
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

JAVASCRIPT MV* FRAMEWORKS FROM

A PERFORMANCE POINT OF VIEW

SEBASTIÁN VICENCIO RODRÍGUEZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JAIME NAVÓN COHEN

Santiago de Chile, January 2014

c© 2014, SEBASTIÁN VICENCIO RODRÍGUEZ

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

JAVASCRIPT MV* FRAMEWORKS FROM

A PERFORMANCE POINT OF VIEW

SEBASTIÁN VICENCIO RODRÍGUEZ

Members of the Committee:

JAIME NAVÓN COHEN

ROSA ALARCÓN CHOQUE

LIUBOV DOMBROVSKAIA

MIGUEL RÍOS OJEDA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, January 2014

c© 2014, SEBASTIÁN VICENCIO RODRÍGUEZ

To all people who have always

supported me

ACKNOWLEDGEMENTS

In general terms, I would like to thank all the people that always supported me, and

believed that I would be able to finish this research in time. It is a good feeling knowing

that you are truly supported.

Firstly, I would like to thank my advisor, Jaime Navón. Ever since I had the idea

to enter this Master’s program, he has guided me and let me look for a research subject

that I felt passionate about. It was not an easy task, and it took a really long time, but it

finally came out as a very interesting and inspiring subject. From this point onwards, he

continued to guide me throughtout the whole research process and I am very grateful for

that.

Secondly, I would like to thank my family and my girlfriend, for always supporting

me, right from the beginning of this research project, and understanding when I had to

spend my free time reading and studying. Without their support, I could not have finished

this.

Finally, I would like to thank my friend Martı́n Concha, who helped me in one way or

another, giving me advise in the most critical moments. I know there are also other people

that helped me, without me even noticing, and I appreciate that too.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

ABSTRACT . viii

RESUMEN . ix

1. CHAPTER 1: INTRODUCTION . 1

1.1. What is the Web? . 1

1.2. How the Web works . 3

1.2.1. Client and Server architecture . 3

1.2.2. Browsers . 3

1.2.3. Web applications . 4

1.3. Traditional Web applications . 5

1.4. Ajax appearance . 5

1.5. JavaScript frameworks . 7

1.6. Single-page applications (SPA) . 7

1.6.1. Issues related to SPAs . 9

1.7. JavaScript MV* frameworks . 9

1.7.1. MVC design pattern . 9

1.7.2. MV* concept . 11

1.8. Hypothesis . 13

1.9. Objectives . 14

1.9.1. Overall objective . 14

1.9.2. Specific objectives . 14

2. CHAPTER 2: JAVASCRIPT MV* FRAMEWORKS FROM A PERFORMANCE

POINT OF VIEW . 16

v

2.1. Preamble . 16

2.2. Methodology . 18

2.3. Related work . 20

2.4. Tests performed . 22

2.4.1. Initial Loading Tests . 23

2.4.2. Interaction Tests with the Application 25

2.5. Analysis and Discussion . 29

2.6. Conclusion and future work . 31

3. CHAPTER 3: CONCLUSION AND FUTURE RESEARCH 33

3.1. Review of the Results and General Remarks 33

3.2. Value of the research . 34

3.3. Future Research Topics . 34

3.4. Future of JavaScript MV* frameworks 35

References . 36

vi

LIST OF FIGURES

1.1 Client and server interaction . 3

1.2 Traditional Web application vs Asynchronous Web application pattern 6

1.3 SPA and server communication . 8

1.4 MVC server-side interaction . 10

1.5 JavaScript MV* interaction . 12

2.1 Initial Loading Tests: First view metrics (Load time and Start Render time) . . 24

2.2 Initial Loading Tests: First view metrics (Speed Index) 25

2.3 Initial Loading Tests: Repeat view metrics (Load time and Start Render time) 25

2.4 Initial Loading Tests: Repeat view metrics (Speed Index) 26

2.5 Interaction Tests: Adding one task . 27

2.6 Interaction Tests: Editing one previously added task 28

2.7 Interaction Tests: Deleting one previously added task 28

2.8 Interaction Tests: Adding a group of tasks 29

2.9 Interaction Tests: Deleting a group of tasks 30

vii

ABSTRACT

The architecture of Web applications has changed dramatically in the last few years.

From a server taking a protagonistic role and a client limited to supply the view compo-

nent, to an interactive client that contains most of the application code.

The rapid development of the mobile Web has enhanced this tendency with the rise

of what is known as Single Page Application (SPA). This change towards the client side

brings together a substantial increase in the size of the JavaScript code, which not only is

involved in user interaction, but also in other tasks such as routing and data management.

To manage this more complex reality, several frameworks that implement variants of the

MVC pattern (known as MV*) have been proposed and built. Each one of these frame-

works has its own relative merits in terms of how well they support software development

and maintenance. However, very little information exists about the effects that these com-

plex pieces of software have in the final performance of the application. In addition, there

is little information about how these frameworks compare between them in terms of per-

formance. In this work we put a standard Web application, implemented using the most

popular frameworks, through a series of performance tests in order to get answers to some

of these questions. The tests were first conducted using the jQuery library, and then using

the most popular MV* frameworks. The results show that there are differences between

the frameworks in terms of performance, but their use does not introduce heavy costs in

terms of performance to the Web application itself.

Keywords: JavaScript, Single page applications, JavaScript MV* frameworks, Per-

formance, Frontend, jQuery, Backbone.js, Ember.js, AngularJS, Knock-

outJS, TodoMVC

viii

RESUMEN

En los últimos años, la arquitectura de una aplicación Web ha cambiado en forma

importante. Desde un servidor que tomaba un rol protagónico y un cliente que se limitaba

a proporcionar el componente visual, hacia un cliente interactivo que contiene la mayor

parte del código de la aplicación.

