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the camera system. (b) Block diagram of the proposed method. Our approach includes
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RESUMEN

En las últimas dos decadas ha aumentado masivamente el uso de cámaras en sistemas de vigi-

lancia y monitoreo de actividades, haciendo difı́cil su seguimiento el 100% del tiempo por opera-

dores humanos. La detección de personas ha provocado gran interés en investigadores de la comu-

nidad de visión por computador, con el fin de generar herramientas de vigilancia automática. Los

primeros trabajos de detección se basaron fuertemente en técnicas de procesamiento de imágenes,

las que a pesar de su rapidez y simplicidad son sensibles a los cambios de iluminación, oclusión, y

variación de las poses humanas. Actualmente, los enfoques de aprendizaje de máquina basados en

ventanas deslizantes han tenido éxito significativo en la detección de personas. Este éxito se debe en

parte al uso de poderosos modelos de aprendizaje de máquina, caracterı́sticas visuales nuevas y más

informativas y modelos basados en partes capaces de manejar la variabilidad de los objetos. Un de-

nominador común de estas técnicas es que ellos confian principalmente en métodos de aprendizaje

estadı́stico que usa información de la intensidad de las imágenes para capturar las caracterı́sticas

de apariencia de los objetos. Una limitación importante de estos enfoques basados en apariencia

es que no incorporan información geométrica relevante que provea pistas espaciales tales como el

tamaño real de los objetos a detectar, profundidad o la ubicación más probable de estos objetos en

la escena. Algunos trabajos recientes consideran el beneficio de incorporar información de varios

puntos de vista. La detección usando una sola cámara es apropiada cuando existe occlusión leve,

sin embargo, para casos de mayor oclusión el uso de múltiples vistas permite mejorar la detección.

xvi



A pesar de que existen técnicas para relacionar la información en múltiples vistas, aún quedan de-

safı́os importantes que resolver. En esta tesis, proponemos un enfoque para detección de personas

que une avances en detección basada en aprendizaje de máquina con geometrı́a de múltiples vistas.

La idea principal de nuestro método es barrer un volumen virtual a través del espacio con el fin de

analizar solo la parte de las imágenes donde este elemento es proyectado. Este esquema nos per-

mite resolver problemas relacionados al establecimiento de correspondencias entre cámaras, incluir

información espacial, y enriquecer los modelos de detección usando caracterı́sticas enriquecidas.

Este documento describe nuestro enfoque y su evaluación en detección de personas en ambientes

interiores. Los experimentos demuestran que nuestro método mejora detectores 2D del estado del

arte en 10% respecto del precision-recall promedio de su mejor vista, usando iguales condiciones

de entrenamiento. Los resultados muestran que nuestro enfoque puede ser usado efectivamente para

detección de personas en sistemas de múltiples vistas.
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ABSTRACT

Over the past two decades, there has been a massive increase in the use of digital cameras

in surveillance systems and monitoring activities. This has made it difficult for human operators

to provide 100% coverage at all times. The ability to detect human forms in video images has

generated a great deal of interest among researchers in the computer vision community who are

working on the design of automatic visual surveillance tools. Previous studies of this topic were

strongly based on image processing techniques, which in spite off their speed and simplicity are

sensitive to changes in lighting, occlusion and the variability of human poses. Recently, machine

learning approaches based on sliding windows have proven to be successful in people detection.

This significant success is due in part to the use of powerful machine learning models, new and

more informative visual features, and part-based models which cope with object variability. A com-

mon denominator of these techniques is that they rely mainly on statistical learning methods that

exploit image-intensity information to capture object appearance features. An important limitation

of appearance-based approaches is that they do not incorporate relevant geometric information that

can provide important, useful spatial cues such as the real size of the object to be detected, depth,

and likely spatial appearance location in the scene. A few recent works consider the benefits of

including information from various viewpoints. Detection using one camera is suitable when there

is mild occlusion, however, if there is heavy occlusion multiple views help to improve final detec-

tion. Despite the existence of techniques for linking information across multiple views, significant

challenges remain. In this thesis, we propose a multiple view detection approach in order to bridge
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the gap between advances in machine learning-based object detection and multiple view geometry.

The key idea is to run a virtual volume across the space in order to analyze only the correspond-

ing portion of the images where this 3D element is projected. This allows us to solve problems

related to correspondence among cameras. We also can include useful spatial cues and enhance

detection models with enriched features descriptors. This document describes our approach to peo-

ple detection in video images of indoor environments and its evaluation. The experiments show

that our framework improves detection levels of 2D state-of-the-art methods in 10% of the average

precision-recall at their optimal view using the same training conditions. These results suggest that

our approach can be used effectively to detect objects in multiple views.
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Chapter 1. INTRODUCTION

Over the past two decades, there has been an increase in the number of digital video cameras

used in security and monitoring systems. The early devices were only used in private surveillance

and retail environments. Over time, their applications shifted towards the area of public space

surveillance (Kuno et al., 1996; Dee & Velastin, 2007). Initially, security personnel could monitor

these devices easily due to the small number of cameras used. However, the intensive use of these

devices has made it impractical to depend on human operators to provide all monitoring services

all of the time. Two main factors limit the practicality of the exclusive use of human monitoring:

the amount of information gathered and limited attention spans and concentration. The use of tech-

niques from the fields of image processing, computer vision and machine learning has allowed for

the design of intelligent systems which help operators engage in automated monitoring using visual

information. According to Hu et al. (2004); Valera and Velastin (2005); Cristani et al. (2010), the

basic elements of an automated vision system are the environment model and motion segmentation,

object detection or object classification, tracking, behavior interpretation and personal identifica-

tion, and fusion of information from multiple cameras (see Fig. 1.1). The major tasks developed for

these systems are people and object detection, detection of abandoned objects, and the tracking of

specific subjects (Hu et al., 2004). The goal is to generate complex information about scenes such as

the number of people present, the identities of those individuals, activity and behavior recognition,

borders of hazardous or forbidden areas, and flow analysis. One important aspect of this field of

inquiry is the evaluation of these systems. Influential conferences such as PETS, CREDS, i-LIDS,

ETISEO, and PASCAL have set forth metrics which allow researchers to compare their algorithms

performance (Dee & Velastin, 2007).

Early work on detection was strongly based on image processing techniques. The main task

at that time was to separate foreground objects from the background. The essential stage of the

identification of these elements is the background subtraction process. Once this segmentation is

complete, the objects appear as blobs that can be classified according to shape, color, movement

or another distinctive feature. Because the segmentation process uses consecutive frames, this ap-

proach is commonly used in video sequences. The most frequently cited studies for background

subtraction address frame differences, Gaussian moving average Wren et al. (1997), mixture of
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Figure 1.1. General framework and flow of visual surveillance based on image processing.
This process involves N cameras and six optional steps for each device. Approaches based
on background subtraction involve steps related to environmental modeling and motion
segmentation. The fusion of information follows from any of these six steps.

Gaussians Stauffer and Grimson (1999), temporal median filter Lo and Velastin (2001), and code-

book models Kim et al. (2005). Background subtraction is a simple and computationally efficient

method, but it requires background initialization and background updating. Its main challenges and

drawbacks are related to objects that have moved, time of day, light changes, oscillating objects,

occlusions or camouflage, bootstrapping, foreground aperture, sleeping foreground or persistent

objects, shadows, and reflections (Cristani et al., 2010).

A new generation of algorithms based on machine learning techniques is addressing the task of

detecting people in static or still images. These methods have received a great deal of attention due

to their performance level and the independence of the segmentation processes, which is sensitive to

lighting changes. This significant progress in people detection is due in part to the use of powerful

machine learning models, new more informative visual features, and part-based models which cope

with the objects variability (Viola et al., 2005; Dalal & Triggs, 2005; Felzenszwalb et al., 2009;

Girshick et al., 2014; Dean et al., 2013). In general, these algorithms use a sliding-window approach

2



to sample the input image at several scales. Then every window is represented by a set of features

or measurements coded as a vector that describes shape, color, texture, etc. Afterwards, windows

are classified according to an object target class using a previously learned model. Finally, a non-

maximal suppression step avoids the multiple detections. The most successful detection algorithms

use local descriptors in order to extract global and local spatial information from each instance and

to cope better with inter-class variability (Ojala et al., 2000; Lowe, 2004; Mikolajczyk & Schmid,

2004; Dalal & Triggs, 2005; Lazebnik et al., 2006; Bosch et al., 2007). Though most of this

algorithms have a high computational demand during training, some allow for real-time detection

and can be used through frames in video sequences. As stated in Dollar et al. (2011), although there

have been some detection improvements the overall performance is still poor.

A common denominator of those techniques is that they mainly rely on statistical learning

methods that exploit image-intensity information to capture object appearance features. Their goal

is to uncover visual spaces where visual similarities carry enough information to achieve robust vi-

sual recognition. As a relevant limitation, appearance-based approaches do not incorporate relevant

geometric information that can provide useful and relevant spatial cues such as the real size of the

object to be detected, depth, and spatial likely appearance location. There are some notable excep-

tions of approaches that combine detection based on machine learning algorithm with additional

spatial information about the objects in order to discard false detections (Helmer & Lowe, 2010;

Salas & Tomasi, 2011; Spinello & Arras, 2011; Espinace et al., 2013). Results show that there have

been improvements in regard to recovering the spatial information lost during image acquisition.

Though they do have some advantages, these methods are focused on mobile robots and require

supplementary hardware such as stereo and depth cameras to recover these cues. The large num-

ber of cameras installed today makes it possible to obtain information from different viewpoints

simultaneously and to exploit the same spatial cues, establishing relationships across the views in

a camera system. This provides opportunities to combine and integrate information from various

visual sources.

Detection using one camera is suitable when there is mild occlusion, but in situation of heavy

occlusion the relationships between multiple views contributes to identify targets across views when

the visual appearance alone is insufficient (Mittal & Davis, 2003; Khan & Shah, 2006; Eshel &

Moses, 2010; Liem & Gavrila, 2013; M. Song et al., 2013). Some researchers have proposed
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using geometric techniques to establish relationships across views in a camera network, providing

efficient ways to combine and integrate this information (Szeliski, 2010). Detection in multiple

camera configuration present two main challenges. On the one hand, there are practical constraints

related to the establishment of correspondence between observations when the appearance of the

target object change drastically among viewpoints. And on the other hand, difficulties arise in

non-overlapped configurations when similar appearances are simultaneously present in the camera

network (M. Song et al., 2013).

Although there are well-established detection approaches based on machine learning tech-

niques, the current methods still present several drawbacks that must be overcome. On the one

hand, we observe that in general single view approaches to detecting people or objects mainly i) use

a sliding-window at various scales to compensate scale changes of the object target class in images

that produces false positives due to hallucinations at several scales; ii) do not take into account the

use of additional cameras to improve the overall detection; and iii) do not take into account useful

3D information such as real sizes of people or objects, and the positions in which the target object

classes are likely to be found at the scene. On the other hand, wide baseline stereo systems present

limitations related to correspondence matching in cases in which the same object has various poses

or variations simultaneously. We address some of these issues by proposing an approach based on

the idea of enhancing the total amount of information available in a camera system, and using the

advantages from machine learning and multiple view geometry.

1.1. Hypothesis

Computer vision applications based on multiple views use geometric rules to determine the

structure of the scene. This set of rules allow us to establish relationships among the elements in

each view of the camera system. It can be also generated using prior knowledge from the vision

system itself such as its projection matrices and a calibration model, or they can also be estimated

using landmarks from the scene. However in this last case, the metric information cannot not be

directly recovered (Hartley & Zisserman, 2003; Szeliski, 2010).

A calibration model provides a geometric relationship between the world coordinates and the

images, and relationships among cameras in a multiple views configuration. For example in the

detection problem, this geometric structure would allows us to filter out false detections present
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in one view when detections are not consistent in the remaining views. Correspondence analysis

increases total detection performance through collaboration among all of the cameras in the vision

system. In addition, knowledge of the geometric structure of the scene and the objects within it can

add useful information related to their actual size and most likely location. Using this knowledge,

we can exclude people or objects outside of a specified area and eliminate detections that have been

included by mistake when the 2D detector tries to predict the real size of the objects. Unfortunately,

if there are significant differences in appearance between one viewpoint and the next, matching

algorithms cannot guarantee that correspondence will be established correctly.

We propose a method for detecting people in a calibrated multiple view system in which a

volume element is tailored to size as the object target class to be detected. We call this volume a

sliding-box, and we define it as a 3D virtual volume element B as shown in Fig.1.2. This box passes

through the three directions (X,Y, Z) of the spatial domain in the scene where people are likely

to appear. Our approach is designed to inspect the corresponding portion of the images where this

volume has projections according to its size, Fig. 1.2. This method is based on the standard sliding-

window approach in which a detection window runs through an input image in the 2D domain, with

both horizontal and vertical direction at various scales (Viola & Jones, 2004; Dalal & Triggs, 2005).

Instead, we propose a sliding-box in 3D at fixed size. This allow us to avoid searching at various

scales and combine information in a multiple views camera system. However, the same idea could

be used in a single 2D detector to guide the scale changes. Thus, our hypothesis is as follows:

The use of a sliding-box allows us to generate a set of potential candidates according to the

physical dimensions and positions of the people in the image. In doing so, it allows information

from various viewpoints to be combined using correspondent regions. These properties make it

possible to increase the effectiveness of detection relative to the single view detection described in

the state-of-the-art with and without the use of multiple views.

1.2. Objectives

This section presents the general and specific objectives of the study. We will first present the

general objective. Specific objectives will be described throughout the study.
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Figure 1.2. Diagram of the proposed approach for detecting people in a multiple view
configuration. Our approach requires N calibrated cameras C1, . . . , CN . In this example
the sliding-box B runs through various positions (X,Y, Z), scanning the entire space S
of the scene in which heads could be located. The sliding-box B is projected from 3D
space onto images I1, . . . , IN , retrieving N detection windows Wi1, . . . ,WiN . Using 3D
information allows us to directly scan the image at a suitable scale for human heads.

1.2.1. General Objective

According to the hypothesis, the main objective of this thesis is to develop a framework for

detecting people in images of indoor environments that allows for the information coming from

various viewpoints be combined without depending on correspondence establishing among detec-

tions, enriching the information used by a detection algorithm. The results of this framework is the

increase of the detection performance.

1.2.2. Specific Objectives

In order to achieve our main objective, we must meet the specific objectives listed below:

• build a multiple view environment for testing in order to imitate indoor conditions,
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• build a multiple view dataset for training and testing classifiers according to the environ-

ment,

• investigate and design algorithms for people detection in single and multiple views,

• develop an algorithm for detecting people in video images of indoor environments based

on the simultaneous projection of a virtual volume which allows us to include spatial and

appearance information during the detection process; and,

• extend the proposed approach to other detection problems.

1.3. Summary of Contributions

The proposed approach offers several promising advantages in object detection, including the

following three main contributions of this thesis:

(i) A method that uses geometric information to improve the traditional sliding-window ap-

proach applied to current appearance-based detectors, but a sliding box approach that

offers the following advantages: a) we reduce correspondence problem at level of detec-

tion object by projecting the sliding-box onto multiple views simultaneously, instead of

using matching methods based on low-level pixel or interest points; b) we include useful

3D cues that allow us to focus in the relevant parts of the 3D world in order to filter false

candidates; and c) we guide the search for people by moving the sliding-box within a 3D

space of interest, avoid searching in places where people must not be detected.

(ii) A classification approach based on combining information from multiple views. This

allows us to enrich the data used to train the models. Thus, we are able to include all of

the visual information from different visual sources in a single model.

(iii) Verification of the relevance of the previous ideas for the case of people counting using

head detection showing that the proposed approach provides a substantial increase in

recognition performance with respect to alternative state-of-the-art techniques.

1.4. Document Organization

This study is divided into six main chapters and three appendixes with publications related to

this research. The contents of each chapter are described below:
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• Chapter 1 presents the motivations for this work, an overview of our approach, and a

summary of the contributions of our work.

• Chapter 2 describes the theoretical foundations needed to develop the process described

and includes a review of previous studies related to people detection in single and multi-

ple views.

• Chapter 3 provides a detailed discussion of the proposed method for detecting people

using multiple views.

• Chapter 4 describes the methodology used to verify our hypothesis and provides a dis-

cussion of its implementation.

• Chapter 5 presents experimental analysis of this work, which was applied to people de-

tection in images of indoor environments.

• Chapter 6 presents conclusions related to the work developed in relation to the specific

objectives of this study and discusses areas that may be explored in the future.

• Appendix A presents a concept and its results to apply our approach on flaws classifica-

tion to aluminum die casting. This text has been accepted for publication as an article in

INSIGHT journal.

• Appendix B describes a preliminary approach to modeling human heads. This results has

been accepted for publication as an article in the Chilean Workshop of Pattern Recogni-

tion (CWPR, 2012).

• Finally, Appendix C presents an summary of the results and conclusions included in this

research. This text has been submitted to the journal of Machine Vision and Applications.
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Chapter 2. BACKGROUND

Modern visual object detection systems are based on machine learning algorithms that analyzes

images and generate outputs at locations where the confidence or probability to the target object

classes is sufficiently high. These machine learning algorithms generally present four stages: i)

collection of data from the environment, ii) feature extraction, iii) selection of the most relevant

features to the process, and iv) classification. The end result of this process is the detection of the

object (Szeliski, 2010; Murphy, 2012).

Features and the strategy used to extract these measures plays an important role in the final

performance of the algorithm. Both the strategy and the type of features determine the design of

the learning algorithm. Researchers have proposed novel and powerful learning algorithms that can

deal successfully with the high dimensional descriptors currently used in object detection. However,

detection based on visual information can be improved using geometric information about the scene

and the object present in. New approaches include spatial information lost during image acquisition

that allows them to eliminate noisy detections. These studies have paved the way for further anal-

ysis conducted in an effort to provide the detection system with these spatial cues. We review the

main theoretical aspects of this study in the following four sections: image features, classification

methods, people detection, and discussion.

2.1. Image Features

Raw images are arrays of pixels that contain light information of a scene picked up by sen-

sor in a digital camera. This large set of data require to be pre-processed in order to transform

the visual information into a new space of variables less redundant and more informative than the

image domain. The measures used for compressing the visual information are commonly called fea-

tures. These features need to be discriminative to allow for making the distinction between different

classes, while providing invariance to light changes, noise and differences in viewpoint (Szeliski,

2010; Nixon & Aguado, 2012). Advanced detection algorithms based on machine learning use

local image descriptors to cope better with objects variation. Further, several kinds of strategies

can be used to sample the image and represent these image descriptors. Without loss of generality,

we will divide those strategies into two groups based on how they sample the input image: sparse

local sampling, dense sampling of image regions. In addition, dense sampling can also be divided
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(a) (b)

Figure 2.1. Examples of image sampling methods. (a) sparse local sampling: image re-
gions are selected using a salient region detector. (b) dense representation: the image is
sampled using a dense grid.

into two categories: sampling using multi-scale pyramid decomposition and sampling using spatial

pyramidal decomposition.

reduce the dimensionality and compress the redundant data into a compact representation called

features. After the feature extraction,

2.1.1. Sparse Local Sampling

Sparse sampling takes relevant local image regions from the image, as shown in Fig. 2.1a.

These salient regions are selected using either key point detectors or parts detectors. The key point

detectors select more informative local regions, which are more stable, repeatable and reliable.

These factors directly impact the overall detector performance. The most relevant key point detec-

tors are: Difference of Gaussians (DoG) (Lowe, 2004), invariant Harris-Laplace (Mikolajczyk &

Schmid, 2004), Maximally Stable Extremal Regions (MSER) (Matas et al., 2004), and affine in-

variant salient regions (Kadir et al., 2004). In general, these keypoints perform well in problems in

terms of establishing matches in order to compose image panoramas. However, saliency detectors

work best in object classification (Mikolajczyk & Schmid, 2005; Savarese & Fei-Fei, 2007).

Once the regions have been selected, descriptors are computed over them. The most influential

descriptor for sparse representation are the Scale Invariant Feature Transformation (SIFT) (Lowe,

2004) and the Speeded-Up Robust Feature (SURF) (Bay et al., 2008). The SIFT descriptor contains

a set orientation histogram weighted on gradient magnitude and the region scale. These gradients are
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computed over rectangular grids. The SURF descriptor goes further and improve some features of

SIFT descriptor that let it to speed-up the computation performance. This algorithm approximates

the DoG using a set of box filters based on a sum of 2D Haar wavelet responses, allowing that

the convolution to be computed by summations over integral images as proposed Viola and Jones

(2001).

In 2010, Calonder et al. use the same idea of representing salient regions by a descriptor and

propose a binary string descriptor called BRIEF. This method is able to directly compute binary

strings from image patches avoiding to calculate the full descriptor before further processing. It

also includes a Gaussian smoothing that reduce the effect of noise sensitivity in complex scenes.

The algorithm computes the binary string descriptor via the intensity comparison of pixel-pairs.

Results show that BRIEF easily outperforms other fast descriptors such as SURF in terms of speed,

and it also outperforms them in terms of recognition rate in many benchmark datasets. Then, Rublee

et al. (2011) propose ORB that is a very fast binary descriptor based on the BRIEF descriptor. The

method produce a descriptor invariant to rotation and resistant to noise. ORB finds potential salient

point locations on an image pyramid using the FAST edge detector (Rosten & Drummond, 2006)

and picks the top set of points as salient points applying a Harris corner measure. The descriptor

improves BRIEF comparing the intensity of patch-pair to form the binary string vector. Results

demonstrate its improvements in performance and efficiency relative to other features. However,

authors do not adequately address the scale invariance of the pyramid and they also do not explore

per keypoint scale.

In the same year, Leutenegger et al. (2011) propose the BRISK descriptor. This method han-

dles the problem of detecting, describing and matching image keypoints for cases without sufficient

priori knowledge about the scene or viewpoint. Similar to ORB, this algorithm detect the interest

regions using the FAST edge detector, but instead it uses a novel sampling pattern. It consists of

sample points equally distributed on concentric circles centered around the salient point. Then,

the algorithm determines orientation by computing local intensity gradients. Finally, the binary

descriptor is a pairwise comparison of intensities. Experiments show this method offers a dra-

matically faster alternative at comparable matching performance than state-of-art interest region

descriptors. Recently, Alahi et al. (2012) propose a novel descriptor based on human retina sys-

tem, called FREAK. This method introduces a sampling retinal pattern that samples pairs of pixels
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and then compares their intensities. The descriptor outperforms state-of-the-art keypoint descrip-

tors while remaining simple faster with lower memory load which make it an excellent choice for

mobile applications.

Most of these region descriptors have been recently compared in Z. Song and Klette (2013)

and Wu and Lew (2013). Both evaluations agree that there is no a better interest region detector in

all aspects, but that are dependent on the task. Wu and Lew (2013) reports that the FAST detector

present highest repeatability score than other detectors, moreover and it had the least detection time

cost per point. Their results also show that SIFT, BRISK, and FREAK are the best affine invariant

descriptors, and the time complex showed the binary descriptors provide a very efficient description

and matching. However, Z. Song and Klette (2013) report that SIFT is the best robustness descriptor

with respect to rotation and scale changes, but its time issue has been confirmed again. In general,

sparse key point approaches are characterized by their compact representation, i.e. there are fewer

regions than image pixels. However, the key point detection algorithms do not guarantee repeata-

bility for general object classification due to these interest regions are image dependent. This is

a limitation in object categorization if the detector does not fire within the region occupied by the

object. We defer the reader to these surveys for specific details about the evaluations.

2.1.2. Dense Sampling

This strategy proposes extracting features densely on the image or detection window and bind-

ing those features into a high-dimensional descriptor as shown in Fig.2.1b. The image is sampled

using a grid to define local regions. Each region is represented using the intensity images, gradi-

ents or another appearance representation. The grid elements may be overlapping or not. Current

algorithms use histograms of the computed feature to represent each local region. The local dense

representation allows us to code visual features simultaneously with their location within the detec-

tion window. In addition, these representations avoid repeatability problems because they do not

depend on search heuristics to find relevant regions. The most successful algorithms for dense rep-

resentation are Haar wavelet coefficients (Papageorgiou & Poggio, 2000), Histogram of the oriented

Gradients (HOG) (Dalal & Triggs, 2005), and Local Binary Patterns (LPB) (Ojala et al., 2000). In

general, dense regular grid instead of interest points have shown work better for classification (Fei-

Fei & Perona, 2005). In addition, this sampling method works better for discriminative classifiers

12



that can handle in an optimal way high dimensional feature vectors, such as Support Vector Ma-

chines (SVM) , Artificial Neural Networks (ANN) or boosting strategies (Tuzel et al., 2008). There

are two variations related to the use of dense sampling that we describe below: multi-scale pyramid

decomposition and spatial pyramidal decomposition.

Multi-scale pyramid decomposition comes from multi-resolution analysis using wavelet and

space-scale analysis (Lindeberg, 1993). This sampling technique is popular in multi-scale analysis,

where the objective is to extract features at various levels of detail by downsampling and smoothing

the input image, as shown in Fig. 2.2a. In 2000, Papageorgiou and Poggio proposed a multi-scale

detector with a set of wavelet features computed at fixed scales to represent samples of people,

cars, and faces. The multi-scale detector uses the trained model and the same downsampling and

smoothing procedure on a set of test images. In addition of the method, the authors submit the MIT

dataset showing good performance of this method. Then, Dalal and Triggs (2005) introduce HOG

feature that consists of a dense grid of gradient histograms with trilinear interpolation and local

normalization. This feature shares properties with SIFT. The method uses a SVM with polynomial

kernel to classify the multi-scaled windows sets. Results show an excellent performance level on

the MIT pedestrian database and also on their new database, the INRIA Person. In 2009, Wang

et al. propose the combination of the HOG feature and Local Binary Patterns (LBP). The LBP

descriptor are invariant to strict monotonic changes in intensity, making this feature robust against

changes in lighting. This combination aims to use the best from both features, while capturing shape

and texture information. Maji et al. (2008) propose multi-scale histogram of oriented edge energy

feature, similar to HOG, but with a simpler design and lower dimensionality. This method exploits

the additivity property of the intersection kernel, in which the resulting decision function can be

independently computed for each dimension. Results show on the one hand, an improvement in

running time that is logarithmic in the number of support vectors, and on the other hand it produces

classification rates significantly better than the linear SVM. In 2009, Dollar et al. propose using

sums of a collection of low-level feature channels such as the CIELUV color space, gradients, and

vote strengths for different HOG bins. The sums are computed using the integral image technique

in order to accelerate the computation times while producing state-of-the-art results. Tuzel et al.

(2008) introduce the covariance matrices descriptor as a way to combine different localized low-

level features such as, intensity and gradients. They also use Riemannian manifolds, showing a

substantial improvement over the INRIA Person dataset. In 2010, Felzenszwalb et al. use a similar
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feature approach to Dalal and Triggs (2005) but representing the objects by a multi-resolution HOG

over a deformable part-based model (DPM). Afterwards, Park et al. (2010) add scale as another

latent variable to the DPM, using models specialized for the respective resolution ranges and a

fixed HOG-like template at low resolutions. Results of using these sets of multi-resolution features

show improvements in detection of large and small pedestrians. Recently, Dollar et al. (2014)

improve the running time to compute a set of multi-resolution features that is the bottleneck of

many modern detectors. They use an extrapolation method that is inexpensive as compared to the

feature computation. Their results show that using this approach the DPM methods are completely

suitable for real-time detector with fine sampled pyramids.

