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Santiago de Chile, January 2016

c©MMXVI, DANIEL FERNANDO AGUIRRE REYES



PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

QUANTIFICATION OF HEPATIC STEATOSIS

USING MAGNETIC RESONANCE IMAGING

DANIEL FERNANDO AGUIRRE REYES

Members of the Committee:

PABLO IRARRÁZAVAL
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ABSTRACT

Among others, the liver’s main functions are: the synthesis of plasma proteins, perform a

detoxifying function, the glycogen storage, and the secretion of bilirubin and cholesterol, among

others. It is responsible for neutralizing and eliminating blood substances that may be harmful to

the body. Excessive consumption of alcohol, carbohydrates and fats are behaviors that alter the

integrity of liver cells. A hallmark of this damage is the intracellular accumulation of fat micro-

vesicles. This fat accumulation is called hepatic steatosis that, persisting over time, can lead to

steatohepatitis or cirrhosis.

The gold standard for diagnosis of hepatic steatosis is biopsy in which a sample of liver tissue

is removed and the content of intracellular fat is quantified. This is an invasive and risky procedure,

with sampling problems since it only takes a 0.05% of the total organ. Therefore, a non-invasive

method to quantify fat is highly desirable. A liver with steatosis can progress to cirrhosis or chronic

liver disease (CLD) and portal hypertension (PH) is a frequent condition in this patients which is

characterized by an increased liver resistance to blood flow.

Not all the accumulated fat tissue has the same chemical and biological characteristics. Be-

sides, fat accumulated in one patient does not necessarily have the same characteristics as the fat

accumulated in other patients. Therefore it is not only necessary to look for a better methods for

quantification of total fat, but also improve its non-invasive characterization.

In this work we propose ways to measure liver fat content and the liver integrity using new

non-invasive MR methods, such as intrahepatic portal hypertension, and MRS to characterize the

presence of fatty acids in a voxel. The final idea is to extrapolate this voxel characterization as

an image, using MRI. The aim is to characterize the fat through its metabolites and quantify the

fat considering all its spectrum. In addition, through an optimization algorithm, we can estimate

the type of fatty acids present, in order to model the state of the fat and also classify it as normal,

hepatic steatosis or steatohepatitis.

Results from perfusion work show that it can be possible to classify patients with portal hy-

pertension from healthy volunteers, and it suggest that is possible to establish a scale of steatosis

degree using the intrahepatic portal vein blood volume. In the spectroscopy work, results show that

xiii



is possible to estimate the fatty acid presence in a voxel using 9.4T MRS. Finally, in the metabolic

images work, results show that is possible to extract the fat and water metabolite information from

images and therefore estimate the fatty acid presence using 1.5T MRI.

Keywords: Fat quantification, magnetic resonance imaging, magnetic resonance spec-

troscopy.
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RESUMEN

Entre otras, el hı́gado tiene como funciones principales la sı́ntesis de proteı́nas plasmáticas,

una función desintoxicante, almacenaje de glucógeno, secreción de bilirrubina y colesterol. Es el

responsable de neutralizar y eliminar de la sangre sustancias que puedan resultar nocivas para el

organismo. El consumo excesivo de alcohol y grasas son comportamientos que alteran la integridad

de las células hepáticas. Un signo caracterı́stico es la acumulación intracelular de microvesı́culas

de grasa. A esta acumulación de grasa se le denomina esteatosis hepática, que si persiste en el

tiempo puede producir esteatohepatitis y finalmente cirrosis.

El principal método de diagnóstico de la esteatosis hepática es la biopsia, que extrae una

muestra del tejido hepático y cuantifica el contenido de grasa intracelular en el laboratorio. Este

es un procedimiento invasivo y riesgoso, con problemas de muestreo ya que solo toma un 0.05%

del total del órgano. Por esta razón, es necesario un método de cuantificación no invasivo y global.

Un hı́gado con esteatosis puede progresar hasta cirrosis o enfermedad crnica hepática (CLD) y la

hipertensión portal (PH) es una condición frecuente en estos pacientes que se caracterizan por un

incremento en la resistencia del hı́gado al flujo de sangre.

No toda la grasa acumulada en los tejidos tiene las mismas caracterı́sticas quı́micas ni biológi-

cas. Además, la grasa acumulada por un paciente no necesariamente tiene las mismas carac-

terı́sticas que la grasa acumulada por otros pacientes. Por lo tanto no solo es necesario avanzar

en una mejor cuantificación de la grasa total, sino que también en su caracterización no-invasiva.

En este trabajo se proponen algunas formas de medir la cantidad de grasa en el hı́gado utilizando

métodos indirectos, como la hipertensión portal intrahepática, y la espectroscopı́a para caracteri-

zar la presencia de ácidos grasos en un voxel, con el objetivo de extrapolar este trabajo a una

imagen. El objetivo es caracterizar la grasa por medio de sus metabolitos. Además, por medio

de un algoritmo de optimización, se puede estimar qué tipo de ácidos grasos la conforman, con el

objetivo de modelar el estado de la grasa y también clasificarlo como normal, esteatosis hepática o

esteatohepatitis.

Los resultados del trabajo de perfusión muestran que es posible clasificar pacientes con hiper-

tensión portal de voluntarios sanos, y sugiere que es posible establecer una escala del grado de
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esteatosis presente utilizando el volumen de sangre en la vena portal intrahepática. En el trabajo de

espectroscopı́a, los resultados muestran que es posible estimar la presencia de ácidos grasos en un

voxel utilizando MRS de 9.4T. Finalmente, en el trabajo de imágenes metabólicas, los resultados

muestran que es posible extraer la información metabólica de agua y grasa desde las imágenes y

por tanto estimar la presencia de ácidos grasos utilizando MRI de 1.5T.

Palabras Claves: Cuantificación de grasa, imágenes de resonancia magnética, espectroscopı́a de

resonancia magnética.
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1

1. INTRODUCTION

Non alcoholic Fatty liver disease (NAFLD) is characterized by excessive and abnormal fat

accumulation in liver cells. Currently the best way to evaluate the amount of liver fat is through a

biopsy but it has some problems. It is invasive and it has sampling and monitoring problems. For

this reason it is not a suitable diagnostic method (Peterson & Mansson, 2013). From a pathology

point of view, fatty liver disease is evaluated in hepatocytes that contained microvesicles of fat

using a visual scale of 0 for less than 5 %, 1 for 5% to 33%, 2 for 33% to 66%, and 3 for more than

66% (Tang et al., 2013).

Hepatic steatosis causes that hepatocytes accumulate an excess of fat with the risk of reaching

an inflammatory state and then cirrhosis. The chronic injury of fat accumulation leads to the activa-

tion of the inflammation cascade, Kupffer cell activation, apoptosis and collagen deposits (Kumar

V., Abbas K., & Fausto N., 2005). Historically, only the total fat has been quantified. The gold

standard for this quantification is the biopsy. Some patients evolve to cirrhosis which first sign is

portal hypertension. The gold standard to diagnose portal hypertension is the invasive meaurement

of the gradient pressure between the cava and portal vein (Armonis, Patch, & Burroughs, 1997;

Bosch, Abraldes, Berzigotti, & Garcia-Pagan, 2009; Chelliah et al., 2011; Merkel & Montagnese,

2011; Berzigotti, Seijo, Reverter, & Bosch, 2013).

Magnetic resonance is a non-invasive technique that allows to quantify tissue differences, flow

and chemical shift in the body. Magnetic Resonance Imaging (MRI) is a technique to acquire high

resolution images. It is somewhat non dependent on the skill of the operator, as it is ultrasound, and

the acquired signal can be decomposed in different chemical species such as water and fat. More

importantly, it does not use ionizing radiation such as the X-ray computed tomography (Kumar V.

et al., 2005). Magnetic Resonance Spectroscopy (MRS) is a technique which allows to measure

fat as spectra. With MRI it is possible to measure the fraction of fat signal, defined as the fraction

of the acquired corrected signal that corresponds to fat in the liver. This signal can be altered

by various technical factors such as variation in relaxation times T1 (Brunt, Janney, Di Bisceglie,

Neuschwander-Tetri, & Bacon, 1999), T1 effects and the bias noise (Fazel et al., 2009), magnetic

field inhomogeneities or T2* (C.-Y. Liu, McKenzie, Yu, Brittain, & Reeder, 2007), the spectral

complexity fat (Yu et al., 2008), J coupling or intrinsic behavior of all peaks in the spectrum of fat

(Bydder, Yokoo, et al., 2008), and eddy currents or disturbance in the phase information (Yu et al.,
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2007), which can show unreliable results of the lipid content. The most advanced techniques in

MRI measures the proton density fat fractions (PDFF), which is a fundamental property of tissue

defined as the fraction of protons attributed to liver fat and a direct measure of the amount of fat in

the liver (Hamilton et al., 2009).

There are some methods to quantify fat in the liver using MRI like PDFF (Yokoo et al., 2011;

Tang et al., 2013; Zand et al., 2015), multipeak fat spectral with iterative decomposition of water

and fat with echo asymetry and least-aquares estimation (MP-IDEAL) (Meisamy et al., 2011a),

compressed sensing with parallel imaging (Mann et al., 2015), PDFF with chemical shift encode

(Motosugi et al., 2015), enhanced images with ferumoxytol (Smits et al., 2015), but they provide

results with only the principal components of fat and generally only considering a slice. MR

Elastography quantify in a noninvasively way the stiffness of the liver which increment with the

fibrosis stage but is not reliable method (Faria et al., 2009). Diffusion Weighted Imaging (DWI)

is a functional MRI method that provides a noninvasive quantification of microcapillary-blood

perfusion but its mechanism with chronic liver disease is not clearly understood (Taouli, Ehman,

& Reeder, 2009a). Other methods use magnetic resonance spectroscopy (MRS), such that the

frequency spectrum of a sample permits the differentiation of groups of peaks or metabolites with

some spectral resolution, including fat; its disadvantage is the low spectral resolution and sampling,

it does not allow an image and it general is single voxel (volume element) with same limitations as

biopsy.

MRS offers a unique advantage to quantify and characterize the liver fat presence when the

spectrum is analyzed. This spectrum is characterized by eleven zones or peaks where seven of

them correspond to fat signal and the others to glycerols. The fat is composed of triglycerides

and it is formed by a glycerol and three fatty acids. These fatty acids can be described by the

hydrogen (H) presence in each metabolite, so a spectrum is a linear combination of many fatty

acids. Using gas chromatography (GC) is possible to measure the presence of fatty acids in liver

samples (Araya et al., 2004a) and in recent years there are studies that apply MRS to characterize

saturated, monosaturated and polysaturated fatty acids in oils (Guillen & Ruiz, 2003a) (Vlahov,

1999b) using the relationship between the areas of peaks. However, this is not a method to estimate

the specific fatty acids presence in a sample but a group of them.
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A liver with steatosis can progress to cirrhosis or chronic liver disease (CLD) and portal hy-

pertension (PH) is a frequent condition in this patients which is characterized by an increased liver

resistance to blood flow. MRI use to estimate portal hypertension has been described as 4D flow

technique (Roldan-Alzate et al., 2013) that fundamentally do not employ contrast median, and

with contrast media (Bahl et al., 2012; Cao et al., 2013; Peeters, Annet, Hermoye, & Van Beers,

2004; N. K. Lee et al., 2012) that paradoxically is not recommended for patients with hepatic dis-

ease. There are techniques that do not use contrast media such as Arterial Spin Labeling (ASL)

(Gach H. M., Li T., Lopez-Talavera J. C., & Kam A. W., 2002; Kanematsu et al., 2012; Katada

et al., 2012). In this work we use the technique TIRASL (Andia & Botnar, 2012) to calculate the

required amount of blood present in the intrahepatic vein. We consider possible cases where there

is a bypass from the portal vein to the superior cave vein, to avoid passing through the liver due to

its high resistance.

