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ABSTRACT

To obtain good quality images with Magnetic Resonance (MR) it is necessary to have

good spatial homogeneity in theB0 field for the region of imaging. Field homogeneity is

difficult to achieve, particularly for short bore magnets and higher fields. When the passive

or active shimming are not enough, or when the inhomogeneitycomes from differences in

susceptibility between adjacent regions within an object,there are several post-processing

techniques for correcting the distortions. These techniques do not have a well supported

theoretical background with the exception of linear terms.We propose to use the Fractional

Fourier Transform (FrFT) for reconstructing the MR signal acquired under the presence of

quadratic fields. The FrFT provides a precise theoretical framework for this. In this work

we show how the FrFT can be used to understand the distortionsand to reconstruct MR

data acquired under that condition. We also show examples ofreconstruction for simulated

and volunteer data under quadratic inhomogeneities obtaining an improved image qual-

ity compared with standard Fourier reconstructions. The FrFT opens a new paradigm for

understanding and correcting second degree off-resonances with the potential for manufac-

turing shorter magnets.

Keywords: fractional Fourier transform, magnetic resonance imaging, MRI, image

reconstruction, field inhomogeneities, off–resonance correction.
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RESUMEN

Para obtener Iḿagenes de Resonancia Magnética (MRI) de buena calidad, es nece-

sario tener una buena homogeneidad espacial en el campoB0 de la regíon a observar. La

homogeneidad de campo es difı́cil de lograr, particularmente para imanes de núcleo corto

y campos altos. Cuando el ajuste fino pasivo o activo no es suficiente, o cuando la inho-

mogeneidad viene de diferencias en la susceptibilidad entre regiones adyacentes dentro de

un objeto, hay varias técnicas de post–procesamiento para corregir las distorsiones. Éstas

técnicas no tienen un fundamento teórico śolido con la excepción de las relativas a términos

lineales. Proponemos usar la Transformada Fraccionaria deFourier (FrFT) para reconstruir

sẽnales MRI obtenidas en campos con desviaciones cuadráticas. La FrFT provee un marco

teórico preciso para esto. En este trabajo mostramos cómo se puede usar la FrFT para en-

tender las distorsiones y reconstruir señales MRI que han sido obtenidas en campos con

inhomogeneidad cuadrática. Mostramos adeḿas ejemplos de reconstrucción de datos sim-

ulados y datos de voluntarios con inhomogeneidades cuadráticas, obteniéndose una mejor

calidad de imagen que al usar reconstrucción est́andar de Fourier. La FrFT abre un nuevo

paradigma para entender y corregir distorsiones de fuera deresonancia con el potencial de

fabricar imanes ḿas cortos.

Palabras Claves:transformada fraccionaria de Fourier, imágenes de resonancia

magńetica, MRI, reconstrucción de iḿagenes, inhomogeneidades de

campo, corrección de inhomogeneidades de fuera de resonancia.
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1. INTRODUCTION

Magnetic Resonance (MR) imaging and spectroscopy provide a number of practical

applications for both clinical and scientific purposes (Liang & Lauterbur, 2000; Kali-

nowski, Berger, & Braun, 1988). For this technique it is necessary to have a strong magnetic

field with uniform intensity across the entire field of view. However, deviations from the

constant magnetic field are inherent to MR systems as uniformfields are physically difficult

to achieve and as adjacent regions within the scanned objectshow different susceptibilities,

producing inhomogeneities. Such field variations introduce an accumulating phase over

time into the MR signal, which cannot be demodulated easily as it varies spatially. This

problem is worse when stronger uniform fields are consideredand whenever sequences

with long acquisition time are used. High field MR system designs have to observe this

limitation, sometimes using secondary coils to correct thefield, simply reducing the entire

measurement volume or using a local region of interest for each measurement (Vedrine,

2008; Vaughan et al., 2006). Passive and active shimming techniques help reducing in-

homogeneities and are commonly used, partially correctingfirst and second order field

variations in most cases.

Several image reconstruction methods have been proposed tocorrect distortions pro-

duced by non homogeneous fields, being an active field of research (Akel, Rosenblitt, &

Irarrazaval, 2002; Chen & Meyer, 2008; Chen, Sica, & Meyer, 2008; Fessler, Lee, Olafs-

son, Shi, & Noll, 2005; Irarrazabal, Meyer, Nishimura, & Macovski, 1996; Manj́on et al.,

2007; Noll, Fessler, & Sutton, 2005; Sutton, Noll, & Fessler, 2003; Vovk, Pernus, & Likar,

2004). There is a well known theory background for the linearcorrection approaches, in

which an exact analytical solution is provided (Akel et al.,2002; Irarrazabal et al., 1996),

but both for second–order and arbitrary field maps there is nosuch conclusive theory back-

ground.

