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ABSTRACT

To obtain good quality images with Magnetic Resonance (MR iitacessary to have
good spatial homogeneity in th@, field for the region of imaging. Field homogeneity is
difficult to achieve, particularly for short bore magnets &igher fields. When the passive
or active shimming are not enough, or when the inhomogeweityes from differences in
susceptibility between adjacent regions within an objinete are several post-processing
techniques for correcting the distortions. These teclesgip not have a well supported
theoretical background with the exception of linear teri¥s.propose to use the Fractional
Fourier Transform (FrFT) for reconstructing the MR signedjaired under the presence of
quadratic fields. The FrFT provides a precise theoretieah&work for this. In this work
we show how the FrFT can be used to understand the distoiathdo reconstruct MR
data acquired under that condition. We also show examplescohfstruction for simulated
and volunteer data under quadratic inhomogeneities abtpisn improved image qual-
ity compared with standard Fourier reconstructions. THelFopens a new paradigm for
understanding and correcting second degree off-resosavittethe potential for manufac-

turing shorter magnets.

Keywords: fractional Fourier transform, magnetic resonance imagigl, image

reconstruction, field inhomogeneities, off-resonanceecbion.
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RESUMEN

Para obtener lagenes de Resonancia Métjna (MRI) de buena calidad, es nece-
sario tener una buena homogeneidad espacial en el c&nge la regbn a observar. La
homogeneidad de campo esidiifde lograr, particularmente para imanes deleo corto
y campos altos. Cuando el ajuste fino pasivo o0 activo no eseuifigio cuando la inho-
mogeneidad viene de diferencias en la susceptibilida@ eegfiones adyacentes dentro de
un objeto, hay variagtnicas de post—procesamiento para corregir las distersigstas
tecnicas no tienen un fundamentoérieo lido con la excepéin de las relativas &tminos
lineales. Proponemos usar la Transformada FraccionaRawger (FrFT) para reconstruir
sdiales MRI obtenidas en campos con desviaciones atieds. La FrFT provee un marco
tedrico preciso para esto. En este trabajo mostraroosocse puede usar la FrFT para en-
tender las distorsiones y reconstruifiakes MRI que han sido obtenidas en campos con
inhomogeneidad cuagltica. Mostramos adems ejemplos de reconstrugcnide datos sim-
ulados y datos de voluntarios con inhomogeneidades atieals, obter@indose una mejor
calidad de imagen que al usar reconstranasandar de Fourier. La FrFT abre un nuevo
paradigma para entender y corregir distorsiones de fuerasd@ancia con el potencial de

fabricar imanes &s cortos.

Palabras Claves:transformada fraccionaria de Fourier, dgenes de resonancia
magretica, MRI, reconstrucon de indgenes, inhomogeneidades de

campo, correcéin de inhomogeneidades de fuera de resonancia.
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1. INTRODUCTION

Magnetic Resonance (MR) imaging and spectroscopy providevdeuof practical
applications for both clinical and scientific purposes (iga& Lauterbur, 2000; Kali-
nowski, Berger, & Braun, 1988). For this technique it is neagst have a strong magnetic
field with uniform intensity across the entire field of viewowever, deviations from the
constant magnetic field are inherent to MR systems as unifiefds are physically difficult
to achieve and as adjacent regions within the scanned atjewat different susceptibilities,
producing inhomogeneities. Such field variations intr@dao accumulating phase over
time into the MR signal, which cannot be demodulated easlit &aries spatially. This
problem is worse when stronger uniform fields are considareti whenever sequences
with long acquisition time are used. High field MR system desihave to observe this
limitation, sometimes using secondary coils to correcfigld, simply reducing the entire
measurement volume or using a local region of interest foh @aeasurement (Vedrine,
2008; Vaughan et al., 2006). Passive and active shimmirnghigees help reducing in-
homogeneities and are commonly used, partially corrediinsg and second order field

variations in most cases.

Several image reconstruction methods have been propossuiraet distortions pro-
duced by non homogeneous fields, being an active field of reds€Akel, Rosenblitt, &
Irarrazaval, 2002; Chen & Meyer, 2008; Chen, Sica, & Meyer,@®essler, Lee, Olafs-
son, Shi, & Noll, 2005; Irarrazabal, Meyer, Nishimura, & Maski, 1996; Marnpn et al.,
2007; Noll, Fessler, & Sutton, 2005; Sutton, Noll, & Fesskf03; Vovk, Pernus, & Likar,
2004). There is a well known theory background for the lins@rection approaches, in
which an exact analytical solution is provided (Akel et aD02; Irarrazabal et al., 1996),
but both for second—order and arbitrary field maps there sueb conclusive theory back-

ground.