The pyramidal decomposition involves extracting features on smaller subregions of the image

or detection window (Lazebnik et al., 2006; Bosch et al., 2007) as shown in Fig.2.2b. Unlike the

dense representation, these subregions are generated by successively dividing each subregion until a

maximum number of levels is reached. Thus, the use of the descriptor at various scales make it simi-

lar to the multi-scale pyramid decomposition. The spatial pyramidal decomposition aims to achieve

both a global and local representation of the image. All features are collected in a high-dimensional

vector. However, the decomposition levels should be limited in order to prevent over-fitting. In

2006, Lazebnik et al. introduce a simple and novel method for recognizing scene categories based

on a spatial pyramid sampling. This technique consists in to partitionate the image into increasingly

fine sub-regions and computing histograms of local features inside each sub-region. Aurthors use a

SIFT-like feature to describe these sub-regions and finally form a codebook based on the k-means

clustering algorithm. Classification results show that this technique increases the performances

for the datasets described in state-of-art methods. In the same way, Bosch et al. (2007) propose a

method to classify images according to the object categories that they contain. They use a descriptor

that represents local image shape and its spatial layout. These allows for the shape correspondence

between two images can be measured by the distance between their descriptors by a spatial pyramid

kernel. Their results significantly improves classification performance. In 2009, Yang et al. present

a novel strategy based on sparse coding and a multi-scale spatial max pooling to generate discrim-

inative codebooks from a spatial pyramids sampling. This approach reduces the complexity of

SVMs in training and in testing. Another novelty factor is the use of sparse coding with appearance

descriptors like SIFT features. Classification results show that this approach always significantly

outperforms the linear with Spatial Pyramid Matching kernel on histograms. Recently, C. Zhang et
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(a) (b)

Figure 2.2. Examples of methods for sampling images. (a) Multi-scale pyramid decompo-
sition sampling strategy: the image is downsampled and smoothed at every level and then
sampled at smaller subregions. (b) Spatial pyramidal decomposition strategy: the image is
sampled at smaller subregions by dividing the image until a maximum number of levels is
achieved.

al. (2013) propose an image classification approach based on a spatial pyramid robust sparse cod-

ing technique. This sparse coding search a the maximum likelihood estimation by optimizing over

the codebook and the feature coding parameters. This optimization allows the algorithm to filter

out more outliers than traditional sparse coding methods. The visual codebooks formed using this

sampling strategy generate more discriminative codebooks helps to improve the image classification

performance. Results demonstrate the effectiveness of this method on the Scene 15 dataset and the

Caltech 256 dataset.

2.2. Classification Methods

Building classification models is a crucial step in machine learning methods. These models

are required in order to determine whether a set of features belongs to a specific class. There are

two approaches to generating those models: discriminative and generative. Most of the detection

applications based on sliding windows have been implemented using discriminative models due to

their high level of performance, embedded ability to select relevant features, and ease of use. The

most popular discriminative models are Support Vector Machines and Boosting.

Part of the appeal for Support Vector Machine is that non-linear decision boundaries can be

learnt using the so called the kernel trick. Though this classification algorithm have faster training

speed, the runtime complexity of a non linear SVM classifier is high. Boosted decision trees on the
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other hand have faster classification speed but are significantly slower to train and the complexity of

training can grow exponentially with the number of classes. Thus, linear kernel SVMs have become

popular for real-time applications as they enjoy both faster training and classification speeds, with

significantly less memory requirements than non-linear kernels due to the compact representation

of the decision function (Maji et al., 2008).

2.2.1. Support Vectors Machines

Support Vector Machines algorithm (SVM) is a discriminative model that finds the separating

hyperplane that maximizes the margin between two classes (Cortes & Vapnik, 1995). The output

of the SVM does not provide posterior probabilities, however it can be calculated using the Platt

method (Platt, 1999). SVM works either on the input features or a kernelized version of them.

Let the training dataset comprise N input feature vectors x1, . . . , xN and their labels y1, . . . , yN ∈
{−1, 1}. The SVM maximize the objective function:

min
w,ξ,b

{
1

2
‖w‖2 + C

N∑

i=1

ξi

}

subject to:

yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0,

where w is the normal vector to the hyperplane, ξi is the slack variable which measures the degree of

misclassification of the feature vector xi, C is a cost constant to increase the penalization of errors,

and xi is the instance i in the train dataset. An important property of SVM is that the determination

of the model parameters corresponds to a convex optimization problem. It ensures that any local

solution is also a global optimum (Bishop et al., 2006). There are various kinds of kernels such

as the Radial-basis kernel (RBF), Chi-square kernel, intersection kernels, etc. The selection of the

kernel impacts the running time and the performance of the classifier. Previous studies have mainly

used linear kernels because they perform better with large and sparse descriptors such as HOG and

LBP (Dalal & Triggs, 2005; Felzenszwalb et al., 2009; Yang et al., 2009).

2.2.2. Boosting Classifiers

This is also a discriminative framework based on the idea of combining weak learners to get a

strong classifier (Schapire, 1990). In 1995, Freund and Schapire proposed AdaBoost, which is an
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adaptive version of boosting in which misclassified instances increase their weight during training.

There are several versions of the boosting algorithm which were designed to deal with different

problems and yield several kinds of outputs. In general, this framework is used to train cascades of

weak classifiers. Despite the slow training time of the cascades, they represent an improvement in

the run-time of the final detector.

Specifically, an AdaBoost algorithm builds a strong classifier as a linear combination of weak

classifiers.

f(x) =

T∑

t=1

αtht(x)

where T is the number of training rounds or iterations; h(t) is the weak classifier or can be thought

of as features; and αt is the weight of the feature t in the linear combination. The final or the strong

classifier is defined as

H(x) = sign

(
T∑

t=1

αtht(x)

)

2.3. People Detection

Single view approaches have received special attention from researchers as potentially useful

for solving the people detection problem. Although there are multiple view approaches, most are

still based on background subtraction frameworks with the inherent drawbacks of those approaches,

as we discussed in Chapter 1. New methods include 3D cues, however, most of them work on single

view camera configuration or require additional hardware. A specific analysis of each framework is

provided in the next three subsections.

2.3.1. Single View Approaches

Significant progress has been reported in the use of machine learning in people detection. As

we note in our literature review, there is a main group of single view approaches which use robust

machine learning models and advanced features such as part-based models to cope with object

variations or poses. In 2000, Papageorgiou and Poggio propose a general framework of object

detection, including people, which use sliding windows, Haar wavelet features and a SVM model.
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Then, Viola and Jones (2001) demonstrate that is possible to achieve real-time object detection

by introducing integral images, a focus of attention mechanism. These same authors expand this

work by including patterns of motion to improve people detection (Viola et al., 2005). In 2005,

Dalal and Triggs introduce the histogram of oriented gradient features (HOG) to represent object

categories. The method also uses a sliding-window approach to detect object instances, but in this

case it was slower than the model used by Viola et al. (2005). Using the same method, Dalal

et al. extend their work for detecting standing and moving people in videos based on orientated

histograms of differential optical flow (HOF) (Dalal et al., 2006). They combine these motion-based

descriptors with their HOG appearance descriptors, removing the false positive and increasing the

overall detection performance in the state-of-art video datasets.

In 2007, Sabzmeydani and Mori propose a set of mid-level features to improve classification.

The method uses a set of AdaBoost classifiers trained with regions of low-level features on the de-

tection window to built a set of mid-level features that capture more information than the low-level

feature sets. Then, Tuzel et al. (2008) present an algorithm to detect pedestrians in still images based

on covariance descriptors (Porikli & Tuzel, 2006; Tuzel et al., 2006) and Riemannian manifolds.

The descriptors form a d-dimensional nonsingular covariance matrices represented as a connected

Riemannian manifold. Then, the classifier uses the geometry of the space to discriminate points

lying on a the manifold. This approach can be combined with any boosting method. This algorithm

achieves remarkable detection rates on the INRIA and DaimlerChrysler pedestrian data sets than

state-of-the-art methods. In 2009, Wang et al. propose a people detection approach based on the

combination of the HOG feature and Local Binary Patterns (LBP). The combination of both fea-

tures allows the algorithm to capture the shape and the texture information simultaneously. This

method also allow the detector to handle with occlusion using the SVM responses to infer the visi-

ble blocks in each window. The SVM score contributions of each block lets the algorithm to check

if the contribution of the blocks is similar inside the detector window. When the SVM scores are

inconsistent across the detector window, the algorithm employs a partial model trained using the

portion of the window that is assumed to be visible. Schwartz et al. (2009) continues the idea of

combining different types of features into high-dimensional feature vectors, over 170,000 dimen-

sions. They propose pedestrian detector based on Partial Least Square Regression (PLSR) to reduce

the dimensionality of the feature space. This technique allows any classifier to handle the problem

of low amount of high-dimensional training data. The PLSR analysis is an efficient dimensionality
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reduction technique that projects the data onto a lower dimensional subspace and preserves discrim-

inative information. Results show that this method outperform state-of-the-art method on pedestrian

datasets such as INRIA, DaimlerChrysler, and the ETHZ.

In the same year, Felzenszwalb et al. (2009) develop an algorithm based on combinations of

multi-scale deformable part models using new methods for discriminative training with partially

labeled data and cascade object detection. During training the algorithm uses a multiple instance

learning scheme which applies a bootstrap strategy to select the best centered instances around the

labeled bounding boxes in the train dataset. In 2014, Dollar et al. present a multiscale pedestrian

detector for real time detection. This method attempts to solve the computational bottleneck of

many modern detectors during the features extraction at every scale of a finely- sampled image

pyramid. The algorithm approximates feature responses from nearby scales computed at a single

scale. This allows the detector to accelerate the sampling of the image pyramid. The approximation

yields a speedup over competing methods with only a minor loss in detection accuracy of about

1-2% on dataset described in the state-of-the-art. Recently, Pedersoli et al. (2014) propose a method

focused on accelerate detection using computationally expensive hierarchical multiresolution part-

based model (Felzenszwalb et al., 2009). The algorithm uses a coarse- to-fine strategy in order to

speed up the search for pedestrians in an image. The method also includes reasoning about small

objects generally missed by other detectors comparing scores of small objects where high-resolution

features are not available with full-resolution detections. The algorithm runs over a graphics pro-

cessing unit (GPU) to accelerate the feature computation. Results show that the method improves

the running time of the part-based model in the context of driving assistance.

Despite the success of these detection approaches, they try in general to solve people detection

problem using single view information and disregard spatial cues such as size and likely location. In

some cases, the recall is degraded in order to increase precision. In 2011, Dollar et al. evaluate a set

of pedestrian detectors trained in the same conditions and using the same datasets. They conclude

that even though the algorithms have improved through the use of strong and sophisticated models,

overall performance is still poor.

2.3.2. Multiple View Approaches

Multiple view object detection plays an important role in understanding and analyzing scenes

captured by video cameras used today for wide area video surveillance applications. There are
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challenging problems such as simple detection, tracking, camera location and topology discovery,

and data fusion. Distinct issues arise according to the overlapping degree among the cameras. The

overlapping multiple view camera systems are used in general for filtering disambiguations among

the cameras (Aghajan & Cavallaro, 2009). Most of the earlier works related to people detection in

overlapping multiple view approaches use background subtraction and tracking techniques to merge

the subtracted images onto ground plane with overlapping fields of view. In 2006, Kim and Davis

propose a multiple view people detector that uses the foreground blobs to delimit an occupied area

on ground-plane homography. Then, a multiple view tracking algorithm discards false hypotheses

along the sequence using people’s appearance. The same strategy can be used to track basketball

players using their jersey numbers (Delannay et al., 2009). The method uses this feature for tracking

instead of appearance and estimate the bounding-box projection according to the subtracted blobs.

Farhadi and Tabrizi (2008) present a method for activities recognition using multiple view. The

algorithm builds models in terms of features that are stable at different viewpoints, but still discrim-

inative. Transferring the activity models between views avoids for obtaining several examples of

each activity in each view, impracticable in many cases. Although the overall results for activity

recognition are still low, this works demonstrate the gain of using multiple views in this process. In

2010, Eshel and Moses, a ground-plane homography at various hypothetical head levels defines an

occupancy map. A tracking algorithm uses feature location and position of the head projected to the

floor. A total number of eight cameras with top-view alignment yield the best performance. A year

later, Han et al. (2011) propose a tracking method for fusing information from multiple sensors.

The algorithm estimates the current tracker state by using a mixture of sequential Bayesian filters

and changing dynamically different level of contribution of each camera to estimate a more reliable

posterior. Results show that this tracking method outperform other sensor fusion techniques based

on probabilistic tracking such as the Kalman Filter and its variants, and particle filter.

In 2012, Yildiz and Akgul propose a method for multi-camera multi-person tracking. The

method uses constraints from the epipolar and projective geometries. As in Han et al. (2011), this

algorithm computes the projection of a probability mask of the object positions on the ground. It also

includes a voting method based on the employment of the integral images to make this computation

very fast. A tracking algorithm based on methods like the Kalman Filter locate people along the

time. One of the drawbacks is that the algorithm turns inaccurate when time intervals are too long.

This drawback is also present in the previous methods on multi-camera people tracking. Then,
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Evans et al. (2013) present an people detection algorithm in multiple views based on projecting

foreground mask into a common coordinate system. This method attempts to handle suppression of

false detections and automatically estimate the size of the objects under tracking. The preliminary

results show uses of this method in situations of mixed pedestrians and vehicles. Recently, Liem and

Gavrila (2014) introduce a method to multi-person tracking in overlapping cameras configurations.

The method uses two-step that jointly estimates the person position and the track assignment and

keeps this assignation problem tractable. During detection the algorithm evaluates the similarity

between a person at a particular position. This information lets to active a track based on cues such

as appearance and motion. Results demonstrate that the algorithm outperforms the state-of-the-art

on four challenging multi-person datasets.

In general these methods rely on a segmentation procedure and a tracking algorithm for detec-

tion. In addition, these methods must infer the size instead of searching for it. Heads detection is a

special case of people detection. Important conclusions from works of people detections claims that

detecting the head helps avoid occlusions in crowded environments due to head is the least occluded

part of the body during this conditions, and it is also less deformable than the rest of the body. (Dalal

& Triggs, 2005; Eshel & Moses, 2010; Ali & Dailey, 2012). There are examples of heads detectors

incorporated as part-based detector into more complex detections systems in order helps to find the

complete body or the other body parts, and improve the detection (Zeng & Ma, 2010; Ali & Dailey,

2012; Xie et al., 2012; Nghiem et al., 2012; Chang et al., 2013; Hayashi et al., 2013). Our method

uses this principle and is focused on head detection without the use of tracking.

2.3.3. Related Approaches for Detection

In general, the 3D recognition using 2D images is a difficult task due to the infinite number

of viewpoints and varied lighting conditions (Poggio & Edelman, 1990; Ikeuchi & Kanade, 1988).

Initial attempts to represent 3D objects were based on the psycho-physic premise that a 3D struc-

ture can explain all of the changes in appearance that arise from viewpoint changes or aspects of

the object (Mundy, 2006). In 1979, Koenderink and Doorn use the aspect-graph to establish the

relationship to the topological appearance of the object. A node of the graph represents adjacent

object views, and an edge rises from the transition in the graph that relates to the vertices, edges and

faces of the projected object (Cyr & Kimia, 2004), as is shown in Fig. 2.3a. Following the idea of

appearances, Ikeuchi and Kanade (1988) proposed an object recognition system based on grouping

21



views or aspects using similar features. The algorithm extracts features such as object faces and

edges under various viewer directions sampled on Gaussian sphere. This features describe each

of the object aspects. Then, the algorithm uses the features to group similar aspects and build an

interpretation tree which is in turn used for recognition. First, this tree classifies the unknown view

into the correct aspect. Second, it determines the actual position of the unknown view in that aspect.

The final performance depends on the chosen features set.

In 1998, Pontil and Verri used aspects to represent and classify objects with an SVM classifier.

Each object class is represented by a set of aspects from various viewpoints. A set of 36 images

per class is used to train the SVM classifier, which learns the margins using one-vs-one strategy

to separate the selected classes. During the test, the SVM model evaluates the class for a new

and unseen instance from a random viewpoint. The recognition is independent of the object pose.

In 2004, Cyr and Kimia proposed a method for recognizing 3D objects from 2D images using an

aspect-graph structure and a shape similarity measure. A viewing sphere is sampled at regular

interval of five degrees as shown in Fig.2.3b. Next, an iterative procedure combines views into

aspects with a prototype representing each aspect. During recognition, a new instance is compared

against the set of prototypes using the same dissimilarity measure. Follow this idea, T.-M. Su et al.

(2006) present a method for recognizing 3D objects from 2D images based on Fourier descriptors of

sampled points over the object contour. The algorithm computes point-to-point lengths as features

and similarity metrics to establish the canonic views as the aspects. The experiments using human

postures show the effectiveness the method to represent rigid and non-rigid objects. However, the

computation time required to run the method is high. Toshev et al. (n.d.) propose a method for

recognizing moving objects in videos based on silhouette features in order to make the method

independent of the objects appearance. The algorithm extracts the object silhouettes from video by

segmentation of successive frames. Finally, it matches this silhouettes to the 3D model silhouettes in

a synthetic dataset. The method achieves promising experimental results using purely shape-based

matching scheme driven by synthetic 3D models.

Follow the idea of aspect-graphs, Ulrich et al. (2012) present an 3D object recognition approach

based on hierarchical model generated using the only the geometrical information of a 3D CAD

models of the objects. The algorithm generates the hierarchical model projecting a 3D CAD model

on images and taking into account the scale-space effects. Finally, it refines the 3D pose using
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Figure 2.3. Examples of an aspect-graph. (a) Two views or aspects of a polyhedral object.
These aspects correspond to projected faces, which form a graph according with their ad-
jacency, i.e., faces 1, 2, and 4 in the Aspect 1 appear connected because they are adjacent.
(b) The viewing sphere sampled at regular intervals. During sampling, images are captured
every five degrees. An iterative procedure combines views into aspects using prototypes
which represent each aspect.

a least-squares adjustment that minimizes geometric distances in the image. Due to computation

efficiency, authors must limit the pose range depending on the application. The major limitation

is that the pose range should not contain any degenerated views of the object, like a side view.

Recently, Atmosukarto and Shapiro (2013) propose a object retrieval method based on selecting the

salient 2D views to describe 3D objects. This method uses a silhouette-based similarity measures

to discriminate among different synthetic 3D objects. The algorithm computes this measure over

multiple salient points on the silhouette of the object. Retrieval experiments show that the use of

salient views are promising.

A similar way to 3D object recognition consists in to perform the matching of invariant features.

However, this simple strategy may fail when objects present significant intra-class variation. In

Rothganger et al. (2006), a novel representation for 3D objects is presented based on local affine-

invariant image descriptors and multiple view spatial constraints. The algorithm exploits the idea

that smooth surfaces are always locally planar. Thus, the matching and recognition are possible

using photometric and geometric consistency constraints. A disadvantage of this approach is its

poor performance on texture images. In Ferrari et al. (2006), a similar method is presented based on

the relationships between multiple model views. It enforces global geometric constraints in order

to achieve 3D reconstruction from multiple views for recognizing single objects. A disadvantage is
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its poor performance on non-textured images and uniform objects. There are also other approaches

to 3D object category classification which use 3D data such as points, meshes and CAD models.

In these methods, the reconstructed 3D object serves as a query and is matched against the shape

of a collection of 3D objects. Some approaches are: multiple view range data and CAD model (Li

et al., 2006); range data with local feature histograms (Hetzel et al., 2001); 3D shape descriptors

based on a spherical harmonic representation (Kazhdan et al., 2003); and recognition using only a

part of the object based on a thesaurus (Ferreira et al., 2010). For a complete list, see Bustos et al.

(2005). However, these methods are not used in practice to recognize real world objects in cluttered

scenes because they are not able to recognize the underlying structure of the object (Savarese &

Fei-Fei, 2010). Recently, Zia et al. (2013) introduce a recognition method based on 3D geometric

object class representations. The algorithm uses selected vertices from a 3D CAD models dataset

to train geometrical representation. The a local shape representation allows the algorithm to match

the geometric model with real-world images at different viewpoints. Each vertex in the 3D model

have associated a detector that identifies this part in the images. Finally, during recognition the

model finds an instance in the 3D model that best explains the observed image. Results in 3D pose

standard benchmark datasets show the ability of the method to accurately localize objects and their

geometric parts in 2D.

Few years ago, Helmer and Lowe (2010) proposed a combined approach of sliding-windows

detector and depth images. The results demonstrate that using appearance or shape information is

not enough for detection, but that using spatial information improves the performance of a multi-

scale detector. They start by locating the object using a multi-scale sliding-windows classifier. These

detections are filtered applying a depth image from stereo data to improve object location, reducing

false positives and increasing the scores for true positives. However, this approach focuses on

mobile robots and requires additional hardware to create spatial information. In 2011, Benenson et

al. proposed a quick method for computing stixel words, which allow researchers to model the world

locally as flat sticks rising vertically above the ground. The stixels increase detection performance

by reducing the number of candidate windows required to detect people. This approach fits well

with robotic platforms because it requires stereo cameras to compute a ground plane estimate based

on disparity maps.
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The psycho-physic idea of recognizing objects using aspect-graph-based models presents pow-

erful advantages. However, these models present several practical disadvantages: i) the size of the

aspect-graph grows rapidly with the topological transitions required for object recognition, which

implies that the aspect-graph becomes application specific (Mundy, 2006); ii) the scale required

to determine the relevant transitions in accordance with the object topology (Mundy, 2006); and,

iii) the complexity of generating the aspects and the storage and search requirements, which are

impractical for objects of modest complexity (Cyr & Kimia, 2001). However, the geometric 3D

reasoning has received renewed attention recently. In this context, the level of geometric detail is

typically limited to qualitative or coarse-grained quantitative representations, which can recover ge-

ometrically accurately object hypotheses than naive 2D bounding boxes. Nonetheless, the object

class detectors are tuned towards robust 2D matching rather than accurate 3D pose estimation, en-

couraged by 2D bounding box-based benchmarks such as Pascal VOC (Zia et al., 2013). Progress

has been made in this field using 3D object classification and detection, especially in regard to link-

ing features among views in a discriminative learning framework to create multiple view models

of objects. However, they are still single view detectors and do not solve the problem of combined

multiple view detections or including 3D information on the location and the size of the objects.

2.4. Non-Maximal Suppression

Non-maximal suppression (NMS) is a critical procedure in computer vision algorithms that

selects only one representative point from a set of interest points. The output of an object detection

algorithm is a set of multiple detections around the most confident one. These detections are filtered

using a non-maximal suppression (NMS) algorithm. The most popular alternatives are Mean Shift

(Fukunaga & Hostetler, 1975; Y. Cheng, 1995; Comaniciu & Meer, 2002) and Local Maximum

Searching (Felzenszwalb et al., 2009; Dollar et al., 2009).

The Mean Shift algorithm or the Parzen window technique is a non-parametric procedure used

to locate the maxima of a density function from discrete data samples (Fukunaga & Hostetler, 1975).

Dalal (2006) propose a weighted Mean Shift procedure to suppress the multiple detections provided

by their people detection algorithm. This procedure requires a set of detections yi, i = 1 . . . n

defined by a location in the image and a scale. Each detection is taken as a point with an associated

symmetric positive definite 3 × 3 bandwidth covariance matrix Hi to define the smoothing width
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for the detected position. The algorithm fuses the overlapped detections to represent the n points

as local modes. Dalal also assume the smoothing kernel as Gaussian such that the weighted kernel

density estimate at a point is given by

f̂(y) =
1

n(2π)3/2

n∑

i=1

|Hi|−1/2t($i) exp

(
−D

2[y, yi,Hi]

2

)

where

D2[y, yi,Hi] ≡ (y − yi)
TH−1

i (y − yi)

is the Mahalanobis distance between y and yi, and the term t($i) provides the weights for each

detection assigned by the classifier. The local mode was iteratively estimated computing

ym = Hh(ym)

[
n∑

i=1

$i(yi)H
−1
i yi

]

from yi until ym stops changing. The term Hg is the weighted harmonic mean of the covariance

matrices Hi. For more details about the weighted Mean Shift algorithm, see Dalal (2006).

In local maximum searching, the detections with the highest confidence values prevail. In

(Dollar et al., 2009), the authors propose a simplified NMS procedure which suppresses the less

confident of every pair of detection sufficiently overlapped according to the PASCAL criterion

(Everingham et al., 2006). In this way, the only parameter required is the overlap threshold.

Felzenszwalb et al. (2009); Dollar et al. (2009) prefer the local searching for NMS to the Mean

Shift method proposed in Dalal and Triggs (2005) because its efficient running time during detec-

tion, and the fewer parameters to set up than the procedure proposed by (Dalal, 2006), such as the

transformation function, the threshold of the transformation function, and the bandwidth.

2.5. Focus-of-Attention

Detection is a complex task in computer vision that requires efficient use of computer and

sensory resources. Modern detection algorithms based on sliding-window include techniques for

selecting a subset of regions in the images in order to improve the performance and speed of the

detection. The process of directing the attention to these interest regions is called focus-of-attention
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(Itti, 2000). Though attention mechanisms generate overhead, they pay off due to the complexity of

detection, i.e., the more general the detector, the more important the pre-selection of the region of

interest (Papageorgiou & Poggio, 2000; Rutishauser et al., 2004; Frintrop et al., 2005).

In 1999, Itti and Koch present an algorithm inspired by biological visual systems to compute

the focus-of-attention in images as a predictor of human fixation in images. This framework com-

bines multi-scaled center surround feature maps and computes a single saliency map containing the

main regions of the images likely to contain interesting objects. For general cases, the algorithm

uses a simple and non-specific normalization for combining the feature channels and generates the

saliency map. Nonetheless, this procedure can also include a learning stage by weighting the feature

channels in order to detect specific object targets classes. Finally, in both scenarios a winner-takes-

all (WTA) strategy is used to select the most salient objects. In Papageorgiou and Poggio (2000), the

algorithm includes this visual attention strategy as preprocessing stage to enhance the processing

speed of the system. The mechanism allows the algorithm to focus only on areas of the image that

are likely to contain people. In 2005, Frintrop et al. present VOCUS, a top-down framework that

is used to perform a goal-directed search of salient objects in images. The algorithm first learns a

set of weights to combine the bottom-up features from a full labeled training dataset as in (Itti &

Koch, 1999), and then computes a global saliency map from the difference between the excitation

and inhibition maps. Finally, the algorithm uses A WTA strategy to detect the salient objects in the

image. The top-down strategy enhanced the selection of salient regions and improved recognition

performance. In (Davis et al., 2007) propose a focus-of-attention procedure for surveillance. The

method builds an adaptive model of the scene based on the local human activity at discrete locations.

A motion history images technique and a classification algorithm allows for the temporal signature

of translating objects represented as blobs be captured and separated from noise. Finally, an activity

map summarizes these temporal signatures. The algorithm lets to maximize the opportunity of ob-

serving human activity. In the same year, Hou and Zhang (2007) propose a simple method for visual

saliency detection based on the analysis of the log-spectrum of an input image. The algorithm ex-

tracts the spectral residual of an image in the spectral domain in order to construct its corresponding

saliency map in the spatial domain. This method works independently of features, object classes or

prior knowledge. However, it still depends on the image scale and threshold settings to produce the

saliency map. The spectral residual handle the issue of weighting features from different channels.

Results show the low computational load, and the effectiveness of this approach in real images and
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psychological patterns. Liu et al. (2011) introduce a supervised method for salient object detec-

tion based on a set of novel features and Conditional Random Fields (CRF). The features include

multi-scale contrast, center-surround histograms, the color spatial distribution, and dynamic salient

features used for detect salient object in image sequences. These features allows for the salient

object be described locally and globally. The CRF learns to combine the feature channels. Results

show that CRF with all three features produces the best result.

