. INTRODUCTION
	1.1. Research question
	1.2. Hypothesis
	1.3. Objectives
	1.3.1. General objectives
	1.3.2. Specific objectives

	1.4. Methodology
	1.5. Proposed derivation framework
	1.6. Organization of the thesis

	2. STATE OF THE ART
	2.1. Configurable process models
	2.2. Process Mining
	2.3. Current Use Cases
	2.4. Related work

	3. PRELIMINARIES
	3.1. Set, Multiset, Sequence, and Concatenation
	3.2. Event Log
	3.3. Process Tree
	3.4. Quality Metrics

	4. FRAMEWORK
	4.1. Configurable Process Tree
	4.2. Proposed framework

	5. DERIVATION STRATEGIES
	5.1. Obtaining a configuration based on the exhaustive strategy
	5.2. Obtaining a configuration based on the genetic strategy
	5.3. Obtaining a configuration based on the greedy strategy

	6. IMPLEMENTATION
	6.1. Creation of the configurable process model
	6.2. Running the plug-ins
	6.2.1. Running the exhaustive strategy
	6.2.2. Running the genetic strategy
	6.2.3. Running the Greedy strategy

	7. EXPERIMENTS AND DISCUSSIONS
	7.1. Educational scenario
	7.1.1. Academic planning process

	7.2. Municipal scenario
	7.2.1. Real-life experiments

	7.3. Algorithms' performance based on an empirical evaluation
	7.3.1. Performance according to log complexity
	7.3.2. Performance according to model complexity

	8. CONCLUSIONS
	8.1. General Conclusions
	8.2. Limitations
	8.3. Future Work

	References
	APPENDIX A. ACADEMIC PLANNING