The Fractional Fourier Transform (FrFT) is a generalization of the standard Fourier

Transform (FT) by means of the continuous fractional ordera, which covers densely the

entire transition between image (or time) domain (a = 0) and the Fourier domain (a = 1)
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(Ozaktas, Kutay, & Zalevsky, 2001). The FrFT can be defined inseveral different ways

leading to different physical interpretations and thus, ithas become useful in many appli-

cations (Ozaktas & Mendlovic, 1993, 1995; Yetik, 2001). It has been shown that the FT

properties are special cases of FrFT properties (Ozaktas etal., 2001) and further research

has been done in discretization (Candan, Kutay, & Ozaktas, 2000; Ozaktas & Sumbul,

2006), fast computation (Bultheel, 2004), and other aspectsof the FrFT related to signal

processing (Guven, Ozaktas, Cetin, & Barshan, 2008; Ozaktas,Barshan, Mendlovic, &

Onural, 1994; Ozaktas, Arikan, Kutay, & Bozdagt, 1996; Ozaktas, Barshan, & Mendlovic,

1994).

It is of general knowledge that the magnetization of an object under a uniform magnetic

field can be related to its FT. Similarly, we noted that the magnetization of an object under

a quadratic magnetic field can be related to its FrFT. In fact,the defining integral kernel of

the FT presents a correspondence with the MR signal generated by a magnetized object in

a uniform magnetic field and thus, it allows reconstructing the object by taking an inverse

FT of its MR signal. Equivalently, the kernel that provides the integral definition of the

FrFT presents a clear resemblance with the MR signal generated by an object with an

underlying quadratic magnetic field, i.e. a field which intensity varies spatially as a second

order polynomial. This fact suggested us that there is a framework that allows native MR

reconstruction from quadratic fields.

In this manuscript we present a theoretical description of the relationship between the

FrFT and the MR signal generated when quadratic magnetic fields are used. Furthermore,

we propose a general MR method based on the FrFT that allows the acquisition and recon-

struction of MR signals of objects that have been obtained with quadratic fields.

In Chapter 2, we propose a new FrFT–based framework that allows fractional Fourier

understanding of the MR signal obtained with quadratic fieldinhomogeneities, showing

examples with simple trajectories. We explain the relationship between the FrFT and the

MR signal in a one–dimensional context, which is extended totwo dimensions in Chapter 3.

We propose a general reconstruction method based on the FrFTin Chapter 4. In Chapter 5

2



we describe the experimental setup and methods, and in Chapter 6 we show the results of

our simulation, phantom andin–vivoexperiments. Chapter 7 includes further discussions

and conclusions from this work and suggestions for future work.
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2. THEORY

In this section we explain the relation between the Fractional Fourier Transform and

an MR signal acquired under a quadratic main field, showing how the MR signal can be

written as a FrFT. This framework allows us to analyze the acquired data in a fractional

order polar space, from where we can extract visual insight.

2.1. Fractional Fourier Transform

Thea–th order FrFTfa(ρ) = Fa {f} (ρ) of the signalf(u) for 0 < |a| < 2 can be

expressed as an integral transform as (taken from (Ozaktas et al., 2001) with a slight change

of notation)

fa(ρ) = Cα(ρ)

∫

f(u) eiπ(u2 cot α−2ρu csc α) du (2.1)

Cα(ρ) ≡ eiπρ2 cot α
√

1 − i cot α, α ≡ aπ/2 (2.2)

Note that the most notable difference between this equationand the Fourier transform

is an extra quadratic phase in the kernel.

Throughout this section, we have selectedu andρ to denote dimensionless variables in

order to maintain formal consistency between the MRI and FrFTcontexts. The independent

variableρ is the pseudo–frequency in any fractional domain andu is the particular case of

ρ for the 0–th order (the object axis). The relation between the dimensionlessu and its

dimensional counterpartx will be addressed at the end of Chapter 4.