In this work we propose to advance in the development of MR techniques for the early de-

tection and quantification of portal hypertension and fatty liver characterization. To achieve this

quantitative image techniques should satisfy certain properties. One of this properties is precision

which can be reached acquiring images from a same volunteer in different times and comparing

the results of each acquisition; while these results are similar there will be a high precision mea-

surement. Another property is the inter-reader reproducibility which can be reached evaluating the

obtained and classified image results by some experts in the field. A final property is the accu-

racy which can be reached making a correlation with an accepted standard and then measure its

sensitivity and specificity.

1.1. Outline of the Thesis Document

This work has three aims:

The first objective is to develop and validate an MRI technique to improve the early diagnosis

of portal hypertension as a surrogate marker of liver fibrosis, and to differentiate between healthy

subjects and patients. This objective will be explained in detail in Chapter 2.

The second objective is to characterize the hepatic fat in a liver voxel using MRS for establish-

ing a reference model from the liver spectra and the relative presence of the principal fatty acids.

This objective will be explained in detail in Chapter 3.
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Finally, the third objective is to quantify and characterize the fatty acids from a simulated

digital phantom with edible oils and water information. The aim is to characterize hepatic steatosis

by MRI in order to obtain an image of the fatty acids distribution as a future work. This objective

will be explained in detail in Chapter 4.
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2. PERFUSION

This chapter explains the developments to meat the first objective, to detect the first signs of

portal hypertension as a result of chronic liver damage due to other causes, fat accumulation in the

liver. We classify our results as normals or abnormal.

2.1. Abstract

Purpose: To investigate the feasibility of estimating the portal vein blood volume that flows

into the intrahepatic volume (IHPVBV) in each cardiac cycle using non-contrast MR venography

technique as a surrogate marker of portal hypertension (PH). Materials and Methods: Ten patients

with chronic liver disease and clinical symptoms of PH (40% males, median age:54.0, range:44-

73y.o.) and ten healthy volunteers (80% males, median age:54.0, range:44-66y.o.) were included

in this study. A non-contrast Triple-Inversion-Recovery Arterial-Spin-Labeling (TIR-ASL) tech-

nique was used to quantify the IHPVBV in one and two cardiac cycles. Liver (LV) and spleen

volume (SV) were measured by manual segmentation from anatomical MR images as morpholog-

ical markers of PH. All images were acquired in a 1.5T Philips Achieva MR scanner. Results: PH

patients had larger SV (P=0.02) and lower liver-to-spleen ratio (P=0.02) compared with healthy

volunteers. The median IHPVBV in healthy volunteers was 13.5 cm3 and 26.5 cm3 for one and

two cardiac cycles respectively, whereas in PH patients a median volume of 3.1 cm3 and 9.0 cm3

was observed. When correcting by LV, the IHPVBV was significantly higher in healthy volunteers

than PH patients for one and two cardiac cycles. The combination of morphological information

(liver-to-spleen ratio) and functional information (IHPVBV/LV) can accurately identify the PH pa-

tients with a sensitivity of 90% and specificity of 100%. Conclusion: Results show that the portal

vein blood volume that flows into the intrahepatic volume in one and two cardiac cycles is sig-

nificantly lower in PH patients than in healthy volunteers and can be quantified with non-contrast

MRI techniques.

Keywords: portal hypertension, intrahepatic portal vein, Arterial Spin Labeling, cirrhosis,

non-contrast MRI.
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2.2. Introduction

Portal hypertension (PH) is a frequent condition in patients with chronic liver diseases (CLD)

which is characterized by an increased liver resistance to blood flow. The portal vein is a low

pressure system, so this increased resistance induces a rise in the portal pressure gradient (PPG)

(Fig. 2.1 A), leading to marked hepatic hemodynamic changes characterized by a decrease in the

contribution of portal vein to liver perfusion (Kapoor & Sarin, 2002). The clinical relevance of

PH derives from the frequency and severity of its complications, which represent the first cause

of hospital admission, death and liver transplantation in patients with cirrhosis (Abraldes et al.,

2003).

It has been suggested that the severity of PH should be evaluated in all CLD patients as a

surrogate measure of the severity of the liver chronic damage and mortality risk, as well as to eval-

uate the response to treatments (Armonis et al., 1997). The gold-standard method to measure the

portal venous pressure involves an invasive catheterization of the cava and hepatic veins, and the

measurement of the hepatic venous pressure gradient (HVPG) (Armonis et al., 1997) (Bosch et al.,

2009) (Chelliah et al., 2011) (Merkel & Montagnese, 2011) (Berzigotti et al., 2013). This method

is invasive, use ionizing radiation, and the need of sedative agents could modify the hemodynamic

response. Some non-invasive methods to indirectly estimate the HVPG have also been proposed.

The arterial enhancement fraction technique (AEF) uses X-ray images to assess the hemodynamic

changes associated with diffuse liver disease (Kang et al., 2011) (Ou et al., 2013), assuming that the

AEF indirectly reflects the relationship between arterial perfusion and total (arterial and venous)

perfusion (Kim et al., 2009). However, this technique requires ionizing radiation and a iodinated

contrast agent, making it unsuitable for high-risk patients. A variety of methods based on mag-

netic resonance imaging (MRI) have also been proposed. Arterial Spin Labeling (ASL) has been

applied to evaluate the liver perfusion in (Gach H. M. et al., 2002; Kanematsu et al., 2012; Katada

et al., 2012). Classical ASL requires a long scanning time when imaging the whole liver due to

subject breathing (Katada et al., 2012), it is sensitive to motion due to the subtraction step required

to suppress the static background, and has low signal-to-noise ratio, producing low-quality images

that are not appropriate for quantification. A different approach to estimate the portal vein flow

based on MRI Phase Contrast (PC) technique has also been used (Hoad C. et al., 2011; Burkart,

Johnson, Morton, Wolf, & Ehman, 1993; Vermeulen et al., 2012; Yzet, Bouzerar, Baledent, et al.,
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2010; Annet et al., 2003; Yzet, Bouzerar, Allart, et al., 2010). Two-dimensional (2D)-PC portal

vein flow measurement may not take into account the porto-systemic shunt upstream of the level

of measurement (Almadi M. A., Almessabi A., Wong P., Ghali P., & Barkun A., 2011; Akhter &

Haskal, 2012; Landgraf et al., 2014), and could lead to an overestimation of the portal vein blood

volume that effectively flows into the liver. Additionally, both the magnetic field inhomogeneities

in the abdominal cavity and the need for an accurate definition of the vessels’ geometry make

it difficult to obtain reliable data using 2D-PC technique. Four-dimensional (4D)-PC portal vein

flow technique could take into account the porto-systemic shunt both with (Roldan-Alzate et al.,

2013) and without (Stankovic et al., 2014) external contrast agents, but this technique has not been

applied to PH patients. Alternatively, Time of Flight (TOF) technique has been used to visualize

the portal system (Taylor & McCauley, 1992) with the aim of studying liver perfusion. The main

drawback of this technique, when imaging PH patients, is that slow flow does not produce enough

signal. Contrast-enhanced MRI has also been used for hepatic fibrosis grading and staging (Bahl

et al., 2012) and for evaluating the portal vein contribution to liver perfusion (Cao et al., 2013)

(Peeters et al., 2004). The radiological signal called “delayed hyperintense portal vein sign” in

Gd-EOB-DTPA-enhanced MRI has been proposed as an indirect marker of PH that could reflect

the hepatobiliary disease (N. K. Lee et al., 2012). Two hypotheses have been proposed to explain

this sign: one related with the integrity of hepatocytes and the otherone related with the delay

in reaching the intrahepatic space of the contrast agent due to the increased PPG. However, this

technique is not routinely used in CLD patients because it requires an intravenous contrast agent.

Previously described techniques have not been incorporated into the clinical routine, and PH is still

evaluated using morphological changes in the liver and spleen (such as splenomegaly and cirrho-

sis), and portal vein abnormalities (such as porto-systemic collaterals) (Thabut, Moreau, & Lebrec,

2011) (P. Liu, Li, He, & Zhao, 2009) (Murata et al., 2008). In this work a new non-contrast MRI

technique is used with the aim of improving PH diagnosis by estimating its effect in the portal vein

hemodynamics. We estimate the portal vein blood that flows into the intrahepatic volume (IH-

PVBV) in a certain number of cardiac cycles as a surrogate of the PPG. The rationality of this idea

comes from the concept that portal pressure gradient is given by the product of the portal vein flow

(Q) and the liver vascular resistance (RLiver) (Kapoor & Sarin, 2002) (Fig. 2.1 A), similarly to any

vascular system. In PH patients, the labeled blood will face larger vascular resistance to flow into

the intrahepatic space, therefore, the IHPVBV is expected to be lower than in healthy volunteers
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(Fig. 2.1 B-C) The measurement of the intrahepatic blood volume that flows in a standardized

amount of time (e.g. in one or two cardiac cycles) would provide a good estimation of PPG/RLiver

and indirectly measures the severity of PH. The proposed method is simple to plan and it is robust

to magnetic field (B0) inhomogeneities.

FIGURE 2.1. (A) Schematic representation of the portal vein flow (Q), the liver resistance
(RLiver) and the portal pressure gradient (PPG) between the portal vein and the inferior vena
cava. (B-C) Expected portal vein blood volume that flows into the intrahepatic volume
(IHPVBV) in a certain number of cardiac cycles in a healthy volunteer and a patient with
portal hypertension. It is expected that in healthy volunteers the hepatic vascular resistance
is low, resulting in larger IHPVBV compared with PH patients.

2.3. Materials and methods

2.3.1. Study Data and Subjects

The proposed technique was tested in ten patients with CLD and clinical diagnosis of PH (40%

males, median age of 54.0, range: 44-73 y.o.) and 10 healthy volunteers (80% males, median age of

54.0, range: 44-66 y.o.). The inclusion criteria for PH patients were: confirmed diagnosis of CLD

and clinical signs of PH, such as gastrointestinal bleeding from gastroesophageal varices, ascites,

and hepatic encephalopathy (Table 2.1). The inclusion criteria for volunteers were no pathology

known in liver. Exclusion criteria for patients and volunteers were: claustrophobia and the use

of pacemaker. PH patients were referred to our institution after clinical diagnosis. The ethics

committee of our institution approved the study and all subjects gave written informed consent.

2.3.2. MRI Protocol

In order to quantify the portal vein blood volume that flows into the intrahepatic space we used

a non-contrast MR angiography technique that does not require the subtraction step as classic ASL

methods (TIR-ASL (Andia & Botnar, 2012)). We expected that most of the PH patients have a
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TABLE 2.1. Demographic information and clinical diagnosis of CLD patients include in
this study. PBC: Primary Biliary Cirrhosis, NASH: Non alcoholic Steatohepatitis, ALD:
Alcoholic Liver Disease

No. Age Sex CLD Diagnosis Clinical signs or symptoms of PH

1 44 F PBC Ascites, upper gastrointestinal bleeding

2 49 F NASH Ascites, upper gastrointestinal bleeding

3 50 F NASH Ascites, upper gastrointestinal bleeding

4 51 F PBC Ascites, upper gastrointestinal bleeding

5 53 F Hepatitis C Ascites, hepatic encephalopathy

6 54 M ALD Ascites, upper gastrointestinal bleeding

7 56 M NASH Ascites, upper gastrointestinal bleeding

8 61 M NASH Ascites, upper gastrointestinal bleeding

9 64 M ALD Ascites, upper gastrointestinal bleeding

10 73 F NASH Ascites, hepatic encephalopathy

slow portal vein flow, therefore we acquired the images using one (1RR) and two (2RR) cardiac

cycles in order to increase the labeling time and to increase the blood volume that flows into the

intrahepatic space. TIR-ASL technique uses a Triple Inversion Recovery pre-pulse and exploits

the ability of two non-selective Inversion-Recovery pre-pulses to null background signal while

maintaining the signal of labeled blood using a regional inversion pulse (Figure 2.2 (Peeters et al.,

2004)). With the optimal selection of the inversion times TI1 and TI2 (Andia & Botnar, 2012), it

is possible to null the static tissue and keep only the signal of the targeted blood. This sequence

can be fitted either in one or two cardiac cycle intervals, obtaining the same effect but increasing

the labeling time (TI1+TI2).