El avance acelerado de la Web móvil ha acentuado esta tendencia dando origen a

las llamadas aplicaciones de una sola página (SPA, por su nombre en inglés). Este cam-

bio de énfasis hacia el lado del cliente trae consigo un aumento en la cantidad de código

JavaScript de la aplicación, el cual se encarga no sólo de la interacción con el usuario, sino

que también de tareas de enrutamiento, manejo de datos, etc. Para manejar adecuadamente

esta nueva realidad, han surgido numerosos frameworks que implementan variaciones del

patrón MVC en el lado del cliente (y que se conocen como MV*). Cada uno de estos

frameworks tiene su mérito relativo en términos de qué tan bien facilitan la tarea de desar-

rollo y mantención del código de la aplicación. Sin embargo, no existe mucha información

sobre los efectos que estas piezas complejas de software tienen en términos de desempeño.

Además también hay poca información acerca de cómo estos framworks se comparan en-

tre ellos en términos de desempeño. En este trabajo se presentan pruebas de desempeño a

las que fue sometida una misma aplicación Web estándar, implementada primero usando

sólo la librerı́a jQuery, y luego bajo los frameworks MV* más populares. Los resultados

obtenidos muestran que, aunque hay diferencias entre los diversos frameworks, la uti-

lización de ellos no introduce una penalización significativa en términos de desempeño de

la aplicación Web.

Palabras Claves: JavaScript, Single page applications, JavaScript MV* frameworks,

Performance, Frontend, jQuery, Backbone.js, Ember.js, AngularJS,

KnockoutJS, TodoMVC

ix

1. CHAPTER 1: INTRODUCTION

1.1. What is the Web?

The Web is a word that we used to hearing in our everyday’s lives. It’s inserted

in everything: news, business, entrepreneurship, school and even entertainment. Phe-

nomenoma like social networking (with Facebook and Twitter, among others) are just

proof that everything works around the Web. Yet many large-scale systems (enterprise,

banks) are built upon Web technologies, so it is clear that the Web is a very important

ecosystem and is here to stay for a long time.

But what exactly is the Web? Its long name is World Wide Web (WWW), and it was

invented by Tim Berners-Lee in 1989 (Berners-Lee, 1989). To put it in simple words: it’s

a system of interlinked documents accessed via the Internet. In order for the Web to work,

three main components are required:

(i) HTML: HyperText Markup Language, it is the language of the documents used

in the Web. HTML is composed by elements (HTML tags), which contains

attributes (some optional and used to define extra information) (Docs, 2014).

These elements are used to surround or markup the different pieces of con-

tent of the document, and each one has a different use (depending on seman-

tics). An HTML document has a hierarchical tree structure, which means one

root element (usually <html>), and the rest as children elements. A typical

HTML structure includes a <head> for several configurations (not visible) and

a <body> wherein resides the visible content. The example 1.1 shows a basic

HTML document.

Example 1.1. Basic HTML document structure

<html>

<head>

<title>A page title</title>

</head>

1

<body>

<h1>Visual title header</h1>

<div>Some content</div>

</body>

</html>

(ii) URI: Uniform Resource Identifier, it is a unique text identifier of a Web docu-

ment or Web resource. Hyperlinks inside an HTML document reference a target

document using URIs. The basic syntax of an URI is:

scheme name://hierarchical part?query part

The scheme name, in the Web context, indicates which protocol to use (com-

monly http). The hierarchical part, on the other hand, refers to the unique

resource, in a hierarchical way (general to particular). The query part, at the

end, is usually optional, and is used to request extra information (for example,

filtering or sorting results).

(iii) HTTP: HyperText Transfer Protocol, it is the protocol used to establish a com-

munication (using the Internet) between a machine that needs a Web resource or

document, and the one that has it. The two sides communicate using a request-

response paradigm in a synchronous way, meaning that one side requests a re-

source and then it has to wait until the other side sends a response. HTTP needs

a URI to work, but also defines HTTP methods to indicate which action has

to be performed on the resource. The most common methods are: GET (re-

trieve resource), POST (create resource), PUT (modify the whole resource) and

DELETE (delete resource). The combination of a URI and an HTTP method

makes possible the navigation through the Web.

2

1.2. How the Web works

1.2.1. Client and Server architecture

The Web resources or documents of which the Berners-Lee (1989) proposal talks

about have to reside somewhere in order to be able to be fetched. That place is called a

server. It is a machine that stores information, and that information can be retrieved thanks

to a program running inside of it, called Web server. The Web server understands HTTP,

meaning that it can receive an HTTP request for a specific document or resource, and

then send back an HTTP response with the document itself. Which document is sent back

as a response is not the responsibility of the Web server, but it is from another program

(software) running inside the server that can interpret a URI and return the corresponding

document or resource.

On the other side of the HTTP communication, there is the entity that requests a

document. This entity is called client, and it also understands HTTP, so after requesting a

document, it can receive an HTTP response from the server, which includes the document

or resource inside its content. The interaction is shown en Figure 1.1.

FIGURE 1.1. Client and server interaction through HTTP. Source:
https://developer.mozilla.org/en-US/docs/Web/Guide/
HTML/Forms/Sending and retrieving form data

1.2.2. Browsers

One implementation of a client is a Web browser, a software application used for

retrieving Web resources (using HTTP) and then presenting them to the user. A browser

can generate an HTTP request, and then receive an HTTP response from a server, which

includes an HTML document. One of the main tasks of this software application is being

3

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Sending_and_retrieving_form_data

able to parse the HTML document (building a tree called Document Object Model or

DOM, which contains an abstraction of every HTML element), and then interpret every

element inside of it, in order to visually render the content of the document to the user.