2.2. MRI Signal under quadratic field map inhomogeneity

At first, we will consider the single–dimensional case. Letf(u) be the magnetization

of the object of interest. The MRI signal, in a perfect uniformB0 field, ignoringT1 andT2

relaxations and after demodulation at the Larmor frequencyω0 is

s(t) =

∫

f(u) e−i2πk(t)u du

where, as customarily defined,k(t) = γ/2π
∫ t

0
G(ξ)dξ is thek–space trajectory.

4



Whenever there is an inhomogeneous fieldB(u) = B0 + p(u) as a function of space,

the magnetization is modulated by a time–dependent phase. For the particular case of a

quadratic inhomogeneity,p(u) = p2u
2 +p1u+p0. In this case the signal equation becomes

s(t) = e−i2πp0t

∫

f(u) eiπ(−2p2tu2
−2(k(t)+p1t)u) du (2.3)

There is a remarkable similarity between this expression and the FrFT defined in (2.1).

Consequently, it is natural to think that the FrFT can be used to reconstruct this data. More-

over, the FrFT is a theoretical tool that could allow us to extend the framework of MRI to

quadratic fields, while recovering the homogeneous–field case as a particular case.

2.3. Link between the MRI Signal and the FrFT

In order to represent (2.3) in the form of (2.1), we define

α(t) = cot−1(−2p2t), and

ρ(t) =
k(t) + p1t

csc α(t)
=

k(t) + p1t
√

1 + 4p2
2t

2
(2.4)

In this definition, bothα andρ are functions of time but we will often omit this for

the sake of simplicity. We useα ∈ (0, π), which ensurescsc α > 0, andcot−1 being invert-

ible. Therefore we can write the relations−2p2t = cot α and−2 (k(t) + p1t) = −2ρ csc α.

With these variables the signal in (2.3) becomes

s(t) = e−i2πp0t

∫

f(u) eiπ(u2 cot α−2ρu csc α) du

Using (2.1) we can express the signal equation as a time–varying order FrFT of the

object

s(t) = e−i2πp0tCα(ρ)−1fa(ρ)

fa(ρ) = ei2πp0tCα(ρ)s(t) (2.5)

Note that ifα were constant and equal toπ/2 (ora = 1), we recover the signal equation

in terms of the standard Fourier transform.
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The advantage of this relation is that we have a well known framework for working

with quadratic terms in the magnetic field. In general, the inhomogeneity of the field will

be better approximated by a second order polynomial. Additionally, second order terms

naturally occur in coil design and are the most significant terms within second and upper

orders.

2.4. Theρ–α space

The termsα andρ in (2.4) define a parametric trajectory(ρ(t), α(t)) in a space that

we call ρ–α space. Sinceα is an angle, this space is conveniently represented in polar

coordinates. The trajectory inρ–α space starts immediately after the excitation (t = 0) in

the frequency or Fourier direction (α = π/2) and as time passes it curves toward the object

axis (α = 0).

In what follows we will analyze some common trajectories using this framework. For

the sake of simplicity, we neglect the restrictions on the maximum slew rate.

Α=Π�2

Ρ HΑ=0L

(a)

Α=Π�2

Ρ HΑ=0L

(b)

Α=Π�2

Ρ HΑ=0L

(c)

FIGURE 2.1. Examples of typical trajectories over a quadratic field in the polar
representation ofρ–α space. (a) A constant gradient can be represented as a circular
path. (b) A 2DFT bipolar gradient describes two circular arcs. (c) Thepolar graph
shows theρ–α space in the readout direction for seven readout echoes of an EPI
trajectory.

2.4.1. Constant gradient

Let us assume that the readout gradientG0 is constant and starts att = 0, as would

be the case in a projection reconstruction sequence. Assumealso that the inhomogeneity

6



is purely quadraticp(u) = p2u
2. Linear and constant terms can be ignored without loss

of generality, because the first is equivalent to a change in the amplitude of the gradient

and the second can be corrected during the signal demodulation. Thenk(t) would be
∫ t

0
G0dτ = G0t and the trajectory inρ–α space would be

α(t) = cot−1(−2p2t)

ρ(t) =
k(t) + p1t

√

1 + 4p2
2t

2
=

G0t
√

1 + 4p2
2t

2

which is the parametric form of a circumference centered at(G0/4p2, 0). Fig. 2.1 (a)

shows this trajectory starting int = 0 at the origin. Assumingp2 < 0, which resembles

the typical case in which the intensity of the B0 field is greater at the center of a magnet,

we also observe that the trajectory asymptotically approaches the object axis (α = 0) ast

increases.

As expected, for small values oft, the trajectory deviates little from the frequency axis

(α = π/2), and therefore distortions due to field variations are small. This is consistent

with the general knowledge that short readouts are less sensitive to inhomogeneities.