The Fractional Fourier Transform (FrFT) is a generalizatd the standard Fourier
Transform (FT) by means of the continuous fractional ordewhich covers densely the

entire transition between image (or time) domain=0) and the Fourier domaimu(= 1)



(Ozaktas, Kutay, & Zalevsky, 2001). The FrFT can be defineseweral different ways
leading to different physical interpretations and thusais become useful in many appli-
cations (Ozaktas & Mendlovic, 1993, 1995; Yetik, 2001). dstbeen shown that the FT
properties are special cases of FrFT properties (Ozakias, @001) and further research
has been done in discretization (Candan, Kutay, & OzaktaB0;20zaktas & Sumbul,
2006), fast computation (Bultheel, 2004), and other aspefdise FrFT related to signal
processing (Guven, Ozaktas, Cetin, & Barshan, 2008; Ozak&shan, Mendlovic, &
Onural, 1994; Ozaktas, Arikan, Kutay, & Bozdagt, 1996; OaakBarshan, & Mendlovic,
1994).

Itis of general knowledge that the magnetization of an dhjader a uniform magnetic
field can be related to its FT. Similarly, we noted that the nadigation of an object under
a quadratic magnetic field can be related to its FrFT. In thetdefining integral kernel of
the FT presents a correspondence with the MR signal geddrgita magnetized object in
a uniform magnetic field and thus, it allows reconstructimg dbject by taking an inverse
FT of its MR signal. Equivalently, the kernel that providée tintegral definition of the
FrFT presents a clear resemblance with the MR signhal gestetat an object with an
underlying quadratic magnetic field, i.e. a field which irsiénvaries spatially as a second
order polynomial. This fact suggested us that there is adveork that allows native MR

reconstruction from quadratic fields.

In this manuscript we present a theoretical descriptiomefrelationship between the
FrFT and the MR signal generated when quadratic magnetdsfaake used. Furthermore,
we propose a general MR method based on the FrFT that all@ectijuisition and recon-

struction of MR signals of objects that have been obtaingld quadratic fields.

In Chapter 2, we propose a hew FrFT-based framework thatafi@etional Fourier
understanding of the MR signal obtained with quadratic fisltbomogeneities, showing
examples with simple trajectories. We explain the relaiop between the FrFT and the
MR signal in a one—dimensional context, which is extendadtodimensions in Chapter 3.

We propose a general reconstruction method based on theifrETapter 4. In Chapter 5



we describe the experimental setup and methods, and in Cléapte show the results of
our simulation, phantom and-vivo experiments. Chapter 7 includes further discussions

and conclusions from this work and suggestions for futurekwo



2. THEORY

In this section we explain the relation between the Fraealiéiourier Transform and
an MR signal acquired under a quadratic main field, showing th®@ MR signal can be
written as a FrFT. This framework allows us to analyze theuaed data in a fractional

order polar space, from where we can extract visual insight.

2.1. Fractional Fourier Transform

The a—th order FrETf,(p) = F*{f} (p) of the signalf(u) for 0 < |a| < 2 can be
expressed as an integral transform as (taken from (Ozatkdids 2001) with a slight change
of notation)

Fo(0) = Culp) [ el ssamese) gy @)
Co(p) = ™ te/T “icota, o=ar/2 (2.2)

Note that the most notable difference between this equatioithe Fourier transform

is an extra quadratic phase in the kernel.

Throughout this section, we have selecteathdp to denote dimensionless variables in
order to maintain formal consistency between the MRI and feditexts. The independent
variablep is the pseudo—frequency in any fractional domain amslthe particular case of
p for the 0—th order (the object axis). The relation betweendimensionless and its

dimensional counterpartwill be addressed at the end of Chapter 4.

2.2. MRI Signal under quadratic field map inhomogeneity

At first, we will consider the single—dimensional case. [fét) be the magnetization
of the object of interest. The MRI signal, in a perfect unifobnfield, ignoring7; and7;

relaxations and after demodulation at the Larmor frequendg
S<t) — /f(u) e*’i?ﬂ'k(t)u du

where, as customarily defineklt) = /27 fot G(&)d¢ is thek—space trajectory.



Whenever there is an inhomogeneous fiBld:) = B, + p(u) as a function of space,
the magnetization is modulated by a time—dependent phaseth& particular case of a

quadratic inhomogeneity(u) = pyu? + pyu+ po. In this case the signal equation becomes

S(t) _ e—iQTrpOt/f(u) eiw(—2p2tu2—2(k(t)+p1t)u) du (23)

There is a remarkable similarity between this expressiatlaa FrFT defined in (2.1).
Consequently, it is natural to think that the FrFT can be useddonstruct this data. More-
over, the FrFT is a theoretical tool that could allow us tceexttthe framework of MRI to

guadratic fields, while recovering the homogeneous—fiete es a particular case.
2.3. Link between the MRI Signal and the FrFT

In order to represent (2.3) in the form of (2.1), we define

aft) = cot™'(—2pyt), and
p(t) _ k(t)+p1t: k‘(t)+p1t (24)

cscalt) /1140

In this definition, botha and p are functions of time but we will often omit this for

the sake of simplicity. We use € (0, 7), which ensuressc a > 0, andcot ! being invert-
ible. Therefore we can write the relation€p,t = cot a and—2 (k(t) + pit) = —2pcsc a.