The HTML document not only includes content, but also references to style sheets

(in a language called CSS) used for adding style to the content of the document, and it

usually includes also scripts in a language called JavaScript, used for adding behavior to

the document (for example, showing a message when the user clicks a button). The CSS

files and JavaScript scripts are also parsed by the browser in order to add these features to

the document.

In short, a Web browser is an application used to browse the Web, entering URIs and

rendering the corresponding result to the user.

1.2.3. Web applications

A browser can render HTML documents, as the result of a response from a server.

Usually this server provides related resources, which together form a set of Web doc-

uments. When this set includes only static resources (which may not change by user

interaction), it is refered to as a Website.

However, when this set of documents includes dynamic resources, advanced user in-

teractions and access to advanced browser capabilities, we are talking of a more complex

piece of software called Web application (Borodescu, 2013). As Owen (2010) points out:

“a Web application is an application that uses the Web and a simple browser to interact

with the user”. The difference between a Web application and a desktop application is that

in a Web application, most of the logic resides in a remote server, which executes code

depending on the request made by a client (browser). This approach implies that every

time a request is made, the browser has to wait until the response is received, giving the

user the perception of an interruption. As it is explained in the next sections, there has

been a recent trend where some of this application logic has been moved from the server

to the browser, in the form of JavaScript (the language that a browser can execute).

4

1.3. Traditional Web applications

The first Web applications of the 90s were completely different to a modern Web

application. As was mentioned above, for years the main part of the content of a Web ap-

plication was processed and executed in a remote server, which is usually called backend,

because from a user perspective, the application runs in a back or hidden place.

These Web applications only presented static views to the user, and the only way to

change these views was through an explicit action of the user (for example, clicking a

link or filling and submiting a form). These actions generated a request to the server in

a synchronous way (because of the HTTP nature), which means that the user had to wait

for the whole roundtrip to the server before getting a response to the given request. What

the user saw in the meantime was a blank screen until the new resource was loaded. This

approach lasted for more than a decade, and it was considered the standard way to access

a Web application.

1.4. Ajax appearance

However, no one considered at that time that a request to the server could be gener-

ated not only explicitly by a user action, but also through code executed by the browser,

JavaScript code to be more precise.

Microsoft introduced in Internet Explorer 5.0 an object called XMLHttpRequest as an

ActiveX control (MSDN, 2013), which enabled the browser to make asynchronous HTTP

requests, and receive an XML document as a response. In time, this object was adopted by

all major browser vendors (Mozilla, Apple, Google), implemented as a JavaScript object,

and even standardized in the W3C (W3C, 2012). The name (abbreviated XHR) is merely

inherited and it is not restricted to XML responses, but it can also handle JSON, HTML

and even plain text responses. The XHR object provides an easy way to get data from a

server without doing a full page refresh (MDN, 2014).

If the XHR object is used in combination with some manipulation of the elements

in the DOM of a Web page, it is possible to update the content of a Web application in

5

the background, giving the user the perception that it was done automatically, without

interruptions (no more blank screens). This approach is known as Ajax, a term that was

introduced by Garrett (2005). The difference between a traditional or classic Web appli-

cation and an Ajax application is shown in Fig. 1.2.

FIGURE 1.2. The synchronous interaction pattern of a traditional web application
(top) compared with the asynchronous pattern of an Ajax application (bottom).
Source: Garrett (2005)

6

The introduction of the Ajax approach completely changed the way in which Web de-

velopment was done. From that moment on the client side, known as application frontend,

began to have much more responsibility and importance.

1.5. JavaScript frameworks

Since the introduction of Ajax, the JavaScript code size of a Web application started

to grow at a very fast rate. However, handling an Ajax request with pure XHR JavaScript

objects is a bit verbose and a repetitive task if an application makes a lot of use of this

feature (a symptom known as boilerplate code).

The Web community addressed this issue, and some solutions were developed in or-

der to reduce code writing and facilitate the development of a Web application. These

solutions grouped the main funcionalities for which JavaScript is used for in a JavaScript

library: DOM handling (with the ability to select any HTML element), capture events

originated by the user and Ajax requests. The library exposes a set of functions to access

all those features. There are several JavaScript libraries like jQuery, Prototype and YUI,

among others. jQuery is the most popular of them, with more than 50% of all websites

using it, and with a JavaScript library market share of 90.2% (Gelbmann, 2013).

These solutions are part of the first JavaScript Web frameworks. But what is a Web

framework? According to Shan and Hua (2006), it is “a reusable, skeletal, semi-complete

modular platform that can be specialized to produce custom web applications”. So a

JavaScript (JS) Web Framework acts as a frontend framework, which means that, indepen-

dently of the backend side, this kind of framework adds behavior to the Web application

after it has been loaded in the browser.

1.6. Single-page applications (SPA)

If we take the Ajax approach and apply it throughout the whole Web application, what

we get is an application that, besides the first load, never reloads a page. HTTP requests

are done in the background and only for fetching data, not HTML documents. Such Web

7

application is known as Single-page application (SPA). Mesbah and van Deursen (2007)

give a simple definition of what an SPA is: “The single-page web interface is composed

of individual components which can be updated/replaced independently so that the entire

page does not need to be reloaded on each user action”.