We also note that ifp2 tends to zero, the field inhomogeneity vanishes and the center

of the circumference located atG0/4p2 tends to infinity. Equivalently, theρ–α trajectory

becomes a straight line in the frequency direction

α(t) = cot−1(−2p2t) =
π

2

ρ(t) =
G0t

√

1 + 4p2
2t

2
= G0t

2.4.2. Standard 2DFT readout

Considering again that the field distortion isp(u) = p2u
2, we now assume that the

gradient is formed by a negative pulse of durationt0 followed by a positive one, as is

7



standard in 2DFT readouts. In this case

k(t) =

∫ t

0

G(τ)dτ =











−G0t 0 < t < t0

G0(t − 2t0) t0 < t

Consequently, the trajectory inρ–α space is given by

α(t) = cot−1(−2p2t)

ρ(t) =
1

√

1 + 4p2
2t

2
×











−G0t 0 < t < t0

G0(t − 2t0) t0 < t

This trajectory is formed by two circular arcs. The trajectory describes one arc for

the negative gradient centered at(−G0/4p2, 0) and continues to the other one centered at

(G0/4p2,−G0t0), which corresponds to the positive gradient, as shown in Fig. 2.1 (b).

2.4.3. EPI readout

If the gradient were a train of negative and positive pulses as is used in Echo Planar

Imaging

G(t) =











−G0 for 0 < t < t0, 3t0 < t < 5t0, ...

G0 for t0 < t < 3t0, 5t0 < t < 7t0, ...

the describedρ–α trajectory would be composed by a series of circular arcs centered at

(±G0/4p2,∓jG0t0/2), j = 0, 1, 2, ... as shown in Fig. 2.1 (c).

2.4.4. Spectroscopy

If the sequence has no gradients, as in a pure spectroscopic acquisition, the trajectory

will only depend on the linear term of the field deviationp1

α(t) = cot−1(−2p2t)

ρ(t) =
k(t) + p1t

√

1 + 4p2
2t

2
=

p1t
√

1 + 4p2
2t

2
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and will have the shape shown in Fig. 2.1 (a), centered at(p1/4p2, 0). If p1 = 0, the

trajectory is a singularity at the origin of theρ–α space. In this case it is more convenient

to represent the space in Cartesian coordinates(ρ, a), and the readout trajectoryρ = 0

becomes equivalent to acquire the continuous component of the FrFT for the ordersa.
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3. EXTENSION TO TWO DIMENSIONS

To extend the correspondence of the signal equation to the FrFT definition we employ

the fact that the latter is separable and easily written in vector form. In two dimensions the

FrFT is (Ozaktas et al., 2001)

fa(ρ) = Cα(ρ)

∫

f(u) eiπ(uTAu−2uTBρ)du

with

u =





u

v



 , ρ =





ρu

ρv



 , a =





au

av



 , α = a
π

2
=





αu

αv





A =





cot αu 0

0 cot αv



 , B =





csc αu 0

0 csc αv





andCα(ρ) =
√

1 − i cot αu

√
1 − i cot αv eiπρT Aρ.

To write the signal equation in 2D we write the field distortion asp(u) = uTp2u +

uTp1 + p0, with

p1 =





p1u

p1v



 and p2 =





p2u 0

0 p2v





so that it becomes

s(t) = e−i2πp0t

∫

f(u) eiπ(−2uTp2ut−2uT(k(t)+p1t))du (3.1)

with k(t) = [ku(t) kv(t)]
T. Note that we also assumed that the field distortion is diagonal

in the coordinate axis, i.e. the terms outside the diagonal of p2 are zero in order to match

the separable form of the FrFT.

10



Remark that bothA andB are diagonal matrices that depend onα. We can proceed as

we did previously to define the four–dimensionalρ–α space using the change of variables:

cot αu = −2p2ut

cot αv = −2p2vt

ρu csc αu = ku(t) + p1ut

ρv csc αv = kv(t) + p1vt

which is equivalent to solve forα andρ the matrix equationsA(α) = −2p2t andB(α)ρ =

k(t) + p1t. Finally, the signal equation can be expressed in terms of a 2D varying–order

FrFT as

s(t) = e−i2πp0tCα(ρ)−1fa(ρ)