Earlier attention mechanisms generally rely on the information contained in the images and

require a supervised procedure to learn salient object. In 2012, Shen and Wu present a novel salient

object detector based on a unified model. Beside the typical use of the bottom-up and the top-down

relations, this model incorporates links between low-level features and higher-level knowledge to

guide the detection. The model represents images as a low-rank matrix plus sparse noises in a

certain feature space. On the one hand, the low-rank matrix explains the non-salient regions. On

the other hand, the sparse noises explains the salient regions. The model also includes higher-

level knowledge such as location, semantic and color, that acts as priors to generate the saliency

map. Results show that the method achieves comparable performance to the existing methods even

without the help from high-level knowledge, and outperform the state-of-the-art when it uses the

high-level priors. Recently, Siva et al. (2013) propose an unsupervised method for salient objects

detection based on a probabilistic formulation. The algorithm learns the most interesting patches

likely to correspond to an object from a large corpus of unlabeled images. A sampling procedure

proposes the object location in the saliency map, because in this unsupervised scenario the algorithm

does not previously know what a person will find salient. The sampling occurs from similar images

according to the GIST descriptor and color similarities. Results show that using only a single object

location proposal per image the algorithm is able to select an object in the PASCAL VOC 2007

dataset. Authors show that the method can also be used as a simple unsupervised approach to the

weakly supervised annotation problem. We defer the reader to Borji et al. (2012) and Frintrop et al.

(2010), for a detailed survey and benchmark of salient object detectors.

In Viola and Jones (2001), the authors proposed a variant of the attention mechanisms using a

cascade of classifiers to increase detection performance while radically reducing computation time

during detection. The first classifiers in the attentional cascade are weak and fast, allowing the al-

gorithm to reject negative windows in the earlier stages of the cascade. The last classifiers in the
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cascade are very accurate, but computationally expensive. Though the attentional cascade is suc-

cessful, its main drawback is the training complexity when this techniques is used in large datasets

(Pedersoli et al., 2010). In 2010, Felzenszwalb et al. improved their part-based model detector using

an attentional cascade which uses thresholds to prune partial hypotheses computed from a simpler

version of them. This idea is refined in Pedersoli et al. (2010), where authors used a coarse-to-fine

strategy with a part-based model to select the most admissible regions of the image. They proposed

an algorithm which uses a set of features at different resolutions in the same classifier, and used

location refinement to speed up the image scan. This approach allows the algorithm to avoid of

using thresholds in the cascade, which may degrade the quality and performance of the detector.

In 2012, Alexe et al. introduce an objectness measure that quantifies how likely it is for an image

window to contain an object of any class. This is a generic measure. It combines several image cues

by a Bayesian framework, including an innovative cue to measure the closed boundary characteris-

tic. Results show that the new image cue outperform traditional saliency features and the combined

objectness measure performs better than any cue by itself. Results also demonstrate that the method

greatly reduces the number of windows evaluated and can act as a focus of attention mechanism.

Ali Shah et al. (2013) present an algorithm for object detection based on the objectness measure

(Alexe et al., 2012). This method does the automatic object detection by correctly estimate the

number of required windows, independently of the object classes present in the scene. Experiments

on PASCAL VOC 07 dataset reveal that the algorithm outperforms prior works and provides a more

accurate estimation of the required number of windows for an input image. Recently, M.-M. Cheng

et al. (2014) present BING, a Binarized Normed Gradients descriptor for objectness estimation. The

method uses the norm of gradients on a 8x8 window into a 64D feature to describe it. The algorithm

uses this descriptors to train a generic objectness measure. Then, the objectness estimation requires

only a few atomic operations such as add, bitwise, shifts to calculate sets of binary patterns. Results

shows that this approach efficiently runs at 300fps on a single laptop CPU and generates a small set

of category-independent, high quality object windows. The method achieves high detection rate on

PASCAL VOC 2007 dataset. Although the promising results, the method presents a few limitations

related to the small size and location of the predicted bounding boxes for some objects categories.
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2.6. Discussion

As we noted in the literature review, people detection have achieved significant progress due

in part to the use of powerful machine learning models, new more informative visual features, and

part-based models which cope with the objects variability. Most of the detection approaches run a

sliding-window which creates a densely sampled image pyramid in order to perform the multi-scale

detection (Papageorgiou & Poggio, 2000; Dalal & Triggs, 2005; Felzenszwalb et al., 2010; Dollar et

al., 2014). A common denominator of these detectors is that they mainly rely on statistical learning

methods that exploit image-intensity information to capture object appearance features. Their goal

is to uncover visual spaces where visual similarities carry enough information to achieve robust vi-

sual recognition. As a relevant limitation, appearance-based approaches do not incorporate relevant

geometric information that can provide useful and relevant spatial cues such as the real size of the

object to be detected, depth, and spatial likely appearance location. These spatial cues help reduce

the number of false hypotheses (Helmer & Lowe, 2010; Benenson et al., 2011). Some notable ex-

ceptions with promising results are Salas and Tomasi (2011); Spinello and Arras (2011); Espinace

et al. (2013); however, these approaches require additional hardware to recover the spatial informa-

tion. Although the latest and most successful approaches use part-based models (Felzenszwalb et

al., 2010; Pedersoli et al., 2010), there are situations in which occlusion prevents these models from

working properly. Heads detection is a special case of people detection. Important conclusions

from works of people detections claims that detecting the head helps avoid occlusions in crowded

environments. The head is the least occluded part of the body during this conditions, and it is also

less deformable than the rest of the body. (Dalal & Triggs, 2005; Eshel & Moses, 2010; Ali &

Dailey, 2012). There are examples of heads detectors incorporated as part-based detector into more

complex detections systems in order helps to find the complete body or the other body parts, and

improve the detection (Zeng & Ma, 2010; Ali & Dailey, 2012; Xie et al., 2012; Nghiem et al., 2012;

Chang et al., 2013; Hayashi et al., 2013). We based our method on this assumption because this

is an important design issue when detecting people in indoor environments such as classrooms or

elevators where a body could be occluded by other persons or objects in the environment.

Models based on the psycho-physic idea of modeling different object aspects from multiple

viewpoints present relevant advantages for detecting objects which are related to similarities for

representing objects in the human brain (Stone, 1999; Tarr & Kriegman, 2001). Most of these
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algorithms are trained using data from various viewpoints, however, detection occurs still on single

camera configurations (Cyr & Kimia, 2004; Thomas et al., 2006; Savarese & Fei-Fei, 2007; Kushal

et al., 2007; H. Su et al., 2009). There are also practical limitations such as the scale required to

identify relevant transitions and the complexity of the graphs, which suggests that other models

should be used to recognize the underlying structure of the object in real world problems (Savarese

& Fei-Fei, 2010).

The results of new people detection techniques are promising and highlight new paths for re-

search. However, the idea of how to combine information from various observation points has not

yet enough maturity. Detection using one camera is suitable when there is mild occlusion, but in sit-

uation of heavy occlusion multiple views contributes to improve the final detection (Mittal & Davis,

2003; Khan & Shah, 2006; Eshel & Moses, 2010; Liem & Gavrila, 2013). There are geometric tech-

niques based on epipolar geometry and camera calibration that allow us to establish relationships

across views in a camera system, providing useful ways to combine and integrate this information

(Hartley & Zisserman, 2003; Szeliski, 2010). However, there are practical constraints when appear-

ance of the target object change drastically among viewpoints (Lowe, 2004; Mikolajczyk & Schmid,

2005). These facts suggest that even if there are multiple view approaches based on matching and

multiple view geometry to combine detection in multiple observing points, an alternative framework

may be required to generate combined and corresponding projections of the object without using

standard matching techniques. We also note that aspect-based representation fits well with multiple

view environments where aspects of people are acquired from various viewpoints simultaneously.

Further, using this representation in a multiple view framework might include enriched appearance

information and 3D cues, which help to locate people in the scene or to filter out regions where

people is not likely to appear and to generate detections according with the size of people.

Wide-baseline multiple view frameworks allow for the generation of spatial information similar

than ranger sensors or stereo imaging does. These multiple view frameworks use camera parameters

and geometric constraints between viewpoints to execute spatial reconstruction of the environment

and the objects within it. Though the analysis of the 3D space using multiple view data generates

significant overhead for detection algorithms, a spatial focus might drastically reduce the number

of hypotheses required to analyze and improve detection performances as people detection in 2D
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images (Itti & Koch, 1999; Viola & Jones, 2004; Frintrop et al., 2010; Alexe et al., 2012). In the

next Chapter, we consider these issues and introduce our approach.
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Chapter 3. PROPOSED APPROACH

Detection methods aim to uncover locations in images where visual similarities carry enough

information to achieve robust visual recognition. Current methods for detecting people in im-

ages run a sliding-window over an image horizontally and vertically. Each window is classified

as people/no-people and a suppression procedure prevents to multiple detections. The significant

progress in the detection is due in part to the use of: powerful machine learning models (Cortes &

Vapnik, 1995; Freund & Schapire, 1995; Breiman, 2001; Bengio, 2009; Lee et al., 2009); new more

informative visual features (Lowe, 2004; Dalal & Triggs, 2005; Ojala et al., 2000; Maji et al., 2008;

Wang et al., 2009; Calonder et al., 2010; Rublee et al., 2011; Dollar et al., 2014), ;and part-based

models which cope with the object variability (Felzenszwalb et al., 2010; Pedersoli et al., 2010;

Girshick et al., 2014; Dean et al., 2013). Though there have been some improvements, the overall

performance is still poor (Dollar et al., 2011). As a limitation, appearance-based approaches do not

incorporate relevant geometric information that can provide useful and relevant spatial cues such as

the real size of the object to be detected, depth, and spatial likely appearance location.

In a multiple view scenario, detections supplied by a detection algorithm can be combined in

order to discard false detections and enhance the overall detection performance. This combination

of information allows false detections in one camera to be discarded or missed detections to be

added in the final set of detections (Mittal & Davis, 2003; Khan & Shah, 2006; Eshel & Moses,

2010; Ali & Dailey, 2012; Liem & Gavrila, 2013). Multiple view geometry provides to us of

rules for combining detections among cameras in a wide-baseline stereo configurations (Hartley

& Zisserman, 2003; Szeliski, 2010). Nonetheless, there are practical constraints when appearance

of the target object class change drastically among viewpoints that make the matching task is not

trivial. For example in head detection, it means that features between views are dissimilar when

they take opposite views of the head, or when one of the cameras fails to detect them (Lowe, 2004;

Mikolajczyk & Schmid, 2005).

The geometric 3D reasoning has received renewed attention recently, using 3D object clas-

sification and detection, especially in regard to linking features among views in a discriminative

learning framework to create multiple view models of objects (Zia et al., 2013). In this sense, com-

bining information in a multiple view camera configuration is close to the psycho-physic approach

for representing the 3D structure by aspects of the object target class (Pontil & Verri, 1998; Cyr
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& Kimia, 2004; Mundy, 2006). An aspect-graph establishes the relationship to the topological ap-

pearance of the object. In this graph, a node represents adjacent object views, and an edge rises

from the transition in the graph that relates to the vertices. The psycho-physic idea of recognizing

objects using aspect-graph-based models presents powerful advantages, but also several practical

limitations such as: the size of the aspect-graph (Mundy, 2006); the scale required to determine the

relevant transitions (Mundy, 2006); and, the complexity of generating the aspects and the storage

and search requirements (Cyr & Kimia, 2001).

These facts suggest that even if there are multiple view approaches based on matching and

multiple view geometry to combine detection in multiple observing points, an alternative frame-

work may be required to generate combined and corresponding projections of the object without

using standard matching techniques. We propose a 3D extension of the single view sliding-window

approach to multiple views configurations. In our approach, we run a volume element through three

directions (X,Y, Z) of the world frame instead of running a sliding-window in the 2D domain. We

call to this volume a sliding-box. This sliding-box defines sets of projections on images according

to its size and location. We use the set of projections of this sliding-box on 2D images to decide if

this space location belongs to an object target class, e.g., people/no-people, head/no-head.

The main idea of our method is to analyze only the portion of the images in which the sliding-

box is projected. This means that the sliding-box is geometrically projected according to its size

and shape onto the images in the camera system in order to place projected bounding-boxes on each

image, as shown in Fig.1.2. The set of projections forms a collection of aspects (Cyr & Kimia,

2004), as shown in Fig.3.1a. We refer to those prototypical views or templates of an object that are

similar to each other as an aspect. In this way, we simultaneously consider all of the information in

the multiple view camera system to enhance detection as compared to an approach that uses only a

single view. We replace the matching task by a classifier that learns the correct order and alignment

of these aspects. A set of features vectors summarize measures of each projection, and serves as

inputs vectors to a multiple view classifier. We make a decision regarding the joint data build up

using all of the projected windows. The proposed approach has five main steps: spatial focus-of-

attention, multiple view projection, feature extraction, classification and non-maximal suppression,

as shown Fig. 3.1b. Detailed descriptions of these steps will be provided in the five sections that

follow.
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Figure 3.1. (a) Example of the aspects collected from multiple view projections using our
proposed approach 1. The set of projections form a collection of aspects of the head. We
use this projection strategy to collect all of the information available from all of the view-
points in the camera system. (b) Block diagram of the proposed method. Our approach
includes five main steps: spatial focus-of-attention, multi-view projection, feature extrac-
tion, classification and non-maximal suppression. In the example, we use N = 4 cameras.
The algorithm begins with an input scene composed of I1, . . . I4 images. Then, the spatial
focus-of-attention reduce the number of head hypotheses. Next, the algorithm computes
the projections of the box Bi onto the image Ij as Wij , forming a collection of aspects.
Afterwards, we extract a set of features for each projection Wij and apply the model for
sequences. Finally, a spatial NMS procedure allows us to eliminate multiple detections.
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3.1. Spatial Focus-of-attention

A relevant limitation to apply directly the proposed sliding-box method is the demanding

computational complexity to project and process the huge amount of boxes generated in the 3D

space. Modern detection algorithms include attention mechanisms for selecting the most salient

regions in the images (Itti, 2000). These mechanisms allow the detection algorithm to improve

the performance and speed during detection. The attention mechanisms generate overhead, how-

ever, they pay off due to the complexity of detection (Papageorgiou & Poggio, 2000; Rutishauser

et al., 2004; Frintrop et al., 2005). Earlier focus-of-attention algorithms predict what humans will

label as interesting in an image by combining low-level feature channels using a bottom-up strat-

egy itti2000models,hou2007saliency. Then, the use of a top-down framework and novel saliency

features allows these attention algorithms to detect salient object in images (Frintrop et al., 2005;

Montabone & Soto, 2010; Liu et al., 2011; Shen & Wu, 2012; Siva et al., 2013). Recently, object

saliency approaches use supervised learning to generate an objectness measure that allows the de-

tection algorithm to select the most likely windows to contain the object target class. These recent

attention mechanisms provide an output similar that the standard saliency maps, however, they also

work as specialized object detectors. (Marchesotti et al., 2009; Rahtu et al., 2011; Alexe et al.,

2012; Ali Shah et al., 2013).

In order to reduce the burden during detection, we apply a pre-processing procedure based on

an attention mechanism in the spatial domain. In our method, we define the sliding-box movements

in a spatial mesh grid equally spaced in which all of the sliding-box positions are previously known.

The spatial mesh generate a large number of boxes, most of them located in places without presence

of the object target class. There is also a trade-off between the step size and detection accuracy.

Rough grids with large steps reduce the total number of boxes to analyze but are less accurate.

On the other hand, fine grids with small steps generate an extremely large field for analysis but

increase accuracy. Fortunately, we further reduce the search space by applying this pre-processing

step that consist of using a salient object detector and multiple view geometry to generate a focus-

of-attention in 3D space. Thus, the sliding-box runs only across these set salient spatial points, as we

show in Fig. 3.2. There are coarse-to-fine strategies for finding focus-of-attention in images which

progressively reduce the burden of the algorithm during detection and enhance the final detections

(Pedersoli et al., 2010). Nonetheless, the sliding-window must still be run at the first levels of the
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Figure 3.2. Explanation of the focus-of-attention procedure. (a) Blue dots show the po-
tential head positions detected by our focus-of-attention procedure. This process provides
hypotheses with more likely location of heads within the region of interest S and helps
us to drastically filter the spatial detections. (b) Yellow circles shows ground-truth heads
examples within the subspace S.

feature pyramid. We cannot directly apply these kinds of approaches because they do not reduce

the burden of running the sliding-box through the 3D space.

In order to compute the focus-of-attention, first we run a salient object detector based on a

standard sliding-window detector as specialized region detector in the 2D domain. This procedure

allows us to find head hypotheses in the images. Let hij be the image coordinates for the centroid of

the head hypothesis i in the image j. Next, we match the hypothesis hij with the set of hypotheses

hrs closer to the epipolar line ls = Fjs · hij in the image s, where Fjs is the fundamental matrix

computed with camera matrices. Then, the spatial location M̂i for each pair of matched hypotheses

hij and hrs is triangulation using least square minimization between these image coordinates to the

3D space (Hartley & Zisserman, 2003; Szeliski, 2010). Finally, we pick a set of neighboring points

around the estimated position M̂i with the likely location of the true heads, as shown in Fig. 3.2a.

These sets of hypotheses laid close to the ground-truth heads, as show in Fig. 3.2b.

3.2. Multi-view Projection

Wide-baseline multiple view configurations are commonly used to cover a scene from a dif-

ferent viewpoints. This configuration allow for spatial reconstruction and the generation of spatial

information, similar than ranger sensors or stereo imaging does (Szeliski, 2010). These multiple
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Figure 3.3. Shows the triangulation between head hypotheses from two images I1 and I2
at different viewpoints. Hypotheses {h11,h21,h31} in image I1 generate epipolar lines l1,
l2 and l3 in image I2. The pairs set of head hypotheses {h11,h12} and {h21,h22} share
the same 3D position M̂1 and M̂2 , respectively. We estimate these spatial positions by
triangulation using least square minimization along the ray hijCi. Due to there are no head
hypothesis near to epipolar line l3, the h31 do not generate potential head position.

view setups use camera parameters and geometric constraints between viewpoints to execute spa-

tial reconstruction of the environment and the objects within it. Thus, people detection approaches

based on wide-baseline multiple view configurations present the advantage to combine and discard

false detections using spatial cues. Further, this camera configuration contributes to improve the

final detection in situations of heavy occlusion (Mittal & Davis, 2003; Khan & Shah, 2006; Es-

hel & Moses, 2010; Liem & Gavrila, 2013). There are geometric techniques based on epipolar

geometry and camera calibration that allow us to establish relationships across views in a camera

system, providing useful ways to combine and integrate this information (Hartley & Zisserman,

2003; Szeliski, 2010). However, there are practical constraints when appearance of the target object

change drastically among viewpoints (Lowe, 2004; Mikolajczyk & Schmid, 2005).

We propose an alternative method to combine detection in wide-baseline configurations in

which we generate the corresponding projections of the object located in the 3D space without

using standard matching techniques. These projections let us to acquire aspects of people head from

various viewpoints simultaneously. Further, using this representation we might include enriched

appearance information and 3D cues, e.g., help to locate people in the scene or to filter out regions
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where people is not likely to appear. In this step, we compute the sliding-box projections onto the

images in order to generate correlated image sections. As other multiple view approaches (Khan &

Shah, 2006; Eshel & Moses, 2010; Liem & Gavrila, 2013), our approach requires a fully calibrated

multiple view system of N cameras C1, . . . , CN to compute the geometric model. This model

relates the 3D world homogeneous coordinates Mi = [Xi Yi Zi 1]T to the 2D image coordinates

mij = [xij yij 1]T in each image Ij . This coordinates relation was obtained for j = 1, . . . , N

cameras using the transformation

λmij = PjMi, (3.1)

where λ is a scale factor and Pj is the 3× 4 calibration matrix of camera Cj (Hartley & Zisserman,

2003).

A sliding-box Bi is a parallelepiped defined in the 3D space as a virtual volume element, which

presents the following three properties:

a) Bi is centered at 3D point Mi with coordinates (Xi, Yi, Zi);

b) the volume occupied by Bi belongs to the 3D space of interest S where the object target

class will be detected;

c) it contains a volume of interest with size and shape of Bi corresponds to the real size and

shape of the object target classes.

Follow these properties, the volume of interest of Bi can be represented using various kinds of

shapes to cope with the real size and geometry of the object, e.g., using spheres, ellipsoids, cubes or

another parallelepiped. In our research, we are detecting heads. For practical purposes, the emphi-

th sliding-box Bi defines a sphere circumscribed to its occupied space, centered in Mi and with

radius r. This geometric representation fits well with the oval shape of heads. In this detection

context, we model mathematically the sliding-box as quadric that is a 3D surface defined in 3D

world homogeneous coordinates by

XT
[
HTQH

]
X ≡ XT


 I3x3 03x1

01x3 −r2


X = 0 (3.2)

considering
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Q =


 I3x3 03x1

01x3 −r2


 (3.3)

H =


 I3x3 Mi

01x3 1


 , (3.4)

where Q defines the quadric shape as a sphere, H is a transformation matrix which places the

volume of interest of Bi centered at position Mi, and X represents the 3D points on the surface

defined by the quadric. A surface quadric is projected onto the image Ij as a conic section C

according to the size of the volume element Bi. This quadric is projected using the camera matrices

Pj as

C =
[
PjQ̃PT

j

]−1
(3.5)

Q̃ = HTQH (3.6)

where C is the conic section defined by the projected quadric on the image Ij , and Q̃ is a trans-

formed version of Q after applying H. Finally, the projection Wij is defined by the subscribed

parallelepiped over the conic C on the image Ij , as shown in Fig. 3.4. More details about quadric

and conic representations can be found in Hartley and Zisserman (2003).

We also include a spatial prior or contextual information by defining a space of interest S in 3D

as shown in Fig.3.5. This space could be defined as a rectangular parallelepiped where coordinates

X , Y and Z are constrained by a lower and a higher bound a and b, respectively i.e.,

S = {(X,Y, Z) | X ∈ [Xa, Xb]; Y ∈ [Ya, Yb]; Z ∈ [Za, Zb]}. (3.7)

We let the sliding-box runs within this space of interest S. This top-down information allows

to us limit the action of our sliding-box to areas where we expect to find people or objects in the

scene or where we want to search, e.g., we do not expect to find people on the ceiling or laying down

on the floor. As is the case in sliding-window approaches, we run the sliding-boxes overlapped to
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Figure 3.4. Projection diagram of a sphere quadric Q defined on Mi with radius r. In this
example, forN = 4, Q is projected onto the images I1, . . . I4 as a conic C. The projections
Wij are defined as the maximum quadrilateral subscribed over C and showed as dashed red
circles in this figure. The elements Wij represent the projection of Bi onto the camera j.
All of these elements define a collection of aspects which represents the box Bi seen from
each camera. Each element Wij was cropped and then rescaled to 64 × 64 pixels before
feature extraction to cope with projection at different size.

ensure that heads are contained in a whole box. In this way, our method is similar to a sliding-

window method, but we can control the space of interest S where our box runs and the 3D size of

Bi according to the search requirements.

3.3. Feature Extraction

Feature extraction corresponds to the process in which the visual information in the images

pass into a new space of variables less redundant and more informative than the image domain

(Szeliski, 2010; Nixon & Aguado, 2012). Advanced detection algorithms use local descriptors to

increase the distinction between objects variation or classes, while providing invariance to light

changes, blurring, rotation, scaling, noise and differences in viewpoint (Ojala et al., 2000; Viola

& Jones, 2001; Lowe, 2004; Dalal & Triggs, 2005; Bay et al., 2008; Leutenegger et al., 2011;

Alahi et al., 2012). Most of the features have their own advantages and disadvantages. Recently,
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Figure 3.5. Diagram of the space of interest S inside of a room and defined as paral-
lelepiped with set of boundaries [Xa, Xb]; [Ya, Yb]; [Za, Zb]. We use this contextual infor-
mation to limit the action of our sliding-box Bi within the space S. This allows to us
to search for people’s heads in areas in which they are likely to appear according to the
context.

region descriptors evaluations are agree about that there is no a better descriptors and interest region

detectors in all aspects, but their performances depend on the task (Z. Song & Klette, 2013; Wu &

Lew, 2013).

In terms of object and people detection, most of the detection algorithms sample the invariant

local features from images using an spatial pyramid (Lazebnik et al., 2006; Bosch et al., 2007) or a

multi-scale dense grid (Dalal & Triggs, 2005). The last method fits well for multi-scale pedestrian

detection when the size of the object is unknown and the algorithm have to uncover them at various

scales. In general, Histogram of Oriented Gradient (HOG) (Dalal & Triggs, 2005) and Local Binary

Pattern (LBP) Ojala et al. (2000) are state-of-the-art low level features that present similar perfor-

mance level in people detection. However, it has been reported that LBP improves the detection

performance because of this descriptor is invariant to strict monotonic changes in intensity, making

it robust against changes in lighting (Wang et al., 2009; Mu et al., 2008).

The LBP is a handcrafted local binary descriptor used to measure local appearance within a

neighborhood of P pixels equally spaced on a circle of radius R (Ojala et al., 2000). It calculates
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Figure 3.6. Example of the pyramidal feature extraction on a Wij patch. Features are
computed in l = 0, 1, 2 levels of the image patch. In each level, the image has 4l cells. The
final descriptor has Nf = 59× (1 + 4 + 16) = 1, 239 bins.

the differences between a center pixel with its neighbors, as shown in Fig 3.6. This comparison is

represented as a decimal number

LPB(x, y) =

P−1∑

i=0

bi2
i, (3.8)

where P are the number of neighbors pixels. Ojala et al. (2000) defines two cases of LBP: non-

uniform and uniform. A uniform LBP occurs when the binary pattern contains at most two bitwise

transitions from 0 to 1 or vice versa over the circular neighborhood, e.g., 00000000 has 0 transitions;

01110000 has 2 transitions. The patterns 11001001 has 4 transitions and 01010010 has 6 transitions.

Both are non-uniform patterns. In the uniform case, each uniform LBP pattern is cast into a unique

histogram bin according to its decimal value. All non-uniform LBP patterns are cast in single bin.

In this way, an 8 element neighborhood has a total of 256 patterns, 58 of which are uniform, and

therefore, the final descriptor is an histogram with 59 bins. In general, 3x3 pixel neighborhood over

the uniform quantization achieves best performances for most applications (Wang et al., 2009; Mu

et al., 2008; Vedaldi & Fulkerson, 2010). We defer the reader to Ojala et al. (2000) and Mu et al.

(2008), for a detailed explanation of the LBP descriptor.

We represent each window Wij as a bounding-box in Ij defined as the maximum subscribed

parallelepiped in the projection of box Bi as a conic C in accordance with (3.5). Each projection

Wij was rescaled to 64 × 64 pixels to allow for the different sizes of the projections. Multi-scale

pyramid decomposition has been the standard sampling strategy for detecting objects at unknown

scales in images (Dalal & Triggs, 2005; Felzenszwalb et al., 2010). However, we project known size
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Figure 3.7. Example of the pyramidal feature extraction on a Wij patch. Features are
computed in l = 0, 1, 2 levels of the image patch. In each level, the image has 4l cells. The
final descriptor has Nf = 59× (1 + 4 + 16) = 1, 239 bins.

objects originating in projections at different scales simultaneously in each view. After resizing, we

extract a set of features in pyramidal decomposition for each window Wij (Lazebnik et al., 2006;

Bosch et al., 2007), where each Wij is represented by a feature vector xij . This decomposition

allows to us to extract global and local information from each instance. Each level l ∈ L =

{0, . . . n} in the pyramid has 4l cells or patches, and for each cell we compute a descriptor with K

bins. The descriptor of the entire image patch Wij has Nf = K
∑L

l=0 4l bins, as shown in Fig. 3.7.