With these variables the signal in (2.3) becomes

S(t) _ e—i?wpot/f(u) eiw(u2cota—2pucsco¢) du

Using (2.1) we can express the signal equation as a timetgaoyder FrFT of the

object
s(t) = e Co(p)” falp)
Jalp) = * ' Ca(p)s(1) 23)

Note that ifoe were constant and equaltg2 (ora = 1), we recover the signal equation

in terms of the standard Fourier transform.



The advantage of this relation is that we have a well knowmé&aork for working
with quadratic terms in the magnetic field. In general, th@mogeneity of the field will
be better approximated by a second order polynomial. Aalthliy, second order terms
naturally occur in coil design and are the most significarthgewithin second and upper

orders.

2.4. Thep—« space

The termsa andp in (2.4) define a parametric trajectofy(t), a(t)) in a space that
we call p— space. Sincex is an angle, this space is conveniently represented in polar
coordinates. The trajectory g« space starts immediately after the excitatior=(0) in
the frequency or Fourier direction (= 7/2) and as time passes it curves toward the object

axis ( = 0).

In what follows we will analyze some common trajectoriesagghis framework. For

the sake of simplicity, we neglect the restrictions on th&imam slew rate.

o=11/2 a=m/2 o=r/2

p (a=0) o (a=0) o (a=0)

(@) (b) ()

FIGURE 2.1. Examples of typical trajectories over a quadratic field in the polar
representation gf—« space. (a) A constant gradient can be represented as a circular
path. (b) A 2DFT bipolar gradient describes two circular arcs. (c)ddiar graph
shows thep—« space in the readout direction for seven readout echoes of an EPI
trajectory.

2.4.1. Constant gradient

Let us assume that the readout gradiéptis constant and starts at= 0, as would

be the case in a projection reconstruction sequence. Asalsog¢hat the inhomogeneity

6



is purely quadratigp(u) = p,u?. Linear and constant terms can be ignored without loss
of generality, because the first is equivalent to a changharamplitude of the gradient
and the second can be corrected during the signal demaztulafhenk(¢) would be

fot Godt = Gyt and the trajectory ip—« space would be

a(t) = cot™H(—2pyt)
k(t) +mt Got

VIFApiE 1+ 4p3t2

which is the parametric form of a circumference centeredGat/4p,0). Fig. 2.1 (a)

shows this trajectory starting in= 0 at the origin. Assuming, < 0, which resembles
the typical case in which the intensity of thg Beld is greater at the center of a magnet,
we also observe that the trajectory asymptotically apgreathe object axisy = 0) ast

increases.

As expected, for small values gfthe trajectory deviates little from the frequency axis
(o = 7w/2), and therefore distortions due to field variations are mgiis is consistent

with the general knowledge that short readouts are les#iserts inhomogeneities.

We also note that i, tends to zero, the field inhomogeneity vanishes and the rcente
of the circumference located &f,/4p, tends to infinity. Equivalently, the— trajectory

becomes a straight line in the frequency direction

a(t) = cot™H(—2pyt) :g
Got

t) = ——— =Gt
o) 1+ 4pit?
2.4.2. Standard 2DFT readout

Considering again that the field distortionzié:) = p,u?, we now assume that the

gradient is formed by a negative pulse of duratigrfollowed by a positive one, as is



standard in 2DFT readouts. In this case

—Got 0<t<tiy

Go(t — 2t0) to <t
Consequently, the trajectory pjr« space is given by

at) = cot™H(—2pyt)

1 _Got 0<t<t0

plt) = —F—== X
VIt Got—2t)) ty <t

This trajectory is formed by two circular arcs. The trajegtdescribes one arc for
the negative gradient centered(atG,/4p.,0) and continues to the other one centered at

(Go/4pa, —Goto), which corresponds to the positive gradient, as shown inZig(b).

2.4.3. EPIl readout

If the gradient were a train of negative and positive pulsesaised in Echo Planar
Imaging
—Goy for0 <t <ty 3ty <t < by, ...
G(t) =
Go forty <t < 3tg, 5ty < t < Tty, ...
the describeg— trajectory would be composed by a series of circular arcseced at

(£Go/4p2, FiGoto/2), j = 0, 1,2, ... as shown in Fig. 2.1 (c).

2.4.4. Spectroscopy

If the sequence has no gradients, as in a pure spectrosacapicsiion, the trajectory

will only depend on the linear term of the field deviatipn

at) = cot™H(—2pyt)
k(t) + pit - pit

pt = =
(®) V1+4pi2 1+ 4pii?




and will have the shape shown in Fig. 2.1 (a), centerethatdp,,0). If p; = 0, the
trajectory is a singularity at the origin of the« space. In this case it is more convenient
to represent the space in Cartesian coordingtes), and the readout trajectopy = 0

becomes equivalent to acquire the continuous componehedi=T for the orders.