Single-page apps have the ability to redraw any part of the visible content (User in-

terface) without requiring a server roundtrip to retrieve HTML (Takada, n.d.). It works as

follows: the browser makes a request to a remote server, which responds with an HTML

document that can contain only a JavaScript resource reference, or it can contain some

basic initial HTML too. This JavaScript reference points to the whole Web application,

which is initialized and executed in the frontend by the browser. If the user interacts with

the application, new data may be required from the server, but instead of reloading the

entire page, an Ajax request is done in the background to get the data, and the DOM is

updated with the new content (Petersson, 2012).

In terms of data manipulation in an SPA context, what a browser typically access in a

remote server when a request is made is known as an Application Programming Interface

(API). It is an intermediary that allows a client to retrieve data in a predefined format (for

example, JavaScript Object Notation or JSON) which is understood by both client and

server. Figure 1.3 shows the typical communication flow of an SPA.

FIGURE 1.3. SPA and server communication. Source: Petersson (2012)

8

1.6.1. Issues related to SPAs

The SPA approach is recent and represents a growing trend (Podila, 2013). The main

reason to develop an application this way is that it allows us to offer an experience to

the user closer to what it would be in a native application (Takada, n.d.). An SPA is an

application full of JavaScript code (the whole application is executed in the browser). This

implies that the JavaScript code of a modern Web application is growing fast, and jQuery

is (still) the most used library to achieve this goal.

The jQuery library provides lots of features to ease the SPA development, however, it

does not provide a way to structure and organize code (Osmani, 2013). It is not hard to

end up with a mix of code that has different responsibilites, but only for being all together

generates confusion in the developer itself. This is a known problem and it is called

spaghetti code (SourceMaking, n.d.). As a result, the code of the application tends to be

very difficult to maintain, even for the developers that first wrote it.

1.7. JavaScript MV* frameworks

The Web community addressed the spaghetti code issue and, like has always hap-

pened in the past, solutions have been created. The main goal is to build “something” that

provides structure to an SPA (from an architectural perspective), and a way to organize its

code. If this goal is accomplished, the result is a maintainable Web application.

The solutions that have been developed accomplish this goal, but also add the ability

to implement SPA common features/tasks, like DOM manipulation, data management and

syncing (using Ajax), a way to generate HTML easier (templating) and URL routing,

among others. All of those solutions use a design pattern or paradigm known as Model-

View-Controller (MVC), so first we are going to go deeper into this concept.

1.7.1. MVC design pattern

MVC is an architectural design pattern that provides a separation of concerns inside

an application. Three concerns are particularly identified and isolated: data management

9

(Model), user interface generation (View), and application or business logic (usually trig-

gered by user interaction) to tie up the Model and the View (some people even call it the

“glue” between Model and View).

The MVC pattern was first introduced as part of the Smalltalk-80 language, but it has

been modified since then. Since we are focused on the modern MVC applied to the Web,

we will not discuss the first MVC release. In a server-side Web application, MVC has to

deal with the HTTP protocol, which is stateless: there is no open communication between

client and server (a new connection has to be established with each client request). Thus it

works as follows: the application receives an HTTP request (through a Web server), and it

has to interpret the resource request based on the URL. When the resource is identified (by

a Routing component), the Controller takes control: it may access the data source through

the Model (if needed), it generates HTML using the View component, and finally delivers

the content to the client through an HTTP response. Figure 1.4 shows this approach.

MVC

8

Controller Model

Routing

View

HTTP request

HTTP response

FIGURE 1.4. MVC server-side interaction. Application logic is in the server.

10

1.7.2. MV* concept

The JavaScript solutions to spaghetti code take the MVC design pattern (used at

server-side applications) and move it to the client or frontend. This means that the server

loses its original focus, and is now only used as an API (like it was explained above).

The client, on the other hand, is now responsible for all MVC interaction. However, these

solutions do not take the server-side MVC concept in the same way; they do some vari-

ations depending on what each solution believes it is a better approach. This means that

the MVC design pattern is implemented with variations (MVP, MVVM, MVC-ish), so the

design pattern they use is commonly refered to by the community as MV* (Model-View-

Anything) (Osmani, 2012, 2013). These concrete solutions come to life as JavaScript MV*

frameworks, as they provide a complete and complex platform to build Web applications

executed at the client-side.

The MV* flow is a bit different from server-side MVC: after the initial load of the ap-

plication, there is a component (the “’*” part of MV*) listening to user interaction (through

what is known in JavaScript as event bindings). When the user performs some action, this

component changes the model if necessary (which may need to persist data to a remote

server). The View component is observing Model changes, so if a Model is changed, the

View changes the DOM with the corresponding updates. Figure 1.5 illustrates how this

approach works.

There are many JS MV* frameworks developed by the Web community. Some people

say that every week a new framework is introduced, but only a few are popular and widely

used. Among those frameworks, there is Backbone.js, AngularJS, Ember.js and Knock-

outJS (Synodinos, 2013). Each one of these frameworks has a different way to solve the

mentioned issues, despite having one point in comon: produce an SPA as a result. The

main features of each one are:

• Backbone.js: one of the first and most popular MV* solutions. It is considered

more like a library (set of modules) than a framework. It implements MVC

in a Controller-less way, in which the View takes some of this responsibility,

11

17

Model

View

Frameworks MV*

HTTP request

HTTP response

Routing

API*

FIGURE 1.5. JavaScript MV* interaction. Server is used as an API and the appli-
cation logic is in the client.

and the rest is up to the developer. This provides great flexibility, but when

the application grows in scale and features, Backbone does not provide support

for all possible scenarios (leading to additional programming). It is a low-level

framework, which means that the developers need to write some tasks that could

be more automated.