TIR-ASL was combined with an ECG triggered 3D-balanced SSFP gradient echo sequence

with the following parameters: FOV=400×400×180 mm, acquisition matrix=672× 672 result-

ing in a 0.6× 0.6 mm in-plane spatial resolution, slice thickness=3 mm, TR/TE= 4.72/2.36 ms,

FA=90◦. A respiratory navigator with an acceptance window of 15 mm and a fat suppression

pre-pulse preceded the imaging sequence. The scan planning to obtain the IHPVBV is showed

in Figure 2.3 A, the box “A” indicates the blood volume labeled in the main abdominal venous

systems below the liver. Table 2.2 shows the heart frequency and the TI1 and TI2 times used for

each patient and healthy volunteer.
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FIGURE 2.2. TIR-ASL sequence for two cardiac cycles: non-selective inversion pulse
(nsIR), selective inversion recovery pulse (sIR), respiratory navigator restoration (NR), res-
piratory navigator (N), inversion time 1 (TI1), inversion time 2 (TI2), trigger delay (TD),
acquisition (AQ). The portal vein blood is labeled during the systole of the first cardiac
cycle, and the image is acquired in the late diastole of the second cardiac cycle. The static
tissue is almost completely suppressed by the two non-selective inversion pulses, while the
portal vein blood keep its signal due the use of the selective inversion pulse. The total
labeling time of the portal vein blood is TI1+TI2.

In order to perform a morphological analysis, the liver and the spleen volumes that are typ-

ically used as indirect radiological marker for PH diagnosis (P. Liu et al., 2009) (Murata et al.,

2008) were quantified. For the liver volume (LV) estimation a 3D Inversion Recovery sequence

was used with the following parameters: FOV=400×400×180 mm, acquisition matrix=672×672

resulting in a 0.6×0.6 mm in-plane spatial resolution, slice thickness=3 mm, TR/TE=4.3/1.34 ms,

FA=30◦ with an inversion time between 500 and 600 ms according to the patient heart frequency.

For the spleen volume (SV) estimation a 3D-balanced SSFP gradient echo sequence was used with

the following parameters: FOV=400×400×180 mm, acquisition matrix=672×672 resulting in a

0.6×0.6 mm in-plane spatial resolution, slice thickness=3 mm, TR/TE=5.0/2.5 ms, FA=70◦. All

the images were acquired in a 1.5T Achieva MR scanner (Philips Healthcare, Best, NL) using a

four-element body coil, and all subjects had at least 6 hours of fasting before the imaging session.
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FIGURE 2.3. (A) Scan planning to obtain the intrahepatic portal vein venogram. Box
“A”shows the volume of labeled blood over the portal vein main sources. The dotted line
represents the acquired liver volume. (B) 3D Maximum Intensity Projections (MIP) recon-
struction of an intrahepatic portal vein for one (1RR) and two (2RR) cardiac cycles in a
representative healthy volunteer and PH patient.

2.3.3. Image Analysis

In order to calculate the IHPVBV in one and two cardiac cycles, an intensity-based image

segmentation algorithm was applied to the intrahepatic portal vein images obtained with TIR-ASL,

using an in-house developed MATLAB application (The MathWorks, Natick, MA, USA) (Fig. 2.3

B and Fig. 2.4). In TIR-ASL images blood has high intensity, while the liver and other static

structures are almost completely suppressed (Fig. 2.3 B). A subject dependent intensity threshold

was defined using the Otsu method (Otsu N., 1979) based on five regions of interest (ROI) (Fig.

2.4). On the other hand, the liver and spleen were manually segmented in a slice-by-slice manner

(Fig. 2.5) and their volume was calculated using an in-house developed MATLAB application.

2.3.4. Statistical Analysis

Statistical analysis was performed using Mann-Whitney independent-samples test, and re-

ceiver operating characteristic (ROC) analysis, using a SPSS v20.0 package (IBM Software Group,

New York, USA).
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FIGURE 2.4. Automatic subject-dependent threshold selection for the intrahepatic portal
vein blood volume quantification from the TIR-ASL acquisition. The Otsu method was
used to identify the optimum threshold between the high signal from the portal vein blood
that flowed into the intrahepatic space, and the almost completely suppressed signal from
the static tissues. LDO: liver distal object.

FIGURE 2.5. (A) Liver segmentation and volume quantification from the 3D Inversion
Recovery MR acquisition. (B) Spleen segmentation and volume quantification from the 3D
SSFP Balanced acquisition. H: head, F: foot, R: right, L: left, A: anterior, P: posterior.
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TABLE 2.2. Heart frequency and inversion times (TI1 and TI2) for the one and two cardiac
cycle MR protocols in Healthy volunteers and PH patients

1RR Protocol 2RR Protocol

No. Heart Frequency (bpm) TI1 (ms) TI2 (ms) TI1 (ms) TI2 (ms)

Healthy Volunteers

1 57 442 169 825 265

2 93 291 122 571 206

3 58 442 169 825 265

4 61 442 169 825 265

5 76 352 142 724 243

6 66 406 158 825 265

7 66 406 158 724 243

8 81 329 135 649 225

9 71 379 150 724 243

10 73 379 150 724 243

PH Patients

1 91 291 122 649 225

2 76 352 142 724 243

3 69 379 150 825 265

4 60 442 169 825 265

5 65 406 158 825 265

6 62 442 169 825 265

7 70 379 150 724 243

8 54 486 182 939 288

9 68 379 150 724 243

10 60 442 169 825 265

2.4. Results

The LV, SV and IHPVBV were quantified for one and two cardiac-cycles in all volunteers and

PH patients (Table 2.3).
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From the morphological analysis, no statistically significant differences were found in the LV

between healthy volunteers and PH patients, however PH patients presented larger SV (P=0.023)

and lower liver-to-spleen volume ratio (P=0.023) compared with healthy volunteers (Fig. 2.6).

TABLE 2.3. Liver volume, spleen volume and IHPVBV for 1RR and 2RR protocols, for
healthy volunteers (n=10) and patients with portal hypertension (n=10). IHPVBV: intra-
hepatic portal vein blood volume, LV: liver volume, SV: spleen volume, 1RR: one heart
cycle, 2RR: two heart cycles.

No. LV (cm3) SV (cm3) LV/SV IHPVBV 1RR (cm3) IHPVBV 2RR (cm3)

Healthy Volunteers

1 2083.0 278.7 7.5 22.9 30.7

2 1505.8 194.9 7.7 6.4 24.7

3 1423.3 132.0 10.8 7.7 19.7

4 1720.4 561.3 3.1 18.9 26.8

5 1435.1 88.8 16.2 18.3 26.1

6 1913.7 122.5 15.6 14.6 33.3

7 1706.5 127.5 13.4 9.0 30.0

8 1795.9 247.4 7.3 12.3 20.6

9 1754.8 144.8 12.1 10.2 18.5

10 1387.7 212.0 6.5 15.1 28.2

PH Patients

1 1933.8 281.1 6.9 2.0 2.1

2 2114.3 697.6 3.0 8.1 9.8

3 1575.3 224.6 7.0 0.2 2.4

4 1319.6 146.7 9.0 8.3 13.0

5 2439.6 805.4 3.0 0.3 18.3

6 948.2 347.2 2.7 2.8 3.3

7 2525.7 1121.1 2.3 10.9 33.0

8 990.6 312.0 3.2 0.1 0.1

9 1383.7 776.2 1.8 4.5 15.5

10 1046.3 508.0 2.1 3.3 8.2
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FIGURE 2.6. Healthy volunteers and PH patients median and interquartile (IQ) range of
the (A) liver volume (LV) (no statistically significant difference), (B) spleen volume (SV)
(P = 0.023), and (C) liver to spleen volume ratio (P = 0.023).

Larger IHPVBV in healthy volunteers than PH patients, for both acquisition protocols (one

and two cardiac cycles) were observed (Fig. 2.7 and Fig. 2.8). The median IHPVBV in healthy

volunteers was 13.5 cm3 and 26.5 cm3 in one and two cardiac cycles, respectively, whereas in PH

patients median volumes of 3.1 cm3 and 9.0 cm3 in one and two cardiac cycles were observed.

The IHPVBV corrected by the liver volume (IHPVBV/LV) was significantly higher in healthy

volunteers than PH patients in both protocols (P<0.001) (Fig. 2.8). The median TIR-ASL acqui-

sition time was 8.9 min and 9.6 min for the 1RR protocol; and 13.7 min and 15.1 min for the 2RR

protocol in healthy volunteers and PH patients, respectively.
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FIGURE 2.7. 3D reconstruction of IHPVBV in one and two cardiac cycles from the TIR-
ASL acquisitions. The images show larger IHPVBV in healthy volunteers (A) than PH
patients (B) for both protocols. H: head, F: foot, R: right, L: left, A: anterior, P: posterior.

FIGURE 2.8. Healthy volunteers and PH patients median and interquartile (IQ) range for
the intrahepatic portal vein volume adjusted by liver volume in (A) one cardiac cycle
(P<0.001) and (B) two cardiac cycles (P<0.001).
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The ROC analysis demonstrated that the liver-to-spleen volume ratio alone had a sensitivity of

80% and specificity of 90% to differentiate between healthy volunteers and PH patients (AUC:0.90,

CI95%:0.77-0.99). Furthermore, the IHPVBV/LV ratio can differentiate between both groups us-

ing one cardiac cycle with a sensitivity and specificity of 90% (AUC:0.95, CI95%:0.86-1.00). For

the two cardiac cycles acquisition, the sensitivity and specificity of the IHPVBV/LV ratio were

80% and 100% respectively (AUC:0.97, CI95%:0.91-1.00). The combination of morphological

information (LV/SV ratio) and functional information (IHPVBV/LV ratio) can accurately differ-

entiate both groups with sensitivity of 90% and specificity of 100% (Fig. 2.9).

FIGURE 2.9. Intrahepatic portal vein volume adjusted by liver volume measured in the
two cardiac cycles protocol and liver-to-spleen volume ratio for healthy volunteer and PH
patients. The combination of both parameters identified the PH patients with a sensitivity
of 90% and specificity of 100%.

2.5. Discussion

PH is a common complication of chronic liver disease and usually its diagnosis follows its

main complications: gastrointestinal bleeding, ascites, and hepatic encephalopathy among others

(Bosch et al., 2009)(Andia & Botnar, 2012). The gold standard method for PH diagnosis is an

invasive catheterization of the portal vein, which has several limitations to be routinely used in this

group of patients. Based in the concept that the portal vein is a low-pressure system, an increase

of liver resistance directly affects the volume of portal vein blood that flows into the intrahepatic
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space. The feasibility of studying the liver resistance through the quantification of the portal vein

blood volume that flows into the intrahepatic space during a cardiac cycle was demonstrated in

this study. The quantification of this functional parameter showed a significant difference between

healthy volunteers and patients with clinical diagnosis of PH. Our results suggest that TIR-ASL

based measurement of functional parameters of the liver could improve the diagnosis of PH, and

due to its non-invasive approach, this technique could be used to evaluate the disease progression.

The proposed technique does not require the use of intravenous contrast agent; it is insensitive

to B0 inhomogeneities and quantifies only the portal vein blood that flows into de intrahepatic

space, avoiding the quantification of blood that could flow through porto-systemic shunts (Bosch

& Garcia-Pagan, 2000). Additionally, TIR-ASL technique just need the acquisition of one image

and does not needed the subtraction step required by classical ASL methods, therefore the scan

acquisition is shorter, signal to noise ratio is higher, and is less sensitive to patient motion (Andia

& Botnar, 2012). In this study two TIR-ASL protocols were tested, adapting the sequence for

one or two cardiac cycles allowing longer labeling-delays, which is useful to imaging the venous

system in CLD patients. As expected, the IHPVBV is larger in the two cardiac cycles protocol, and

healthy volunteers had larger IHPVBV than PH patients. The two-cardiac cycle protocol almost

doubles the scan time compared to the one cardiac cycle protocol, and the IHPVBV/LV ratio

estimated from both protocols showed statistically significant differences between PH patients

and healthy volunteers. This result suggests that in a future clinical translation, the one cardiac

cycle protocol would be the optimal choice. The main limitation of this work is that all recruited

patients have been diagnosed of PH based on their clinical complications, and in none of them an

invasive measurement of the actual portal pressure gradient was available. Although the recruited

patients had complication only attributable to PH, future studies that correlate the IHPVBV with

the invasive portal pressure gradient are needed to further validate the proposed technique.