3.4. Multiple View Classifier

The classification model is an important part for all machine learning method. This model

evaluates whether a set of features belongs to a specific class. Most of detectors based on sliding

window use a discriminative approach due to their high level of performance, embedded ability

to select relevant features, and ease of use. The most popular discriminative models are Support

Vector Machines Cortes and Vapnik (1995) and Boosting Schapire (1990). One of the advantages

that captures the attention on SVMs is their ability to build non-linear decision boundaries using

the a kernel trick (Papageorgiou & Poggio, 2000; Dalal et al., 2006; Wang et al., 2009; Schwartz et

al., 2009; Felzenszwalb et al., 2009; Pedersoli et al., 2014). Moreover, SVMs have faster training

speed. However, the runtime complexity of a non linear SVM classifier is high. Boosted decision

trees on the other hand have faster classification speed but are significantly slower to train and the

complexity of training can grow exponentially with the number of classes (Torralba et al., 2004).

Due to this facts and plus the mathematical background, linear kernel SVMs have become popular
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for real-time applications as they enjoy both faster training and classification speeds (Maji et al.,

2008; Yang et al., 2009).

Once we extract the features for each element Wij , we apply one classifier in order to identify

the collection of aspects or the multiple view projections simultaneously. We apply two different

strategies to classify the multiple view projections: ensemble of features and ensemble of classifiers.

In the experiments, we evaluate both schemes independently in order to present pros and cons of

them. The feature ensemble scheme describes a sliding-box using one descriptor that is built by

concatenating the features present in each view individually. A single classifier is used to identify

these compounded features. The ensemble of classifiers applies a set of classifiers to each view

in order to generate a set of mid-level features. These new features describe a sliding-box and a

classifier learns these new mid-level features. The next two sub-sections describe how we trained

both classification approaches for projection sequences. As we mentioned previously, both are

independent and exclusive of each other.

3.4.1. Ensemble of Features

The ensemble of features consist in combining features as a single descriptor where each fea-

ture contributes to discriminate the object target class. For example, Wang et al. (2009) propose an

algorithm that uses as input a combination of HOG and LBP descriptors. This combination helps to

discriminate whether a detected windows is occluded. In each descriptor contributes with an specific

property of the object. In 2014, Pei et al. prose a pedestrian detector based on combinations of HOG

and LBP features. Experiments include combining low-level features and transformed vertions of

these features using Principal Component Analysis (PAC) and Singular Value Decomposition as

K-SVD. Results show that combination outperform original version of HOG and LBP and helps to

filter false positive detections.

One of the advantages of our approach is the ability to retrieve the multiple views projections

of a head simultaneously. This advantage allows us to generate enriched feature descriptors by

combining the descriptors coming from each view. This new descriptor xi represent an enriched

appearance of head. In this scenario, we train a single SVM classifier as described in Chapter 2.2.1,

which scores an example xi with a function of the form
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fβ(xi) = β · Φ(xi), (3.9)

where β is the vector of model parameters and Φ is a kernel function to transform the example xi.

We find the model parameters from a labeled dataset D = (〈x1, y1〉, . . . , 〈xn, yn〉), by minimizing

the objective function

L(β) =
1

2
‖β‖2 + C

n∑

i=1

max(0, 1− yifβ(xi)) (3.10)

where C is a cost constant for increasing the penalization of the classification error; max(0, 1 −
yifβ(xi)) is the standard hinge loss function; and xi is the example instance represented as the

feature vector. This is equivalent to the soft margin representation explained in Chapter 2.2.1.

The instance xi = [xi1, . . . , xiN ] represents a feature vector formed by concatenation of single

descriptors in order to simultaneously evaluate the collection of aspects, as shown in Fig. 3.8. Each

Wij is associated with a feature xij vector with Nf bins. If the camera system has N cameras, this

descriptor has Ns = N × Nf bins. The key idea is to build up an enriched feature vector which

represents the head structure in a global perspective as shown in Fig. 3.4. This training process

yields a model βfe, which we use to evaluate each box along the detection process. This model

represents the head or any object structure using this enriched feature vector taking into account

various viewpoints simultaneously.

3.4.2. Ensemble of Classifiers

The idea of ensemble methods consist in using multiple classification models strategically gen-

erated and combined to solve a particular learning problem (Polikar, 2006). There are well know

examples of successful classifiers ensembles such as Boosting (Freund & Schapire, 1995), Bag-

ging (Breiman, 1996) and Random Forest (Breiman, 2001) that demonstrate the improvements in

prediction performance. Ensembles also allows for selecting optimal features sets, data fusion,

incremental learning and error correcting.

As we mention before, our approach allows us to retrieve the multiple views projections of a

head simultaneously. Instead of using the descriptors directly into the classifier, we can include a

classification stage that helps to reduce the variability of the features. In this approach, we build
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Figure 3.8. Training process diagram of features ensemble scenario. Once we extract fea-
tures from each element Wij , we concatenate all of the Nf features in a single descriptor
with Ns bins. We use a single SVM classifier to learn a model βfe using examples of head
sequences.

an ensemble of classifiers composed of two layers, where the first layer contains a set of mid-level

features which summarize the feature vectors xi; and the second layer ensembles the mid-level

features to classify the collection of aspects Wij represented by the instance xij .

The first layer is a linear multi-class SVM model which learns to discriminate among k classes

and assigns a confidence score fkβ(xi) to each class, where these classes represent head aspects

and background. This layer of classifiers transform a set of feature vectors xij into a set of mid-

level features [{f1β(xi1), . . . , fkβ(xi1)}, . . . , {f1β(xij), . . . , fkβ(xij)}, . . . , {f1β(xiN ), . . . , fkβ(xiN )}],
where N is the number of cameras in vision system. Opposite to classification problems which

require maxj=1,...,k(β
jΦ(xi)) to discriminate among classes, we keep all decision values product

to apply each model k as features for the second layer.
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We address the SVM multi-class problem using two methods: one-against-all and one-against-

one. Both methods of multi-class classifiers were trained using a bootstrap strategy, which is de-

scribed in next section. The one-against-all constructs k SVM models where the i-th model is

trained using the examples in the i-th class as positive instances, and all of the other examples in

other poses as negative instances. After solving (3.10) for each class there will be k decision func-

tions 〈f1β(xi) = β1 · Φ(xi)〉, · · · , 〈fkβ(xi) = βk · Φ(xi)〉. The one-against-one method constructs

k(k − 1)/2 classifiers trained on data from two classes, where the classification problem is defined

as:

min
β

1

2

∥∥βs,t
∥∥2 + C

n∑

i=1

max(0, 1− yif s,tβ (xi)) (3.11)

As we had done with the one-vs-all method, we only use the decision values to represent the

collection of aspects by a collection of scores.

In the second layer, a new SVM model learns from the set of scores f1β(xij) . . . fkβ(xij) built in

the previous layer to identify the entire collection of aspects projected from the sliding-box Bi. This

final model β can merge the information coming from the camera system in the detection stage. The

feature vector at the second layer has Ns = Nscores ×N elements, as shown in Fig. 3.9.

3.4.3. Bootstrap Training

We train both systems using a bootstrap strategy to avoid biasing the training set, memory over-

loads, and over-fitting the model (Felzenszwalb et al., 2009). A bootstrap algorithm is an iterative

procedure which modifies the train dataset along the training rounds by including a ratio of misclas-

sified samples and releasing a ratio of properly classified ones. Let D = {〈x1, y1〉 · · · 〈xn, yn〉} be

a fully labeled dataset with features xi and labels yi ∈ {−1, 1}. The training procedure starts with

a random subset X ⊂ D used to train a model β. Then we apply this model to the entire dataset

D in order to distinguish between hard examples H and easy examples E associated with β. The

algorithm considers an example xi hard if fβ(xi) > 1. On the other hand, an example is considered

to be easy if fβ(xi) < 1. We randomly select a sample Hs ⊂ H and Es ⊂ E according to the

decision value fβ of each xi. The selected hard examples Hs will be added to X , and the selected

easy examples Es will be removed from X . This modified version of X is used in the next training

round. The algorithm iterates a fix number of times. Finally, this procedure generates the model
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Figure 3.9. Training process diagram for the classifier ensemble scheme. We use an en-
semble of classifiers divided into two layers: (a) shows the first layer, which is formed
by multi-class SVM classifiers. This layer can identify frontal head, rear head, and back-
ground. (b) shows the second layer, which is trained using the scores (f1β, . . . , f

k
β) obtained

by applying the first layer of classifiers to each element Wij . This process yielded the
model β, which can classify the image sequence.

used to classify the collection of aspects during the detection process. Algorithm 1 shows all of the

steps of the training process.

3.4.4. Best Collection of Aspects

Classifiers described in Sections 3.4.1 and 3.4.2 discriminate over aligned collection of aspects

that presents a sequence of aspects for a global head pose. However, during detection we do not

have a priori knowledge about the head aspect in the scene. To face with this uncertainty, we

generate four collection of aspects from the input collection applying circular shifts on it. These

shifts allows us to find the most confident collection of aspects in accordance with the template

used for training. We apply the multiple view classifier to each collection and we choose the one

with highest confidence using an argmax criterion, as shown Fig. 3.10. We do not use random
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Algorithm 1: Bootstrap train

Let D = {〈x1, y1〉 · · · 〈xn, yn〉}, yi ∈ {−1, 1} a full labeled dataset
Let X ⊂ D a random set
while (iter ≤ max-iter) do
β ← train model svm(X)
fβ ← apply svm model(β, D)
H(β, D)← {〈xi, yi〉 ∈ D | (fβ(xi) < 1}
E(β, D)← {〈xi, yi〉 ∈ D | (fβ(xi) > 1}
Hs ← select random(H)
Es ← select random(E)
add hard(Hs) to X
remove easy(Es) from X

end while
return svm model β

shifts or random combination of aspects, because an admissible collection of head aspects present

a coherent sequence of appearance according to our camera system, e.g., the collection of aspects

rear − front− rear − front is not allowed.

3.5. Non Maximal Suppression

As we discussed in Chapter 2.4, a Non-Maximal Suppression (NMS) is a critical procedure

in computer vision algorithms in which one must choose the most representative detection from

a set of confident multiple detections. In general, the most basic approach consists in processing

all detection windows using an agglomerative clustering algorithm in order to filter the spurious

responses and to merge those that are overlapping. Dalal (2006) propose a clustering based sup-

pression procedure that locates the local modes from a set of multiple detections using a weighted

version of the Mean Shift algorithm (Fukunaga & Hostetler, 1975; Y. Cheng, 1995; Comaniciu &

Meer, 2002). The algorithm considers that each detection yi = (xi, yi) has an associated symmet-

ric positive definite 3 × 3 bandwidth covariance matrix Hi to define an smoothing kernel for the

detected position (xi, yi). Finally, the algorithm estimates the density of overlapped detections to

represent these n points as local modes. In 2009, Dollar et al. propose a Local Maximum Search-

ing (LMS) as suppression procedure. Felzenszwalb et al. (2009) use the same NMS approach to

suppress multiple detections. The LMS algorithm chooses a final detection by applying a greedy

strategy that suppresses the less confident of every pair of detection sufficiently overlapped. This
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Figure 3.10. Diagram of best collection searching. The algorithm receives an input col-
lection of aspects without a priori knowledge about its correct alignment. We apply a set
of circular shifts to generate the total number of four collections of aspects, including the
input collection. After applying the multiple view classifier to each collection, we choose
the most confident one using an argmax criterion. In the diagram, the multiple view clas-
sifier assigns a set of confidence values to each collection of aspects: fβ(x0

i ) = −1.25,
fβ(x+1

i ) = −0.12, fβ(x+2
i ) = 1.75, fβ(x0

i ) = 0.75. Finally, our algorithm selects the
collection of aspects generated with the second shift because it best matches the training
samples.

procedure assigns the detection yi the maximum score around its neighborhood. The overlap criteria

is defined in terms of the Euclidian distance between detections.

There are recent algorithms that attempt to improve suppression procedures based only in clus-

tering techniques. In 2012, Zaytseva and Vitria propose a search based approach to non-maximum

using a statistical framework. The algorithm requires a discriminative model previously trained

to generate a prior distribution. Finally, a Markov chain Monte Carlo performs. Results show a

promising use for the prior distribution in to search and merge potential detection. However, final

detections depends on the discriminative model that may miss true positive detection affecting the

overall performance. Shuai et al. (2012) propose a hierarchical clustering based NMS method ap-

plied to pedestrian detection. This algorithm uses a clustering methods based on ellipse Euclidean

distance to get the location of pedestrian. The non-maximum suppression process is partitioned into

two parts hierarchically. Results show that the non-hierarchical clustering based method perform
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similar to the weighted Mean Shift proposed in (Dalal, 2006), but consumed less time. On the other

hand, the hierarchical algorithm recalled more true positives than the non-hierarchical method.

Due to the stability and the use on multiple datasets, we prefer to implement a modified version

of the Weighted Mean Shift (WMS) NMS (Dalal, 2006) and the Local Maximum Searching (LMS)

(Dollar et al., 2009) to work in the 3D domain. Both procedures require a set of sliding-boxes Bi,

i = 1 . . . n provided by the our detector, where each detection is defined by its 3D location and size.

Then, the NMS finds the most confident box within a neighborhood.

Our implementation of the LMS algorithm chooses a final detection by applying a strategy

in (Dollar et al., 2009) to suppresses the less confident sliding-box of every pair of sliding-boxes

Bi sufficiently overlapped. Our procedure assigns the sliding-box Bi the maximum score fβ. We

define the overlap criterion in terms of the Euclidian distance between the sliding-boxes. This

procedure only requires a distance threshold as a parameter because all of the sliding-boxes have

the same size and shape.

The WMS algorithm is used to locate the local modes from a set of multiple detections (Dalal,

2006). Each detection Bi has an associated symmetric positive definite 3× 3 bandwidth covariance

matrix Hi to define the smoothing width for the detected position Mi. Overlapped detections are

fused to represent the n points as local modes. The derivation is the same as in (Dalal, 2006). We

assumed the smoothing kernel as Gaussian, therefore the weighted kernel density estimate at a point

is given by

f̂(M) =
1

n(2π)3/2

n∑

i=1

|Hi|−1/2t($i) exp

(
−D

2[M,Mi,Hi]

2

)
(3.12)

where

D2[M,Mi,Hi] ≡ (M−Mi)
TH−1

i (M−Mi) (3.13)

is the Mahalanobis distance between M and Mi, and the term t($i) provides the weights for each

detection assigned by the classifier. These weights are defined as

$i(M) =
|Hi|−1/2t($i) exp

(
−D2[M,Mi,Hi]/2

)
∑n

i=1 |Hi|−1/2t($i) exp (−D2[M,Mi,Hi]/2)
(3.14)
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The mode is reached by iteratively computing

Mm = Hh(Mm)

[
n∑

i=1

$i(Mi)H
−1
i Mi

]
(3.15)

for each detection at location Mi until it converges to the local mode Mm, i.e., the new mode

location no longer changes. The term Hg is the weighted harmonic mean of the covariance matrices

Hi. The set of all modes represents the final detections where the modes are the detection locations

and the mode peaks are the final scores. For each point, the algorithm is guaranteed to converge with

the mode. For more detailed information on the weighted Mean Shift algorithm and its properties,

see (Comaniciu & Meer, 2002; Dalal, 2006).

We assume diagonal covariance matrices Hi only with the uncertainty of location because our

sliding-box has the same size and shape. Let diag[Hi] represent the 3 diagonal elements of Hi, such

that

diag[Hi] = [σ2x, σ
2
y , σ

2
z ] (3.16)

where σx, σy, σz are the user supplied smoothing values.

We utilize the suggested transformation function for SVM, which uses a hard clipping to ensure

positive weights while running the NMS procedure (Dalal, 2006), such that

t($) =





0 if $ < c

w − c if $ ≥ c
(3.17)

where c is a threshold which controls the weight values and helps avoid false detections to get into

the Mean Shift algorithm.
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Chapter 4. METHODOLOGY AND IMPLEMENTATION DETAILS

This chapter describes the methodology that we used to demonstrate our hypothesis by apply-

ing our approach to real scenes. This methodology includes building a testing environment and

establishing a test protocol of our framework. During experimentation we presented our advances

as concept tests and preliminary findings in three articles. In order to carry out the people detec-

tion experiments, we used a classroom to emulate a controlled indoor environment with people

inside. Our experimental methodology includes building training and testing datasets, measuring

detection performance, and measuring the improvements that can be made by using complementary

data generated by multiple views. Details about hardware, implementation details, and performance

measurements will be described in the next three sections.

4.1. Hardware

For experimentation purposes, we mounted a multiple view indoor environment in a class-

room. This environment consists in to a set of four Point Grey Flea2 model cameras. All of them

were calibrated and synchronized to ensure geometric matching, and the same temporal information

simultaneously. Thus, our multiple view camera system has N = 4 calibrated cameras. These cam-

eras were installed in the upper corners of the classroom, as shown in Fig 4.1. We used a standard

chess-board method for calibrating the cameras included in the calibration toolbox developed for

the OpenCV library and MATLAB, which works using a calibration model inspired by Heikkila

and Silven (1997) and Z. Zhang (1999). We obtained an average calibration error of ∼ 0.4 pixels

per camera.

4.2. Datasets Details

We used our camera system in the indoor environment to build our own multiple view head

dataset for training and testing. All images were acquired at 640 × 480 pixels and 15fps. We

designed an interactive user interface (GUI) as shown in Fig.4.2, where the user enclosed each

ground-truth detection in each camera. We establish their 3D re-projection geometrically according

to the geometric model defined previously in (3.1), where a 3D position Mi is mapped into a 2D

position mij through the calibration matrix Pj .
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Figure 4.1. We mounted four Point Grey Flea2 cameras in a classroom to simulate an
indoor environment where we could detect people. The four cameras were calibrated to
ensure the geometric reconstruction of 3D points and synchronized to acquire the images
at same time.

4.2.1. Train Dataset

The train datasets contain images in which a set of ten people were placed at six locations

within a classroom, as shown in Fig. 4.3. We selected images in which people appear in all of the

cameras simultaneously. People spin over their Z axis from 0◦ to 360◦. We manually marked and

labeled all positive instances.

The features ensemble method requires samples of collection of aspects that have a predeter-

mined order. This collection of aspects are sets of the sliding-box projections from various view-

points. We manually selected the aspects that were most consistent with the method described in
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Figure 4.2. Example of our GUI for labeling a set of four images representing the same
scene at different viewpoints. A head is labeled selecting two matching points and we
estimate its 3D location throughout the geometric model. This location is re-projected onto
the images as bounding boxes which represent the head in all viewpoints.

Section 3.4. We also used mirrored versions of train instances to generate new views and enhance

the train dataset. Positive instances are the sliding-boxes projected over the people’s location in

order to obtain their four projections Wij . We are thus able to generate image aspects for people’s

heads as shown in Fig. 4.4. Negative instances are sliding-box projections from random locations in

the room that exclude head positions, i.e., clothes, carpets, walls, etc. We also combined individual

samples randomly in order to build artificial negative sequences and enrich the dataset. Table shows

4.1 a summary of the train dataset used for the feature ensemble method.
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View 1

Figure 4.3. Example of images collected for training. Each image comes from one view in
the camera system. People stand over the white crosses on the floor and spin around their
Z axis to generate various views of the head.

Table 4.1. Details about the training dataset used to train the feature ensemble. Each in-
stance is a collection of aspects, as shown Fig. 4.4

class number of examples
head (positives) 1,000

background (negatives) 4,570
total 5,570

The ensemble of classifiers uses two training stages. In the first stage, a multi-class classifier

learns based on individual aspects separated into three classes: frontal head, rear head, and back-

ground. We collected independent instances Wij from the dataset used to train the ensemble of

features. This individual dataset contains 16,494 examples separated into three mentioned classes

as shown in Table 4.2. In the second stage, an ensemble of classifiers uses the outputs obtained

after applying first layer classifiers. We used the same instances described in Table 4.1 to train this

ensemble. Although we consider two individual aspects, front and rear, our approach is not limited

to the number of poses for individual aspects and collection of aspects.
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Figure 4.4. Examples of aspects collection used for training. (a) positive instance of peo-
ple’s head retrieved from multi-view camera system and (b) background samples of class-
room environment. We used four cameras in both examples, where j = 1, . . . , 4

.

Table 4.2. Details about the training dataset used for training individual models.

class number of examples
Frontal head 2,000

Rear head 2,000
Background 12,494

total 16,494

4.2.2. Test Dataset

The test dataset consists of two fully labeled multi-view video sequences acquired in a class-

room or auditorium environment in which individuals present different activity levels. Both testing

sequences contain views of heads and torsos. We labeled an average number of 26,000 instances

for testing, taking into account labels in each camera. However, we tested our algorithm over an

average of 6,500 detection instances. An instance is defined as a detection which appears in all

cameras simultaneously. Table 4.3 shows a summary about both test sequences.

The first sequence, sq-01, contains 245 frames of ten people inside of the classroom moving

and changing their poses, as shown Fig. 4.5a. This sequence contains 6,800 labels and 1,700

detection instances in average. The sequence presents the main challenge of changing poses and

displacements. The second sequence, sq-02, contains 600 frames of an average of ten people who

were sitting and following a speaker. The subjects were different from those used in the train dataset,

as shown Fig. 4.5b. This sequence contains 20,000 labels and 5,000 detection instances in average.

The sequence presents the main challenge of individuals who are not seen and a larger set of views.

58



Table 4.3. Details about test dataset used for testing the detector. Sequences were called
sq-01 and sq-02. We show an average number of people per image and the total number of
frames in each sequence.

sequence avg. no. no. of frames avg. no. labels avg. no. ground-truth
people/image instances

sq-01 7 245 6,000 1,700
sq-02 8 600 20,000 5,000

View 4

View 2

View 3

View 1

(a)

View 4

View 2

View 3

View 1

(b)

Figure 4.5. Example of images collected for testing. Both test datasets contain images of
people in a classroom at different activity levels and under various occlusion conditions.
(a) The first test sequence contains people moving and changing their appearances. (b)
The second test sequence consists of people sitting observing a lecture. Their appearances
change less than the first sequence, and although there is occlusion, it is less frequent.

4.3. Evaluation Methodology

We evaluated our method quantitatively and qualitatively. Precision-recall curves and perfor-

mance indicators represent quantitative experiments. We used visual observation to perform qual-

itative evaluations during the experiments. We run tests to measure the ability of the classifier to

learn the information shared by the views and how this impacts the separability between classes.

We also measure the ability of the method to detect people in real images in an indoor environment.

These last experiments are based on a comparison of four methods. The first two correspond to

a mono-focal-based method and the same mono-focal method using epipolar geometry to achieve

the integration of the detections across multiple views. The last two correspond to our approach

following two methodologies: ensemble of features and ensemble of classifiers.
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4.3.1. Detection Evaluation

In order to quantify the performance of the detectors, we evaluated all methods proposed in

this thesis following the procedure laid out in the PASCAL challenge by Precision-Recall (PR)

curves (Everingham et al., 2010). Most of the state-of-art detectors participate in this challenge, and

compare performances levels using this standard evaluation. In this context, the precision-recall

curve is computed from each methods ranked output, where recall is defined as the proportion of

all positive examples ranked above a given rank, and precision is the proportion of all examples

above that rank which are from the positive class. Precision-Recall curves close to recall 1 and

precision 1 represent better performance. The entire shape of the curve is represented by the average

precision-recall (AP) as a single reference value. The computer vision community accept the use of

precision-recall curves and the AP value over area under curve measure of the ROC curve because

of improvements in the sensitivity of the metric, improvements in interpretability especially for

image retrieval applications, and increased visibility to performance at low recall (Everingham et

al., 2010).

The AP defined as the arithmetic mean computed on the interpolated precision values p̃(rc) for

11 thresholds on recall rc ∈ 0, 0.1, . . . , 0.9, 1 such that,

AP =
1

11

∑

rc

p̃(rc). (4.1)

The interpolated precision p̃(rc) represents the maximum precision for which the correspond-

ing recall is greater than or equal to the threshold rc (Everingham et al., 2010). Detection algorithms

yield a list of bounding boxes (BB) and a score for each detection. The scores denote a confidence

level for each detection, where larger values indicate higher confidence that the object is present.

In order to avoid multiple detections, almost all detection algorithms include a NMS procedure

for merging nearby detections. The PASCAL measure evaluates a potential match between detection

(BBdt) and ground truth (BBgt) using the area of overlap (ao) defined as

ao
.
=
area (BBdt ∩BBgt)
area (BBdt ∪BBgt)

> 0.5 , (4.2)
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whose value must exceed 50%, which is the overlap value proposed in the PASCAL Challenge.

Detections with a greater confidence level are at first matched greedily with their ground-truth, and

the other unmatched BBdt count as false positives. Therefore, multiple overlapping detections are

penalized.

We used detection experiments to compare the performance of four methods: 2D deformable

part-based model (DPM) detector (Felzenszwalb et al., 2010); 2D deformable part-based model

with multiple view filtering (DPM-epipolar); 3D sliding-box with ensemble of features classifier

(EF); 3D sliding-box using the one-vs-all ensemble of classifiers (OVA-EC); and the 3D sliding-

box using the one-vs-one ensemble of classifiers (OVO-EC). The experiments are performed using

the test datasets described in Section 4.2.

4.3.2. Heat Maps

To visualize and to corroborate the spatial behavior of the detections, we used heat maps to

identify the most frequently visited areas. These maps contains the cumulative sum of detections,

and they are built using the projection of the detections over the plane Z, similar to the occupation

maps proposed in Fleuret et al. (2008). Thus, we can observe the behavior of the detections during

the execution of the algorithm. Each detection is accumulated over a neighborhood around its

location. The more occurrences of detections over a location in the Z plane, the greater the intensity

on the map. The final map is displayed in pseudo color, as shown Fig. 4.6.

4.3.3. Per-Windows Evaluation

During this evaluation, we proposed training a classifier using a small set of features which

progressively grows over the course of the test. Each set of features included in the test corresponds

to a different view. This allows us to ascertain whether there is an improvement in the classification

by including additional information acquired from the other views. We used standard precision-

recall curves to check the effect of adding features.

4.4. Publications

We present our method as part of three publications. The first work includes a concept test

using our approach to solve a simple and known detection problem. We evaluated the projection

method and an ensemble approach to classify flaws in aluminum die casting. The second article
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Figure 4.6. Example of heat map used to analyze the most frequently visited areas. This
map shows a top-view of the classroom used for our experiments. Pseudo color indicates
the number of detections at each location. Red areas are equivalent to a high number of
detections, blue areas point a low number of detections. Similar as we describe in Fig. 3.5,
the space of interest S is limited by the yellow square. The dashed region marks the space
that we do not take into account during detection.

describes an application of the ensemble of features and ensemble of classifier methods to head

representation an classification. And the third publication describes our head detection method,

including most of results presented in this thesis.

4.4.1. Flaws Detection

Due to security requirements, the car industry requires that 100 percent of the aluminum parts

included in vehicles be inspected. X-rays are the main non-destructive testing method used to

identify flaws within an object that are undetectable to the naked eye. Although human inspectors

are hard to replace, they can only meet these requirements for short periods of time. There are

human factors, such as monotony, tiredness, eye stress, and loss of concentration that make this task

sensitive to errors (Boerner & Strecker, 1988). Automated inspection using radiographic images

has been made possible by incorporating image processing techniques into the process. There are

successful mono-focal approaches (Boerner & Strecker, 1988; Anand, Kumar, et al., 2006) which

demonstrate the ability of those autonomous system to assist humans in this task. However, false

positives have to be kept to a minimum due to cost constraints. Thus, multiple view approaches
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are an important tool for detecting and reducing false alarms. Multiple view approaches work in

calibrated (Mery et al., 2005, 2002) and uncalibrated scenarios as well (Carrasco & Mery, 2006).