3. EXTENSION TO TWO DIMENSIONS

To extend the correspondence of the signal equation to fhE éefinition we employ
the fact that the latter is separable and easily written atoreform. In two dimensions the
FrFT is (Ozaktas et al., 2001)

fa(p) _ Ca(P) / f(u) em(uTAu—QuTBp)du

with
u Pu Ay m Qy,
u = s p = s a— s o —=—a— —=
v o Qy Oy
cot a, 0 CSC Oy, 0
p— y p—
0 cot a, 0 CSC QY

andCy(p) = VT —icot a,/T — icot a, ™" AP,

To write the signal equation in 2D we write the field distontiasp(u) = u'pyu +

qu1 + po, With

Piu P2u 0
P1 = and p; =
P1v 0 P2v
so that it becomes
S(t) — ei27rp0t/f<u) eiﬂ'(fQqugut72uT(k(t)+p1t))du (31)

with k(t) = [k.(t) k,(t)]". Note that we also assumed that the field distortion is diagon
in the coordinate axis, i.e. the terms outside the diagohgh @re zero in order to match

the separable form of the FrFT.

10



Remark that botlA andB are diagonal matrices that dependm®nWe can proceed as
we did previously to define the four—dimensiopaty space using the change of variables:
cota, = —2po,t
cota, = —2po,t
Pu CSC Oy, = ku (t) + prut
poesca, = ky(t)+ prot
which is equivalent to solve fax andp the matrix equationd (o) = —2p,t andB(a)p =

k(t) + pit. Finally, the signal equation can be expressed in terms @ &a2ying—order
FrFT as

s(t) = e_izﬂp0t0a<p)ilfa(p)

11



4. RECONSTRUCTION

In the FrFT framework, the reconstruction problem requiodsnow both the pseudo—
frequency and the transform order where the data was adguiteese can be determined
using (2.4). The object will be the solution to the inversg2b) (ignoring the constant
field deviationp,)

flu) = F{faw (p(t))} (u)
= T {Caw (p(t) s(t) } (u)

In this expression we have made explicit the time dependehae This dependency
implies that the fractional order changes with time andefee a inverse FrFT is not
feasible. We analyze three different reconstruction aggnes: standard inverse Fourier
reconstruction; inverse fractional Fourier reconstgtiand variable order inverse frac-
tional Fourier reconstruction. The difference betweems¢heconstructions is the assump-
tion they make on where the data is placed indghe space. In Fig. 4.1 we show the actual
p— Space trajectory and the assumption of the reconstruatioense for a standard 2DFT

readout.

o (a=0) p (a=0) o (a=0)

(@) (b) ()

FIGURE 4.1. Example of a one dimensional 2DFT trajectory in the polar repre-
sentation ofp—« space represented by the continuous line and its reconstruction
interpretation represented by the dashed line. (a) Standard Fourigréatsion.

(b) Fractional Fourier interpretation. (c) Variable order inversetivaal Fourier
interpretation.

12



4.1. Standard Inverse Fourier Reconstruction

The first approach is to perform the reconstruction by udiegtandard inverse Fourier
transform. This is equivalent to assume that 7/2, cota = 0 andCy2(p) = 1. The

reconstructed object is

fulw) = FH{s()} ()

The samples are acquired in the curved trajectory but aeepréted as being in the
frequency axis (vertical dashed line of Fig. 4.1(a)). Theattions in the image will depend

on how much the reconstruction locations differ from the glamg locations.

4.2. Inverse Fractional Fourier Reconstruction

The second approach is to assume that the samples are bqungedcat a constant
order, which can be though as a tangent approximation ip-theplane. This approach
has two advantages: (i) the reconstruction and samplirgfitots are closer; and (i) the

inverse expression is exactly a inverse FrFT

Ja(u) = F~{Ca (p(1)) s(8)} (w)

wherea (or @) is the order (or angle for the tangent line) at the origin. weswill show

in Chapter 6, this reconstruction provides a better appration to the real object since
it improves the accuracy of the reconstructed phase ovestérelard Fourier reconstruc-
tion. However, the magnitude is the same as the one obtairtedive standard Fourier

reconstruction. Using the definitions in (2.1) and (2.2 ®e seen that

f&(u) _ e—imﬂ cot&‘ CSCO_é’ /S(t) ei27rupcsc& Clp (41)
4.3. Variable Order Inverse Fractional Fourier Reconstrudion

Finally, the third approach is to use the actual locationsmnetihe data was acquired.
To solve the variable order inverse problem we propose aetesapproach, which fits well

with the discrete samples and can also provide a continlemsstruction. Each sample

13



in p— spacep,, «,,) acquired at = t,, corresponds to one coefficient of the FrFT of order
a, = 2a, /7. These coefficients can be thought as the expansion of tkeetaln) the bases
formed by the “chirp” functions. These functions are giverilie inverse FrFT of order,

of a delta function located at= p,, (Ozaktas et al., 2001):