2.6. Conclusion

The proposed technique allows to improve the non-invasive diagnosis of portal hypertension

using morphological quantification and indirect estimations of the liver vascular resistance. This

technique has the advantage of not requiring either invasive methods or intravascular contrast

agent.
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2.8. Future Work:

TIR-ASL is a cartesian technique and depends on a respiratory navigator and a cardiac trigger.

This means that according to the respiratory cycle from volunteers, the acquisition could take

several minutes. The next step is to test sequenced with no cartesian acquisition but with radial

phase encoding. In this way we suspect that we can accelerate the acquisition with the same quality

data to apply our quantification algorithm. Another step is characterize the proposed technique

validating its precision, reproducibility and accuracy in a larger cohort.
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3. SPECTROSCOPY

This chapter explains the developments to reach the second objective, to characterize the hep-

atic fat in a liver voxel using MRS for establish a reference model from the liver spectra and the

relative presence of the principal fatty acids. This methodology also provides a clinical diagnosis

of normal, steatosis and steatohepatitis disease based on the fatty acid composition in the liver.

3.1. Abstract

Purpose: To quantify the presence of specific fatty acids (FA) within three liver samples using

magnetic resonance spectroscopy (MRS). Materials and Methods: Three liver samples were built

(healthy CN, steatosis ST and steatohepatitis SH) with previous information of their FA composi-

tion using the gold standard gas chromatography (GC). Using a 9.4 T spectrometer a MRS spectra

was acquired from each sample and the hydrogen (H) presence in each of the eleven metabolites

was quantified. The chemical structure of each FA gives information about the H presence known

as protonic matrix A. Using an optimization algorithm we solved the problem A~x = ~z where ~z

is the spectra acquired and ~x is the percentage presence of each FA. The main problem is that A

is not invertible and there is not a solution for the inverse problem. Results: The minimum errors

for the FA composition were: 0.5% for healthy liver, negligible for steatosis and 2.9% for steato-

hepatitis. This method can predict to which category belongs the liver sample 86% of the times.

Conclusion: This method can predict to which category belongs the liver sample with high preci-

sion. These results imply that knowing FA distribution will give us a new approach to understand

the development of certain illnesses, by tracking the percentage change in the presence of FA over

time.

Keywords: MRS, fatty acid quantification, liver fat-sample, fatty acid estimation.

3.2. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease

in both children and adults, increasingly leading to liver transplantation, hepatocellular carcinoma,
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and liver-related failure ((Angulo & Lindor, 2002); (Sass, Chang, & Chopra, 2005); (Cohen, Hor-

ton, & Hobbs, 2011)). NAFLD represents a range of liver disorders characterized by hepatic steato-

sis in the absence of excessive alcohol consumption, viral, or drug-related etiologies ((Angulo &

Lindor, 2002); (Sass et al., 2005)). In NAFLD patients there are an imbalance of free fatty acids

(FA) import and synthesis; leading to a triglyceride accumulation into the hepatocytes ((Cobbold,

Patel, & Taylor-Robinson, 2012)).

NAFLD is the first chain in a cascade of liver damage that could lead to liver inflammation,

known as non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and Hepatocellular Car-

cinoma (HCC) ((Cobbold et al., 2012); (Paradis et al., 2009)). Patients with NAFLD might have

different clinical evolutions, whereas some of them would evolve into cirrhosis and HCC, some

others would remain with chronic NAFLD. Risk factors and early biomarkers that explain or pre-

dict these evolutions are still unknown ((Bataller & Brenner, 2005)). One key issue in the NAFLD

diagnosis is the differentiation between it and its complications: NASH and cirrhosis ((Tilg &

Moschen, 2010)). Recent studies have shown that not only the quantity of liver fat but also the

kind of FA stored in the liver triglycerides could help to differentiate between NAFLD, NASH

and cirrhosis, and would provide relevant information about the diagnosis and prognosis of the

liver disease ((Araya et al., 2004a); (Wang, Cao, Fu, Guo, & Zhang, 2011)). It has been proposed

that oxidative stress, ethnicity, and diet could modify the liver FA composition, and those changes

could lead to different progression of NAFLD ((Vinaixa et al., 2010); (Bray et al., 2002); (Clarke,

Gasperikova, Nelson, Lapillonne, & Heird, 2002); (Larque, Garcia-Ruiz, Perez-Llamas, Zamora,

& Gil, 2003); (Delas, Popovic, Petrovic, Delas, & Ivankovic, 2008)).

Currently, FA characterization can be obtained from the liver biopsy samples using destructive

gas chromatography (GC). This procedure has limitations: it is invasive, it is subject to sampling

errors, and it cannot be used for screening, or for evaluating progression and treatment response

((Ratziu et al., 2005)). Additionally, since GC is a destructive analysis, the liver tissue will not

be available for histological analysis which is considered the gold standard for the diagnosis, and

therefore the liver triglyceride composition is not routinely measured ((Cohen et al., 2011)). Mag-

netic Resonance has been used to quantify the total liver fat content using chemical shift-based

techniques, with two main approaches: spectroscopy (MRS) and imaging (MRI). Fatty liver quan-

tification using MRS considers water and a few peaks of fat from a voxel sample and quantify the
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area under them ((Hamilton et al., 2011)). The MR spectrum obtained from fat samples is char-

acterized by eleven peaks formed by metabolites (Figure 3.1) ((Berglund, Ahlstrm, & Kullberg,

2012)). The frequency of each metabolite peak is known, within a range, and has been derived by

many authors ((Guillen & Ruiz, 2003b); (Yeung et al., 2008); (Hamilton et al., 2011); (Ouwerkerk,

Pettigrew, & Gharib, 2012); (Berglund et al., 2012); (Vlahov, 1999b); (Skoch et al., 2006); (Ren,

Dimitrov, Sherry, & Malloy, 2008); (Strobel, van den Hoff, & Pietzsch, 2008); (Reeder, Cruite,

Hamilton, & Sirlin, 2011b); (Peterson & Mansson, 2013); (Qayyum, 2009)). Four of those eleven

peaks belong to the glycerol metabolites (ml, gm1, gm2 and gn) and therefore, FAs are characterized

only by the other seven metabolites peaks in the MRS.

The estimation of the FA composition in the sample, starting from the MR spectrum cannot

be obtained directly since many different combinations of FA can produce the same percentage

of metabolites. However, it is possible to characterize some features of the FAs. For example,

it is possible to estimate the FA groups (saturated, monosaturated, polysaturated). Miyake et al.

((Miyake, Yokomizo, & Matsuzaki, 1998a)) developed a technique to estimate the polysaturated

and monosaturated FA from an oil sample using the relation between the Area Under the Curve

(AUC) from the metabolic peaks acquired at 7T. Guillen et al. ((Guillen & Ruiz, 2003a)) used

a similar technique and estimated the saturated, linolenic, linoleic, oleic, acyle, bis-allylic FA at

7T; and Yeung et al. ((Yeung et al., 2008)) used the same approach in 11.7T for bone marrow

FA characterization. Hamilton et al. ((Hamilton et al., 2011)) characterized the liver spectrum

and found a relationship between the principal peaks and chemical properties of the FA as the

carbon chain length, the number of double bounds and the number of double bounds interrupted

by methylene, using 3T; this has been also done in an iterative fashion ((Berglund et al., 2012);

(Peterson & Mansson, 2013)). Lundbom et al. ((Lundbom et al., 2010)) characterized the olefinic

and dyallilic methylene fat peaks in human fat tissues with long echo times (135, 200ms) and

validated them with GC using a PRESS sequence at a 1.5T MRS.

There is an increasing interest in using MRI techniques to obtain more information about

the FA composition of different tissues ((Berglund et al., 2012); (Peterson & Mansson, 2013)).

Fatty liver quantification using MRI use the bulk methylene metabolite and water to estimate

the Fat Fraction (FF) for each voxel ((Leito et al., 2013)). Some of the methods used to sepa-

rate water from fat are: two-point Dixon ((Coombs, Szumowski, & Coshow, 1997a)), multipoint
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Dixon ((Glover, 1991)), IDEAL ((Reeder et al., 2005b)), MP-IDEAL ((Meisamy et al., 2011a))

and FIRST ((Honorato, Parot, Tejos, Uribe, & Irarrazaval, 2011)). However, all of them work only

with a limited set of fat metabolites.

All the previous works have provided new methodologies to analyze the characteristics of the

FA in tissues, however they do not estimate the FA composition. In this work we propose a new

methodology to estimate the relative composition of the FA from a fat sample given the seven

principal metabolites of the MR spectrum. This is a classical ill-posed mathematical problem with

more unknown variables than equations, and therefore has infinite solutions. We propose the use

of an optimization method which uses a priori information to specify a few constraints (taken from

expected physiological limits). We studied its sensitivity using simulated MR spectrum, and we

demonstrated its feasibility using phantoms that simulate the liver FA composition at three clinical

stages: healthy, liver with steatosis and with steatohepatitis.

3.3. Materials and methods

3.3.1. Fatty acid estimation

The objective of this section is to obtain the FA composition of a fat sample using the 1H

spectrum obtained by MRS. The MRS acquisition can be described as the system A~x = ~z, where:

• A is the protonic matrix (Table 3.1) which indicates the presence of protons in each

metabolite for each FA ((Hamilton et al., 2011)). Matrix A has n rows, equivalent to the

number of FA present in the sample (n=8 in this study), and c columns equivalent to the

number of metabolites present in the FA (c=7 in this study). Four columns are linearly

dependent (in Table 3.1 columns 3, 5 and 7; and column 4 divided by two plus column

2, with column 1), so the matrix can be reduced as is shown in Table 3.2. Figure 3.2

shows an example of the protonic distribution for the linoleic FA.

~z is a vector containing seven metabolites (Figure 3.1). Each metabolite is measured as

the normalized AUC of the spectrum. Each metabolite must be normalized by a certain

number of protons. Three of the seven metabolites will always have the same number of

protons: m=3, αc=2 and βc=2, so we can reduce ~z and normalize by these seven protons.

• ~x is the unknown percentage of FA in the sample.
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Since the matrix A is singular, A−1 is not defined, and therefore, this problem is under-

determined with infinite solutions. ~x contains the proportion of FA. Typical values of these propor-

tions showed that three and sometimes four of them are in the range of 20 to 30%. This motivated

us to restrict as much as possible the energy of this vector. In other words, for the most present

acids, no one should have a proportion excessively higher than the others. This is achieved by

minimizing the L2 norm of the proportions, thus finding ~x solving the least square problem:

min
~x

1

2
||~x||22 (3.1)

subject to

A~x = ~z (3.2)

with three possible a priori information constraints:

min(~x) ≤ ~x ≤ max(~x) Tight (3.3)

min(~x)−max( ~D) ≤ ~x ≤ max(~x) + max( ~D) Medium (3.4)

min(~x)− 2max( ~D) ≤ ~x ≤ max(~x) + 2max( ~D) Loose (3.5)

where max(~x) and min(~x) are vectors of the same size that ~xwith the maximum (max(~x)) and min-

imum (min(~x)) physiological expected FA concentrations considering all liver conditions: healthy,

steatosis and steatohepatitis as has been described previously (Araya et al., 2004a). max( ~D) is the

largest standard deviation observed in the liver FA composition considering all liver conditions.

To solve these optimization problems, we used the linear least-squares methods implemented in

MATLAB (The MathWorks, Natick, MA, USA). We used the three possible constraints in order

to test the method stability with different size for the searching space.

These constraints do not guarantee a unique solution but they would be different only in the

space of solutions given, i.e. the algorithm will adjust a different ~x value according to ~D.
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FIGURE 3.1. Example of fat spectrum showing the metabolites at 9.4T. In this work we
are not considering the glycerol peaks.

TABLE 3.1. Protonic matrix of the eight FA used in this work. The protonic matrix indi-
cates the number of proton for each metabolite characterized by its spectral frequency in
Hz and its chemical shift in ppm.