Both multiple view approaches consist of flaws in the segmentation of each image, searching for

matches in the images, and tracking the flaws in the images. In general, those approaches require

effective segmentation and matching algorithms. We propose an automated inspection using our

sliding-box approach. The system has three main parts: multiple view projection, feature extraction,

and classifier for sequences. The classifier learns the flaw structures from simulated flaws. Thus

the system uses all of the evidence that is made available by the multiple views. We combine the

information gathered without having to search for matches. The classifier then determines whether

an image sequence belongs to flaws/no-flaws classes in the detection process, as shown Fig.4.7. In

this study, we use 72 views of the same aluminum wheel. We arrive at two important conclusions:

1) simulated flaws can be used to train classifiers used in these applications due to the fact that

real flaws are rare events in industrial manufacturing processes and 2) simultaneous combination of

information from different viewpoints using sliding-boxes is a robust approach to flaw identification.

The results and experiments were described in (Pieringer & Mery, 2010), and will be included in

the Appendix A.

4.4.2. Head Modeling

Object detection has attracted great interest of researchers in the computer vision community.

Although machine learning approaches has been successful in this task, there are still significant

challenges to solve in order to achieve data association, and including information from various

points of views. We propose a multiple-view classification approach to bring a gap between ad-

vances in machine learning based object detection and multiple view geometry. The key idea is to

classify an image sequence of corresponding parts of an object. This scheme allows us to solve

problems related to correspondence throughout cameras, and to enhance the detection models with

compounded features. This article describes our approach applied in human head modeling by

integration of visual information. The experiments demonstrate that our technique improves 2D

state-of-art classifiers, using same training conditions. These results are promising and show that

our approach can be use effectively to detect objects using multiple views. The results and experi-

ments were described in (Pieringer et al., 2012), and will be included in the Appendix B.
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Figure 4.7. Concept testing for our approach, applied to flaws detection in aluminum die
casting. We build a flaw sequence using 72 images in a calibrated multiple view system.
The classifier learns from simulated flaw sequences and identifies flaws on real images.

4.4.3. Head Detection Using Sliding-Boxes In Multiple Views

Sliding-Windows detectors have attracted great interest among researchers in the computer

vision community because of the advantage they offer of avoiding segmentation problems during

detection. significant progress in detection is due in part to the use of powerful machine learning

models, new and more informative visual features, and part-based models which cope with object

variability (Viola et al., 2005; Dalal & Triggs, 2005; Felzenszwalb et al., 2009; Yang et al., 2009;

Girshick et al., 2014; Dean et al., 2013). Although there have been some improvements, overall

performance is still poor (Dollar et al., 2011). A common denominator of these techniques is that

they rely mainly on statistical learning methods that exploit image-intensity information to capture

object appearance features. Their goal is to reveal visual spaces where visual similarities carry

enough information to achieve robust visual recognition. An important limitation of appearance-

based approaches is that they do not incorporate relevant geometric information that can provide

important, useful spatial cues such as the real size of the object to be detected, depth, and likely

spatial appearance location. Some notable exceptions with promising results are Salas and Tomasi

64



(2011); Spinello and Arras (2011); Espinace et al. (2013); however, these approaches require ad-

ditional hardware to recover the spatial information. Detection using one camera is suitable when

there is mild occlusion, but if there is heavy occlusion multiple views help to improve final detection

(Mittal & Davis, 2003; Khan & Shah, 2006; Eshel & Moses, 2010; Liem & Gavrila, 2013). Geo-

metric techniques exist for establishing relationships across views in a camera system, providing

useful ways of combining and integrating this information (Hartley & Zisserman, 2003; Szeliski,

2010). However, there are practical constraints when the appearance of the target object changes

drastically from one viewpoint to another. In general, we observe that single view approaches to

object detection mainly i) use a sliding-window at various scales to compensate scale changes of

the object target class in images, resulting in false positives due to hallucinations at several scales;

and ii) do not take into account useful 3D information such as real sizes of people or objects, and

the positions in which they are likely to be found in the scene.

We propose a generalization of the sliding-windows approach to 3D cases, which we call

sliding-box. This approach works on calibrated multiple view configurations where we have vari-

ous viewpoints of the same scene. This calibrated system allows us to run a sliding-box in world

coordinates and project this box in its corresponding position on each image. We can also search in

the correct scale and location, improving the processing limitations of the sliding-box. Furthermore,

it allows us to create appearance models from various viewpoints to improve detection.

We apply our approach to head detection as the head is useful when the rest of the body is

occluded. Experiments show that our framework improves detection performance by 10% of aver-

age precision-recall as compared to the optimal view of state-of-the-art 2D methods in our datasets.

These results suggest that our approach can be used effectively to detect objects in multiple view

systems, improving detection performances achieved by 2D detectors in isolation. We include a

preliminary version of this article in Appendix C.
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Chapter 5. EXPERIMENTS AND RESULTS

In this chapter, we describe the experimental results of applying the sliding-box approach in

people detection. We present the qualitative and quantitative results of the algorithm, and compare

our results to those of a state-of-art 2D multi-scale detector. We evaluate algorithms according to

the methodology presented in Chapter 4, in which the qualitative results showcase the practical

advantages of our approach, and precision-recall curves are used to measure and compare the per-

formances of detection algorithms based on the qualitative results. We run detection tests using two

real video sequences acquired within a classroom environment in order to validate our hypothesis

and test the performance of our approach. Both test datasets were manually labeled to identify the

ground truth elements. In general, our experiments confirm that using multiple views complements

the data in the vision system and increases the overall detection performance. Detailed information

about implementation and results will be discussed in the next four sections.

5.1. Implementation Details

During testing, we run the sliding-box in a fully labeled test dataset T. The sliding-box move-

ments are geometrically limited to region of interest S, in which we locate true head hypotheses

and discard those that fall out S. In our implementation, we use a dense grid mesh with steps of

5cm to move the box. This exhaustive analysis produces ∼60.000 boxes, depending also on the

size of the region of interest. We drastically reduce the number of hypotheses by applying the 3D

focus-of-attention procedure. During our experiments, we consider Nmatches = 2 correspondences

to compute the focus-of-attention. Our sliding-box runs along the regions identified by the focus-

of-attention. The box Bi is projected onto the images as Wij , and then cropped and rescaled to

64 × 64 pixel, in order to create a collection of aspects as is shown in Fig. 3.4. We describe each

element Wij using the uniform LBP features over a 3-level pyramidal decomposition, obtaining a

total of 21 feature blocks per object instance. This is the number of levels recommended to avoid

overfitting (Bosch et al., 2007). Although HOG and LBP descriptors are state-of-the-art low level

features, LBP performs better than HOG in early experiments. We explain that difference because

head aspects present different textures in different poses. Some articles describe this phenomenon

in detection, explaining that LBP cope better with color or textured information (Mu et al., 2008;

Wang et al., 2009). We use the VLFeat library to compute LBP features (Vedaldi & Fulkerson,
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2010). In the course of detection, the multiple view model evaluates each hypothesis considering

all the possible alignments in order to select the most confident set of aspects, as we described in

Section 3.4.4. In both cases, we use support vector machines (SVM) with linear kernels as classi-

fiers (Cortes & Vapnik, 1995). We compared linear and RBF kernels, and the former provided more

reliable results for different choices of parameters. As stated in Yang et al. (2009), linear kernels

perform better in visual applications with large and sparse descriptors. The next two sub-sections

describe how we trained both classification approaches for projection sequences. As we mentioned

previously, both are independent and exclusive of each other. Our implementation takes an average

of six minutes to classify 1,500 boxes using MATLAB over Ubuntu-Linux and an AMD Phenom II

X4-925, 4GB RAM, 2.8GHz computer.

5.2. Detection Performance

The main goal of our method is head detection in order to determine people’s location. We

study the detection performance of our sliding-box approach using that of a state-of-art 2D multi-

scale detector as baseline. We compare the performance of our two approaches using as a baseline

the Deformable Part-based Model (DPM) (Felzenszwalb et al., 2009). In order to obtain a fair com-

parison, we use epipolar geometry to filter out false positive detections of the DPM detector, as we

explain below. We performed experiments using test datasets described in Section 4.2. Performance

was evaluated following the structure set out in the PASCAL challenge using precision-recall (PR)

curves (Everingham et al., 2010).

We train the DPM algorithm using our head dataset. After training, this model allows us to

detect heads in the testing dataset, as shown Fig. 5.1. First, we run the 2D detector for each camera

independently. Then, detections in one view are tracked through the camera system using epipolar

lines in order to establish corresponding detections from all views.. We considered a detection in

camera i to be true if a detection in camera j appeared near to the epipolar line computed using the

detection in camera i, such that lj = Fij ·mi, where Fij is the fundamental matrix between views i

and j, and mi is centroid of the detection in camera i. Otherwise, the filter discards detections that

could not be tracked through Nmatch views in the camera system. To make the evaluation between

multiple view methods and multi-scale methods fairer, we also include prior knowledge during 2D

detection, such as the maximum and minimum bounding-box size, and likely location for detection
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(a) (b)

Figure 5.1. Summary of the head model that the DPM learns after training. (a) Example of
the model, its gradient map, and parts. (b) Example of detections after applying the model
over test images.

in the image. We evaluated these approaches using the methodology proposed in VOC Challenge

PASCAL (Everingham et al., 2010), where detections within an overlap area of the ground-truth

counts as correct detections. Detections outside of this area counts as false detections.

In order to evaluate our approach we calculate the performance of our method using a modified

version of the PASCAL method. Since we know spatial information such as box size, we simplify

the function evaluation calculating the Euclidian distance between the detected sliding-box SBdt

and the ground truth box SBgt. Both, SBgt and SBdt, form a potential match if the distance is

lower than the overlap radio roverlap,

distance
.
= ‖SBdt, SBgt‖ < roverlap. (5.1)

The overlap radius depends on prior spatial information. In our experiments, we consider

roverlap = 180[mm]. This value is the average radius which produces an average overlap of 50%

for 2D detection according to the PASCAL criterion. We can also explain this value geometrically.

With the exception of specific cases in which two or more heads are very close to one another,

heads are generally located at the center of the body and are therefore geometrically separated from

other heads at a minimum distance equivalent to the space occupied by the whole body. Based on

this assumption, if we consider a correct head detection that match with its ground-truth any other
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overlapped detections surrounding it within a radius lower than roverlap there will be the same. We

apply the DPM detector and DPM detector variation using epipolar geometry for the four views of

the dataset. After detection using these 2D detectors, each view has its own performance curve.

Comparison includes precision-recall curves of our approach compared to the performance curve of

these 2D detectors corresponding to the view with the highest AP value.

We evaluate our detection approaches in both datasets using suppression the methods described

in Chapter 4: Weighted Mean Shift suppression (WMS-NMS) and Local Maximum Searching sup-

pression (LMS-NMS). For the purpose of the evaluation, we considered detections that match with

ground-truth heads present in four views and ignored from the evaluation detections that match with

the ignored ground-truth heads. Figures 5.2 and 5.3 show that the one-vs-one Ensemble of Classifier

(OVO-EC) model using WMS-NMS outperforms the Ensemble of Features (EF) and the one-vs-all

Ensemble of Classifier (OVA-EC). These results show that suppression affects the overall detection

performance. These variations are more noticeable in dataset sq-01 where pose changes may to

influence the detector performance. WMS-NMS represents the overlapping boxes using a weighted

mode that finally fits better with the real ground-truth location. Our approaches generally reach

better performances than the DPM detector, producing similar recall rates but allowed for higher

rates of precision at the tail of the curves, as compared to the 2D detections. This proves that using

combinations of viewpoints may improve detection performance. We conclude that mean-shift sup-

pression generally contributes to improving the location of final detections even using the different

classifiers. On the other hand, LMS-NMS based uses a sampling strategy that not always fit with

the real location of heads according to ground-truth.

Specifically in dataset sq-01, the detector based on OVO-EC and mean-shift suppression per-

form better than other approaches, including 2D detectors. Although detectors using LMS-NMS

achieve good levels of performance, DPM detector perform the best, as shown in Fig. 5.2a. As we

have mentioned, OVO-EC performs the best and showed improved precision on the last part of the

curve, though this is less noticeable. Though both versions of DPM detector performed at similar

levels, we note that DPM detector using epipolar geometry presents a small improvements in preci-

sion over recall of 0.85 where it could to eliminate some false detections, as shown in Fig. 5.2b and

Fig. 5.2a. Nonetheless, this improvement is not enough to produce an overall enhancement to out-

perform the DPM without epipolar geometry. The results show that epipolar geometry contributes
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to eliminating false positives, as we stated, but in this case it does not allow us to recover missed

detections in any viewpoints.

The results of dataset sq-02 show behaviors similar to dataset sq-01. The overall detection

performance presents few variations among the three multiple view approaches. They are all quite

similar in terms of precision-recall. They yield an AP value of [0.73 − 0.74] regardless of the

suppression procedure, as show in 5.3a and Fig. 5.3b. The camera viewpoint may improve the

location estimation during focus-of-attention computation and eliminate the influence of the NMS.

We observe classifiers performed on similar levels due to head pose because people pose naturally

facing the two frontal cameras. This alignment is similar to the samples used to train the model,

which means that all classifiers behave in a similar fashion. We also note the same improvements

in precision after recall of 0.5, which means that these approaches outperform 2D detectors. At this

recall point, the performance of both 2D detectors decreases in quality. We do not observe detection

improvements in the DPM detector based on epipolar geometry.

Tables 5.1 and 5.2 show the confidence interval for detection in order to demonstrate the re-

peatability and accuracy of our detectors. We use a procedure that is quite similar to the one that we

use to generate precision-recall curves. The procedure first separates random sets of test instances

into k-folds, and computes the AP value for each fold. Finally, it uses theses k-AP values to com-

pute the average and the confidence intervals using a t-Student Test at 95% of confidence level. We

set k = 10 that is the standard value used in cross-validation evaluations. The results show little

variation of AP values in LMS-NMS and WMS-NMS suppression methods. This test find averages

AP values that were close to the AP values presented previously in tests for overall detection per-

formances. Most intervals present a significance of over 95% of confidence level and error below

0.05. The detection results show that WMS-NMS improves the final detection in terms of quality.

As we stated previously, the WMS-NMS performs better than the LMS-NMS procedure in terms of

how much it helps improve the location and rejection of overlapped sliding-boxes. However, there

is a decrease in precision due to the low detection thresholds because mean-shift computes the local

mode using spurious hypotheses, as show in Fig. 5.3b.

Figures 5.4a and 5.5a show a heat-maps plots that summarize locations of heads within S in

sequences during detection. Heat-maps are the cumulative log-normalized sum of frames in the

sequences (Dollar et al., 2011). We use these plots to visualize the effects of each classification
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Figure 5.2. Precision-Recall curves comparison of detection performance in sequence sq-
01. We compare performances of our methods EF, OVA-EC, and OVO-EC versus perfor-
mance of single view DPM and the epipolar version of DPM. In general we report high
performance level of our OVO-EC approach. The overall performance is represented using
the AP value. (a) Performance evaluation using LMS-NMS. Although detectors performed
well, the DPM performed best overall. Our approach based on a one-vs-one ensemble of
classifier presented the best performance. We note an improvement in precision on the last
part of the curve that allowed to our method to maintain its level of precision at the same
recall rates as DPM. (b) Performance evaluation using NMS based in mean-shift procedure.
In this case, our approach based on a OVO-EC of classifier performed best. We observed
the same improvement in precision on the last part of the curve, but in this case it was more
noticeable. In both curves, DPM using epipolar geometry showed marginal improvement
after recall of 0.85. This may be due to the way that epipolar geometry helps to eliminate
false detections.
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Figure 5.3. Precision-Recall curves comparison of detection performance in dataset sq-02.
Comparisons include our three methods EF, OVA-EC, and OVO-EC versus performance of
single view DPM detector and the epipolar version of DPM. In general we report best per-
formance level in the OVO-EC approach. The overall performance is represented using the
AP value. (a) Performance evaluation using NMS based on greedy procedure. The three
multiple view detectors performed at similar similar levels. All of them outperform the
DPM detector in its two versions. Our approach based on a OVO-EC yielded the best per-
formance as in sq-01. We note improvements in precision on the last part of the curve which
allowed our method to maintain a level of precision at the same recall rates as DPM. (b)
Performance evaluation using NMS based on mean-shift procedure. Our approach based
on a one-vs-one ensemble of classifiers performed best. The same improvements in pre-
cision are present. In both curves, DPM detector using epipolar geometry does not show
an improvement. This may be due to the fact detections near to same epipolar lines are
eliminated.
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Table 5.1. Repeatability analysis of our three approaches in dataset sq-01. Results show
little variation after detection. All methods show significance over the 95% of confidence
level.

LMS-NMS WMS-NMS
Method Avg. AP σ Confidence Interval Avg. AP σ Confidence Interval
OVO-CE 0.905 0.061 [0.861 - 0.948] 0.953 0.025 [0.935 - 0.971]
OVA-CE 0.836 0.058 [0.794 - 0.877] 0.855 0.058 [0.813 - 0.896]

FE 0.884 0.042 [0.854 - 0.913] 0.926 0.037 [0.899 - 0.952]

Table 5.2. Repeatability analysis of our three approaches in dataset sq-02. The results show
little variation in detection that passes the 95% of confidence level.

LMS-NMS WMS-NMS
Method Avg. AP σ Confidence Interval Avg. AP σ Confidence Interval
OVO-CE 0.747 0.053 [0.709 - 0.785] 0.754 0.034 [0.730 - 0.778]
OVA-CE 0.733 0.062 [0.688 - 0.788] 0.738 0.043 [0.707 - 0.769]

FE 0.739 0.053 [0.701 - 0.777] 0.751 0.052 [0.714 - 0.788]

approach and suppression method. In general, the results show that WMS-NMS provides more

accurate outputs than the smoother outputs of the LMS-MNS. This suppression affects the final

performance. The geometric information about the scene also allows us to limit the analysis to the

space defined by the yellow square S, and to discard the crosshatch area because it does not contain

candidate points. Detection results show that both ensemble approaches look similar to each other,

but we note that ensemble of classifiers using one-vs-one strategy produces results that are a better

match with the ground-truth, particulary using WMS-NMS procedure, as shown in Fig. 5.4f and

Fig. 5.5f. Although the ensemble of features and the ensemble of classifier using a one-vs-all

strategy produce similar results to the ground-truth, we detected the presence of artifacts that can

reduce the quality of final detections, as shown Fig. in 5.4 and Fig. 5.5.

Visually, we also can compare the best view of PDM detector based on the AP achieved in the

PR curve to the detections yield by our approach in the same view. We set the detection threshold

to 0 for practical reasons. Figures 5.6 and 5.7 show detection provides by all methods. We note that

our approach retrieves detections missed by DPM. We display detections in red boxes and ground-

truth elements in green boxes. Although our approaches add missed detections in one view, they

also hallucinate some noisy detections due to an incorrect combination of data. This example also

presents noisy detections after using LMS-NMS, especially for OVA-EC and FE approaches. The
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OVO-EC presents the best quality of detections in accordance with centering of the bounding-box,

as we stated in experiments of precision-recall curves.
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Scene-dataset-02-ground-truth

(a)Scene-dataset-02-fe-4v-meanshift

(b)

Scene-dataset-02-fe-4v

(c)Scene-dataset-02-ova-4v-meanshift

(d)

Scene-dataset-02-ova-4v-nms

(e)Scene-dataset-02-ovo-4v-meanshift

(f)

Scene-dataset-02-ovo-4v-nms

(g)

Figure 5.4. Heat-map of detections using our three detection approaches in sequence sq-01
after applying WMS-NMS and LMS-NMS. Left column are detection using WMS-LMS
and right column are detection using LMS-NMS. (a) Heat-map of the ground-truth. (b)
and (c) Heat-maps of detections using the EF approach. (d) and (e) Heat-maps of detection
using OVA-EC. (f) and (g) Heat-maps of detection using OVO-EC.
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Test-dataset-600-ground-truth

(a)Test-dataset-600-dt-fe-4v-meanshift

(b)

Test-dataset-600-dt-fe-4v-nms

(c)Test-dataset-600-dt-ova-4v-meanshift

(d)

Test-dataset-600-dt-ova-4v-nms

(e)Test-dataset-600-dt-ovo-4v-meanshift

(f)

Test-dataset-600-dt-ovo-4v-nms

(g)

Figure 5.5. Heat-map of detections using our three detection approaches in sequence sq-02
after applying WMS-NMS and LMS-NMS. Left column are detection using WMS-LMS
and right column are detection using LMS-NMS. (a) Heat-map of the ground-truth. (b)
and (c) Heat-maps of detections using the EF approach. (d) and (e) Heat-maps of detection
using OVA-EC. (f) and (g) Heat-maps of detection using OVO-EC.
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(a) (b)

(c) (d)

Figure 5.6. Detections comparison using WMS-NMS. (a) Detections provided by DPM
detector. (b) Detections generated by OVA-EC approach. (c) Detections yielded by OVO-
EC approach. (d) Detections generated by applying the EF method. We display detections
in red boxes and ground-truth heads in green boxes. The results show that our methods can
retrieving heads that the 2D detector missed. Although we retrieve new heads, we also add
some noisy detections.
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(a) (b)

(c) (d)

Figure 5.7. Detections examples using NMS based on mean-shift. (a) Detections provided
by Latent-SVM detector. (b) Detections generated using OVA-CE. (c) Detections yielded
by OVO-CE. (d) Detections yield by applying FE method. Detections appear as red boxes
and ground-truth heads as green boxes. The results show most of the heads missed by the
2D detector were retrieved by our multiple view detector. Although we retrieve new heads
we also add some noisy detections due to hallucinations of the classifier.
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5.3. Enriched features

We analyze the influence to train the model β of our best approach varying the number of

cameras. This test allows us to evaluate the impact of using different visual sources and the power

of combing features from various viewpoints of the same object. First, we train the model β only

using one camera. Second, we progressively re-train the model adding one camera at a time. We

perform this analysis in terms of per-window performance using AP value without considering

the suppression procedure after classification in order to evaluate the discriminative power of our

multiple view classifier (Dalal & Triggs, 2005). Figure 5.8 indicates that the three methods show

an increase in performance as we add a new camera. When we train using a single camera, we

report a low rate of average precision-recall (AP) that proves the classifier using single viewpoint

generates weak models. This demonstrates that complementary information enhances the model

β and improves the classification. We also found that EF method shows a noticeable performance

gap between two and three cameras, as shown in Fig. 5.8a. The same performance improvement is

present in both ensemble of classifiers approaches, but the transition between the step is smoother

than the ensemble of features, as shown Fig. 5.8b and Fig. 5.8c. The three classification schemes

show a marginal improvement when the classifier learns from three and four cameras.

5.4. Focus-of-Attention

The focus-of-attention mechanism and the spatial context allow for object target class be cor-

rectly located in applications such as train stations, restricted areas, and points of access. In Chapter

3, we explained that sliding-box runs across the 3D space in order to predict the location of heads.

During this process, the algorithm must process a massive number of windows. We compute the

spatial focus-of-attention in order to decrease this amount of information to be processed. This

procedure generates spatial hypotheses of the real location of heads. In our implementation, we

use the output of an interest-point detector to estimate the spatial position of latent candidates by

triangulation (Hartley & Zisserman, 2003; Szeliski, 2010). In this way, our attention mechanism

produces spatial hypotheses in the most likely locations for finding heads.

In our implementation, we use the detections provided by the 2D detector that works as a spe-

cialized interest-point detector. The focus-of-attention procedure does not have restrictions in terms

of this type of interest-point detector. However, we prefer to use these detections because of the
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Figure 5.8. Performance comparison in per-windows classification. The curves show per-
formance evolution as we add information from the four visual sources of our camera sys-
tem. (a) precision-recall curve of ensemble of features. This method presents an improve-
ment in performances after the third camera is included, which is the view that includes in-
formation about the rear of the head. We conclude that the additional viewpoint contributes
to improving the performance. (b) The precision-recall curve of ensemble of classifiers
using a one-vs-all strategy. (c) The precision-recall curve of ensemble of classifiers using
a one-vs-one strategy. These second method presents improved performance as we add a
new viewpoint. It is smoother that the improvement presented by ensemble of features.
Overall performance is represented using the AP value. High AP values are yield by all
methods when we use the four cameras.
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Table 5.3. Summary of the burden reduction due to the spatial focus-of-attention. Although
there is an overhead due to applying an interest-point detector, it is always better use this
procedure than perform an exhaustive search across the region of interest.

Sequence Total no. Percetange of Burden Reduction Varing the Detector Threshold
of Boxes -1.0 -0.7 -0.4 0 0.4 0.7 1.0

sq-01 92,160 85 ± 3.5 95 ± 1.5 98 ± 0.65 99 ± 0.5 99.5 ± 0.3 99.7 ± 0.27 100 ± 0.15
sq-02 65,536 92.5 ± 3 96.3 ± 1.6 98.3 ± 0.4 99.3 ± 0.5 99.4 ± 0.5 99.6 ± 0.3 99 ± 0.2

implementation goes beyond the scope of this thesis. Figure 5.9 shows that the total number of hy-

potheses and therefore the maximum recall that we can achieve depends on detector confidence, i.e.,

the higher the confidence threshold, the smaller the number of spatial hypotheses and the chances

of recovering the total number of heads. We use a sensitivity analysis to show the maximum recall

achieved for each video sequences. The maximum recall in sequence sq-01 is between −0.4 and 0

of detection confidence. In sequence sq-02 the maximum recall is in the range of −0.7 and −0.4

of the confidence. Table 5.3 summarizes the burden reduction by using focus-of-attention. The

average burden reduction is 95% at a threshold that allows us to to recover all detections in the

region of interest S. Although there is an overhead due to applying an interest-point detector, and a

trade-off between the number of spatial hypotheses and the detector confidence, it is always better

to use focus-of-attention than perform exhaustive searching across the detection region. Figure 5.10

shows examples of focus-of-attentions provided by our algorithm. The examples in the left column

show results using a high confidence value of the 2D detector. This examples show the decrease of

head hypotheses, and therefore the recall of the detection algorithm. Examples in the right column

show results using a low confidence value. We note that most of the ground-truth elements match

with the spots defined by our attention mechanism.

5.5. Using of Geometrical Cues to Detection

We stated in Chapter 1 that our approach offers advantages and contributions related to the

knowledge about prior information about the target object classes. We perform a qualitative eval-

uation comparing the windows used by two detection method: sliding-window detectors, and our

multiple view detector. We pick two sets of a random sample of 60 windows in both detection ap-

proaches. Windows used with the 2D detector covers various scales trying to predict the size of the

object, which produces hallucinations at scales with higher resolutions, Fig. 5.11a. Our approach
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Figure 5.9. Sensitivity analysis of confidence vs recall due to use of the spatial focus-of-
attention procedure. There is a trade-off between detector sensitivity and the maximum
recall reached upstream of the classifier. If we set a low sensitivity for the detector, we
increase the ability of the focus-of-attention to retrieve all detections in the scene. Even
though a low confidence threshold produces more spatial hypotheses and increases the
burden for other procedures, it is always better use the focus-of-attention than to run the
sliding-box across the entire region of interest S. (a) shows sensitivity for sequence sq-01
where the maximum recall appears to fall between 0 and −0.4 of detector confidence. (b)
shows sensitivity for sequence sq-02 where the maximum recall appears to be between
−0.4 and −0.7 of detector confidence.

can control the size of the windows and the areas analyzed. This allows us to generate more infor-

mative windows for the classifier and limit the analysis to more likely location, as shown in Fig.