Ay, (u) = F{0(p—pn)} (u)

- O (p )e—irr(u2 cot ap —2upp CSC )
an \IFTY

where* denotes complex conjugate. Recalling that the samplesr{rgnagain the constant

field shift, py) are defined by

fan (pn) = Ca,, (pn)s(tn)

we have an estimation of the object as the weighted sum obatfibutions.
N
fa(u) = Z fa" (pn)A_an(u>
n=1
N
- Z | CSC an|3(tn)€_m(u2 cot an—2upn csc o)
n=1

We assume a uniform sampling density, otherwise it woulddmessary to incorporate
a factor proportional tg(¢,,) which arises from the underlying discretization of the nsee

FrFT integral by Riemann sums.

The objectf,(u) can be evaluated for any continuous value.oNote that if we sub-
stitute «,, by 7/2 this formula becomes the definition of the Discrete Frequdtaurier
Transform (DFFT), or the Discrete Fourier Transform (DRT ), is also evaluated at dis-
crete values. lfy, is substituted by another fixed angle, other thaf, the reconstruction
is also the DFFT, but with an extra phase and an additionadtaohscaling factor. This is

the discrete version of the inverse Fractional Fourier Si@m.

14



The 2D extension of this reconstructions is:

N
Fa) = 3T det(B,)|s(,) o A2 Brpn) (4.2)
n=1

4.4. Units

So far we have usedandu as dimensionless variables. To ensure the validity of the

former analysis and extend it to practical cases, we usedimalizationu = x/q in which

flu) = f(z/q) = Vaf(z) (4.3)

with f(z) the dimensional object. The scale parametbas the same dimension asin
the discrete case, we need longitudes ia be independent ef, which can be achieved by
settingg = FOV/v/N (Koc, Ozaktas, Candan, & Kutay, 2008) whet@V is the field of
view in distance units and¥ is the number of samples. This normalization is indepenygent

applied for each dimension.

15



5. EXPERIMENTS AND METHODS

All MRI images mentioned in this section were acquired in dipfintera 1.5T scan-
ner. Linear shimming was disabled during all acquisitioms ao higher order active shim-
ming was used. The sequences were performed without anideoatson aboup— space,
using mostly default parameters from pre—loaded sequenctee system. Complex—

valued image reconstructions were performed off—line.

5.1. Analytical phantom

In our first experiment, the MR signal for a two dimensiondd)2nalytical magne-
tization phantom was simulated by numerically evaluat®d ) using adaptive quadrature
in MATLAB (Shampine, 2008), nesting a one—dimensional exabn for each dimension.
The phantom was designed as a simplified version of a realerefe phantom with the
same dimensions. The acquisition time of each sample:aagace locations were deter-
mined considering 2DFT gradients used in a standard Foacguisition. We simulated a
cartesian matrix of 256« 256 samples with a field of view (FOV) of 256 25.6 cm and

echo timeTE = 56 ms. Each complete readout in the sequence takes 28 ms.

Two signals were simulated, the first with a uniforng #eld and the second with
a quadratic field. The quadratic deviation was chosen to aethe measured quadratic
component for a real phantom, but doubling its values taeiase the effect of the distortion

in the simulation, and at the same time keeping it within avalhysical range.

5.2. MRI phantom

In a second experiment, we scanned an MRI phantom using adabtettho (FFE)
echo—planar imaging (EPI) sequence, with a scan matrix 8fX4228 samples, image
FOV of 24 x 24 cm, slice thickness 5 mm, flip angle°28epetition time TR= 650 ms and
echo time TE= 41 ms. This data was acquired with a number of sample ave(B§5)
of 16 using a Q—body coil. The EPI factor in this sequence id®&h complete readout in

this sequence took 76 ms.
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5.3. In—vivo study

An in—vivostudy was done scanning the brain of a volunteer, the imagesacquired
using the same sequence used for the phantom study, exoepNEA which was now 8
and from the receiving coil which was now a standard quadeatead coil. A slightly

angled transversal slice of the brain was selected.

5.4. Field maps

In each experiment, structural images were acquired witht seadout time sequences
to minimize the effect of field inhomogeneity. The magnetadiwas measured in each
location from phase differences in two images with différecho time, usind\w(z,y) =
A¢(z,y)/ATE (Schneider & Glover, 1991) with a shalTE to avoid phase wrapping in

the resulting field map.

To fit quadratic functions to the field maps, we used a maximusiithood method
that minimizes the weighted squared error between the medfald map and a parametric
separable second order polynomial evaluated at corregpppdsitions. The weights were
the mean of the corresponding pixels in the magnitude ofrtfages from which the phase
difference had been obtained. This ensures that the fieldmf@pnation was incorporated
correctly depending on the local intensity of the signal asdignal to noise ratio. In the
case of than—vivostudy, a region of interest was defined by setting to zero #ighting

outside it.