11



4. RECONSTRUCTION

In the FrFT framework, the reconstruction problem requiresto know both the pseudo–

frequency and the transform order where the data was acquired. These can be determined

using (2.4). The object will be the solution to the inverse of(2.5) (ignoring the constant

field deviationp0)

f̂(u) = F−a
{

fa(t) (ρ(t))
}

(u)

= F−a
{

Cα(t) (ρ(t)) s(t)
}

(u)

In this expression we have made explicit the time dependenceof α. This dependency

implies that the fractional order changes with time and therefore a inverse FrFT is not

feasible. We analyze three different reconstruction approaches: standard inverse Fourier

reconstruction; inverse fractional Fourier reconstruction; and variable order inverse frac-

tional Fourier reconstruction. The difference between these reconstructions is the assump-

tion they make on where the data is placed in theρ–α space. In Fig. 4.1 we show the actual

ρ–α space trajectory and the assumption of the reconstruction scheme for a standard 2DFT

readout.

Α=Π�2

Ρ HΑ=0L

(a)

Α=Π�2

Ρ HΑ=0L

(b)

Α=Π�2

Ρ HΑ=0L

(c)

FIGURE 4.1. Example of a one dimensional 2DFT trajectory in the polar repre-
sentation ofρ–α space represented by the continuous line and its reconstruction
interpretation represented by the dashed line. (a) Standard Fourier interpretation.
(b) Fractional Fourier interpretation. (c) Variable order inverse fractional Fourier
interpretation.
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4.1. Standard Inverse Fourier Reconstruction

The first approach is to perform the reconstruction by using the standard inverse Fourier

transform. This is equivalent to assume thatα ≡ π/2, cot α ≡ 0 andCπ/2(ρ) ≡ 1. The

reconstructed object is

f̂1(u) = F−1 {s(t)} (u)

The samples are acquired in the curved trajectory but are interpreted as being in the

frequency axis (vertical dashed line of Fig. 4.1(a)). The distortions in the image will depend

on how much the reconstruction locations differ from the sampling locations.

4.2. Inverse Fractional Fourier Reconstruction

The second approach is to assume that the samples are being acquired at a constant

order, which can be though as a tangent approximation in theρ–α plane. This approach

has two advantages: (i) the reconstruction and sampling locations are closer; and (ii) the

inverse expression is exactly a inverse FrFT

f̂ā(u) = F−ā {Cᾱ (ρ(t)) s(t)} (u)

whereā (or ᾱ) is the order (or angle for the tangent line) at the origin. Aswe will show

in Chapter 6, this reconstruction provides a better approximation to the real object since

it improves the accuracy of the reconstructed phase over thestandard Fourier reconstruc-

tion. However, the magnitude is the same as the one obtained with the standard Fourier

reconstruction. Using the definitions in (2.1) and (2.2) it can be seen that

f̂ā(u) = e−iπu2 cot ᾱ| csc ᾱ|
∫

s(t) ei2πuρ csc ᾱ dρ (4.1)

4.3. Variable Order Inverse Fractional Fourier Reconstruction

Finally, the third approach is to use the actual locations where the data was acquired.

To solve the variable order inverse problem we propose a discrete approach, which fits well

with the discrete samples and can also provide a continuous reconstruction. Each sample
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in ρ–α space(ρn, αn) acquired att = tn corresponds to one coefficient of the FrFT of order

an = 2αn/π. These coefficients can be thought as the expansion of the object on the bases

formed by the “chirp” functions. These functions are given by the inverse FrFT of orderan

of a delta function located atρ = ρn (Ozaktas et al., 2001):

∆−an
(u) = F−an {δ(ρ − ρn)} (u)

= C∗

αn
(ρn) e−iπ(u2 cot αn−2uρn csc αn)

where∗ denotes complex conjugate. Recalling that the samples (ignoring again the constant

field shift,p0) are defined by

fan
(ρn) = Cαn

(ρn)s(tn)

we have an estimation of the object as the weighted sum of all contributions.

f̂α(u) =
N

∑

n=1

fan
(ρn)∆−an

(u)

=
N

∑

n=1

| csc αn|s(tn)e−iπ(u2 cot αn−2uρn csc αn)

We assume a uniform sampling density, otherwise it would be necessary to incorporate

a factor proportional tȯρ(tn) which arises from the underlying discretization of the inverse

FrFT integral by Riemann sums.