5.11b.

The main task of the multiple view classifier is to discard boxes that include projections which

belong to the background. However, we note that the models intrinsically also perform the task

of aligning the collection of aspects that they learnt during training. In Fig.5.12, we show three

sets of four candidate boxes. The first and second sets, shown in Fig.5.12a and Fig.5.12b, belong

to the head class; the third set, in Fig.5.12c, belongs to the background class. Once the algorithm

evaluated each hypothesis, higher scores were always given to the best alignments, which had the

best scores and were therefore selected by the algorithm. All of the scores in the third set c) are

strongly negative, and therefore all were assigned to the background class.
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Figure 5.10. Examples of focus-of-attention computed within the region of interest S using
the outputs provided by an interest-point detector. The head hypotheses appear as grey
circles and the ground-truth as green stars. In accordance with our experiments, the spatial
focus-of-attention recover most of the ground-truth elements. Though it adds an overhead,
it is always better use the focus-of-attention than to run the sliding-box across the region
S. Left column shows focus-of-attention build setting a low threshold in the inters-point
detector. Right the focus-of-attention using a higher threshold.
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(a) (b)

Figure 5.11. Random sample of 60 windows evaluated: (a) by a 2D detector, and (b) by
our approach. In (a), windows must change their size in order to predict the real size of the
object. We improve the search by using the real size of the object what limit to the size and
locations of the projected windows, as shown in (b).
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Figure 5.12. Alignment test of collection of aspects. The figure shows the results of using
sliding-box to evaluate among a set of hypotheses and their scores. Box scores are high
when the box belongs to the head class, and its projections yield better alignment, as shown
in (a) and (b). In (c) we observe background examples and their scores, all of which were
negatives.
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Chapter 6. DISCUSSION

This chapter presents general and specific remarks about our research, and summarizes the

contribution of this thesis. We also discuss the implications of including information from others

viewpoints in a multiple views system, the use of spatial focus-of-attention, and the methodology

that we used for classifying and detecting people in multiple view indoor environments. Finally, we

present future avenues of research following this approach.

6.1. Conclusions

This thesis describes our approach to detecting people in indoor multiple view environments.

Our main hypothesis is that we can generate a set of potential candidates of a target object class

using a corresponding projections of a a parallelepiped defined in the 3D space and tailored to the

size of the target object class, that we call sliding-box. This sliding-box passes through the three

planes (X,Y, Z) of the spatial domain in the scene in which people are likely to appear. This

approach allows us to search the target object class based on the physical dimensions and location

of the this target in a scene. It also allows information from various viewpoints to be combined

based on their corresponding regions, and finally let us to enhance the effectiveness of single view

detection methods described in the state-of-the-art.

We focus our research on head detection in order to detect people in indoor environments. We

take this assumption based on studies which claims that detecting the head helps avoid occlusions

in crowded environments (Dalal & Triggs, 2005; Eshel & Moses, 2010; Ali & Dailey, 2012). Heads

detection is an special case of people detection that presents an advantage because of heads are a

less deformable objects than the entire body. In this way, heads detectors can be incorporated as

part-based detector into more complex detections systems in order helps to find the complete body

or the other body parts, and finally improve the detection (Zeng & Ma, 2010; Ali & Dailey, 2012;

Xie et al., 2012; Nghiem et al., 2012; Chang et al., 2013; Hayashi et al., 2013).

We achieve the main objective of this research of designing and implementing a framework

for heads detection based on a spatial version of the 2D sliding-windows technique. Our method

extends this approach replacing the sliding-window with a sliding-box. In our implementation,
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the detector runs this sliding-box across the 3D space through regions defined by a spatial focus-

of-attention. Then, the algorithm generates projections of the sliding-box in each viewpoint. A

multiple view classifier assigns a confidence value to each head hypothesis. Finally, a non-maximal

suppression procedure helps to eliminate overlapped detection in order to obtain correct head detec-

tions.

To carry out the main goal of this thesis, we reach the three intermediate goals that we describe

below:

(i) We build a multiple view environment in order to emulate indoor conditions and gen-

erate multiple view datasets to train and test our method. These datasets allowed us to

train multiple view models based on the information from collection of aspects, and

evaluate performances in detection. We have published the datasets on the website

http://web.ing.puc.cl/∼cppierin/projects in order to contribute to other

researches related to people detections using multiple views.

(ii) Using these data, we design, develop and evaluate our framework for detecting people in

indoor environments.

(iii) We also extend the proposed approach to other detection problems. We specifically apply

our approach to heads detection in the context of people detection. However, it can also

be applied to other target objects classes and others problems that use multiple views, as

we demonstrated with the detection of bubbles in materials (Pieringer & Mery, 2010). In

this sense, our method would require adjust the sliding-box shape according to the target

object classes, and the features that we use to represent them.

Single view detectors achieve good levels of detection performance, however, these algorithms

are not always able to handle all target object classes in one camera because object variation or illu-

mination changes. One of the most powerful contributions of our approach is the ability to integrate

information coming from multiple view without using a matching technique. This advantage would

allow us to improve detections provided by a single view detector in a multiple view environment

by merging them into a single spatial detection. This integration makes it possible to recover loss

detections generated by a 2D detector. This is an important issue in scenes in which people’s posi-

tion may change, and where we do not know where the detector will perform best in advance. We
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used simultaneously all of the information in the scene at the same time. This means that we did

not have to choose or train our approach on the best camera.

After experiments and testings, our approach yielded the four main proposed contributions:

(i) a method to combine multiple view information based on a sliding box approach that

allow us to reduce the correspondence problem at level of detection object, instead of

using matching methods based on low-level pixel or interest points

(ii) a framework that includes useful 3D cues and allow us to focus in the relevant parts of

the 3D world in order to filter false candidates

(iii) a guided search of the target object class by moving the sliding-box within a limited 3D

space of interest.

(iv) a classification approach based on combining information from multiple views that al-

lows us to enrich the data used to train the models

(v) and finally, the verification of the relevance of the previous ideas for the case of people

counting using head detection showing a substantial increase in recognition performance

with respect to alternative state-of-the-art techniques.

According to these contributions and our results, the main conclusions in relation to the topics

presented in this thesis are detailed below:

• Detection results show that the one-vs-one (OVO-EC) ensemble of classifiers generally

presents better detection performance in terms of average precision (AP). This difference

in performance is more noticeable in test dataset sq-01, where heads present more pose

variations. The performances of the three classification schemes were close in test dataset

sq-02. In this case, the heads were turned to the front in some of the images. We conclude

that the ensemble of classifiers approach allows us to represent each projection of the

sliding-box in the collection of aspects using a compact representation. Therefore, we

can imagine the first layer of the ensemble as a group of mid-level features. The second

layer performs the mixture of these parts. Similar conclusions have been presented in

(Sabzmeydani & Mori, 2007; Boureau et al., 2010), where authors proposed using mid-

level features.
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• The DPM detector based on epipolar geometry have the ability of discarding false detec-

tions in this multiple views configuration. However, this method is not always effective

for associating detections that showed significant differences between frontal and rear

views of the same head. By contrast, our sliding-box approach is able to code the struc-

ture inherent to the collection of aspects that is the object structure, the head structure

in our case. In doing so, we are able to detect simultaneously using all of the cameras

and at the same time and discarded an significant number of false positives generated as

potential candidates.

• Results of heat-maps show the differences among our classification approaches. All our

approaches achieve to detect correctly most of the ground-truth elements. However, we

find that OVO-CE shows less spurious detections around the ground-truth neighborhood.

The effectiveness of this procedure produces spatial hypotheses around the ground-truth

and simultaneously it rejects large areas close to the edges of the region of interest S.

• Performance curves also show that main differences in detection rates are due to the

suppression method (NMS) used to eliminate overlapped detections. Suppression based

on the weighted Mean-Shit (WMS-NMS) improves the performance in both datasets.

However, the quality of the results decreased in low detection thresholds in sq-02. We

conclude that WMS-NMS is not able to correctly join overlapped detection at these low

confidence values because of these extra noisy detections.

• The sensitive analysis of the focus-of-attention shows of that this attention mechanism

helps to further restrict the search space and drastically reduce the number of head hy-

potheses. Though this attention mechanisms generate overhead, they pay off due to the

complexity of detection (Papageorgiou & Poggio, 2000; Rutishauser et al., 2004; Frin-

trop et al., 2005). Other single view methods (Viola & Jones, 2004; Felzenszwalb et

al., 2010) and multiple-views approaches (Fleuret et al., 2008; Eshel & Moses, 2010)

have already applied this idea. Figure 5.9 shows the ability of our focus-of-attention

to retrieve candidate detections depends on the detection threshold of the interest-point

detector. We show that is possible to choose a threshold in which we can recover all of

the heads present in the scene. Table 5.3 shows that setting this threshold to −1.0 allow

us to reduce the burden of the analysis into 85% in the case of sq-01 and into 92% in

sq-02. Setting the confidence threshold of the detector above to 0 we reduce drastically
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the burden during detection, however, we report a significant decrease of the recall that

may impact the overall performance of our detector.

• Although some remarkable single view approaches utilize spatial information (Salas &

Tomasi, 2011; Spinello & Arras, 2011; Espinace et al., 2013), single view detection

approaches generally do not take into account this information, and the inference of the

objects size should be determined by estimating their scale. Our approach can recover

this crucial information during the detection without using additional hardware. This

spatial information was used for two purpose: to find the most likely location of the

people; and to efficiently use the size of the objects. Therefore, it provides the detector

with a more efficient search mechanism than a simple multi-scale estimation.

• On the one hand, calibration allows our method to use and recover the spatial information

from the scene. It also allows us to combine information among viewpoints. Qualitative

results of using geometrical cues to detection show that without a doubt calibration may

be a useful tool in environments where we need to locate a target object classes in indoor

environments with prohibited locations such as train stations, airports, etc. Detection

results show that a simple mask for 2D detectors could not be enough to filter false

detection. However, on the other hand calibration processes also is a limitation that

makes our approach somewhat rigid to the scene structure.

• The pipeline of our method includes different types of processing that takes an average of

6 minutes to classify 1500 boxes in our MATLAB implementation, running on Ubuntu-

Linux and a AMD Phenom II X4-925, 4GB RAM, 2.8GHz computer. This time depends

on the total numbers of hypotheses generated after the focus-of-attention. Despite our

promising detection results, processing time is a limitation. In the course of detection,

the multiple view model evaluated each hypothesis considering its best alignment and

chose the most confident collection of aspects. For now, this limitation restricts the use

of our framework to small indoor spaces, similar to those we used in our experiments.

6.2. Future Work

Although our algorithm still does not yet work in real-time, we believe that our results open new

path for future research on this subject. The same approach can be adapted to improve detections

in other challenging scenarios using multiple views. Though the proposed approach offers also
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advantages by incorporating information from multiple views, there is still room for improvements.

The paragraphs bellow describe potential enhancements and extensions of the approach.

• There is no doubt that calibration is a required procedure so that the spatial information

can be used and combined. However, this dependance with the environment makes dif-

ficult to ensure that calibration does not present changes affecting the projections stages.

We believe that is possible to extend our method to a semi-calibrated or an un-calibrated

system, in which we do not require to use the calibration pattern for each new scene.

There are techniques such as Structure From Motion (Szeliski, 2010; Agarwal et al.,

2011) that allows recovering the 3D structure of a scene from 2D images without previ-

ous calibration. However, un-calibrated systems cannot recover metric information that

we use in our method to define the geometric cues. One alternative may be using land-

marks that helps to the structure estimation recover this spatial information and limit the

calibration matrices computation to this measurements.

• Features are a relevant part of machine learning algorithms. Our method uses state-of-art

features that have shown to represent successfully various target objects classes. Last

representations of visual features use sparse codes algorithms to discover basis functions

that captures high-level features in image data. This high-level features improve the

classification and detection performance (Yang et al., 2009; C. Zhang et al., 2013). The

integration of this algorithms to our method is an interesting avenue to explore.

• We train the classifiers using collection of aspect that we aligned manually. Then, during

detection we search the best collection of aspect applying shifts over the collection define

by each sliding-box. We believe that is possible to improve the training and detection by

including mechanisms for detecting latent parts and the head pose variations in order to

learn the head structure automatically using classifiers that handle structure in data such

as structural SVM or latent structural SVM (Tsochantaridis et al., 2004; Yu & Joachims,

2009).

• Currently, our approach requires that all cameras contain information to generate the

collection of aspects. However, all of this data may not be present or may be noisy

during occlusion situations. In this case, our method can be improved using a more

flexible model that can handle this missing data.
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• Our research focus on head detection in still images of multiple view environments. In

this sense, incorporating a tracking strategy would allow us to estimate trajectories of

these heads in 3D spaces. We believe that the use of dynamic information, can improve

detection in surveillance systems.
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APPENDIX A. FLAW DETECTIONS IN ALUMINIUM DIE CASTING

This appendix presents the concept testing of using our approach to solve a simple and known

detection problem. We summarize the results of this test in Pieringer and Mery (2010), which

includes evaluation of the projection method and an the ensemble scheme to classify flaws in alu-

minum die casting in multiple views. Defects detection is a relevant problem in manufacture in-

dustry. Although human inspectors are hard to replace, they can fulfill these requirements only for

short periods. We conclude two important contributions: simulated flaws can be effectively used to

train classifiers used in these applications, due to real flaws are rare events in industrial manufac-

turing processes; and simultaneous combination of information from different points of view using

sliding-boxes is a robust approach to flaw identification.
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Abstract

Recently, X-rays have been adopted as the principal non-destructive testing method

to identify flaws within an object which are undetectable to the naked eye. Automatic

inspection using radiographic images has been made possible by incorporating image

processing techniques into the process. In a previous work, we proposed a framework to

detect flaws in aluminum castings using multiple views. The process consisted of flaw

segmentation, matching, and finally tracking the flaws along the image sequence. While

the previous approach required effective segmentation and matching algorithms, this

investigation focuses on a new detection approach. The proposed method combines,

simultaneously, information gathered from multiple views of the scene, this does not

require searching for correspondences or matching. By gathering all the projections

from a 3D point, obtained from a sliding box in the 3D space, we train a classifier to

learn to detect simulated flaws using all the evidence available. This paper describes our

proposed method and presents its performance record in flaw detections using various

classifiers. Our approach yields promising results, 94% of true positives detected with

95% sensitivity in real flaws. We conclude that simultaneously combining information

from different points of view is a robust approach to flaw identification.

Keywords — Automated inspection, flaw detection, saliency, computer vision, multi-

ple views.

1 Introduction

Radioscopy has been embraced as the best tool for non-destructive testing (NDT) in in-

dustrial production given that most defects are not visible on the object’s surface (Mery

and Filbert, 2002). The material defects which occur during the casting process must be

detected in order to satisfy safety requirements, consequently it is necessary to check 100%

of the parts. Even though X-rays detect flaws in cast pieces, they often manifest as small

and low contrast objects which are difficult to detect as seen in Fig. 1(a). Due to these

difficulties it is necessary to incorporate image processing techniques that accurately high-
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light flaws, while separating them from the background, then finally classifying the flaws

correctly.

(a) (b)

Figure 1: Flaw example in an aluminum wheel. (a) X-Ray image of aluminum wheel. (b) Magnifica-
tion of the flaw areas. Circles denote a flaw within the piece.

A typical automated X-ray system is schematically presented and described in Mery and

Filbert (2002). The process is generally performed in five steps:

• The manipulator places the casting in the desired position.

• The X-ray tube generates X-rays which pass through the casting.

• The X-rays are detected by a fluorescent entrance screen in the image intensifier,

amplified and depicted onto a phosphor screen.

• The image intensifier converts the X-rays to a visible radioscopic image.

• The guided and focused image is registered by the CCD-camera. The image processor

converts the analog video signal, transferred by the CCD-camera, into a digital data

stream. Digital image processing is used to improve and evaluate the radioscopic

image.

New X-Ray techniques utilize flat amorphous silicon detectors as image sensors in indus-

trial inspection systems (Purschke, 2002). These detectors use a semi-conductor to convert

energy from the X-ray into an electrical signal without an image intensifier. However due

to their high cost, NDT using flat detectors is not as feasible as the use of image intensi-

fiers. Various approaches to automated flaw detection in aluminum castings can be found

in (Boerner and Strecker, 1988; Mery and Filbert, 2002; Mery et al., 2002a,b; Pizarro et al.,

2008). Those works proposed flaw detection methods without obtaining a priori information

of flaws or the object’s structure. They developed methods to manage the lack of a priori
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information because in real processes flaws are rare, making it is extremely difficult to get

samples. However those methods are mainly supported in the pre-processing of the ob-

tained images meaning they are dependent on the parameters of the processing algorithms

and therefore inflexible to the variations of image intensity. This is where our research dif-

fers, we explore a new method of training classifiers with simulated samples of flaws which

are easier to obtain than real samples, and then proceed to test the system by applying real

flaws (Mery et al., 2005).

Multiple views drastically improve a systems detection rate by eliminating numerous

false alarms, mainly because they provide additional or complementary information about

the object being tested. This process involves using a sequence of X-ray images of a casting,

all of which are taken from different positions. The next step is the segmentation of a flaw

in one view followed by its subsequent tracking throughout the sequence. This approach

can be applied to either calibrated or non calibrated sequences (Carrasco and Mery, 2006;

Mery and Filbert, 2002).

Despite their advantages, the aforementioned methods still require effective segmenta-

tion in the first step in order to generate possible flaws to be tracked in following views. In

addition, methods based on geometrical constraints to track the hypothetical flaws along the

sequence, such as epipolar or trifocal tensors, require robust matching algorithms throughout

different views. Motivated to eliminate these disadvantages, we investigate a new approach

to combine information from multiple-views which allows for flexible learning without re-

quiring a priori information of the object’s structure.

We propose using a sliding box, which moves within 3D space occupied by the casting

object, to gather all projections from multiple views of this local space, Fig. 2(a). Our

approach allows us to avoid matching because all the projections from the box are locally

corresponding. In the following step we create a coarse detection of each flaw from the

projections by using a saliency detector as in Achanta et al. (2008). Each detection is

represented by two kinds of feature descriptors as proposed in Bosch et al. (2007): one for

shape and one for appearance. Finally, we combine the responses of individual classifiers

from all views which results in a final classification of each flaw sequence.

This paper is organized as follows. Section 2 introduces details of our approach, such as

the searching method within the 3D space, the features used to describe aluminum casting

flaws, as well as our methodology for combining information from multiple views. Sections

3 and 4 discuss our dataset and results, respectively. Finally, Section 5 presents conclusions

about our approach.
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(a) (b)

Figure 2: Proposed Methodology. (a) Shows process for gathering informaiton from multiple
views. (b) Process diagram of the proposed method.

2 Proposed Method

In a previous work, we proposed a framework for tracking flaws in castings (Mery and Filbert,

2002). This method has three main parts: flaw segmentation, matching of candidates in

different views, and finally tracking of flaws in the image sequence. The system eliminates

the flaws that are not tracked in thrird and fourth views.

Our method is based on the principal that it is possible to get results similar to previous

works described in the introduction by:

1. replacing the segmentation stage with a more flexible approach based on object de-

tection and recognition, and

2. replacing the matching and tracking stages with a complete and simultaneous analysis

of the scene.

An automated flaw detection system first requires samples of the object being tested in

order to train a classifier. Once this classifier is fully trained, it is used to detect previously

unseen flaws, Fig 2(b). In the next four subsections we explain the main parts of our

algorithm.

2.1 The Sliding Box

The state-of-the-art approach to machine learning, for object detection and recognition in

single images, consists of running a sliding window over an image at different scales and

finally detecting the class of interest within the image (Dalai et al., 2005; Viola and Jones,

2004).

We propose a slightly different approach to integrate information, received from a sliding

box in a multiple view scheme, than methods which use epipolar geometry to establish
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Figure 3: Flaw sequence constructed with information from multiple views. The display range was
extended to facilitate viewing the results

correspondence and use matching as in Carrasco and Mery (2006); Mery and Filbert (2002);

Mery et al. (2002a). A sliding box is used to scan the 3D space of the scene. Every time the

box changes its position, projections from various points of view are simultaneously gathered.

Once received, we implement a method to effectively combine the relevant information from

multiple views.

Our automatic inspection method uses a calibrated X-Ray system, allowing us to project

all 3D points within their corresponding view (Hartley and Zisserman, 2003). In essence,

as the box moves through the space occupied by the casting, we project its vertices over

each available view in the system. In the following step, we select the regions from each

view that encompass the most projected points. Finally, each projected region which is

considered valid are grouped together and arranged into a sequence that shows the flaw

from all available views, as shown in Fig. 3.

2.2 Image Pre-Processing and Saliency Detector

The proposed method, based on object classification, requires the training of a classifier

with flaw samples. However, this is difficult because flaws are very rare occurrences within

images. They are generally difficult to detect because they appear within the image as a

small section of low contrast pixels, even after being isolated in the flaw sequence. Before

training the classifier it is necessary to obtain an extremely detailed sample. To do this, we

extract the flaw’s structure and remove the majority of background details.

At this stage we apply a salient detector to the inverse image of the selected projection.

This detector doesn’t use parameters, in fact it can adapt automatically to varying condi-

tions of contrast in the samples. The results are coarser than the segmentation used in Mery

and Filbert (2002) and Mery et al. (2002a), but it is still suitable for our approach due to its

freedom of parameters. The effects of applying the detector over the original image and in-

verse image are different, see Fig.4(c) and Fig.4(f). Even though both results deliver salient

zones, those obtained from the inverse image allow us to correctly and precisely isolate the

flaw. Our saliency detector is based on the visual attention systems proposed in Achanta

et al. (2008); Montabone and Soto (2009). Visual attention systems are inspired by primate

visual systems, and accordingly we believe they better emulate inspections made by humans

in flaw classification tasks. Saliency detection consists of computing local contrast between

a specific region within an image and its surroundings using one or more features such as

color, intensity and orientation. Thus the saliency of a region is high when its properties
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Results of saliency detector applied to original image and its complement. (a) Patch of
the original flaw. (d) Complement version of the patch. (b) and (e) Extended display range of the
original and complement patches, respectively. (c) and (f) Saliency maps.

differ considerably from the rest of the image (Achanta et al., 2008).

The detection process begins by obtaining the inverse images of the grey scale patches

from each projection, as shown in Fig.4(d). Then, we apply the saliency detector to the

modified patches. This results in a saliency map, see Fig.4(c) and Fig.4(f). We then

determine a threshold to produce a binary image to remove noise from the edges of the

saliency map, Fig.4(i). Finally, we choose a Region of Interest (ROI) around the maximum

value of the saliency map Fig.4(g) and Fig.4(h). By trial and error we determined that the

ROI served us best when set as 40 pixels. Projections without detections are classified as

non flaws.
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2.3 Features

Once we have an accurate flaw detected, after applying the saliency detector, we are able to

extract three sets of features from the samples: Crossing Line Profile (CLP) (Mery, 2003),

Pyramidal Histograms of Oriented Gradients (PHOG) (Bosch et al., 2007), and Histograms

of Oriented Gradients based on SIFT descriptor (Lowe, 2004).

The selected features are used to represent both shape and appearance as in Bosch et al.

(2007). The features vector for shape was constructed by concatenating features of CLP and

PHOG. These features retrieve the circular shape of the flaws. The dimensions of feature

vectors consist of 350 for shape and 128 for appearance.

CLP is defined as the best grey level profile along the length of a straight line within a

region of interest (ROI). Eight profiles, distributed every π/8, are calculated. Each profile

is normalized with respect to its average and standard deviation. Fourier Transform is

extracted at the best profile and its Fourier coefficients are considered as features vector.

CLP has been proven to effectively represent circular flaws in radioscopic images. We

combine the shape features vector and the vector with the best profile inside the bounding

box with the flaw detection in the saliency image.

PHOG features have been successfully utilized in investigations dealing with recognition

and classification of objects. These features use histograms to encode the gradient infor-

mation in regards to the defined border of the object at different pyramidal levels. They

perform better than the Chamfer Distance, which performs a template matching based on

distance transform, because PHOG deals better with rotated images, it is an appropriate

compact vector for learning with kernel based algorithms, and is flexible in regards to spa-

tial correspondence. These features were calculated on the saliency map generated by the

detector explained in 2.2, using only two levels of pyramids to avoid over fitting as suggested

in Bosch et al. (2007), see Fig.5.

A SIFT descriptor computes locally and projects onto an image the histogram of oriented

gradient over a point of interest at a given scale, orientation and position. In our method,

we compute the gradient of oriented histograms as local descriptors over the detection

bounding box resized to 16x16 pixels with neither scale nor orientation information since

that information is already coded in the 3D model.

2.4 Classification and Combining Multiple-Views

Our classification process consists of two stages: individual classification and joint evaluation

utilizing all available views.

First, every element in the flaw sequence as in Fig.3 was classified individually as a flaw

or non-flaw. For this task, we trained two Support Vector Machines (SVMs) with polynomial

kernels because SVMs can better manage large feature vectors, as in Bosch et al. (2007).
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(a) (b) (c)

Figure 5: Results of applying PHOG onto saliency maps. (a) Level=0. (b) Level=1. (c) Level=2.

These classifiers were trained with information on appearance and shape, respectively, as

we mentioned in section 2.3.

Second, the classifiers responses are kept in a vector with values belonging to {1,−1}.
We summarize those values as a Rate of Votes (RoV) computed as the quotient between

the sum of flaws and the sum of non flaws (1), where N is the number of views available for

each flaw. This rate is used as a feature by a new classifier that then decides whether the

sequence represents a true flaw. We calculated two rates: RoVshape and RoVappearance, from

classification of shape and appearance, respectively. The combination of rates allows us to

separate the classes correctly.

RoV =

∑N
i Flaw V otei∑N

i Non Flaw V otei
(1)

At this stage of the process we trained six kinds of classifiers: Linear Discriminant

Analysis (LDA), Quadratic Discriminant Analysis (QDA), Mahalanobis, Artificial Neural

Networks (ANN), K-Near Neighbors (KNN), and (SVM) with Linear and Gaussian basis

(Bishop et al., 2006). The best results were achieved by SVM and KNN.

3 Datasets and Methodology

We constructed a training dataset with 80 sequences as shown in Fig. 3, of those sequences

40 were true flaws and 40 non-flaws. The flaws were simulated utilizing the method proposed

in Mery et al. (2005). We also constructed a test dataset composed of real flaw sequences

previously unseen by the classifier in the training stages. The average number of views for

each flaw sequence is 22 out of a possible 72 total views available from the analysis. Table

1 contains the specifications of each dataset.

The process starts off by extracting the features for shape and appearance, as mentioned

in the section 2.3, individually from each element of the sequence. For each feature, we get a
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Number of Instances

Class Training Test

Flaws 40 12
Nonflaws 40 37

Total 80 49

Table 1: Summary specification of dataset.

vector descriptor with U elements of length from every patch. Then, we put all the elements

in the training set as a matrix of dimensionality W × U, where W is the total number of

instances ×∑ total number of views available in every trace and U is the length of the

feature vector. The same process is applied to the test dataset.

Features were separated into two groups, shape and appearance, as we described in

section 2.3. We train two classifier SVMs for every group of features using ten fold cross

validation (Bishop et al., 2006). We select the best performing classifier into the training

process to use it in the following stages.