Metabolites

FA(ppm) 5.328 2.722 2.260 1.976 1.534 1.262 0.875

f9.4 (Hz) 2122.30 1121.20 880.97 800.88 640.70 520.57 360.40

Myristic (Mi) 0 0 2 0 2 20 3

Myristoleic (Ml) 2 0 2 4 2 12 3

Palmitic (Pa) 0 0 2 0 2 24 3

Palmitoleic (Pl) 2 0 2 4 2 16 3

Stearic (Es) 0 0 2 0 2 28 3

Oleic (Ol) 2 0 2 4 2 20 3

Linoleic (Li) 4 2 2 4 2 14 3

Linolenic (Ln) 6 4 2 4 2 8 3
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TABLE 3.2. Reduced protonic matrix, without linear dependency.

FA Metabolites reduced

Myristic (Mi) 0 0 20 7

Myristoleic (Ml) 2 4 12 7

Palmitic (Pa) 0 0 24 7

Palmitoleic (Pl) 2 4 16 7

Stearic (Es) 0 0 28 7

Oleic (Ol) 2 4 20 7

Linoleic (Li) 4 6 14 7

Linolenic (Ln) 6 8 8 7

FIGURE 3.2. Protonic distribution of linoleic FA C18:2; H: proton; TH: total protons; O:
oxygen; C: carbon; αc: alpha carboxyl; βc: beta carboxyl; a: allyl; o: olefinic; d: dyallil;
m: methyl; mb: bulk methylene.

3.3.2. Sensitivity Analysis

In order to test the robustness of our algorithm we performed a sensitivity analysis using

simulated fat liver spectrum (~z) with Gaussian noise added to the whole spectrum. We built ~z

using the liver FA composition (~x) reported in the literature for each liver conditions: healthy,

with steatosis and with steatohepatitis (Table 3.3). We created the vector ~zR, which corresponds to

vector ~z with added Gaussian noise, after the simulation, using the following formulation:

~zR = ~z +N(0, ns · ~z) (3.6)
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where ns · ~z is the standard deviation of the normal distribution of the noise, with ns ranging

between 0 and 10%. We estimated the FA composition (~xR) from ~zR by solving the optimization

problem for each liver sample, and for each ns value, and repeating it ten thousand times. We

calculated the mean and standard deviation of ~xR for each ns. We calculated the Euclidean distance

between ~xR and the simulated data (~x) in order to evaluate the robustness of the proposed method.

In these simulations we used eight FA (Table 3.3) that represent 83% of the FA present in a healthy

human liver, and 96% of the FA present in a NAFLD and NASH human liver.

3.3.3. Phantom validation

In order to validate our methodology we built three physical phantoms with the same FA

composition that were found in human liver: healthy, with steatosis, and with steatohepatatis (Table

3.3). Each phantom weighted 500mg in a final volume of 8ml of deuterated chloroform (CDCl3)

to disolve the FA. Table 3.4 shows the lower and upper bound limits for each FA used to constrain

the optimization. These bounds are measured in g/100g FA and was found in literature (Araya et

al., 2004a).

TABLE 3.3. Weights (g/100g FA), standard deviation in grams (D) from FA found by
Araya at al. 2004, and weights used for the simulated and physical phantom (mg/100mg
FA) of the FA used present in the liver in three conditions: healthy, steatosis, and steatohep-
atatis normalized for the eight FA used.

Healthy Steatosis Steatohepatitis

FA g D mg g D mg g D mg

Mi (C14:0) 23.14 1.07 115.697 7.51 0.73 37.551 9.53 0.52 47.480

Ml (C14:1) 1.12 0.17 5.606 2.17 0.22 10.848 2.33 0.21 11.583

Pa (C16:0) 21.00 0.48 104.962 35.15 2.09 175.759 34.43 1.77 171.658

Pl (C16:1) 3.25 0.18 16.281 5.61 0.59 28.059 4.92 0.44 24.575

Es (C18:0) 0.11 0.06 0.593 0.66 0.49 3.286 0.64 0.29 3.183

Ol (C18:1) 30.18 0.95 150.883 34.11 1.46 170.543 30.87 2.09 153.918

Li (C18:2) 20.76 1.07 103.769 14.39 1.46 71.972 16.95 1.57 84.525

Ln (C18:3) 0.44 0.10 2.207 0.40 0.04 1.982 0.32 0.06 3.078

TOTAL 100.00 500.000 100.00 500.000 100.00 500.00
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The 1H NMR spectra were obtained in a Bruker Avance spectrometer operating at 9.4 T with

a free induction decay (FID) acquisition called Zg30 (30 degrees in z axis). We took 70 µl from

each phantom of 8 ml to introduce in the spectrometer. CDCl3 has a small proportion of tetram-

ethylsilane as an internal reference; this mixture was introduced into a 5 mm diameter tube. The

acquisition parameters were: spectral width 8012.820 Hz, relaxation delay 1 s, number of scans

16, acquisition time 2.045 s, flip angle 30 to avoid T1 relaxation effects and total acquisition time

48.72 s (number of scans×(time between pulses + acquisition time)). The experiment was carried

out at 25 ◦C.

TABLE 3.4. FA physiological composition constrains in g/100g FA used in the optimiza-
tion algorithm for the three constrains (LB: lower bound, UB: upper bound).

Tight Medium Loose

FA LB UB LB UB LB UB

Mi 7.51 23.14 6.61 24.04 5.71 24.93

Ml 1.12 2.32 0.91 2.53 0.70 2.74

Pa 20.99 35.15 18.99 37.15 16.99 39.15

Pl 3.26 5.61 2.69 6.18 2.12 6.75

Es 0.12 0.66 0.00 1.13 0.00 1.60

Ol 30.18 34.11 28.18 36.11 26.18 38.11

Li 14.39 20.75 12.89 22.25 11.39 13.75

Ln 0.40 0.62 0.32 0.70 0.24 0.78

From the FID time curve we obtained a complex signal in the Fourier domain. We corrected

its phase using zero (α) and first order (β) corrections ((Keeler, 2010)), such that the corrected

signal (~Sc) is:

~Sc = ~Seiuβeiα (3.7)

where ~S is the acquired spectral signal and u is the frequency in the Fourier domain. Fi-

nally, the frequency axis was shifted using as a reference the highest peak corresponding to the

methylene metabolite at 1,262 ppm. We used an in-house program written in MATLAB to cor-

rect and quantify the spectrum from the FID time curves. We calculated the normalized AUC for
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each metabolite for each of the three liver phantoms: healthy, steatosis and steatohepatitis, and we

applied our methodology to estimate the FA composition using ~Sc.

3.3.4. Sample Labeling

Ultimately, the objective is to provide a clinical diagnosis of the liver conditions, similar to the

one obtained from a liver biopsy procedure, using the FA composition estimated by our method-

ology. In order to test the accuracy of our methodology to provide a diagnosis of normal, steatosis

or steatohepatitis, we simulated different “livers” with random FA composition using the limits

showed in Figure 3.3. With this composition we simulate the MR spectrum and we applied our

method in order to test its sensitivity and specificity in order to provide a correct clinical diagnosis.

The simulate FA composition (~xG) was:

~xG ∼ N(~x, ~D) (3.8)

Where ~x is the mean and ~D the standard deviation for each FA taken from the literature. We

calculated the respective MR spectrum for each ~xG using the formulation: ~zG = A~xG; and we

added Gaussian noise as follows:

~zRG = ~zG +N(0, np · ~zG) (3.9)

where np values are 0 to 5 % of the mean value of the ~zG signals.

Finally we used ~zRG as the input to our optimization method to estimate the FA composition

(~xEst). We categorized it as healthy, with steatosis or with steatohepatitis by choosing the minimum

Euclidian distance to the FA composition of the three expected liver conditions: ~xCN (control), ~xST

(steatosis) and ~xSH (steatohepatitis) (Table 3.3):

dCN = ||~xEst − ~xCN ||22 (3.10)

dST = ||~xEst − ~xST ||22 (3.11)

dSH = ||~xEst − ~xSH ||22 (3.12)
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FIGURE 3.3. FA concentration distribution in the three liver stages: healthy (CN), steatosis
(ST) and steatohepatitis (SH). Mi: myristic, Ml: myristoleic, Pa: palmitic, Pl: palmitoleic,
Es: stearic, Ol: oleic, Li: linoleic, Ln: linolenic.

Finally, we estimated the sensitivity and specificity of our methodology to differentiate be-

tween normal (CN) and diseased liver (ST+SH); and to differentiate between steatosis and steatosis

plus inflammation (ST versus SH).

3.4. Results

We successfully obtained the MRS spectrum at 9.4 T of the three liver phantoms that resemble

healthy tissue (CN), with steatosis (ST) and with steatohepatitis (SH). The estimated AUC of
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the 7 metabolites are shown in Figure 3.4. All the metabolites for each of the 3 phantoms were

normalized.

FIGURE 3.4. MR spectrum of the three liver phantoms acquired at 9.4 T and the AUC
calculated for each metabolite. Note that the spectra are quite similar but they have little
differences. The differences can be seen in AUC from control (ZCN ), steatosis (ZST ) and
steatohepatitis (ZSH ) spectra.

The distance between the FA composition estimated from the simulated data and from the

acquired phantoms spectrum are shown in Figure 3.5A and 3.5B, respectively, for the three estab-

lished optimization constrains. The errors for the FA composition were found for the optimization

methodology that used the tight constraint and the values were: 0.5 % for healthy liver, negligible

for steatosis and 2.9 % for steatohepatitis. In the case of the acquired data, the errors were 7.2

%, 12.6 % and 15.7 %, for the healthy liver, steatosis and steatohepatitis respectively. There is

a growing trend of the error in the simulated data, which is harder to see in the acquired data.

These difference errors might be for the arbitrary separation limits between metabolites (Figure

3.4), especially between methylene (1.262 ppm) and beta carboxyl (1.534 ppm).

Table 3.5 and Figure 3.6 show the estimated x for the acquired z, actual percentage and abso-

lute error for FA in each phantom for the tight constraint. The lowest absolute error of estimation

was 0.12 % for the stearic FA in the healthy liver phantom; 0.40 % for the linolenic FA in the

phantom with steatosis; and 0.62 % for the linolenic FA in the phantom with steatohepatitis. The

highest absolute error of estimation was 6.05 % for the linoleic FA in the healthy liver phantom;

8.03 % for the palmitic FA in the phantom with steatosis; and 9.20 % for the palmitic FA in the
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phantom with steatohepatitis. Bland-Altman analysis is showed in Figure 3.7 reporting there is no

dependency with the media.

FIGURE 3.5. L2 norm of the error between the actual FA composition and the estimated
by the proposed methodology for the simulated spectrum (A) and for the acquired liver
spectrum (B).

TABLE 3.5. FA composition estimated by the optimization method (xEst) compared with
Table 3.3 data in the three fat liver phantoms: healthy (xCN ), with steatosis (xST ), and with
steatohepatitis (xSH ). |EAbs| is the absolute value of the FA estimation error.

FA xCN xEst |EAbs| xST xEst |EAbs| xSH xEst |EAbs|

Mi 23.14 23.91 0.77 7.51 14.05 6.54 9.50 18.49 8.99

Ml 1.12 3.09 1.97 2.17 5.62 3.45 2.32 4.71 2.39

Pa 20.99 23.65 2.66 35.15 27.12 8.03 34.33 25.13 9.20

Pl 3.26 4.52 1.26 5.61 8.65 3.04 4.91 8.01 3.10

Es 0.12 0.00 0.12 0.66 0.00 0.66 0.64 0.00 0.64

Ol 30.18 29.41 0.77 34.11 36.68 2.57 30.78 35.94 5.16

Li 20.75 14.70 6.05 14.39 11.06 3.33 16.90 12.00 4.90

Ln 0.44 1.39 0.95 0.40 0.00 0.40 0.62 0.00 0.62

Figure 3.8 shows the relation between the Gaussian noise added to the simulated MR spectrum

(~z) and the L2 norm of the error between the simulated and the actual values of ~x from Table 3.3.