• AngularJS: one of the newest and most promising MV* frameworks. It is pow-

ered by Google, and its main characteristic is that it handles lots of the behavior

of the application built directly in the HTML, as custom HTML attributes (it

is extremely tied to this approach). This allows the developer to write less

JavaScript code, making the development quicker than the other frameworks.

It implements complex data handling (called data bindings), which allows the

user interface to update automatically when the Model changes.

• Ember.js: as opposed to Backbone, Ember is a high-level MV* framework that

simplifies a lot of work to the developer in order to ease code writing. It provides

the possibility to implement complex tasks in a very easy way. However, this

12

leaves few space for the developers to implement their own solution. It provides

data bindings, and a well-structured routing system.

• KnockoutJS: this MV* framework is similar to AngularJS in that both use

HTML attributes to allow data bindings. The difference is that Knockout uses

a Model-View-ViewModel (MVVM) approach, meaning there is a component

called ViewModel that communicates with the View, informing of Model changes,

but the View is responsible for updating the DOM.

As we can see, the complexity of these frameworks is given by how much the Model

is connected to the View: some require the developer to update the DOM manually, but

others do this task automatically through data bindings. It sounds like the latter case

is better and more time-saving, but it comes with a cost, reducing the flexibility for the

developers to write their own solution (Podila, 2013).

SPAs implemented with JS MV* frameworks reduce the gap between Web applica-

tions and desktop/native applications. This is even more important if the application is

meant to be accessed through a mobile device (Hales, 2012), so the existence of these

frameworks is relevant to the present and future of Web development.

1.8. Hypothesis

Until now, the discussion regarding the strengths and weaknesses of these new MV*

frameworks is being marked by how much these solutions ease the code writing to the

developer, how much more maintainable the resultant application is, the completeness

of documentation and how much the community is involved in the development of the

framework (Graziotin & Abrahamsson, 2013). The learning curve is another big issue

considered a lot by developers (they want something easy to get into). Much discussion in

forums and Q&A sites exists regarding these aforementioned issues, and the result is that

developers tend to use the “fashionable” framework.

13

However, the concern of making an application run as fast as possible has not been

addressed. Performance is not an issue inside all the existing discussion, perhaps be-

cause there are some well accepted myths about each framework. There is no detailed

performance study that indicates the real impact of introducing all the application logic

that the MV* frameworks do in the client, and this is not a minor issue. Only one study

(Gizas, Christodoulou, & Papatheodorou, 2012) has been conducted regarding JavaScript

frameworks performance, but it only considers non MV* solutions (like jQuery, Prototype,

YUI).

In this research, there are two particular questions that we want to answer, and that

can be crucial in choosing one or another MV* framework:

(i) Is there a cost in performance when using an MV* framework, compared to the

case of not using any at all (this means using only jQuery)?

(ii) What is the real difference between a simple MV* framework and a more com-

plex one? Is it possible to establish an outline so as to compare the different JS

MV* frameworks?

1.9. Objectives

1.9.1. Overall objective

The overall objective of this research is to provide a study of the performance of

Web applications built using the most popular JavaScript MV* frameworks. By providing

this, the Web community would benefit with one more tool when choosing a JS MV*

framework.

1.9.2. Specific objectives

(i) Provide quantitative (and empirical) data of the differences between the most

popular JS MV* frameworks.

(ii) Evaluate performance of different components of each framework, using the

same use case scenario for each one.

14

(iii) Provide a starting point from which more research can be done regarding JS

MV* frameworks, especially focusing on performance.

15

2. CHAPTER 2: JAVASCRIPT MV* FRAMEWORKS FROM A PERFORMANCE

POINT OF VIEW

2.1. Preamble

In the last decades the Web has been in constant evolution. The first Web applications

of the 1990’s were quite different from the typical modern application. For years the focus

was based upon the fact that the majority of the content was processed at the backend,

with static visuals which could only be modified by means of an explicit action of the user,

which would then generate a request to the server. When Ajax appeared in 2005 (Garrett,

2005), a paradigm shift occurs towards a greater delegation of responsibility to the client

or frontend of the application. The jQuery framework started to become popular, not only

for its support of asynchronous requests (Ajax), but also for facilitating the handling of the

DOM. The Web applications began to look more like desktop applications, due to the fact

that the user does not see the change of page when a click is made on a link, except that he

sees that the content changes without him noticing that a request was made to the server.

The last and current stage of this evolution of Web applications is represented by what is

known as Single page application (SPA) (Takada, n.d.; Mesbah & van Deursen, 2007), a

Web application made up of “logical pages” that are included in a single real page, that

is loaded initially when the application starts up. The application makes requests for the

resources it needs to the server, independently and unrelated to the explicit actions of the

user. This architecture is especially popular in applications geared to be used mainly from

mobile devices (smartphones, tablets).

However, as more and more code is transferred towards the client, the JavaScript

component of the application becomes more significant (it is the only language that can

be run by any standard browser). It is in this manner that the JavaScript code of a modern

Web application has increased both in size as well as in complexity. In the first stage the

jQuery framework supplied temporary relief to the developers, by facilitating not only the

handling of the DOM but also the massive incorporation of Ajax. However, even with

16

jQuery, and as the application grows, the code becomes difficult to maintain and could

easily take a shape of spaghetti code (SourceMaking, n.d.).