In the phantom study, the field map was determined along etstal reference image
usingATE =3 ms and TR and TE equal to 14 and 6.1 ms respectively. A trasevaice

of the physical phantom was selected for this study.

For thein—vivo study, the structural reference image was obtained with iR EE
equal to 17 and 6.2 ms respectively for the same field of viewvrasolution. The field
map was computed wWith TE = 6 ms. The anatomy causes further field deviations which

cannot be approximated by the fitted function for the enti@/FWe therefore used an
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elliptical region of interest (ROI) where the field is mairjyadratic and the approximation

is suitable to demonstrate the proposed reconstruction.

Field maps and profiles displayed in all figures in Chapter @estiee same color scal-
ing, mapping the entire range to a 180 Hz difference, witHdinest and highest intensities
mapped to -140 Hz and 40 Hz respectively. To display the nreddield maps and phase
images, the field map value was set to zero wherever the ityterighe signal was below

5% of its maximum value.

5.5. Image reconstruction

In all experiments, image reconstruction was performed siymating the magneti-
zation of the object computing (4.2) and evaluatingt the corresponding positions in
dimensionless coordinates. Distance units of the resuts wcaled using (4.3) to map the
estimated object into the dimensional coordinates. Thiféerent reconstruction schemes
were used in each experiment, producing three object esbinsaaccording to diagrams
(@), (b) and (c) in Fig. 4.1. The first one is standard invemaier (FT) reconstruction and
useda,,, = o, = /2, ¥Yn =1...N. The second one, inverse fractional Fourier (FrFT)
reconstruction, used,,, = @, a,,, = @,, ¥n = 1... N with ¢, anda, equal to the angles
at the origin of the four—dimensiongta space during the readout. Variable order inverse
fractional Fourier (VO—-FrFT) reconstruction took into aaoat the exact position ip—

space of each sample.
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6. RESULTS

6.1. Analytical phantom

One can observe the distortions produced by a quadratiofiedth using the standard
Fourier reconstruction, by comparing Figures 6.1 (a) and \(te appreciate a geometric
distortion, characteristic of data acquired under fieldmlbgeneity, which is proportional
to the local field deviation from the central frequency. Thege of the reconstructed
image has a complex quadratic modulation although the acallyhantom did not have

phase. An intensity nonuniformity distortion is also nqtedwhich the distorted image

(@) (b) (©) (d)

FIGURE 6.1. Reconstruction results for 2DFT simulations with an isotropic qua-
dratic field. Each column shows magnitude and phase images with the same color
scaling. Magnitude and phase move from 0 to 1 and fremto 7 respectively.
Phase values have been set to zero when magnitude is below 5% of maximum.
(a) Ideal reconstruction for a homogeneous field simulation and stanuemce
Fourier reconstruction. The remaining columns show reconstructions fpra-

dratic field simulation. (b) Standard inverse Fourier reconstruction. ni@rse
fractional Fourier reconstruction with constanapproximation for each echo. (d)
Variable order inverse fractional Fourier reconstruction considesiart trajec-

tory.
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has an intensity approximately 12% lower in the upper seaifdhe object and a simmilar

inverse variation in the lower section.

As expected by means of (4.1), the reconstruction resulhf@rse fractional Fourier
(FrFT) reconstruction (Fig. 6.1 (c)) shows identical magaé than the standard inverse
Fourier (FT) reconstruction (Fig. 6.1 (b)) but with a phasgcincloser to the actual phase.
The variable order inverse fractional Fourier (VO—FrFTQaestruction corrected the image

distortions in magnitude and phase, including the geomdisitortion (Fig. 6.1 (d)).

6.2. MRI phantom

(a) (b)

Field map fit along one column

40

50+

[hz]

measured
=== fitted

(©)
FIGURE 6.2. Field map fit for MRI Phantom. (a) Measured field map. (b) Fitted

field map. (c) Along the marked column, the measured magnetic field (solid line)
can be approximated by a quadratic function (dashed line).

In the MRI phantom study, we have found that the particularl@oation of our MR

system with its intrinsic inhomogeneity and the scannechfdm produced a field map
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@) (b)

FIGURE 6.3. Reconstruction results for MRl Phantom under a quadratic field.
Geometric distortions shown in (b) obtained using standard inverse Foecian-
struction can be corrected in (c) using variable order inverse frattiemaier re-
construction, compared to a low distortion image (a).

that resembles an isotropic quadratic function with itdkggf intensity in the center of the

magnet as shown in Fig. 6.2.

In this study, the phase information of the object is unkn@mte we cannot acquire
it with the same contrast as the distorted object but wittioeieffect of the quadratic field
map. We will compare the magnitude of the reconstructionnb@tlistorted signal with the

magnitude of a low distortion image acquired with short cedd.