Gaussian noise yields an homogeneous distribution of the error for the three liver samples.

The distributions of the difference between the estimated FA composition (~xEst) and the sim-

ulated FA composition (~x) for three ns values are shown in Figure 3.9, as an example for the

myristic FA. When ns is equal to 5 % there is a higher bin in the edge that means this constraint

was activated, this effect is higher when ns is 10 %.
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FIGURE 3.6. Relation between the actual FA composition in each phantoms and the esti-
mated composition using the proposed method.

FIGURE 3.7. Bland-Altman plot for the differences between the estimated and the litera-
ture data from the three liver phantoms: (A) healthy, (B) with steatosis and (C) with steato-
hepatitis.

Table 3.6 and Figure 3.10 show the sensitivity and specificity of the proposed methodology

for differentiating normal from diseased liver, and between steatosis without (ST) and with (SH)

inflammation according with the level of added Gaussian noise (np) and the three constraints used

in the optimization method. Maximum sensitivity and specificity are reached when no noise is

added. When 1 % of Gaussian noise is added to the simulated MR spectrum the method has a

sensitivity around 94 % and a specificity around 79 % to differentiate between healthy and diseased

livers, and around 68 % and 77 % to differentiate between NAFLD and NASH.
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FIGURE 3.8. Relation between the magnitude of the Gaussian error added to the simulated
MR spectrum (~z) and the L2 norm of the error between the simulated and the actual values
of ~x for the 3 clinical conditions normal (CN), steatosis (ST) and steatohepatitis (SH).

FIGURE 3.9. Distribution of the difference between the estimated FA composition (~xEst)
and the simulated FA composition (~x) from Table 3.3 for myristic FA. In the rows are the
Gaussian error added (ns) and in the columns the liver samples: healthy (CN), with steatosis
(ST) and with steatohepatitis (SH).

3.5. Conclusion

The FA composition of a fat sample cannot be directly obtained from the MR spectrum due to

the protonic matrix is not invertible, and the problem has infinite solutions. In this work we demon-

strated that it is possible to find an approximation of the FA compositions using an optimization
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TABLE 3.6. Percentage of precision for classification in three liver groups using the three
constrains. Sens: sensitivity; Spec: specificity; np: percentage Gaussian added noise

Healthy and Diseased Liver

Tight Medium Loose

np(%) Sens Spec Sens Spec Sens Spec

0 100.00 100.00 100.00 100.00 100.00 100.00

1 95.79 78.68 94.03 80.27 93.73 79.02

2 89.17 51.21 89.11 52.50 88.09 51.01

3 86.20 41.98 84.85 42.54 85.54 40.87

4 83.24 38.75 83.42 38.00 83.60 37.98

5 81.68 34.52 81.92 34.85 82.17 35.76

Without and With Inflammation

Tight Medium Loose

np(%) Sens Spec Sens Spec Sens Spec

0 99.92 100.00 97.17 100.00 85.58 100.00

1 69.49 77.23 69.93 77.01 67.61 77.70

2 59.78 63.52 60.50 63.60 61.24 63.07

3 56.38 57.71 56.16 59.05 57.45 57.42

4 55.38 57.13 55.06 56.15 54.70 57.01

5 53.53 55.67 53.41 55.58 54.47 54.94

algorithm with a priori information. The a priori information needed is: (1) know the number and

type FA present in the sample, and (2) know their expected minimum and maximum concentration

in the analyzed tissue. The first constraint is very important, because the MR spectrum is built by

the superposition of peaks that could come from a wide source of FA. The second constraint is less

strict, and we proved that our method is stable even when the searching space for each FA is wide.

We also demonstrated that our methodology is able to categorize a simulated liver fat MR

spectrum as healthy, with steatosis or with steatohepatitis with a sensitivity ranging from 86 to 100

% and a specificity of 100 % in a spectrum without noise.

The present work was made using a fat phantom and a 9.4T MR Spectrometer in order to

have the best spectrum with high resolution, in order to obtain a proof of concept result. The
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FIGURE 3.10. Sensitivity and specificity of the proposed method to differentiate between
normal and diseased liver (A) and between ST and SH (B) form simulated spectrum with
five different magnitude of added Gaussian noise (np). Sens: sensitivity; Spec: specificity.

sensitivity analysis showed that our algorithm is sensitive to noise; therefore, the quality of the

MR spectrum is critical in order to obtain reliable results. Future works are now needed to validate

our results in biological tissues and using clinical magnetic fields (1.5 or 3.0 T) in order to translate

the methodology to clinical applications.

Finally, in this work we focused our methodology in the liver analysis, but it would be possible

to apply our proposed algorithm in other areas where the FA estimation would be useful like edible

oil research (Dais & Hatzakis, 2013), biodiesel production (Chisti, 2007) and other bulk products

(Breuer et al., 2013).
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3.7. Future Work:

The next step of this study is replicate our results in biological tissues at 9.4 T, and optimize

our methods to be used at 3.0 T and 1.5 T.
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4. METABOLIC IMAGES

This chapter explains the work to achieve the final objective of this thesis: to extend the method

developed in chapter 3 in order to obtain images from the fatty acids (FA) distribution in tissue.

We developed a proof-of-concept experiment using a digital phantom. In this chapter we explain

the formulation and the future approach to solve this problem using liver clinical images.

4.1. Abstract

Purpose: To quantify the presence of specific fatty acids (FA) from multi-echo images. As

a proof of concept we test an optimization method using a digital phantom that simulates edible

oils and field inhomogeneities. Materials and Methods: Four oil samples (sunflower, corn, olive

and soybean) were tested using Gas-Chromatography (GC) to identify their FA composition in

percentages (~x). In this work we only considered FA limited by the number of carbons (CL) in

its chain, and the number of double bounds (ndb), in other words, we work with FA from C16:0

until C18:3. The identified FA were used as prior information in the optimization model. Each

FA identified in the GC has a chemical structure that defines the number of hydrogen (H) in each

metabolite, creating the protonic matrix (A). Using ~z = A~x, it was possible to calculated the

metabolite presence (~z). We used this information to create a digital image phantom of the four

oil samples. We also simulated pure water and we added linear magnetic field inhomogeneities,

assuming a main field of 1.5T. We solved the inverse problem using an optimization algorithm

to find the metabolite presence in each pixel. We consider eight metabolites: water and seven

principal fat metabolites (not considering glycerols). Knowing this metabolic presence we used

a second optimization algorithm (presented in chapter 3) to obtain an image of each FA. Results:

From the first optimization algorithm we found the metabolite presence for the four oils and water,

and for different field inhomogeneities. For an inhomogeneity field varying from -30 to 30 Hz the

minimum error found was 0.026% for the water metabolite in 4.860 ppm for soybean oil. The

maximum error found was 5.41% for the methylene β carboxil metabolite in 1.534 ppm for the

olive oil. From the second estimation algorithm we estimated the FA percentage presence from the

metabolites previously found. The minimum error was negligible for the palmitoleic FA for the

corn oil. The maximum error was 13.64% for linoleic FA for the olive oil. Conclusion: We present
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a proof of concept method to estimate the FA presence in a simulated digital image phantom, using

an optimization algorithm.

Keywords: MRS, fatty acid quantification, liver fat-sample, fatty acid estimation, metabolic

images.

4.2. Introduction

Fatty liver disease is characterized by excessive and abnormal fat accumulation in liver cells.

Currently, the most common way to evaluate the amount of liver fat is through a biopsy. Its

main problem is to be invasive sampling and monitoring problems, and therefore not a suitable

diagnostic method (Kumar V. et al., 2005). Fatty liver disease is evaluated in hepatocytes using a

visual scale estimation of 0 to 3, proportional to intracellular fat (Brunt et al., 1999).

Fatty liver causes excessively fat accumulation in hepatocytes. This accumulation can reach

a state of cirrhosis, implying the existence of portal hypertension and liver resistance. This re-

sistance is produced by a state of fibrosis caused by hepatocytes secreting collagen as a defense

against toxins. The two techniques used in magnetic resonance to measure the fat signal are: mag-

netic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). MRI is a technique

of non-invasive acquisition of high resolution images that does not depend on the skill of the oper-

ator, such as ultrasound, and the acquired signal can be decomposed in different chemical species

such as water metabolite and the higher fat peak from the fat spectra. Also it does not use ionizing

radiation such as the X-ray computed tomography (Fazel et al., 2009). MRI methods allow to

measure the fat fraction signal (FF), defined as the fraction of the acquired signal attributed to the

actual fat in the liver. This signal can be altered by various technical factors such as: variation

in relaxation times T1 (C.-Y. Liu et al., 2007), T1 effects and noise bias (Bydder, Yokoo, et al.,

2008), magnetic field inhomogeneities or T2* (Yu et al., 2007), the fat spectral complexity (Yu et

al., 2008), J coupling or the intrinsic behavior from the fat spectra peaks (Hamilton et al., 2009),

and Eddy currents or altered phase information (Lu et al., 2008). These factors can produce unre-

liable results of the lipid content. The most advanced techniques in MRI measures proton density

fat fraction (PDFF), which is a fundamental property of tissue defined as the fraction of protons

attributed to liver fat and a direct measure of the amount of fat in the liver (Reeder, Hu, & Sirlin,

2012).
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MRS is the most straightforward method to separate the signal obtained from the liver into its

components of water and fat. Spectra collection requires acquisition technique typically evaluated

in a volumetric element or voxel with a size from 8 to 27 cm3. The fat liver spectrum is different

from adipose tissue and water-fat emulsion, suggesting different spectral differences in fat deposits

in the body (Hamilton et al., 2011). Regardless of the method, a radiofrequency pulse is always

applied in the presence of a gradient. For this reason, there is often a difference of the spatial dis-

tribution due to the chemical shift in the image domain. This differences of the spatial distribution

can be measured. (Reeder et al., 2011b).

The fat is characterized by a spectrum with eleven metabolites identified. A FA is composed

by seven of the eleven metabolites (glycerols not included) and have different resonant frequen-

cies. Currently, some of the methods used for water and fat separation, mainly work with the

bulk methylene metabolite information, located at 1.262 ppm, compared to 4.680 ppm for water

(Hamilton et al., 2011) but, there are other methods that use until six peaks information (Wang,

Hernando, & Reeder, 2015). There are other methods that consider certain problems caused by

the relaxation time, noise, field inhomogeneity and the fat spectral complexity considering four of

these seven major metabolites (Yu et al., 2008). It is difficult to establish the presence of the seven

metabolites on a 1.5T clinical scanner due to its low resolution. This metabolite presence is pos-

sible to do with 9.4T spectrometer. The disadvantage is the sample size (70 µl) which correspond

to a biopsy sample. The goal is to understand the spectral signal of fat in the spectrometer to be

brought to a clinical 1.5T or 3.0T clinical scanner.

The acquisition techniques of MRI used to measure fat are two: fat suppression and chemical

shift. The fat suppression technique separates the fat and water signal by comparing the magnitudes

of the acquired images with and without fat saturation, and does not measure the PDFF (Yokoo

et al., 2011). The chemical shift technique to separate fat and water acquires the signal with

different echo times, using magnitude information or complex information to measure the PDFF.

The complex mode uses the magnitude and phase from three images acquired in six echo times to

deliver a response in a dynamic range of 0 to 100 %; the magnitude mode uses only the magnitude

of three images acquired at different echo times where two are out of phase and one is in phase.

Its main drawback is that it cannot quantify it precisely out of a dynamic range between 0 to 50 %

(Reeder et al., 2011b).
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PDFF is a biomarker that measure accurately the amount of fat in the liver (Reeder et al.,

2012). The principal difference between the PDFF and the FF, (Reeder S. B., Hines C. D., Yu

H., McKenzie C. A., & Brittain J. H., 2009), is that FF is the direct measure of the independent

fat tissue relative signal sensitivity of the radiofrequency coils, while PDFF is defined in the same

way, with prior correction for T1 (Bydder, Yokoo, et al., 2008), T2* (Yu et al., 2007) and the

multispectral fat distribution (Yu et al., 2008).