Next, each element of the sequence within the training set was classified individually

as a flaw or non-flaw. We obtain the respective RoVshape and RoVappearance according to

equation (1) using the results of the classifiers. We trained six classifiers mentioned in the

section 2.4: LDA, QDA, Mahalanobis, ANN, KNN, and SVM.

Finally, we tested our trained classifier with the dataset of real flaws, generating its

corresponding RoV.

4 Experiments and Results

We evaluate our results by applying the standard two class analysis in pattern recognition

based on estimating sensitivity (Sn) and specificity (Sp) as defined by equations (2) and

(3). There are four possible outcomes of the classifier: TP, TN, FP and FN defined as True

Positives, True Negatives, False Positives and False Negatives, respectively. Ideally Sn = 1

and (1− Sp) = 0.

As we described in section 2.4, the first stage applies an individual assessment of the

elements within the flaw sequence. The average performance of the classifiers in the training

process was 89.7% for SVMshape and 99% for SVMappearance. We use F-Measure to select

the best classifier in this stage, as defined in (4). This criterion allows us to characterize the

performance in a single measure.
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Classifier Sn 1− Sp Correct Rate

LDA 0.8333 0.0000 0.9592
QDA 1.0000 0.4324 0.6735
Mahalanobis 1.0000 0.4324 0.6735
SVM linear 0.9167 0.0541 0.9388
SVM RBF σ = 1 0.9167 0.0541 0.9388
SVM RBF σ = 2 0.8333 0.0000 0.9592
SVM RBF σ = 0.5 0.9167 0.0811 0.9184
KNN 0.9167 0.0541 0.9388
ANN 0.9167 0.1351 0.9167

Table 2: Training of SVMAppearance.

Sn =
TP

TP + FN
(2)

1− Sp =
FP

TN + FP
(3)

F −Measure =
2 · TP

2 · TP + FP + FN
(4)

The final classifier was trained by applying RoV indicators, computed as mentioned in

section 2.4 within the training set. The evaluation was conducted on a new testing set

created with real flaws, previously unseen by the training process, both individually and in

sequences. The best performance was obtained by the classifier (SVM) Linear, (SVM) with

Gaussian kernels and σ = 1, and KNN. Overall, sensitivity is 92% and specificity is 95%.

The complete evaluation is summarized in table 2.

The features relating to space were constructed with RoV indexes are shown in Fig. 6.

It records the correlation between samples of testing and training although there is little

difference between the training set and the testing set in the voting process on non-flaw

samples.

5 Conclusions

In this research, we developed an approach for fault detection in aluminum castings based

on object detection methods. Our approach maintains that by using a sliding-box it is

possible to integrate information from multiple views and train a classifier with all available

information, therefore ruling out a strict segmentation that has been used thus far. This

approach allowed us to correctly detect faults without the need for finding correspondences

as is classically seen in multiple view schemes.

The results obtained in the preprocessing stage of flaw detection based on saliency en-

courages the use of this method in non parametrical segmentation of flaws and reinforces
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our idea of emulating the human visual system of human operators. The detections were

successful in the majority of the cases despite variations in the intensity of images, increasing

the overall performance of the system.

Correlation between the classification of real samples and simulated ones suggests a novel

form of learning which is useful in avoiding the issue of flaw detection when the flaws are

uncommon and rare in actuality.

The methodology of machine learning along in addition to other tools gives our system

the flexibility to deal with process requirements and therefore the capacity to adapt in the

detection of various types of flaws.

We believe the results of our methodology are promising. However, we think that it is

very possible to better take advantage of the information available from all views by utilizing

models which are more complex. Based on this concept, we are working on a new model

of information integration that allows us to define or discover a new structure of the object

that we want to describe, that way we will be able to utilize our methodology in other

detection problems.
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APPENDIX B. HEAD MODELING

This appendix presents an article presented in The Chilean Workshop of Pattern Recognition

2012 that includes evaluation of the head classifiers using ensemble of features and ensemble of

classifiers. This article handles the issue of integrate information from various points of views.

We propose a multiple-view classification approach to bring a gap between advances in machine

learning based object detection and multiple view geometry. The key idea is to classify an image

sequence of corresponding parts of an object. This scheme allows us to solve problems related

to correspondence throughout cameras, and to enhance the detection models with compounded

features. We describe our approach applied in human head modeling by integration of visual in-

formation. The experiments demonstrate that our technique improves 2D state-of-art classifiers,

using same training conditions. These results are promising and show that our approach can be use

effectively to detect objects using multiple views.
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Abstract

Object detection has attracted great interest of researchers in the computer vision

community. Although machine learning approaches has been successful in this task,

there are still significant challenges to solve in order to achieve data association, and

including information from various points of views. We propose a multiple-view clas-

sification approach to bring a gap between advances in machine learning based object

detection and multiple view geometry. The key idea is to classify an image sequence

of corresponding parts of an object. This scheme allows us to solve problems related

to correspondence throughout cameras, and to enhance the detection models with com-

pounded features. This article describes our approach applied in human head modeling

by integration of visual information. The experiments demonstrate that our technique

improves 2D state-of-art classifiers, using same training conditions. These results are

promising and show that our approach can be use effectively to detect objects using

multiple views.

Keywords — Head detection, multiple views

1 Introduction

Object detection and recognition have been relevant research areas in computer vision along

the last decade. The most relevant approaches based on machine learning categorize differ-

ent kinds of objects using visual features extracted from image patches (Dalal and Triggs,

2005; Felzenszwalb et al., 2010; Viola and Jones, 2004). These researches focus on monocu-

lar scheme, and only few researchers have dedicated to exploit the use of multiple views to

improve their performances. A few recent works focus in to demonstrate that 3D informa-

tion, improve the detection. However, most of them include additional hardware, such as

stereo cameras or depth cameras, due to they are focus on mobile robots.

In general, 3D recognition from 2D images is a complex task due to the infinite number

of points of views and different illumination conditions (Poggio and Edelman, 1990). A

simple recognition strategy consists in to performed by matching its invariant features with

the features of a model. However, it may fail when objects have a large intra-class variation.

In 2006, Rothganger et al. propose a novel representation for 3D objects is presented
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based on local affine-invariant image descriptors and multi-view spatial constraints. The

algorithm exploits the idea that smooth surfaces are always planar in the small. Thus, the

matching and then the recognition is possible using photometric and geometric consistency

constraints. A disadvantage is its poor performance on texture images. In Ferrari et al.

(2006), a similar method based on the relationships among multiple model views enforces

global geometric constraints in order to achieve 3D reconstruction from multiple views to

recognizing single objects. A disadvantage is its poor performance on non textured images

and uniform objects. In Voit and Stiefelhagen (2009), a tracking algorithm classifies the

head pose base on the low resolution data in a multi-view camera system. An ellipsoid

represents the head position and rotation, and a probabilistic framework joint the scores of

the individual views. Finally, the tracking algorithm identify the real pose. There also is

a different path for 3D object categorization, which use combination of information from

multiple poses or points of view (Kushal et al., 2007; Savarese and Fei-Fei, 2007; Su et al.,

2009; Thomas et al., 2006). However, they still are mono-focal classifiers. Although, 3D

object classification and detection have had progress, especially linking features among views

in a discriminative learning framework to create multiple view models of objects, there are

still challenges to solve in order to improve data association.

We observe that mono-focal approaches for categorization suffer from: i) high efforts to

improve classification models in only camera, and ii) discard available data from different

visual sources. On the other hand, wide baseline stereo systems present an unsolved issue

related to correspondence matching, where the same object has various poses or variations

simultaneously. We propose an approach to categorize objects using simultaneous visual

data, where the key idea is to use all the available visual information presents in a multi-

view camera system, Fig. 1. The proposed approach offers several promising advantages in

object categorization, including the following main contribution of this paper: improving

classification performance using models on compounded visual features acquired simultane-

ously from the multi-view camera system. This framework let us to enrich the data used to

train the models. Thus, we are able to include all the visual information in the same model.

This article presents our approach for people head modeling based on integration of

visual information in a wide baseline stereo system. The results show our approach improve

classification performance in average precision-recall, with a best performance when the

algorithm use four cameras. These results are promising and demonstrate our approach

can be used effectively to classify objects in multiple-views environments. The rest of the

paper is organized as follows: Section 2 describes the proposed method. Section 3 provides

implementation details, dataset details and main experiments of using our methodology in

real images. Finally, Section 4 discuss concluding remarks and future avenues of research.
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Figure 1: Diagram of head representation. We use N calibrated cameras C1, . . . , CN . In this example
we assumes the head is in positions [X,Y, Z]. The quadric Q is projected from 3D space on images
I1, . . . , IN to generate the windows W1, . . . ,WN .

2 Overview of the Method

Similar to (Voit and Stiefelhagen, 2009), we assumes that an object is represented by an

ellipsoid. We use a quadric sphere located at coordinates M = [X,Y, Z] and radius r, which

is totally defined as Q = (M, r). We project this quadric onto the images in order to extract

bounding-boxes where the object is located. After this process, we get a projected window

Wj in the image j, as shown in Fig.2. A set of features represent each projection as inputs

for a classifier. We decide over the joint data build up using all the projected windows

Wj . More details about quadrics and conics representations can be found in Hartley and

Zisserman (2003).

Our approach requires a fully calibrated multiple view system of N cameras C1, . . . , CN ,

with overlapped fields of view, to compute the geometric model which relates the 3D world

homogeneous coordinates M = [X Y Z 1]T to the 2D image coordinates mj = [xj yj 1]T in

each image Ij . This model was obtained for j = 1, . . . , N cameras using the transformation

λmj = PjM , where λ is an scale factor, and Pj is the 3× 4 calibration matrix of camera

Cj (Hartley and Zisserman, 2003).

2.1 Feature Extraction

We rescale each projection Wj to 64× 64 pixels to cope with different sizes, and we extract

a set of features in pyramidal decomposition for each window (Bosch et al., 2007; Lazebnik

et al., 2006). This allows us to represent global and local information from each object

instance. Each level l ∈ L = {0, . . . n} in the pyramid has 4l cells or patches, and for each
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Figure 2: Block diagram of the proposed method. Our approach includes two main steps: feature
extraction, sequence classification. The algorithm begins with a input sequence composed by W1 to
WN . This sequence represents the quadrics seen from each camera view. We draw the projection Q
as dashed red circles to show graphically how to select the maximum parallelepiped subscribed to
Q. Each element Wj was cropped, and then rescaled to 64 × 64 pixels to cope with projection at
different size. We extract LBP features for each projection Wj , and finally apply the model in order
to classify the sequences.

cell we compute a descriptor with K bins. The descriptor of the entire image patch Wj has

Nf = K
∑L
l=0 4l bins. As recommended in Bosch et al. (2007), we use L = 3.

We use Local Binary Patterns (LBP) proposed in Ojala et al. (2000) as a measure of

texture that uses local appearance descriptors. It is computed comparing a center pixel

with its neighbors and this comparison is represented as decimal number. The final LBP

descriptor contains K = 59 bins. This feature outperform HOG in clutter backgrounds and

different textures (Wang et al., 2009), such as different poses of the head within the patch

sequence, as shown Fig. 2.

2.2 Classifier for Sequences

Once we extracted features on each element Wj , we apply two independent and exclusive

scheme each other to classify the projections sequences: gathering features and ensemble

of classifiers. Along the experiments, we evaluate both approaches in order to present pros

and cons of them. In both cases, we use support vector machines (SVM) with linear kernels

as classifiers Cortes and Vapnik (1995). SVM with linear kernels improves the classification

accuracy and speed andover SVM with no-linear kernels in image categorization problems

(Yang et al., 2009).

As we mentioned previously, both are independent and exclusive each other. A bootstrap

strategy, similar as Felzenszwalb et al. (2009), allows to avoid memory overloads and overfit

along the training. We let the bootstrap algorithm picks a ratio of misclassified samples and

releases a ratio of well classified for the next training round. The next two sections describe

how we trained both classification schemes for projections sequences: gathering features and

ensemble of classifiers.
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Table 1: Details of train dataset used for training individual models

class number of examples

frontal head 916
rear head 916

background 9.583

total 11.415

2.2.1 Gathering Features

In this scheme, we train a single linear SVM classifier with features concatenated as single

descriptor, i.e. , each Wj have associated a feature vector with Nf bins and the camera

system has Ncam cameras. Then, the sequence descriptor Ns = Ncam ×Nf elements. The

key idea is to build up an enriched feature vector, which represent the head structure in

a global perspective. After the training, we get a model SVMgather that will be used to

classify whole the sequence.

2.2.2 Ensemble of Classifiers

The ensemble of classifier is composed by two layers. In the first layer, three individuals

linear SVM models, β1, β2 and β3, learn to discriminate among three classes respectively:

frontal heads, rear heads, and background. All of them learn in one-vs-all fashion. In the

second layer, a new linear SVM model use the scores from the previous layer to discriminate

the whole sequence. The three scores, fβ1, fβ2, fβ3 build up the feature vector at the second

layer, which has Ns = Nscores×Ncam = 3×Ncam elements. This final classifier SVMensemble

is able to merge the information coming from the camera system.

3 Experiments and Results

In this section, we describe implementation details and results to applying our approach in

the classification task.

3.1 Dataset Details

We build our own multi-view head dataset for training and testing using our camera system,

due to the lack of multi-view datasets for people head or people torso. This camera system

consists of four synchronized cameras. All images were acquired at 640 × 480 pixels and

15fps. We manage two train datasets: one for training individual models used for evaluate

each projection Wj , and one for training the ensemble.

In both train datasets, we use a set of 10 people placed within a room, spinnig over

their Z axis from 0◦ to 360◦. Negative samples include objects such as clothes, computers,

walls. We also combined individual samples randomly in order to build artificial negative
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Table 2: Details of train dataset used for training the ensemble classifer

class number of examples

frontal head 233
background 3.108

total 3.441

sequences and enrich the sequence dataset. The test dataset was formed by 300 frames fully

labeled from two multi-view video sequences in a classroom or auditorium environment,

where people were sat and following a speaker. Sequences are manually labeled in the four

cameras. People in this dataset are different to people who appears in the train dataset.

3.2 Experiments

We evaluate our approach using the both classification schemes. Experiments measure the

ability to improve the discriminative power, and centering ability.

3.2.1 Enriched features

During the training process, we evaluated the influence of adding information coming from

more visual sources. We apply the analysis in terms of classification performance. We

started training a classifier only using data from one camera and test this model using the

test dataset. We repeated this process along as we add more visual sources. We observe

an increase in performance from 40% to 70% of average precision-recall, with maximum

considering the four views, as shown Fig 3. As we stated, using more cameras we enhance

the features with the complementary information available in the other cameras.

3.3 Centering

Once we trained both schemes of classifiers, we pick centered and non-centered projections.

In Fig. 4, we show three sets of four candidate sequences. The first and second sets, Fig.4a

and Fig. 4b belong to head class, and the third set , Fig. 4c belongs to the background

class. The classifier for sequences have the main task to discard sequences belong to the

background, but we note this model intrinsically also do the task to align the sequence as it

learnt in the training process. The higher scores were always given to the best alignments as

shown the best scores. All the scores in the third set c) are strongly negative, and therefore

all assigned to the background class.

4 Conclusions

We proposed a head classifier based on wide-baseline stereo camera system. Our approach

showed a main contributions of improving classification performance using models on com-
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Figure 3: Both curves show the performance evolution by adding information from various visual
sources. Fig. (a) and (b) shows the gather and ensemble strategies, respectively.
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Figure 4: Image sequences resulting of pass sliding-box among a set of neighbors, and them scores.
Box scores are high when the box belongs to head class, and its projections reach the better alignment,
as shown in (a)and (b). In (c) we observe background examples and their score, all negatives.

pounded visual features acquired simultaneously from the multi-view system. Both classifi-

cation schemes show similar behaviors performances. Although we did not address occlusion

issues, our experiments showed promising results using information from various points of

view in the same scene. The integration of information through our approach is able to

codify an structure inherent to the image sequence and therefore an object structure, in

this case, head structure. The ensemble also works as a case parts-based approaches, which

codify this mid-level structures. One disadvantage is the calibration process, which makes to

our approach somewhat rigid to the scene structure. We believe our results are promising,

and our approach can be adapted for a another challenging multi-view scenario. For future

work, we plan to address occlusion issues and cases where it missing projections within the

sequence. We believe possible extract information coded in the sequence which reveal if

certain images do not belong to the same window detection. We would like also address the

head pose estimation problem using the same framework.
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APPENDIX C. HEAD DETECTION USING SLIDING-BOXES IN MULTIPLE VIEWS

This appendix presents a draft article about head detection using our sliding-box approach. This

article summarize the results of this thesis. Sliding-Windows Detectors have attracted great interest

among researchers in the computer vision community because of the advantage they offer of avoid-

ing segmentation problems during detection. We propose a generalization of the sliding-windows

approach to 3D cases, which we call sliding-box. This approach works on calibrated multiple view

configurations where we have various viewpoints of the same scene. This calibrated system allows

us to run a sliding-box in world coordinates and project this box in its corresponding position on

each image. We can also search in the correct scale and location, improving the processing lim-

itations of the sliding-box. Furthermore, it allows us to create appearance models from various

viewpoints to improve detection. We apply our approach to head detection as the head is useful

when the rest of the body is occluded. Experiments show that our framework improves detection

performance by 10% of average precision-recall as compared to the optimal view of state-of-the-art

2D methods in our datasets. These results suggest that our approach can be used effectively to de-

tect objects in multiple view systems, improving detection performances achieved by 2D detectors

in isolation.
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Abstract

In the context of object detection, the sliding-window method has become the fa-

vorite approach to apply object classifiers to 2D images. As a major advantage, this

method avoids the need for a segmentation step that usually leads to poor results. As

a major limitation, it performs a brute-force search for object detections at image po-

sitions and different scales, usually leading to a high computational load. In this work,

we argue and demonstrate that a suitable use of geometric constraints can play a key

role to improve this search scheme, leading to higher levels of recognition accuracy and

a substantial reduction in the number of candidate window locations. Furthermore, it is

possible to avoid false positive detections arising in image areas corresponding to back-

ground clutter. In particular, we propose a generalization of the sliding-window method

to 3D cases, where we slide a 3D box in world coordinates instead of a 2D window in the

image plane. Consequently, we call this a sliding-box approach. This approach operates

on a calibrated multiple view configuration, where we acquire several viewpoints of the

same scene. This calibrated system allows us to run a sliding-box in world coordinates

and project this box into its corresponding position in each 2D image. As a major

advantage, general knowledge about the target object allow us to slide the box at a

suitable scale and environment positions. Furthermore, it is possible to train object

classifiers using integrated multiple view appearance features. We apply the proposed

approach to the task of head detection in indoor environments. Our experiments show

that, in terms of average precision-recall, the proposed framework improves detection

performance by 10% with respect to approaches based on a single view detection.

Keywords — Sliding-window, head detection, LBP, multiple views

1 Introduction

The success of appearance methods based on visual descriptors and off-the-shelf machine

learning techniques (Dalal and Triggs, 2005; Dean et al., 2013; Felzenszwalb et al., 2010b;

Girshick et al., 2013; Viola et al., 2005; Yang et al., 2009) is one of the main reasons of the

new enthusiasm for visual recognition technologies. These methods have shown robustness

against visual complexities such as variations in illumination, scale, affine distortions, and
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mild intraclass and pose variations. Although there have been notable progress, overall

performance is still poor (Dollar et al., 2011).

A common denominator of these techniques is that they rely mainly on statistical learn-

ing methods that exploit image-intensity information to capture object appearance features.

Their goal is to reveal visual spaces where visual similarities carry enough information to ob-

tain robust visual recognition. As a relevant limitation, appearance-based approaches do not

consider geometric information that can provide key constraints to reduce the search space

of possible objects locations and scales. Some notable exceptions with promising results are

Espinace et al. (2013); Salas and Tomasi (2011); Spinello and Arras (2011); however, these

approaches require range sensors to capture geometric information.

In general, we observe that single view approaches to object detection mainly i) use a

sliding-window at various scales to compensate scale changes of the object target class in

images, resulting in false positives due to hallucinations at several scales; and ii) do not take

into account useful 3D information such as real sizes of people or objects, and the positions

in which they are likely to be found in the scene. Fortunately, geometric techniques exist

for establishing relationships across views in a camera system, providing useful ways of

combining and integrating this information (Hartley and Zisserman, 2003; Szeliski, 2010).

This facilitates the use of geometric information. Furthermore, it provides a higher level of

robustness to occlusion problems in single views.

In this work, we propose a method for detecting people in a calibrated multiple view

system in which a 3D sliding-box is tailored to the physical size of the target object class.

This box B is applied according to the three directions (X;Y ;Z) of the relevant world frame

where people are likely to appear. Our approach is designed to inspect the corresponding

portion of the images where the volume contains projections, on the basis of size as shown in

Fig. 1. A calibration model provides a geometric relationship between world coordinates and

images, and relationships between cameras in multiple view configurations. This geometric

structure allows us to filter out false detections present in one view when detections are not

consistent with the remaining views. In addition, knowledge about the target object and

the geometry of the scene allow us to reduce the search space, sliding the box only at a

suitable scale and likely locations.

The proposed approach offers several promising advantages for object detection, includ-

ing the following main contributions:

1. By exploiting geometric constraints, it can use information about object size and scene

configuration to significantly reduce the search space of a traditional sliding-window

approach, leading to higher levels of recognition accuracy and a reduction in the rate

of false positive detections.

2. By projecting the 3D box to the corresponding image planes, it can check detection
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Figure 1: Diagram of the proposed approach for detecting people using a multiple view system. This
approach requires N calibrated cameras C1, . . . , CN . In this example, the sliding-box B is placed at
various positions (X;Y ;Z), scanning the space S of the scene in which heads could be located. The
sliding-box B is projected from 3D space onto images I1, . . . , IN , retrieving N detection windows
Wi1, . . . ,WiN . As key advantages, geometric information allows us to directly scan the image at
suitable locations and scales for human heads.

consistency in the 2D views, leading to the elimination of spurious detections.

3. By integrating in a single object descriptor appearance features from multiple im-

age views, it can provide a classification scheme more robust to pose and occlusion

problems.

4. By applying the proposed approach to the task of people-counting using head detec-

tion, it is possible to verify the relevance of the previous ideas.

This paper is organized as follows. Section 2 presents a review of previous work related

to people detection in single and multiple views. Section 3 provides a detailed description

of our approach. Section 4 describes the datasets generated to test our approach. Section 5

presents our experimental evaluation. Finally, Section 6 presents conclusions related to our

main results and discusses future research avenues.

2 Related Work

Category based object detection is a very active topic in the computer vision literature with

an extensive list of previous approaches (Dalal and Triggs, 2005; Dean et al., 2013; Dollár

et al., 2010; Felzenszwalb et al., 2010a; Girshick et al., 2013; Papageorgiou and Poggio, 2000;

Pedersoli et al., 2014; Tang et al., 2013; Viola and Jones, 2001). In particular, techniques
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for people detection have been highly popular, as there are many potential applications that

could benefit from this technology. We defer the reader to Dollar et al. (2011) for a recent

survey about this topic. Head detection is a special case in people detection. Important

conclusions from works on people detection suggest that detecting the head helps to avoid

occlusions in crowded environments, as the head is the least frequently occluded part of

the body under such conditions. Also, heads are less deformable than the rest of the body

(Ali and Dailey, 2012; Dalal and Triggs, 2005; Eshel and Moses, 2010). Most previous

works on head detection incorporate the detectors into more complex detections systems.

In particular, as part-based detector that helps to find the complete body or other body

parts, thus improving detection (Ali and Dailey, 2012; Chang et al., 2013; Hayashi et al.,

2013; Nghiem et al., 2012; Xie et al., 2012; Zeng and Ma, 2010).

While most previous works on people and head detection have been based on a single

camera case, there have been also works that address the multiple view case. In general,

previous works demonstrate the ability of multiple views to improve detection performance

over single view cases (Ali and Dailey, 2009; Delannay et al., 2009; Pane et al., 2013).

Most current works on multiple view detections use a calibrated and overlapped set of

cameras, where background subtraction techniques are used to detect targets in each single

view. Afterwards, a ground-plane homography is used to merge these single view detections.

Finally, a multiple view tracking algorithm discards false hypotheses using visual appearance

information (Ali and Dailey, 2009; Delannay et al., 2009; Eshel and Moses, 2010; Kim and

Davis, 2006; Liem and Gavrila, 2013).

There are significant works on representing 3D objects using 2D images, based on the

psycho-physical premise that a 3D structure can explain all of the changes in appearance

arising from changes of viewpoint or aspect of the object, as is done by the human brain

(Mundy, 2006; Stone, 1999; Tarr and Kriegman, 2001). Most of these approaches use an

aspect-graph representation to establish relationships among the different topological ap-

pearances of a target object. In this graph, a node represents object views that are adjacent

on the unit sphere of viewing, while an edge arises from the transition in the graph that

relates the different faces or views of the projected object. Although, these methods are

trained using data from various viewpoints, they generally still work using a single view

scheme during testing (Cyr and Kimia, 2004; Koenderink and van Doorn, 1979; Savarese

and Fei-Fei, 2007). Furthermore, these models present several practical disadvantages: i)

the size of the aspect-graph grows rapidly with the topological transitions required for object

recognition, meaning that the aspect-graph becomes application-specific (Mundy, 2006); ii)

the scale of the viewing distance required to determine the relevant transitions in accordance

with the topology of the object is not known in advance, thus small scale transition that

are topologically significant may not be relevant for the object recognition (Mundy, 2006);

and, iii) Complexity of aspect generation, storage, and search requirements are impractical
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for objects of modest complexity (Cyr and Kimia, 2001).

From the previous review, we note that head detection is a useful cue during people

detection in indoor environments, therefore we focus our work on this application. Our

framework also explodes the properties of multiple view configurations that improve detec-

tion. However, instead of directly using a matching technique to relate detections, we use

the simultaneous projections of the target object into the views. We also note that aspect-

based representation fits well with multiple view environments where people’s aspects are

acquired from various viewpoints simultaneously. Furthermore, using this representation in

a multiple view framework might include enriched appearance information and 3D cues to

help locate people in the scene. We include this idea of aspect-graph in terms of collection

of aspects that describe an object from various viewpoints.

3 Proposed Approach

We propose a 3D extension of the single view sliding-window approach. Specifically, we

propose a generalization of the sliding-window method to 3D cases, where we slide a 3D

box in world coordinates instead of a 2D window in the image plane. Consequently, we

call this a sliding-box approach. At each 3D position in world coordinates, an sliding-box

defines a 2D projection onto the image plane of each camera covering the scene. This set

of projections forms a collection of aspects (Cyr and Kimia, 2004), as shown in Fig. 2.

The term “aspect” refers to prototypical views or templates of an object that are similar

to each other. In this sense, if an object occupies the space covered by the sliding-box, we

expect to observe a high level of consistency among the appearance descriptors of the set

of 2D projections. This scheme allows us to simultaneously consider the information in the

multiple view camera system in order to filter-out false positive detections on single views.

Furthermore, previous knowledge about the size and likely location of the object of interest,

in our case heads, provide further constraints to slide the box in suitable locations.

We take advantage of the previous properties of a sliding-box approach by proposing a

new method based on five main steps: spatial focus-of-attention, multiple view projection,

feature extraction, multiple view classification, and non-maximal suppression, as shown in

Fig. 2. Next, we describe the details behind each of these steps.