As a means of confronting this problem, a number of ideas have been put forth so as

to better structure the code with the client and facilitate the maintainability task. Many of

these initiatives involve taking the MVC paradigm (with certain variations) from the server

to the client, which has generated the emergence of a series of JavaScript frameworks

known as MV* frameworks (Osmani, 2013, 2012). These frameworks implement the SPA

concept, reinforcing the idea that the only interaction with an eventual server should be to

obtain data, but not to handle routes, or to handle elements or neither the DOM, nor any

type of application logic. These tasks would now be handled by the code in the client.

Although there are many MV* frameworks, only a few of them are frequently used.

Among those we find Backbone.js, AngularJS, Ember.js and KnockoutJS (Synodinos,

2013). Each one has a different way to solve the above mentioned problems. Backbone,

on the one hand, is rather a set of classes that facilitate things, and is very flexible for the

developer to implement a solution on his own. Angular, Ember and Knockout, on the other

hand, are more complex and complete frameworks, leaving less margin for the developer

to implement an individual solution of his own, but considerably more robust in terms of

the result that can be obtained (Podila, 2013).

It is clear that there is a tendency to provide a user experience similar to what is

available with native applications. This is far more important if the application is used

on a mobile device (Hales, 2012), due to the fact that the Web application comes into

direct competition with similar native versions and also because, in this case, one can trust

to a lesser degree on having a permanent connection with the server. To this effect and

considering the growing use of the Web from mobile devices, the importance of these

frameworks for developing applications for these scenarios is very significant.

Up until now, the discussion regarding the strengths and weaknesses of these MV*

frameworks has been focused mainly on to what extent these environments foster and fa-

cilitate the development of an application, or if the application generated can be easily

17

maintained over time. Another aspect also normally considered is the learning curve as-

sociated with each one of them. In this manner, the developers have followed to some

degree the “fashionable” framework. This is quite understandable, if we think that these

are created as a result of the problem of maintainability of the software.

However since the objective is to produce a piece of software, making it run as fast

as possible is an inevitable concern in the long term (Webb, 2012). We are not aware

of studies about the real impact on performance associated with the use of these MV*

frameworks. The only study carried out regarding performance, is a comparative study of

some JavaScript frameworks (Gizas et al., 2012), but these are not part of the MV* family.

There are two interesting questions which can define the use of one or another frame-

work, and have yet to be addressed: first, is there a cost in performance when using an

MV* framework, with respect to not using any at all (only jQuery)? And secondly, what

is the real difference between a simple MV* framework compared to a more complex one?

Is it possible to establish a framework so as to compare the different MV* frameworks?

These are the questions which motivated this research.

The rest of this chapter is organized as follows: in section 2.2 we present the method-

ology and tools we used, in section 2.3 we provide a short review of related research. In

section 2.4 we describe the actual tests performed and the associated results, and two final

sections (2.5 and 2.6) present analysis, discussion and conclusion.

2.2. Methodology

The growing tendency in Web applications towards SPAs has not gone unnoticed, and

the Web community has gone to great lengths to initiate and guide the developers in the use

of these frameworks. There are many introductory tutorials to the different frameworks,

and these frequently allude to a “To-do” application which permits adding, modifying,

eliminating as well as filtering different tasks.

In an effort to help the developers to compare the different MV* frameworks, A. Os-

mani and S. Sorhus created the project-application TodoMVC (Osmani & Sorhus, 2014),

18

which consists in a To-do application with the distinctive feature of implementation for

the majority of the most popular existing frameworks, with the same functionality in each

one. This creates a great setting to measure the performance of each framework under

equal conditions. The existence of TodoMVC permitted us to have at our disposal a stan-

dard application with simple functionalities. Better yet, as the project is public and known

to many, these different implementations have already been tested and validated. In order

to have a more complete idea regarding the possible impact on performance of the differ-

ent frameworks, a series of tests were designed to include in the best possible way all of

the functionalities of TodoMVC, under different scenarios: starting with the initial loading

up, to the insertion or elimination of groups of tasks. These tests were carried out on the

corresponding versions of the standard application.

The different versions of the TodoMVC application were subject to two categories of

tests: a first group where the goal was to search for parameters relating to measuring the

initial load of the application, and a second group related to gathering data relating to the

performance of the application in actual operation.

In order to carry out the tests for the first category, an application or testbed was

put together (that we named MVC JS Performance1). This application uses the API of

the Webpagetest tool (Meenan, 2014) which permits the automation of the test process.

Webpagetest delivers a breakdown of the different requests associated with the loading of

a URL, including values linked to a set of predetermined metrics both in an aggregated and

non-aggregated way, which makes it the ideal tool for performance studies. In addition,

Webpagetest can carry out these tests on actual physical machines, distributed in different

locations around the world, permitting us to select both the browser and the location that

will be used to execute these tests.

The second group of measurements involves performance evaluations of different use

cases of the application. For this purpose the PhantomJS (Hidayat, 2014) tool was used,

1Github repository of the project available at: https://github.com/sivicencio/mvc-js-perf

19

https://github.com/sivicencio/mvc-js-perf

which provides a headless browser that allows navigation to a certain URL to begin inter-

acting with the DOM (which is known as Page Automation). This way, the different use

cases can be run, and the execution times of each one can be recorded. This second group

of tests addresses the particularities of an SPA after the initial loading; what subsequently

occurs is handled mainly by the JavaScript code of the client. Considering in addition that,

in the case of the selected application (TodoMVC), the source of data is the local storage

of the browser (localStorage object), there are no further requests to access a data

source from a remote server.

The data collected in these different tests was processed and visualized with the help

of the statistical tool R.