PDFF is the result of the study of some techniques to separate water and fat. One of the

main technique used to separate fat and water images is Dixon which acquire two images: the first

one in phase and the second one out of phase, just changing the echo time value (Coombs et al.,

1997a). The magnetic field variation can be calculated using the phase information obtained in

each acquisition. Equation 4.1 shows the pixel intensity value (I0) in image domain where there is

superimposed the correspondent water-fat information:

I0 = (W · ei2π·fw·TE0 + F · ei2π·ff ·TE0)ei2π·∆B·TE0 (4.1)

where W and F correspond to water and fat quantity factor in the pixel, respectively; fw and ff

are the water-fat resonance frequency values of -300 Hz and -76 Hz, respectively (at 1.5T); TE0 is

echo time, and ∆B is the magnetic field variation in Hz.

An extension to this technique allows for more than one species, working in the image domain

is the iteratively squares estimation method or IDEAL (Reeder et al., 2005b). Its main advantage

is that it can separate multiple chemical species depending on the number of images acquired.

The model of the acquired signal is specified in Equation 4.2 and estimate the intensity of each

chemical specie ρj .

s(t) =

(
M∑
j=0

ρje
i2π·∆fj ·t

)
ei2π·ψ·B·t (4.2)

where s is the acquired signal in an image that contain M species, each of them with a chemical

displacement (Hz) ∆fj(j = 1...M) acquired at an echo time t, ρj is the intensity of each specie as

a complex number. In addition ψ is the local magnetic shift or the magnetic field variation (Hz).

In order to find ρj is necessary make 2M + 1 acquisitions (Reeder et al., 2004).It is also possible
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to correct for T2* with T2*-IDEAL (Yu et al., 2007), and a modeling of fat multi spectrum called

MP-IDEAL (Yu et al., 2008) .

Another image separation technique that considers field inhomogeneity, R2*, and species es-

timation using a variable time map (FIRST) (Honorato et al., 2011). Unlike the previous methods,

FIRST works in the Fourier domain taking into consideration the phase accumulation due to field

inhomogeneities and the signal decay during acquisition, correcting the artifacts caused by chem-

ical shift and field inhomogeneity. The purpose is to adjust the unknown variables of the model

to the acquired signal values. Equation 4.3, shows the acquired signal Sm(t) for specie m at an

specific time t. The functional reconstruction is showed on Equation 4.4.

Sm(t) =
∑
j=0

ρm,re
−i2π(∆fm+ψr)·te−i2π·r·kt (4.3)

min
ρm∈CN
ψ̃∈CN

∣∣∣∣∣
∣∣∣∣∣S(t)−

M∑
m=1

∑
r

ρm,r · e−i2π(∆fm+ψ̃r)·t · e−i2π·r·kt
∣∣∣∣∣
∣∣∣∣∣
2

(4.4)

where ρ(m, r) is the pixel complex intensity from the speciem in a discrete position r, t represents

the acquisition time, ψ̃r is the field map, kt is the acquired k space at t time, and ψ̃r = ψr +

iR∗2(r)/2π. This functional minimization gives ρm(x), ψ(x) and R∗2(x), and it requires 2M + 2

acquisitions.

These two methods, IDEAL and FIRST, have differences with respect of the geometric posi-

tion of the reconstructed signals, but they only consider one metabolite for fat in bulk methylene

at 1.262 ppm.

To characterize triglycerides in fat tissue there are models that use spectroscopy and the chem-

ical characteristics as the number of double bonds (ndb), the number of double bonds interrupted

by methylene (nmidb), and the average chain length (CL) of the FA (Hamilton et al., 2011) as

well as models using chemical shift images (Peterson & Mansson, 2013; Berglund et al., 2012)

with the aim to find the unsaturated, polysaturated, monosaturated and saturated FA. There have

been studies of the composition of fat in vegetable oils and their main FA: saturated, oleic, linoleic

and linolenic (Guillen & Ruiz, 2003b, 2003a; Miyake, Yokomizo, & Matsuzaki, 1998b; Knothe &

Kenar, 2004) and others who consider a greater amount of FA present in lower proportions than 1
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% (Yeung et al., 2008; van Werven et al., 2012; Willker & Leibfritz, 1998), but they cannot specify

what is the percentage presence of each FA in the sample.

In this chapter we propose a new method to estimate the percentage presence of the seven

principal fat peaks and the water peak per pixel. From the metabolic presence, it is possible to

estimate the FA presence using the methodology discussed in chapter 3.

4.3. Materials and methods

We applied the optimization algorithm developed in chapter 3 to estimate the FA presence per

pixel in a multi-echo image. The algorithm starts by estimating the metabolite contents, including

water, and the magnetic field inhomogeneity. To test this method we used a digital phantom created

in k-space with realistic values of FA from four oils and water. In the next sections we explain: the

simulation of the data, the metabolite estimation, and finally, the FA estimation.

4.3.1. Phantom simulation

We simulated a phantom with five vials, one with water and the others four with edible oils:

sunflower, corn, olive and soybean. The contents of FA in each oil were determined by GC and

they are shown in Table 4.1. The percentages of FA do not sum 100 % because there are some FA

that could not be classified by GC. Here we are not going to consider myristic and myristoleic FA

because there is no information from GC.

TABLE 4.1. FA percentual presence in edible oils by GC. C: carbon chain length; ndb:
number of double bounds.

FA Symbol C:ndb Sunflower Corn Olive Soybean
Myristic Mi C14:0 0.00 0.00 0.00 0.00
Myristoleic Ml C14:1 0.00 0.00 0.00 0.00
Palmitic Pa C16:0 6.30 11.30 15.60 11.60
Palmitoleic Pl C16:1 0.00 0.00 1.10 0.12
Stearic Es C18:0 2.90 2.30 1.60 4.30
Oleic Ol C18:1 29.80 36.10 65.50 21.20
Linoleic Li C18:2 59.40 47.60 14.80 56.50
Linolenic Ln C18:3 0.00 1.70 0.52 4.10

TOTAL 98.40 99.00 99.12 97.82
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Since the hydrogen presence in each FA is known, we also know the contribution that each FA

gives to the metabolites or spectrum peaks (see the protonic matrix A in Table 4.2). In our case

there are eight metabolites.

TABLE 4.2. Protonic matrix A

Metabolite (ppm) Mi Ml Pa Pl Es Ol Li Ln Water
5.272 0 2 0 2 0 2 4 6 0
4.680 0 0 0 0 0 0 0 0 2
2.722 0 0 0 0 0 0 2 4 0
2.260 2 2 2 2 2 2 2 2 0
1.976 0 4 0 4 0 4 4 4 0
1.534 2 2 2 2 2 2 2 2 0
1.262 20 12 24 16 28 20 14 8 0
0.875 3 3 3 3 3 3 3 3 0

We used the following notation:

(i) ~x is the relative content of FA (vector of size 8, including water).

(ii) ~z is the content of metabolites in arbitrary units (vector of size 8).

(iii) A is the protonic matrix that links the FA with the metabolites through ~z = A~x.

We will use eight echoes acquired at times ~t (vector of size 8). The digital phantom m con-

sisted in 5 circles (or vials, l). We added linear inhomogeneity to the field f(x, y) = αx+βy. The

inhomogeneity field map from m can be calculated using:

f(m) =
φ2(m)− φ1(m)

2π ·∆t
(4.5)

where ∆t is the difference between TEn+1−TEn, φn is the phase from the image acquired at TEn.

Each vial l was acquired at echo times tj . The assigned signal intensity p for each metabolite b and

for each vial correspond to data in Table 4.3 (the over-line indicates continues functions):

m̄j
l (x, y) =

8∑
b=1

pb,l

[∏(√
(x− xc)2 + (y − yc)2

rl

)
e−tj/T2b e−i2πtjσbγB0 e−i2πtjf(x,y)

]
(4.6)



45

tj =
[

2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4
]

ms

σb =
[

5.272 4.680 2.722 2.260 1.976 1.534 1.262 0.875
]

ppm

T2b =
[

46.5 2000 48.4 47.2 36.3 37.6 82.6 79.4
]

ms

f(x, y) = 30x+ (−30)y Hz

(4.7)

where xc and yc correspond to the center of each vial circle and r is its ratio, σbγB0 is the chemical

shift in Hertz, and T2 are extracted from Peterson et al.,2013 work (Peterson & Mansson, 2013)

with

S̄j(x, y) =
5∑
l=1

m̄j
l (x, y) (4.8)

In k space the same expression for M̄ j
l (kx, ky) is:

F

{
8∑
b=1

pb,l

[∏(√
(x− xv)2 + (y − yv)2

rl

)
e−i2πtj(αx+βy)

]}
e
−i2πtj

(
1

2πT2b+σbγB0

)
(4.9)

The simulated raw data is

S̄j(kx, ky) =
5∑
l=1

M̄ j
l (kx, ky) e

−i2πtj
(

1
2πT2b

+σbγB0

)
(4.10)

and each echo will be the DFT (Discrete Fourier Transform) of the samples Sj(kx, ky) which we

will call sj(x, y).

Table 4.3 shows the final ~z value normalized for each oil and water sample. Figure 4.1 shows

the simulated image phantom obtained applying the inverse Fast Fourier transform in 2D, and the

field variation applied. For this specific case the variation field comes from -15 Hz to 15 Hz across

the y axis, being zero in the center of the image. The circles in the image represent different oils

and water samples. The left upper circle represents sunflower, the right upper circle represents

corn, the central circle represents water, the left down circle represents olive and the final one

represents soybean:
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TABLE 4.3. Phantom metabolic presence for sunflower (G), corn (C), water (W), olive (O)
and soybean (S) from GC

Metabolite (ppm) G C W O S
5.272 9.521 8.739 0 6.263 9.349
4.680 0 0 100 0 0
2.722 3.806 3.268 0 1.015 4.145
2.260 6.304 6.343 0 6.351 6.267
1.976 11.430 10.943 0 10.497 10.497
1.534 6.304 6.343 0 6.351 6.267
1.262 53.178 55.664 0 62.729 52.810
0.875 9.457 9.514 0 9.526 9.401

FIGURE 4.1. Simulated digital image phantom for a TE = 18.4ms with magnetic field
inhomogeneities [30 -30] Hz. (A) Absolute value. (B) Real value. (C) Imaginary value.
(D) Sample correspondence: G sunflower, C corn, W water, O olive, Y soybean

For this specific case the variation field is from -15 Hz to 15 Hz across the diagonal. In order

to know how the inhomogeneities field added affect the results, we made some tests (Table 4.4) for

different α and β values.

4.3.2. Metabolite estimation

To estimate the metabolite presence in each pixel we based on the formulation proposed by

(Peterson & Mansson, 2013) (for simplicity of notation we dropped the arguments x and y)
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TABLE 4.4. Different α and β values used

Test α (Hz) β (Hz)

1 0 0

2 5 -5

3 10 -10

4 15 -15

5 30 -30

6 60 -60

s(t) =

(
Weηwt + F

M∑
m=1

zme
ηmt

)
eψ̂t (4.11)

where s(t) is the signal coming from the pixel at echo time t, W is the amount of water, ηw =

1/T2w, F is the amount of fat, ηm = 1/T2m + i2πσmγB0, and ψ̂ is the magnetic field inhomo-

geneities: ψ̂ = i2πψ −R∗2 with R∗2 = 1
T2∗ where zm are the relative content of each metabolite.

To simplify notation we write the previous equation considering water as a metabolite (equa-

tion 4.12):

s(t) =

(
8∑

m=1

zmEm(t)

)
eψ̂t (4.12)

whereEm(t) = eηmt and we want to solve equation 4.13 using a ~z minimization showed in equation

4.14:

~S = Ψ(ψ̂) E ~̂z. (4.13)

min
~z
||Ψ(ψ̂) E ~̂z − ~S||22

s.t. zm ≥ 0
(4.14)

Considering the eight echoes, the signal s(t) can be represented as the vector ~Sn×1, the intrinsic

relaxation times matrix T2 asEn×8, the magnetic field variation Ψ(ψ̂)n×n, and the metabolites ~̂z8×1

:
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~Sn×1 =


s1

...

sn

 (4.15)

Ψ(ψ̂)n×n =


eψ̂t1 · · · 0

... . . . ...