The objectf̂α(u) can be evaluated for any continuous value ofu. Note that if we sub-

stituteαn by π/2 this formula becomes the definition of the Discrete Frequency Fourier

Transform (DFFT), or the Discrete Fourier Transform (DFT),if u is also evaluated at dis-

crete values. Ifαn is substituted by another fixed angle, other thanπ/2, the reconstruction

is also the DFFT, but with an extra phase and an additional constant scaling factor. This is

the discrete version of the inverse Fractional Fourier Transform.
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The 2D extension of this reconstructions is:

f̂(u) =
N

∑

n=1

| det(Bn)|s(tn) e−iπ(uTAnu−2uTBnρn) (4.2)

4.4. Units

So far we have usedρ andu as dimensionless variables. To ensure the validity of the

former analysis and extend it to practical cases, we use the normalizationu = x/q in which

f(u) = f(x/q) =
√

qf̃(x) (4.3)

with f̃(x) the dimensional object. The scale parameterq has the same dimension asx. In

the discrete case, we need longitudes inρ to be independent ofα, which can be achieved by

settingq = FOV/
√

N (Koc, Ozaktas, Candan, & Kutay, 2008) whereFOV is the field of

view in distance units andN is the number of samples. This normalization is independently

applied for each dimension.
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5. EXPERIMENTS AND METHODS

All MRI images mentioned in this section were acquired in a Philips Intera 1.5T scan-

ner. Linear shimming was disabled during all acquisitions and no higher order active shim-

ming was used. The sequences were performed without any consideration aboutρ–α space,

using mostly default parameters from pre–loaded sequencesin the system. Complex–

valued image reconstructions were performed off–line.

5.1. Analytical phantom

In our first experiment, the MR signal for a two dimensional (2D) analytical magne-

tization phantom was simulated by numerically evaluating (3.1) using adaptive quadrature

in MATLAB (Shampine, 2008), nesting a one–dimensional evaluation for each dimension.

The phantom was designed as a simplified version of a real reference phantom with the

same dimensions. The acquisition time of each sample andk–space locations were deter-

mined considering 2DFT gradients used in a standard Fourieracquisition. We simulated a

cartesian matrix of 256× 256 samples with a field of view (FOV) of 25.6× 25.6 cm and

echo timeTE = 56 ms. Each complete readout in the sequence takes 28 ms.

Two signals were simulated, the first with a uniform B0 field and the second with

a quadratic field. The quadratic deviation was chosen to emulate the measured quadratic

component for a real phantom, but doubling its values to increase the effect of the distortion

in the simulation, and at the same time keeping it within a valid physical range.

5.2. MRI phantom

In a second experiment, we scanned an MRI phantom using a fast field echo (FFE)

echo–planar imaging (EPI) sequence, with a scan matrix of 128 × 128 samples, image

FOV of 24× 24 cm, slice thickness 5 mm, flip angle 23◦, repetition time TR= 650 ms and

echo time TE= 41 ms. This data was acquired with a number of sample averages(NSA)

of 16 using a Q–body coil. The EPI factor in this sequence is 63. Each complete readout in

this sequence took 76 ms.
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5.3. In–vivo study

An in–vivostudy was done scanning the brain of a volunteer, the images were acquired

using the same sequence used for the phantom study, except from NSA which was now 8

and from the receiving coil which was now a standard quadrature head coil. A slightly

angled transversal slice of the brain was selected.

5.4. Field maps

In each experiment, structural images were acquired with short readout time sequences

to minimize the effect of field inhomogeneity. The magnetic field was measured in each

location from phase differences in two images with different echo time, using∆ω(x, y) =

∆φ(x, y)/∆TE (Schneider & Glover, 1991) with a short∆TE to avoid phase wrapping in

the resulting field map.

To fit quadratic functions to the field maps, we used a maximum likelihood method

that minimizes the weighted squared error between the measured field map and a parametric

separable second order polynomial evaluated at corresponding positions. The weights were

the mean of the corresponding pixels in the magnitude of the images from which the phase

difference had been obtained. This ensures that the field mapinformation was incorporated

correctly depending on the local intensity of the signal andits signal to noise ratio. In the

case of thein–vivostudy, a region of interest was defined by setting to zero the weighting

outside it.

In the phantom study, the field map was determined along a structural reference image

using∆TE = 3 ms and TR and TE equal to 14 and 6.1 ms respectively. A transversal slice

of the physical phantom was selected for this study.

For the in–vivo study, the structural reference image was obtained with TR and TE

equal to 17 and 6.2 ms respectively for the same field of view and resolution. The field

map was computed with∆TE = 6 ms. The anatomy causes further field deviations which

cannot be approximated by the fitted function for the entire FOV. We therefore used an
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elliptical region of interest (ROI) where the field is mainlyquadratic and the approximation

is suitable to demonstrate the proposed reconstruction.