The FT reconstruction shown in Fig. 6.3 (b) produces geamatrd intensity distor-
tions similar to those observed in the simulation study fguadratic field (Fig. 6.1 (b)).
Figure 6.3 also shows that the VO-FrFT reconstruction @iglly corrects these distor-
tions, improving the geometry and intensity of the estioratvhen comparing both recon-
structions against the low distortion image (a). Ghostinaats are visible in (c) which
we do not fully understand, but we believe to be related tananmplete phase correction

typically used to reduce the EPI ghosting artifact.

As expected, magnitudes of the fractional Fourier recanttin and standard Fourier

reconstruction were identical, therefore the first one wagted from the figures.
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(b) (c)

Field map fit along one column

40

50+

[hz]

-100+

measured
=== fitted

-140

(d)

FIGURE 6.4. Field map fit forin—vivo study. (b) Measured field map. (c) Fitted
field map. Within the elliptical ROI in (a), the measured magnetic field can be
approximated by a quadratic function as shown in (d) with solid and dastesd lin
respectively for the marked column.

(b)

FIGURE 6.5. Reconstruction results forvivostudy. The superimposed contours
show the location of some key features in the reference image (a). (bjestan
inverse Fourier reconstruction. (c) Variable order inverse Foueeonstruction
with corrected quadratic field inhomogeneity.
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6.3. In—vivo study

With the volunteer experiment we found the magnetic fielddo/vsmoothly inside
the brain. In particular, the field can be approximated by adgatic function within an
elliptical region of interest (ROI) as shown in Fig. 6.4. TW8&—FrFT reconstruction par-
tially corrects most of the geometric distortions presarthe FT reconstruction as can be
seen in Fig. 6.5, especially in the regions in which the fijaddratic function is a close
approximation of the field map. To facilitate the comparisenhave superimposed on all
reconstructions in Fig. 6.5 contours that show the actwatlon of key features taken from

the reference image (a).
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7. CONCLUSIONS

Traditionally, MRI reconstruction is performed applyingiamerse Fourier Transform
(FT) of the acquired MR signal. This method rests on the blagethe object has been
magnetized with a perfectly uniform magnetic field. In piaetit is not possible to get a
uniform field because of physical restrictions and susbéjyi variations at the scanned
object. This is a critical problem as the MR community is pogtfor getting short—bore
and high—field MR systems, which are exactly the kind of fesctbat tend to increase field
inhomogeneities. Additionally, sequences with long asifjoin windows, such as EPI and
spiral, are increasingly used. These sequences are seaeffieited by inhomogeneity—
related artifacts. Modern MR systems always include lirfesdl corrections and higher-
order polynomial field corrections are getting a commonuestlt is therefore reasonable
to think that main magnetic fields are not intrinsically wnrh. In fact, in all our experi-

ments our magnet showed a nearly quadratic behavior.

We present a new, strongly supported framework for quadiatiomogeneity MR
signal analysis based on the Fractional Fourier TransfénfT)). It restores the theoretical
relation between image space and quadratic magnetic figichlsspace, allowing native
second order field image reconstruction (or correction)e FHT transform, which is a
generalization of the FT, has a quadratic term in its intdgrenel, so that there is a natural
link between the signal obtained from an object magnetizitl svquadratic field and its
FrFT. This new framework and the« space we introduce give a visual insight to the MR
acquisition process and also, provide a meaningful graphepresentation that shows the

relation between the image domain, the standaigpace and FrFT domains.

Our experiments showed that our proposed method, the \@oadtber fractional Fourier
reconstruction (VO—FrFT), can effectively reconstruct Migjnals under nearly quadratic
magnetic fields, without being affected by the geometritodi®ns that appear when those

signals are reconstructed by the standard FT scheme.

One effect of analyzing MR data usipg« space is thak is scaled down by a factor

csca > 1. This scaling is not homogeneouskirspace but depends on the time map of
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the sequence. For a given sequence planned for ordirayace acquisition, this fact is
manifested as a resolution loss. These resolution losséd be reduced using stronger
gradients with an ordinary sequence or modifying the secpi¢n fill p— space at cor-
rected locations.

New trajectories should be designed to fil space in order to meet image resolu-
tion requirements. Theoretical advances are also needegliace the Nyquist sampling
rate fork—space with a similar criterion which would indicate howamrhation density is

distributed along—« space.

Our approach based on the Fractional Fourier Transfornmsgiveew theoretical MR
framework between image space and signal space for quafieddi MR systems, allowing
native image reconstruction for second order main fieldsédfidly, this new approach will
reduce the hardware complexity of MR systems, since thensegaler terms in the main

magnetic field would no longer be a concern.

25



REFERENCES

Akel, J. A., Rosenblitt, M., & Irarrazaval, P. (2002, Feb). f-@fsonance correction
using an estimated linear time maplagnetic resonance imaging0(2), 189-198.
Bultheel, A. (2004). Computation of the fractional fouriearisform. Applied and
Computational Harmonic Analysi$6(3), 182.

Candan, C., Kutay, M. A., & Ozaktas, H. M. (2000). The discresetional fourier
transform. IEEE Transactions on Signal Processjd@(5), 1329.