2.3. Related work

In their work, Gizas et al. (2012) understand the importance of choosing a framework

that suits the developer’s needs, and also provides high quality code and good perfor-

mance. The research evaluates 6 different JavaScript frameworks (ExtJS, Dojo, jQuery,

MooTools, Prototype and YUI), in terms of quality, validation and performance. However,

none of them provides an MV* architecture, but only some help in DOM and Ajax manip-

ulation. In addition, the tests were designed to evaluate the internals of each framework

and not the behavior in a real Web application context.

Graziotin and Abrahamsson (2013) reaffirm in their work that there is little research

to help practitioners to select the most suitable JavaScript framework. Their paper is a

call for action, and proposes a research design towards a comparative analysis framework

of the different JavaScript MV* frameworks. This design extends the work of Gizas et

al. (2012), adding a layer related to practitioners interests, in addition to the existing re-

search layer (quality, validation, performance). The authors interviewed some frontend

developers and they were recommended to perform measurements on the same software

project implemented using different JavaScript frameworks, instead of measuring them

20

alone. They propose to perform these measurements (including performance) using the

TodoMVC project, which is suitable for that end.

A few more papers also use the TodoMVC project from a comparison perspective.

Petersson (2012) designed and implemented a JavaScript MV* framework called Min-

imaJS, which is suitable for lightweight SPAs. He performed some evaluations of the

loading time of his framework, compared to the TodoMVC Backbone.js and Ember.js

implementations. He also considered some use cases of the application to test his frame-

work: add, toggle, remove, clear all, etc, but instead of measuring how much time it

takes to perform each use case, he measured the line coverage (how many lines of code

were interpreted during execution). Runeberg (2013) performed a study of the differences

between two JavaScript MV* frameworks: Backbone.js and AngularJS. One chapter of

his thesis covers performance issues, using the TodoMVC project. He performed some

tests using PhantomJS for page automation, in a very similar way to what we did in this

research. The difference is that he considered an extended use case (create 1000 to-do

entries, mark them as complete and delete each one of them). The results showed that

Backbone.js completed the test in 22% of the time it took to AngularJS to complete it.

The same test was performed with 50 to-do entries, in which case AngularJS was still

slower, but the difference was not significant, and finally with only 1 to-do entry, Angu-

larJS outperformed Backbone.js. The author suggests that AngularJS is not as efficient as

Backbone.js when it has to deal with multiple DOM elements. Each element is associated

with a model, and that is the reason behind the increasing difference in time when more

to-do entries are added. In this research we try to go further in the TodoMVC features,

and measure each use case in a separate way.

Some comparisons have been made outside the academic context. Gómez (2013)

compared the different TodoMVC implementations in terms of their complexity. He used

several metrics, including Source Lines of Code, Cyclomatic complexity, Halstead com-

plexity and Maintainability Index, showing that AngularJS, Ember.js and KnockoutJS are

clearly better than the rest. Of course these measurements do not include performance

metrics. Nolen (2013), on the other hand, created a library named Om, which takes a

21

different approach when it comes to data handling. He implemented the same TodoMVC

application using this library, and showed some benchmarks, comparing this implementa-

tion with the TodoMVC Backbone.js one. The test includes creating, toggling and deleting

200 to-do entries. The differences in the time it takes to each framework to do the task are

significant, showing that Om outperforms Backbone.js.

None of the related work mentioned above performs a deep comparison between MV*

frameworks, in terms of their performance, and also none of them use a base point like

the TodoMVC jQuery implementation, which is considered to be the MV* frameworkless

case. This research takes those points into account, as the next section describes.

2.4. Tests performed

The tests were divided into two large groups: initial loading and interaction tests with

the application. In the initial loading tests, we are not only interested in the loading time of

the application, but also when the response arrives and when something begins to appear

in the screen from the user’s standpoint, among other things. In the interaction tests on

the other hand, the focus lies in the time it takes to carry out the different tasks (use cases)

independently of the initial loading of the application (which already occurred).

To execute the tests, implementations of TodoMVC were taken using four of the most

popular frameworks currently in use (instances of TodoMVC): Backbone.js, Ember.js, An-

gularJS and KnockoutJS. In addition, in order to have a comparative base line, the same

tests were conducted with the jQuery TodoMVC application. The comparison against an

implementation based solely on jQuery is reasonable because that library was the alterna-

tive of choice until the appearance of the MV* frameworks.

As we mentioned previously, the statistical tool R was used to process the data. How-

ever, as the information in each case was different, the strategy used in each case was also

different.

For the initial loading tests, the results were stored in a PostgreSQL database. A script

using R was written with a series of functions which carry out queries to the database using

22

the RPostgreSQL package. The results of each query contain the value of the different

metrics of Webpagetest by tuple, where each tuple corresponds to a run. With this data the

average and standard deviation were calculated taking into account all the runs for each

test. This information is represented in graphic form showing the results for each one of

the TodoMVC instances.

In the case of the interaction tests, the results were stored in plain text files, where a

header is present first and it is followed by a line for each run carried out. The structure of

each line is run number - framework – time, where each piece of information is followed

by a blank space. An R script was written, which reads each text file and, as in the previous

case, calculates the average and standard deviation for all the runs.

Regarding the graphs produced for both groups of tests, the X axis shows the different

instances relating to the different frameworks, whereas the Y axis represents the execution

time expressed in milliseconds (ms).

In order to facilitate a quick comparison with the base line represented by the instance

associated to jQuery, a second Y axis was incorporated on the right side to each one of the

graphs. The results obtained for the jQuery instance received a value of 1 and the results

obtained for the rest of the instances received values like, for example 2, which means

that for that instance the time required to complete the task was 2 times that of the jQuery

instance. The actual average values can be seen above each bar of the graphs, followed by

the relative values, which are surrounded by parentheses.