0 · · · eψ̂tn

 (4.16)

En×8 =


E1(t1) E2(t1) · · · E8(t1)

...
... . . . ...

E1(tn) E2(tn) · · · E8(tn)

 (4.17)

~̂z8×1 =


ẑ1

...

ẑ8

 (4.18)

Due to the presence of magnetic field inhomogeneities we corrected the ˜̂
ψ value using the

iterative procedure proposed by Yu et al. (Yu et al., 2007):

(i) We assigned an initial value for the complex magnetic field ˜̂
ψ = ψ0. We used 0.

(ii) With ˜̂
ψ estimated, we computed the complex values for ẑm minimizing:

min
~̂z
||Ψ(ψ̂) E ~̂z − ~S||22

s.t. ẑm ≥ 0

(4.19)

(iii) We approximate equation 4.12 by Taylor expansion with only linear terms. We get

equation 4.20:
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si =

(
8∑

m=1

ẑmEm(ti)

)
eψ̂ti ∆ψ+

E1(ti) e
ψ̂ti ∆z1 + E2(ti) e

ψ̂ti ∆z2 + E3(ti) e
ψ̂ti ∆z3+

E4(ti) e
ψ̂ti ∆z4 + E5(ti) e

ψ̂ti ∆z5 + E6(ti) e
ψ̂ti ∆z6+

E7(ti) e
ψ̂ti ∆z7 + E8(ti) e

ψ̂ti ∆z8

(4.20)

It can be arranged as:

~S =Ψ(ψ̂) E ~̂z+

Ψ(ψ̂)


∑8

m=1 ẑmEm(t1) E1(t1) E2(t1) · · · E8(t1)
...

...
... . . . ...∑8

m=1 ẑmEm(tn) E1(tn) E2(tn) · · · E8(tn)




∆ψ̂

∆ẑ1

...

∆ẑ8


(4.21)

and the final signal (~S) can be written as:

~S = Ψ(ψ̂) E ~̂z + Ψ(ψ̂) B ∆~̂z (4.22)

where

B =


∑8

m=1 ẑmEm(t1) E1(t1) E2(t1) · · · E8(t1)
...

...
... . . . ...∑8

m=1 ẑmEm(tn) E1(tn) E2(tn) · · · E8(tn)

 (4.23)

∆~̂z =


∆ψ̂

∆ẑ1

...

∆ẑ8

 (4.24)

Therefore, the error terms can be obtained by another least-squares inversion:

∆~̂z =
(
BTB

)−1
BT

(
Ψ(−ψ̂) ~S − E ~̂z

)
(4.25)
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or:

min
∆~̂z

∣∣∣∣∣∣(Ψ(ψ̂) E ~̂z + Ψ(ψ̂) B ∆~̂z)− ~S
∣∣∣∣∣∣2

2

s.t. ∆ẑm ≥ 0

(4.26)

(iv) Save the objective function from both least-squares minimization: o from ~̂z and q from

∆~̂z. We also save ∆~̂z and ~̂z.

(v) We repeat the iterative process for each pixel from (ii) to (iv) until both of the following

convergence criterion is achieved:

o < ε (4.27)

q < ε (4.28)

where ε is a small value. In this work ε = 0.1 Hz.

If the last criterion is not achieved, a predefined maximum number of iterations (20)

were used. In that case we find the minimum q, and we used its correspondent ~̂z and ∆~̂z

values.

4.3.3. FA estimation

To estimate FA presence in each pixel we used the formulation of chapter 3. The upper and

lower bounds are given in Table 4.5. Since the water sample has no FA it was not considered in

the estimation. Two physical constraints were reached: upper bound for palmitic and palmitoleic

FA for olive oil

4.4. Results

The field map correction using the first optimization is shown in Figure 4.2. We employed a

mask to eliminate the data outside the vials. The initial field map was considered as zero. The eight

estimated metabolites for the edible oils and water with their correspondent theoretical values are

shown in Figure 4.3 (detail in Table 4.6) for test 5 (inhomogeneities field of [30 -30] Hz). The

minimum error found was 0.026 % in 4.680 ppm metabolite for soybean oil. The maximum error

found was 5.41 % for the methylene β carboxil in 1.534 ppm for the olive oil. Figure 4.4 shows the
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TABLE 4.5. Constraints used for the FA estimation with one standard deviation. LB: lower
bound. UB: upper bound

FA LB UB

Pa 2.49 19.41

Pl 0.00 1.64

Es 0.45 5.45

Ol 1.97 84.73

Li 0.00 79.88

Ln 0.00 5.93

metabolites image estimation results from the simulated digital phantom without and with phase

correction.

FIGURE 4.2. (A) Field inhomogeneity estimated from digital phantom created with an
inhomogeneity field of [30 -30] Hz without phase correction, and (B) with phase correction

The estimated FA from the metabolites previously calculated from the edible oils with their

original percentage GC value is shown in Figure 4.5 (detail in Table 4.7). There are no myristic

and myristyoleic FA estimation because they are not present in the original GC (Table 4.1). The

minimum error found was 0.38% for the palmitoleic FA for the olive oil. The maximum error

found was 13.64 % for oleic FA for the olive oil. Figure 4.6 shows the results of the FA estimation

in the simulated phantom from the metabolite data.

The metabolite and FA estimation from the tests 1, 5 and 6 (Table 4.4) are shown in Figure

4.7 and Figure 4.8, respectively. It shows the absolute error between the theoretical values (for

metabolites and FA) and the estimated values.
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FIGURE 4.3. Comparison between the metabolic estimation and original values for each
oil and water sample (test 5 with an inhomogeneity field of [30 -30] Hz).

4.5. Discussion

The proposed method achieves good estimations for the metabolites. The biggest errors are

due to an inaccurate estimation of the field inhomogeneities. Without field inhomogeneities, the

results have minimum errors (less than 2 %, Figure 4.7A). Our field map estimation (Figure 4.2)

has wraparound when the inhomogeneities field is [30 -30] Hz. The same case can be seen when

the field inhomogeneities is [60 -60] Hz (Figure 4.7). In these two cases there is a growing es-

timation error: around 12 % with 30 Hz field, and around 50 % with 60 Hz field in 0.875 ppm

metabolite, for corn oil; and around 9 % with 30 and 60 Hz field, in 1.534 ppm metabolite, for

olive oil. These two oils have wraparound problems which suggests there must be a correction

after the field estimation, in order to have a better metabolite estimation, below 1.6 ppm. If the
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TABLE 4.6. Metabolic percentage estimation (test 5 with an inhomogeneity field of [30
-30] Hz corrected). Est: estimated. Eabs: absolute error from the theorical values

Metabolite Sunflower Corn Water Olive Soybean

(ppm) Est. Eabs Est. Eabs Est. Eabs Est. Eabs Est. Eabs

5.328 9.479 0.041 8.561 0.178 0.400 0.400 6.193 0.071 9.470 0.076

4.680 0.031 0.031 0.048 0.048 96.794 3.206 0.069 0.069 0.026 0.026

2.722 3.537 0.269 2.859 0.409 0.474 0.474 0.977 0.038 3.940 0.205

2.260 7.386 1.064 8.097 1.754 0.572 0.575 6.162 0.188 7.352 1.085

1.976 11.680 0.250 9.903 1.040 0.394 0.394 11.844 1.346 10.844 0.347

1.534 3.746 2.559 6.468 0.125 0.622 0.622 0.941 5.410 3.950 2.317

1.262 54.230 1.051 55.540 0.169 0.251 0.251 62.377 0.353 54.464 1.653

0.875 9.897 0.440 8.486 1.029 0.294 0.294 11.406 1.880 9.920 0.519

TABLE 4.7. FA percentage estimation from corrected phase. Est: estimated. Eabs: abso-
lute error.

Sunflower Corn Olive Soybean

FA Est. Eabs Est. Eabs Est. Eabs Est. Eabs

Pa 9.02 2.72 15.12 3.82 4.46 11.14 9.90 1.70

Pl 0.71 0.71 1.17 1.17 0.72 0.38 0.65 0.55

Es 0.75 2.15 2.47 0.17 4.35 2.75 4.07 0.23

Ol 34.43 4.63 30.92 5.18 79.14 13.64 27.08 5.88

Li 48.76 10.64 41.72 5.88 9.08 5.72 50.18 6.32

Ln 2.75 2.75 3.36 1.66 0.37 0.13 4.07 0.03

metabolite estimation have errors larger than 2 %, our FA estimation will have errors larger than 12

%. The FA estimation from the edible oils is possible using an optimization algorithm with known

constraints for the minimum and maximum expected percentages. These constraints are impor-

tant due to the existence of many local minimum. We defined them based on known information

from GC. If there is no information to establish the boundaries, the optimization algorithm will not

find the expected solution. The field inhomogeneities added to the phantom makes a harder meta-

bolic estimation, and consequently, the FA estimation. With a homogeneous field the proposed

algorithm can find a FA estimation with an error less than 13 % (Figure 4.8A).
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FIGURE 4.4. Metabolites estimation for each oil and water sample (test 5 with an inhomo-
geneity field of [30 -30] Hz corrected). The gray scale shows the percentage of presence.

4.6. Conclusion

The proposed optimization algorithm allows estimating the metabolite in a digital image phan-

tom using GC as a priori information. The estimation error when there are no field inhomogeneities

has excellent results (lower than 2 %) comparing with GC original data. This method can predict

the metabolite presence as an MR image, which gives the spatial location of them, in a faster way

than multiple voxels acquired with MRS. This is useful to estimate not only the presence of FA

in liver, but to analyze different metabolites presence in brain, where some metabolite markers

are used, to analyze for example: multiple sclerosis, epilepsy, among others ((Stagg & Rothman,



55

FIGURE 4.5. Comparison between FA estimation and original values for each oil (test 5
with an inhomogeneity field of [30 -30] Hz)

FIGURE 4.6. FA estimation from the simulated phantom for the edible oils corrected. The
gray scale means the percentage presence.

2013)). From the metabolite information we can estimate the FA presence in each pixel. We pos-

tulate that this FA estimation method is important because it allows to study the time evolution

and characteristics of the fat distribution. We demonstrated its feasibility using a simulated digital

phantom with the FA composition from four edible oils and water.
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FIGURE 4.7. Absolute errors between original and estimated data for metabolites. In the
right is the estimated field map correction of the simulated phantom which shows the inho-
mogeneity field added to vertical and horizontal axis. (A) [0 0] Hz. (B) [30 -30] Hz. (C)
corrected [30 -30] Hz. (D) [60 -60] Hz. (E) corrected [60 -60] Hz.
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FIGURE 4.8. Absolute errors between original and estimated data for FA. (A) [0 0] Hz.
(B) [30 -30] Hz. (C) corrected [30 -30] Hz. (D) [60 -60] Hz. (E) corrected [60 -60] Hz.
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4.8. Future work:

Once we have successfully estimated the percentage presence of the FA in a digital image

phantom with magnetic field inhomogeneities, the next step is adding noise to the simulated phan-

tom. After that we can try with real images from the 1.5T and 3.0T MR equipment with some

edible oils.
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5. FINAL CONCLUSION

In this work we develop and validate an MRI technique to improve the early diagnosis of PH

which would be useful to evaluate the hepatic steatosis, measuring in an indirect way how ill is the

liver due to an resistance increase. This technique needs to be characterized, measuring precision,

reproducibility and accuracy in a larger cohort. Beside that, is also necessary to work on reducing

acquisition time.

We develop a new methodology to characterize the hepatic fat in a liver voxel using MRS,

our next step is work on biological tissue to test this methodology. Also is necessary to measure

precision, reproducibility and accuracy in a larger cohort, and compare it with its gold standard

(GC). After that it could be used to evaluate the ill progression in time.

Finally, we develop a probe of concept technique to obtain metabolic quantitative images.

These images can quantify and characterize the FA from a simulated digital phantom with edible

oils and water information but, without field inhomogeneities. We need to solve the phase problem

to have better results, and then measure the precision, reproducibility and accuracy comparing with

other proposed algorithms.
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