3.1 Spatial Focus-of-attention

A major problem in applying the proposed sliding-box method is the great computational

complexity of projecting each box onto the different views. Unfortunately, previous strate-

gies to reduce the search space, such as coarse-to-fine search schemes (Pedersoli et al., 2010),

are not very effective in the 3D case of a sliding box. In this work, we propose to reduce the

search space by applying a pre-processing step that consists of using a salient detector and
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Figure 2: Block diagram of our proposed method for the case of N = 4 cameras. As shown, our
method consists of five main steps. First, we apply a spatial focus-of-attention mechanism to pre-
filter false detection and to reduce the search space of candidate sliding-boxes. Then, we project
each sliding-box Bi onto each image Ij forming a collection of aspects Wij . Next, we extract features
from each projection Wij . Afterwards, we apply a multiple view classifier to the collection of aspects.
Finally, an NMS procedure allows us to eliminate multiple detections.

multiple view geometry to generate a focus-of-attention in 3D space. First, we run a stan-

dard 2D sliding-window detector as a specialized region detector to find head hypotheses in

the 2D image views, as shown in Fig 3a. Let hij be the image coordinates for the centroid of

head hypothesis i in image j. We match hypothesis hij with the set of hypotheses hrs closer

to the epipolar line ls = Fjs ·hij in image s, where Fjs is the fundamental matrix estimated

using camera matrices. Then, the spatial location M̂i for each pair of matched hypotheses

hij and hrs is triangulated by a least square minimization using the corresponding image

coordinates in 3D space (Hartley and Zisserman, 2003). Finally, we select as candidate

locations for image heads the set of neighboring points around the estimated position M̂i

with the likely location of the true heads, as shown in Fig. 3b. These sets of hypotheses lie

close to the ground-truth heads, as show in Fig. 3c.

3.2 Multi-view Projection

A sliding-box B has three properties: i) B is centered at 3D point M = [X Y Z 1]T using

homogeneous coordinates; ii) B belongs to the 3D space of interest S where the target

object class can be located; and, iii) B contains a volume that is tailored to the real size

and shape of the object classes to be detected. In our case, we are detecting heads. For

practical purposes, the i-th sliding-box Bi defines a sphere circumscribed to its occupied

space, centered in Mi and with radius r = 15[cm]. This geometric representation fits well

with the oval shape of heads. The sphere is algebraically expressed as a quadric surface

defined in the world frame, which projects a conic section C on an image Ij (Hartley and

Zisserman, 2003), as shown in Fig. 4.
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Figure 3: Focus-of-attention procedure. (a) Shows the triangulation between head hypotheses in two
images I1 and I2 from different viewpoints. Hypotheses {h11,h21,h31} in image I1 generate epipolar
lines l1, l2 and l3 in image I2. The pairs of head hypotheses {h11,h12} and {h21,h22} share the same
3D position M̂1 and M̂2 , respectively. We estimate these spatial positions by triangulation using
least square minimization along the ray hijCi. As there are no head hypotheses near to epipolar
line l3, the h31 does not generate a potential head position. (b) Blue dots show the potential head
positions detected by our focus-of-attention procedure. This process provides hypotheses with more
likely location of heads within the region of interest S and helps us to drastically filter spatial
detections. (c) White circles show examples of ground-truth heads within the subspace S (best
viewed in color).

144



I1 I4

Mir

C

Q

…

Wi1 Wi2 Wi3 Wi4

Figure 4: Projection diagram of a sphere quadric Q defined on Mi with radius r. In this example,
for N = 4, Q is projected onto the images I1, . . . I4 as a conic C. The projections Wij are defined as
the maximum quadrilateral subscribed over C (dashed red circles). The elements Wij represent the
projection of Bi onto camera j. All of these elements define a collection of aspects which represents
box Bi seen from each camera. Each element Wij is cropped and then rescaled to 64 × 64 pixels
before feature extraction to cope with projection at different sizes (best viewed in color).

In this step, we compute the sliding-box projections onto the 2D images in order to

generate correlated image sections. Our approach requires a fully calibrated multiple view

system of N cameras, C1, . . . , CN , to compute a geometric model that relates world coor-

dinates Mi to 2D image coordinates mij = [xij yij 1]T in each image Ij . This model is

obtained for j = 1, . . . , N cameras using the transformation λmij = PjMi, where λ is a

scale factor and Pj is the 3× 4 calibration matrix of camera Cj (Szeliski, 2010). We let the

sliding-box runs within the space of interest S, defined in 3D as a a rectangular parallele-

piped where coordinates X, Y , and Z are constrained by a lower and a higher boundary a

and b, as shown in Fig. 5. This top-down information allows us to limit the action of our

sliding-box to areas where we expect to find heads in the scene, e.g., we do not expect to

find heads on the ceiling or lying on the floor, as shown in Fig. 5.

3.3 Feature Extraction

We represent each window Wij as a bounding-box in Ij defined as the maximum subscribed

quadrilateral in the sphere’s projection of box Bi corresponding to the conic C. We extract

a set of features using a pyramidal decomposition for each rescaled version of window Wij

(Bosch et al., 2007; Lazebnik et al., 2006), where each Wij is represented by a feature vector

xij . This strategy allows us to extract global and local spatial information from each head

instance. Each level l ∈ L = {0, . . . n} in the pyramid has 4l cells or patches, and for each

cell we compute a descriptor with K bins. The descriptor of the entire image patch xij has
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Figure 5: Diagram of the space of interest S inside of a room and defined as a parallelepiped with
set of boundaries [Xa, Xb]; [Ya, Yb]; [Za, Zb]. We use this contextual information to limit the action
of our sliding-box Bi within the space S. This allows to us to search for people’s heads in areas in
which they are likely to appear according to context.

Nf = K
∑L

l=0 4l bins. In this work we build the descriptor using Local Binary Patterns

(LBP) (Ojala et al., 2000) as low level features.

3.4 Multiple View Classifier

We apply two different strategies to classify the collection of aspects provided after the

multiple view projections: ensemble of features and ensemble of classifiers. In both cases,

we use Support Vector Machines classifiers (SVM) (Cortes and Vapnik, 1995). The next

two sub-sections describe the two multiple view classification approaches.

3.4.1 Ensemble of Features (EF)

This classification procedure includes the main steps summarized in Fig. 6. First, we

concatenate the features of each aspect Wij into a single descriptor xi = [xi1 . . .xiN ] with

dimension Nf bins. This representation allow us to integrate and to simultaneously evaluate

the collection of aspects defined by the projections of the sliding-box. The key idea is to

build up an enriched feature vector that represents the head structure, as shown in Fig. 4.

Then, we train a single SVM classifier, which scores an instance xi with a function of the

form fβ(xi) = β ·Φ(xi), where β is the vector of model parameters and Φ is a kernel function

to transform the example xi to a high dimensional space to separate the target classes.

3.4.2 Ensemble of Classifiers (EC)

As an alternative to the previous classification scheme, Figure 7 shows the main steps of

our classification procedure using a two-layers classifier ensemble. First, each aspect Wij
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Figure 6: Training process diagram of features ensemble scenario. Once we extract features from
each element Wij , we concatenate all Nf features in a single descriptor with Ns bins. We use a single
SVM classifier to learn a model β using examples of head sequences.

is described by feature vector xij . Then, we use each 2D view to train linear multi-class

SVM model to discriminate among k subclasses and assigns a confidence score fkβ(xij) to

each class. This layer of classifiers transform the set of feature vectors xij into a set of mid-

level features such that sij = [f1β(xij), . . . , f
k
β(xij)]. The subclasses represent head aspects

and background. Finally, in the second layer we train a new SVM model that uses the

concatenation of scores sij as single descriptor si = [f1β(xi1) . . . f
k
β(xiN )], where N is the

number of views used in the detection process. This new descriptor identifies the entire

collection of aspects. We address the SVM multi-class problem using two methods: one-

against-all (OVA-EC) and one-against-one (OVO-EC). During training we follow a standard

practice in order to improve the precision of each classifier by adding a bootstrapping step to

mine hard negative examples. Specifically, starting from an initial classifier, we conduct an

iterative process where at each iteration we re-train the current classifier using an improved

training set that includes previous false detections of hard examples. Finally, this procedure

generates the model used to classify the collection of aspects during the detection process.

3.4.3 Best Collection of Aspects

Classifiers described in Sections 3.4.1 and 3.4.2 discriminate over aligned collection of as-

pects, i.e., the aspects follow a specific sequence of appearance models according to the

pose of the target object in relation to each camera. However, during detection we do not
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Figure 7: Training process diagram for the classifier ensemble scheme. We use an ensemble of
classifiers divided into two layers: (a) Shows the first layer formed by a multi-class SVM classifiers.
This layer identifies frontal head, backward head, and background. (b) Shows the second layer,
which is trained using the scores (f1β, . . . , f

k
β) obtained by applying the first layer of classifiers to

each element Wij . This process yielded the model β, which can classify the image sequence.

have a priori knowledge about the head aspect in the scene. To address this problem, we

generate four collections of aspects from the input collection applying circular shifts. These

shifts allow us to find the most confident collection of aspects according to the learned

models. We apply the multiple view classifier to each collection and we choose the one

with highest confidence, as shown Fig. 8. We do not use random shifts or a random

combination of aspects, because an admissible collection of head aspects presents a coher-

ent sequence of appearance according to our camera system, e.g., the collection of aspects

backward− front− backward− front is not allowed.

3.5 Non Maximal Suppression

Non-Maximal Suppression (NMS) is a critical procedure in computer vision algorithms

in which one must choose the most representative detection from a set of close confident

detections. We implement NMS applying two algorithms: a Weighted Mean Shift (WMS)

(Dalal, 2006) and a Local Maximum Searching (LMS) (Dollar et al., 2009) in the 3D domain.

The LMS algorithm is an heuristic search that chooses a final detection by applying a

strategy which suppresses the less confident of every pair of detections with a significant

overlap. This procedure assigns to the sliding-box Bi the maximum score fβ found in this

set of overlapped detections. We define the overlap criterion in terms of the Euclidian

distance between the sliding-boxes.
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Figure 8: Diagram of best collection searching. The algorithm receives an input collection of aspects
without a priori knowledge about its correct alignment. We apply a set of circular shifts to generate
the total number of four collections of aspects, including the input collection. After applying the mul-
tiple view classifier to each collection, we choose the most confident one using an argmax criterion.
In the diagram, the multiple view classifier assigns a set of confidence values to each collection of
aspects: fβ(x0

i ) = −1.25, fβ(x+1
i ) = −0.12, fβ(x+2

i ) = 1.75, fβ(x0
i ) = 0.75. Finally, our algorithm

selects the collection of aspects generated with the second shift because it best matches the training
samples.

The WMS algorithm computes the local modes from a set of multiple detections. Each

detection Bi has an associated symmetric positive definite 3×3 bandwidth covariance matrix

to define the smoothing width for the detected position Mi. Overlapped detections are fused

to represent the n points as local modes. The derivation is the same as in Dalal (2006). In

our approach, we assume diagonal covariance matrices only considering the uncertainty of

location because our sliding-box always has a fixed size and shape.

4 Datasets

We deploy a full calibrated and synchronized multiple view camera system in an indoor

environment in order to capture labeled datasets. Specifically, we install cameras in the

four upper corners of a classroom, as shown in Fig. 11b. We generate two full labeled

multiple view datasets. We use one of these datasets for training and one for testing. Figs

9 and 11 show examples of these datasets, respectively. Notice that both datasets are

captured under different conditions, so we can really test the generalization capabilities of

the proposed method. Both datasets are acquired at 640× 480 pixels and 15 fps.

Training dataset contains images in which a set of ten people are placed at six locations

within a classroom, as shown in Fig. 9. People turn around their Z axis from 0◦ to 360◦

and we manually label head instances. We also use the mirrored versions of these labels
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Table 1: Details of the training dataset used to train the feature ensemble. Each instance is a
collection of aspects, as shown in Fig. 10.

class number of examples

head 1,000
background 4,570

total 5,570

View 4

View 2

View 3

View 1

Figure 9: Example of images collected for training. Each image comes from one view in the camera
system. To facilitate the labeling process, people stand on the white crosses on the floor and turn
around their Z axis generating various views of the head (best viewed in color).

to generate new samples and enrich the training dataset. Positive training instances are

collections of aspects of the sliding-boxes projected over the people’s heads and negative

instances are sliding-box projections from random locations in the room and body parts, as

shown in Fig. 10. Table 1 presents a summary of the training dataset. We use this dataset to

train both classification schemes presented in Section 3.4, i.e., feature ensemble method and

the second layer of the ensemble of classifiers. We also collect instances Wij from the same

dataset in order to generate a dataset of 16,494 single view examples separated into three

classes: frontal, backward, and background, as shown in Table 2. Although we consider

two individual aspects, frontal and backward, our approach is not limited to the number of

poses for individual aspects and collections of aspects.

Test dataset consists of two fully labeled multi-view video sequences acquired in a class-

room in which subjects present different activity levels. Both test sequences contain views

of heads and torsos. An instance is defined as a detection when it appears in all cameras

simultaneously. We test our algorithm over an average of 6,500 test instances. This number
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Figure 10: Examples of aspects collection used for training. (a) positive instance of people’s head
retrieved from multi-view camera system and (b) background samples of classroom environment. We
use four cameras in both cases (best viewed in color).

Table 2: Details of the training dataset used to train individual models.

class number of examples

Frontal head 2,000
Rear head 2,000

Background 12,494

total 16,494

of instances represents an average number of 26,000 labeled instances taking into account

the four cameras. Table 3 shows a summary of both test sequences.

5 Experiments and Results

In this section, we describe the experimental results of applying the sliding-box approach to

head detection. We present qualitative and quantitative results of our method, and compare

our results to those of a state-of-art 2D multi-scale detector. In our implementation, we

apply a dense grid mesh with 5cm steps to apply the sliding-box. We use Local Binary

Patterns (LBP) as our appearance descriptor to quantify shape and texture cues Ojala

et al. (2000). Following Bosch et al. (2007), we compute LBPs over a 3-level pyramidal

decomposition, obtaining a total of 21 feature blocks per object instance. The final LBP

descriptor contains K = 59 bins. We use the VLFeat library to compute the LBP feature

Vedaldi and Fulkerson (2010). In our experiments, we use linear kernel to implement the

multiple view classifiers. Our current implementation takes an average of six minutes to

classify 1,500 boxes using MATLAB on Ubuntu-Linux and an AMD Phenom II X4-925,

4GB RAM, 2.8GHz computer. Besides the time execution limitations of MATLAB, the

Table 3: Details of the dataset used to test the proposed approach. Sequences are called sq-01 and
sq-02. We show the average number of people per image and the total number of frames in each
sequence.

sequence avg. no. people/image no. of frames avg. no. labels avg. no. ground-truth instances

sq-01 7 245 6,000 1,700
sq-02 8 600 20,000 5,000
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Figure 11: Example of images collected for testing. Both test datasets contain images of people in
a classroom at different activity levels (best viewed in color). (a) The first test sequence contains
people moving and changing their appearances. (b) The second test sequence consists of people
sitting, observing a lecture.

sliding-box process can be easily implemented in parallel.

5.1 Detection Performance

In this section we evaluate the performance of our approach using the methodology suggested

by the PASCAL visual recognition challenge Everingham et al. (2006). As a 2D baseline,

we compare the performance of our approach with respect to the popular Deformable Part-

based Model (DPM) proposed in Felzenszwalb et al. (2010b). We train the DPM using our

head dataset. In order to obtain a fair comparison, we use epipolar geometry to filter out

false positive detections of the DPM detector, as we explain below.

First, we use a sliding-window approach to execute the DPM on each camera view

independently. Positive detections in each view are then verified in the other cameras using

epipolar lines. We accept as a true detection in camera i only a detection that can be tracked

through Nmatch views of the camera system. In our experiments, we use a conservative value

of Nmatch = 2 to avoid filtering out valid detections. A detection in camera i is considered

valid in camera j, if there is a positive detection near the corresponding epipolar line in

camera j, such that lj = Fij ·mi, where Fij is the fundamental matrix between views i

and j, and mi is the centroid of the detection in camera i. We also include object size and

position priors in the sliding-window scheme by limiting the scales and image positions to

select candidate windows.

Since our sliding box method operates in world coordinates, we slightly modify the Pascal

criterion by evaluating performance using world coordinates instead of image coordinates.
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Table 4: Detection performance in terms of Average Precision (AP) in sequences sq-01 and sq-02. We
report our methods EF, OVA-EC and OVO-EC. In all cases, we compare the performance using Local
Maximum Searching (LMS) and Weighted Mean-Shift (WMS) as NMS procedures. Additionally, as
a baseline, we include the performance of DPM and DPM using epipolar geometry.

Average Precision (AP)
LMS WMS

Algorithm sq-01 sq-02 sq-01 sq-02

EF 0.88 0.72 0.89 0.73
OVA-EC 0.83 0.72 0.82 0.73
OVO-EC 0.89 0.73 0.95 0.74

DPM 0.92 0.62 0.92 0.62
DPM-epipolar 0.90 0.57 0.82 0.57

Specifically, we modify the Pascal evaluation function by calculating Euclidian distance

between a sliding-box detection SBdt and the ground truth position SBgt. Both, SBgt and

SBdt are considered as a valid match if their distance is lower than the overlap radius roverlap,

which depends on prior information. In our experiments, we consider roverlap = 180[mm].

This value is the average radius producing an average overlap of 50% for 2D detection

according to the PASCAL criterion. For evaluation purposes, we restrict the region of

interest S to scene areas where the field of view of the available cameras overlaps. For DPM

and its version using the epipolar filter, we report the detection performance of the view

with the highest AP value.

Table 4 shows that the OVO-EC model using WMS suppression outperforms the EF and

the OVA-EC models. These results also show that the suppression procedure affects the

overall detection performance. These variations are more clear in dataset sq-01, where sup-

pression and head pose changes present a higher influence on detection performance. WMS

suppression represents the overlapping boxes using a weighted mode that presents a higher

fit with respect to ground-truth locations. In general, in terms of detection accuracy, the

proposed approach outperforms the DPM detector, with the exception of sq-01 dataset using

LMS procedure. This dataset is acquired using the same environment configuration and part

of the people in the training set. These similarities may explain the highes performance of

the DPM detector. Both versions of the DPM detector present similar performance.

We compute the confidence interval for detection in order to access the repeatability and

accuracy of the OVO-EC method using WMS suppression. This procedure takes k-folds of

test instances and computes the AP value for each fold. Then it uses these k AP values to

compute the average and the confidence intervals using a t-Student Test at 95% of confidence

level. We set k = 10, which is the standard value used in cross-validation evaluations. Table

5 shows little variation in AP values for the OVO-EC method, proving the repeatability of

our method. As expected, this test also indicates average performance close to the AP values

presented previously for overall detection performance. Most intervals present a significance

of over 95% confidence level and error below 0.05.
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Table 5: Repeatability analysis of OVO-CE based on WMS suppression in dataset sq-01 and sq-02.
Results show little variation after detection and a significance over 95% of confidence level.

sq-01 sq-02

Method Avg. AP σ Confidence Interval Avg. AP σ Confidence Interval

OVO-EC 0.953 0.025 [0.935 - 0.971] 0.754 0.034 [0.730 - 0.778]
OVA-EC 0.855 0.058 [0.813 - 0.896] 0.855 0.058 [0.813 - 0.896]

EF 0.926 0.037 [0.899 - 0.952] 0.926 0.037 [0.899 - 0.952]

Figure 12 shows a comparison between detection provided by the OVO-CE method based

on WMS suppression and the DPM detector. We consider the case of the view where the

DPM presents the highest AP value. This result shows the improvements achieved by our

method in retrieving detections missed by DPM. We use red boxes to indicate detections

of our method and green boxes to indicate ground-true positions of heads. In general, our

approach successfully detects heads that are not detected by the DPM model. Hereafter,

we focus on the OVO-CE method because it provides the best performance.

5.2 Enriched features

We analyze the influence of training the multiple view classifier varying the number of

cameras, in order to evaluate the impact of using different visual sources and the power of

combing features from various view-points of the same object. First we train the model

using only one camera. Then we progressively re-train the model adding one camera at a

time. We perform the analysis in terms of per-window performance using AP value without

considering the suppression procedure after classification. Figure 13 shows an increase

in performance as we add a new camera. This confirms our claim that if we use more

cameras, we enrich the features set with information provided from different viewpoints.

As expected, we achieve the highest performances when the classifier uses the four views.

When one camera is used, we report a low AP rate, showing that the classifier using one

viewpoint generates weak models. We also note that the models intrinsically perform the

task of aligning the collection of aspects that they learnt during training. Figure 14 shows

two sets of four candidate boxes. The first set shown in Fig.14a, belong to the head class;

the second set, in Fig.14b, belongs to the background class. During the evaluation of each

hypothesis, higher scores are always given to the best alignments. All of the scores in the

second set b) are strongly negative, and therefore they are assigned to the background class.

5.3 Focus-of-Attention

The focus-of-attention procedure filters detections to decrease the computational burden

during detection. This procedure uses the output of an interest-point detector to estimate

the spatial position of sliding-box candidates by triangulation Hartley and Zisserman (2003).

In our implementation, we use the detections provided by a 2D detector that works as a
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(a) (b)

(c) (d)

Figure 12: Comparison between detections of DPM and OVO-EC method using WMS supression.
Results show that OVO-EC is able to correctly detect heads that are not detected by the DPM
model. We use red boxes to indicate detections of our method and green boxes to indicate ground-
true positions of heads (best viewed in color). (a) and (c) detections generated by DPM detector.
(b) and (d) detections generated by OVO-EC using WMS supression.

specialized interest-point detector. Figure 15 shows that the total number of hypotheses

and therefore the maximum recall that we can achieve depends on detector confidence, i.e.,

the higher the confidence threshold, the smaller the number of spatial hypotheses and the

chances of recovering the total number of heads. Table 6 summarizes the burden reduction

by using focus-of-attention. The average burden reduction is 95% at a threshold that allows

us to to recover all detections in the region of interest S. Although there is an overhead

due to applying an interest-point detector, and a trade-off between the number of spatial

hypotheses and the detector confidence, our experiments indicate that the proposed focus-

of-attention mechanism helps to significantly reduce the computational complexity.

Figure 16 shows a heat map visualization that summarizes the locations of heads pro-

jected onto the ground plane. We compute these heat maps by the cumulative log-normalized

sum of the detections in all frames in the sequences. The highest hits in red denote the
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Figure 13: Performance comparison in terms of the cameras used for the OVO-CE method. The
curves show performance evolution as we add information from the four visual sources of our camera
system. Overall performance is represented using the AP value. Higher AP values are obtained as
we add more views to the ensemble. We conclude that the additional viewpoints help to improve
performance.

Table 6: Summary of the burden reduction due to the spatial focus-of-attention. Although there is
an overhead due to applying an interest-point detector, the proposed focus-of-attention mechanism
helps to significantly reduce the computational complexity.

Sequence
Total no. Percentage of Burden Reduction Varying the Detector Threshold
of Boxes -1.0 -0.7 -0.4 0 0.4 0.7 1.0

sq-01 92,160 85 ± 3.5 95 ± 1.5 98 ± 0.65 99 ± 0.5 99.5 ± 0.3 99.7 ± 0.27 100 ± 0.15
sq-02 65,536 92.5 ± 3 96.3 ± 1.6 98.3 ± 0.4 99.3 ± 0.5 99.4 ± 0.5 99.6 ± 0.3 99 ± 0.2

location that contains the highest density of detections. Areas in blue correspond to those

with few or no detections selected as head candidates. In both heat-maps, we observe the ef-

fectiveness of the focus-of-attention to produce spatial hypotheses around the ground-truth

and simultaneously reject large areas close to the edges of S, as shown in Fig. 16c and Fig.

16d.

5.4 Using Geometrical Cues to Select Candidate Locations

We perform a qualitative evaluation comparing the windows used by sliding-window de-

tectors with our multiple view detector. We select two sets from a random sample of 60

windows in both detection approaches. Windows used with the 2D detector cover various

scales trying to predict the size of the object, which produces false positives at scales with

higher resolutions, Fig. 17a. Our approach can control the size of the windows and the

areas analyzed. This allows us to generate more informative windows for the classifier and

limit the analysis to more likely location, as shown in Fig. 17b.
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Figure 14: Alignment test of collection of aspects. Figure shows the results of using sliding-box to
evaluate among a set of hypotheses and their scores. Box scores are higher when the box belongs
to the head class, and its projections yield better alignment, as shown in (a). In (b) we observe
background examples and their scores, all of which are negative (best viewed in color).
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Figure 15: Sensitivity analysis of confidence vs recall due to use of the spatial focus-of-attention
procedure. There is a trade-off between detector sensitivity and the maximum recall reached up-
stream of the classifier. If we set a low sensitivity for the detector, we increase the ability of the
focus-of-attention to retrieve all detections in the scene. (a) Shows sensitivity for sequence sq-01
where the maximum recall occurs between 0 and −0.4 of detector confidence. (b) Shows sensitivity
for sequence sq-02 where the maximum recall occurs between −0.4 and −0.7 of detector confidence.
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Scene-dataset-02-ground-truth

(a)

Test-dataset-600-ground-truth

(b)
Scene-dataset-02-focus-of-attention

log-normalized

(c)

Test-dataset-600-foa

(d)
Scene-dataset-02-ova-4v-meanshift

(e)

Test-dataset-600-dt-ovo-4v-meanshift

(f)

Figure 16: (a) Heat map representations of the ground-truth and focus-of-attention for both se-
quences. (b) Heat maps for ground-truth heads in the test sequences. (c) and (d) outputs after
applying the focus-of-attention procedure. This produces a reduced set of spatial hypotheses that
allow us to estimate regions close to real heads. We also use geometric priors to limit the analysis to
the space defined by the yellow square S, and to discard the crosshatch area that does not contain
feasible candidate points. Note the discarded areas close to the edges of S in both sequences that
are perceived easily in sequence sq-01, as shown in (c).
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(a) (b)

Figure 17: Random sample of 60 windows evaluated: (a) by a 2D detector, and (b) by our approach.
In (a), windows must change their size in order to predict the real size of the object. We improve the
search by using the real size of the object to limit the size and locations of the projected windows,
as shown in (b).

6 Conclusions

We describe a sliding-box approach to detect heads in indoor multiple view environments.

This method is an extension of the sliding-window approach to 3D spaces. It allows informa-

tion from various viewpoints to be combined based on their corresponding image regions,

thus enabling us to recover spatial information during detection. With this strategy we

outperform single view detection methods described in the state-of-the-art.

Results show that OVO-EC based on WMS generally outperforms other methods in

terms of AP. We conclude that the ensemble of classifiers approach allows us to represent

each projection of the sliding-box in the collection of aspects using a compact representation.

Therefore, we can imagine the first layer of the ensemble as a group of mid-level features.

The second layer performs the mixture of these parts. Although detection performance may

depend on classification schemes, we found that the main differences are due to the sup-

pression method used to eliminate overlapping detections. Mean-shift suppression improved

these performances in both datasets. Experiments also show the ability of the sliding-box

to integrate detections provided by a single view detector using a integrated multiple view

feature descriptor. This makes it possible to recover missed detections generated by a 2D

detector because the integrated descriptor presents higher robustness to pose variations.

Additionally, our results indicate that the proposed focus-of-attention mechanism as a pre-

filter step helps to further restrict the search space and drastically reduce the number of

candidate hypotheses.

Current limitations to our method are the calibration process used to recover the spa-

tial information from the scene, which makes our approach somewhat rigid to the scene

structure. Also, the projection process presents a high running time that prevents us from
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testing large datasets. Future work will focus on extending our method to semi-calibrated

or uncalibrated multiple view configurations. We also plan to address computational issues

exploring parallel implementation and the use of hashing techniques.
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