Field maps and profiles displayed in all figures in Chapter 6 share the same color scal-

ing, mapping the entire range to a 180 Hz difference, with thelowest and highest intensities

mapped to -140 Hz and 40 Hz respectively. To display the measured field maps and phase

images, the field map value was set to zero wherever the intensity of the signal was below

5% of its maximum value.

5.5. Image reconstruction

In all experiments, image reconstruction was performed by estimating the magneti-

zation of the object computing (4.2) and evaluatingu at the corresponding positions in

dimensionless coordinates. Distance units of the results were scaled using (4.3) to map the

estimated object into the dimensional coordinates. Three different reconstruction schemes

were used in each experiment, producing three object estimations according to diagrams

(a), (b) and (c) in Fig. 4.1. The first one is standard inverse Fourier (FT) reconstruction and

usedαun = αvn = π/2, ∀n = 1 . . . N . The second one, inverse fractional Fourier (FrFT)

reconstruction, usedαun = ᾱu, αvn = ᾱv, ∀n = 1 . . . N with ᾱu andᾱv equal to the angles

at the origin of the four–dimensionalρ–α space during the readout. Variable order inverse

fractional Fourier (VO–FrFT) reconstruction took into account the exact position inρ–α

space of each sample.
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6. RESULTS

6.1. Analytical phantom

One can observe the distortions produced by a quadratic fieldwhen using the standard

Fourier reconstruction, by comparing Figures 6.1 (a) and (b). We appreciate a geometric

distortion, characteristic of data acquired under field inhomogeneity, which is proportional

to the local field deviation from the central frequency. The phase of the reconstructed

image has a complex quadratic modulation although the analytical phantom did not have

phase. An intensity nonuniformity distortion is also noted, in which the distorted image

(a) (b) (c) (d)

FIGURE 6.1. Reconstruction results for 2DFT simulations with an isotropic qua-
dratic field. Each column shows magnitude and phase images with the same color
scaling. Magnitude and phase move from 0 to 1 and from−π to π respectively.
Phase values have been set to zero when magnitude is below 5% of maximum.
(a) Ideal reconstruction for a homogeneous field simulation and standardinverse
Fourier reconstruction. The remaining columns show reconstructions fora qua-
dratic field simulation. (b) Standard inverse Fourier reconstruction. (c) Inverse
fractional Fourier reconstruction with constantα approximation for each echo. (d)
Variable order inverse fractional Fourier reconstruction consideringexact trajec-
tory.
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has an intensity approximately 12% lower in the upper section of the object and a simmilar

inverse variation in the lower section.

As expected by means of (4.1), the reconstruction result forinverse fractional Fourier

(FrFT) reconstruction (Fig. 6.1 (c)) shows identical magnitude than the standard inverse

Fourier (FT) reconstruction (Fig. 6.1 (b)) but with a phase much closer to the actual phase.

The variable order inverse fractional Fourier (VO–FrFT) reconstruction corrected the image

distortions in magnitude and phase, including the geometric distortion (Fig. 6.1 (d)).

6.2. MRI phantom

(a) (b)

-140

-100

-50

0

40
Field map fit along one column

[h
z
]

 

 

measured

fitted

(c)

FIGURE 6.2. Field map fit for MRI Phantom. (a) Measured field map. (b) Fitted
field map. (c) Along the marked column, the measured magnetic field (solid line)
can be approximated by a quadratic function (dashed line).

In the MRI phantom study, we have found that the particular combination of our MR

system with its intrinsic inhomogeneity and the scanned phantom produced a field map
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(a) (b) (c)

FIGURE 6.3. Reconstruction results for MRI Phantom under a quadratic field.
Geometric distortions shown in (b) obtained using standard inverse Fourierrecon-
struction can be corrected in (c) using variable order inverse fractional Fourier re-
construction, compared to a low distortion image (a).

that resembles an isotropic quadratic function with its highest intensity in the center of the

magnet as shown in Fig. 6.2.

In this study, the phase information of the object is unknownsince we cannot acquire

it with the same contrast as the distorted object but withoutthe effect of the quadratic field

map. We will compare the magnitude of the reconstructions ofthe distorted signal with the

magnitude of a low distortion image acquired with short readouts.

The FT reconstruction shown in Fig. 6.3 (b) produces geometric and intensity distor-

tions similar to those observed in the simulation study for aquadratic field (Fig. 6.1 (b)).