Chen, W., & Meyer, C. H. (2008, May). Semiautomatic off-resm®acorrection in
spiral imaging. Magnetic Resonance in Medicirg)(5), 1212-1219.

Chen, W., Sica, C. T., & Meyer, C. H. (2008, Nov). Fast conjugditase image re-
construction based on a chebyshev approximation to cdoeb0 field inhomogene-
ity and concomitant gradientdMagnetic Resonance in Medicir&)5), 1104-1111.
Fessler, J. A,, Lee, S., Olafsson, V. T., Shi, H. R., & Noll, D.(2005). Toeplitz-
based iterative image reconstruction for mri with corrattior magnetic field inho-
mogeneity. IEEE Transactions on Signal Processjia(9), 3393-3402.

Guven, H. E., Ozaktas, H. M., Cetin, A. E., & Barshan, B. (2008gn&l recovery
from partial fractional fourier domain information and @gplications. IET Signal
Processing2(1), 15.

Irarrazabal, P., Meyer, C. H., Nishimura, D. G., & Macovski, (4996, Feb). Inho-
mogeneity correction using an estimated linear field mifagnetic Resonance in
Medicine 3%(2), 278-282.

Kalinowski, H., Berger, S., & Braun, S. (1988)Carbon-13 nmr spectroscopy
Chichester: Wiley.

Koc, A., Ozaktas, H. M., Candan, C., & Kutay, M. A. (2008). Daitcomputation of
linear canonical transformsEEE Transactions on Signal Processjrig(6), 2383-
2394.

26



Liang, Z., & Lauterbur, P. C. (2000)Principles of magnetic resonance imaging: a
signal processing perspectivaBellingham, Washington: SPIE Optical Engineering
Press.

Manjon, J. V., Lull, J. J., Carbonell-Caballero, J., GarMart, G., Marf-Bonmat,
L., & Robles, M. (2007, 8). A nonparametric mri inhomogeneityrection method.
Medical image analysjsl1(4), 336-345.

Noll, D. C., Fessler, J. A., & Sutton, B. P. (2005). Conjugatesgh@anri reconstruc-
tion with spatially variant sample density correctiofcEE Transactions on Medical
Imaging 24(3), 325-336.

Ozaktas, H. M., Arikan, O., Kutay, M. A., & Bozdagt, G. (1996Qigital compu-
tation of the fractional fourier transformlEEE Transactions on Signal Processjng
44(9), 2141.

Ozaktas, H. M., Barshan, B., & Mendlovic, D. (1994¢onvolution and filtering in
fractional fourier domains.

Ozaktas, H. M., Barshan, B., Mendlovic, D., & Onural, L. (19949onvolution, fil-
tering, and multiplexing in fractional fourier domains atheir relation to chirp and
wavelet transformsJournal of the Optical Society of America BL(2), 547.
Ozaktas, H. M., Kutay, M. A., & Zalevsky, Z. (2001)l'he fractional fourier trans-
form with applications in optics and signal processinghichester, New York: Wiley.
Ozaktas, H. M., & Mendlovic, D. (1993). Fourier transfornfdractional order and
their optical interpretation Optics Communicationd01(3-4), 163-169.

Ozaktas, H. M., & Mendlovic, D. (1995). Fractional fourigotas. Journal of the
Optical Society of America,A2(4), 743.

Ozaktas, H. M., & Sumbul, U. (2006). Interpolating betweemigdicity and dis-
creteness through the fractional fourier transfodBEE Transactions on Signal Pro-
cessing54(11), 4233-4243.

Schneider, E., & Glover, G. (1991, Apr). Rapid in vivo protdmsming. Magnetic
Resonance in Medicin&8(2), 335-347.

27



Shampine, L. F. (2008). Vectorized adaptive quadraturedtiah. Journal of Com-

putational and Applied Mathematic®11(2), 131-140.

Sutton, B. P., Noll, D. C., & Fessler, J. A. (2003). Fast, itemtmage reconstruc-
tion for mri in the presence of field inhomogeneitidEEE Transactions on Medical
Imaging 22(2), 178-188.

Vaughan, T., DelaBarre, L., Snyder, C., Tian, J., Akgun, C.jv@ktava, D., et al.

(2006, Dec). 9.4t human mri: preliminary resultdagnetic Resonance in Medicine
56(6), 1274-1282.

Vedrine, P. (2008). The whole body 11.7 t mri magnet for iggwlmac project.

IEEE Transactions on Applied Superconductivit§(2), 868.

Vovk, U., Pernus, F., & Likar, B. (2004, Sep 7). Mriintensibhbmogeneity correc-
tion by combining intensity and spatial informatioRhysics in Medicine and Biol-
ogy, 49(17), 4119-4133.

Yetik, I. S. (2001). Image representation and compressitntive fractional fourier

transform. Optics Communicationd97(4-6), 275.

28