Figure 6.3 also shows that the VO–FrFT reconstruction (c), partially corrects these distor-

tions, improving the geometry and intensity of the estimation when comparing both recon-

structions against the low distortion image (a). Ghosting artifacts are visible in (c) which

we do not fully understand, but we believe to be related to an incomplete phase correction

typically used to reduce the EPI ghosting artifact.

As expected, magnitudes of the fractional Fourier reconstruction and standard Fourier

reconstruction were identical, therefore the first one was omitted from the figures.
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FIGURE 6.4. Field map fit forin–vivo study. (b) Measured field map. (c) Fitted
field map. Within the elliptical ROI in (a), the measured magnetic field can be
approximated by a quadratic function as shown in (d) with solid and dashed lines
respectively for the marked column.

(a) (b) (c)

FIGURE 6.5. Reconstruction results forin–vivostudy. The superimposed contours
show the location of some key features in the reference image (a). (b) Standard
inverse Fourier reconstruction. (c) Variable order inverse Fourier reconstruction
with corrected quadratic field inhomogeneity.
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6.3. In–vivo study

With the volunteer experiment we found the magnetic field to vary smoothly inside

the brain. In particular, the field can be approximated by a quadratic function within an

elliptical region of interest (ROI) as shown in Fig. 6.4. TheVO–FrFT reconstruction par-

tially corrects most of the geometric distortions present in the FT reconstruction as can be

seen in Fig. 6.5, especially in the regions in which the fittedquadratic function is a close

approximation of the field map. To facilitate the comparisonwe have superimposed on all

reconstructions in Fig. 6.5 contours that show the actual location of key features taken from

the reference image (a).
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7. CONCLUSIONS

Traditionally, MRI reconstruction is performed applying aninverse Fourier Transform

(FT) of the acquired MR signal. This method rests on the base that the object has been

magnetized with a perfectly uniform magnetic field. In practice, it is not possible to get a

uniform field because of physical restrictions and susceptibility variations at the scanned

object. This is a critical problem as the MR community is pushing for getting short–bore

and high–field MR systems, which are exactly the kind of factors that tend to increase field

inhomogeneities. Additionally, sequences with long acquisition windows, such as EPI and

spiral, are increasingly used. These sequences are severely affected by inhomogeneity–

related artifacts. Modern MR systems always include linearfield corrections and higher-

order polynomial field corrections are getting a common feature. It is therefore reasonable

to think that main magnetic fields are not intrinsically uniform. In fact, in all our experi-

ments our magnet showed a nearly quadratic behavior.

We present a new, strongly supported framework for quadratic inhomogeneity MR

signal analysis based on the Fractional Fourier Transform (FrFT). It restores the theoretical

relation between image space and quadratic magnetic field signal space, allowing native

second order field image reconstruction (or correction). The FrFT transform, which is a

generalization of the FT, has a quadratic term in its integral kernel, so that there is a natural

link between the signal obtained from an object magnetized with a quadratic field and its

FrFT. This new framework and theρ–α space we introduce give a visual insight to the MR

acquisition process and also, provide a meaningful graphical representation that shows the

relation between the image domain, the standardk–space and FrFT domains.

Our experiments showed that our proposed method, the variable order fractional Fourier

reconstruction (VO–FrFT), can effectively reconstruct MRIsignals under nearly quadratic

magnetic fields, without being affected by the geometric distortions that appear when those

signals are reconstructed by the standard FT scheme.

One effect of analyzing MR data usingρ–α space is thatk is scaled down by a factor

csc α ≥ 1. This scaling is not homogeneous ink–space but depends on the time map of
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the sequence. For a given sequence planned for ordinaryk–space acquisition, this fact is

manifested as a resolution loss. These resolution losses could be reduced using stronger

gradients with an ordinary sequence or modifying the sequence to fill ρ–α space at cor-

rected locations.

New trajectories should be designed to fillρ–α space in order to meet image resolu-

tion requirements. Theoretical advances are also needed toreplace the Nyquist sampling

rate fork–space with a similar criterion which would indicate how information density is

distributed alongρ–α space.

Our approach based on the Fractional Fourier Transform gives a new theoretical MR

framework between image space and signal space for quadratic field MR systems, allowing

native image reconstruction for second order main fields. Hopefully, this new approach will

reduce the hardware complexity of MR systems, since the second order terms in the main

magnetic field would no longer be a concern.
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