2.4.1. Initial Loading Tests

These tests involve the initial loading of the TodoMVC application in its different

instances and were carried out using MVC JS Performance and Webpagetest. This tool

delivers two sets of results. The first one, named first view, has to do with accessing the

application as a first time visitor (cache and cookies are empty). The second, named repeat

view, is the same but without emptying anything, that is considering the cache and cookies

of the browser. This facilitates access to known resources as jQuery, Backbone, Ember

23

or Angular libraries, among others. It represents what a user would see if he returned to

the page after his first visit. These two sets of results add more weight to the information

obtained, due to the fact that each one represents a completely different scenario.

Webpagetest requires some configuration prior to running a test: a server (location)

and a browser. In our tests, the Webpagetest server used was located in Dulles, VA, USA,

and the browser used was Google Chrome. In addition, 30 runs were carried out by frame-

work, generating a set of total results of 150 different runs. Each one of the runs generated

the following metrics (in milliseconds) both for the first view, as for the repeat view:

• Load time: time from the beginning of the initial navigation, up to the window

load event.

• Start render time: time from the beginning of the initial navigation up to the

first non-blank contents rendered by the browser.

• Speed Index: value associated to the speed with which the user sees the entire

page displayed completely. It utilizes the virtual progress of the page (based

upon the video frames captured) in order to calculate a score (represented by

time, where less is better).

The results obtained in the case of first view are shown in figures 2.1, and 2.2.

Lo
ad

 ti
m

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
40

0
80

0
12

00
18

00
24

00

(1)

(0.6)

(1.2)

(0.9)

(0.5)

1299

781

1540

1195

712

0
0.

4
0.

8
1.

2
1.

5
1.

9

(a)

R
el

at
iv

e
(jQ

ue
ry

)

S
ta

rt
 r

en
de

r
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
40

0
80

0
12

00
16

00
20

00

(1)

(0.3)

(0.6)

(0.3)
(0.4)

839

227

502

235
347

0
0.

6
1.

2
1.

8
2.

4
(b)

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.1. First view metrics: (a) Load time in ms and (b) start render time in ms.

24

S
pe

ed
 In

de
x

(m
s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
40

0
80

0
12

00
16

00
20

00

(1)

(0.4)

(0.7)

(0.4)
(0.5)

1041

452

764

384
481

0
0.

5
1

1.
4

1.
9

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.2. First view metric: Speed index in ms.

The results obtained in the case of the repeat view are shown in figures 2.3, and 2.4.

Lo
ad

 ti
m

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
20

0
40

0
60

0
80

0
10

00

(1) (1)

(2.4)

(1.2)
(0.9)

251 250

592

297
237

0
0.

8
1.

6
2.

4
3.

2
4

(a)

R
el

at
iv

e
(jQ

ue
ry

)

S
ta

rt
 r

en
de

r
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
10

0
30

0
50

0
70

0

(1)

(0.7)
(0.7)

(0.9)

(0.4)

653

486
448

614

237

0
0.

3
0.

6
0.

9
1.

2

(b)

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.3. Repeat view metrics: (a) Load time in ms and (b) start render time in ms.

2.4.2. Interaction Tests with the Application

These tests consist in carrying out a series of actions within the application (associated

with different use cases) immediately after the initial loading has taken place. Therefore,

these tests do not consider the time that the application takes in loading up, but are only

25

S
pe

ed
 In

de
x

(m
s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
10

0
30

0
50

0
70

0

(1) (0.9)

(1.9)

(1.1)
(0.9)

252 238

471

285
237

0
0.

8
1.

6
2.

4
3.

2

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.4. Repeat view metric: Speed index in ms.

concerned with what the application can do after the initial loading. As TodoMVC does

not carry out requests to remote servers (it uses the localStorage object of the browser

to persist data), it is possible to isolate from what is web traffic, without altering the be-

havior of the application. In other words, after the initial loading, the Web application

becomes a bunch of JavaScript code that is executed according to the user actions, but not

depending on external elements other than the browser being used.

In order to carry out actions within the application, a tool called PhantomJS was

used, which is a headless browser (Webkit) capable of executing the same tasks a regular

browser would, but without the graphic interface. We wrote a script that gets into the URL

for each instance of TodoMVC, and carries out actions on the actual application. In or-

der to accomplish this, jQuery was used with the purpose of being able to manipulate the

DOM. For each use case considered, we recorded the time immediately before triggering

the functionality in question, and the time immediately after the function was executed

(checking that the result of the action was the one expected). The elapsed time (in mil-

liseconds) was stored in a plain text file. As in the first set of tests, we carried out 30 runs

for each use case for each framework. We present below each of the use cases and the

results in graphic representation.

26

2.4.2.1. Adding a task

In the #new-todo input, the value “Example task” is set and then the event is trig-

gered when the ENTER key is pressed. This causes the task to be added to the to-do list.

We confirm that the task has effectively been added to the to-do list by checking the size

of the list (which should be 1). Figure 2.5 shows the results obtained in this test.

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
5

10
15

20
25

30
35

(1)

(3.6)

(8)

(2.5)

(3.4)

3.6

13

28.9

8.9

12.3

0
1.

4
2.

8
4.

2
5.

6
6.

9
8.

3
9.

7

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.5. Adding one task.

2.4.2.2. Editing one previously added task

Assuming that a task was previously added, the event associated to perform a double

click on the #todo-list li label element (which contains the text of the task) is

triggered. This makes the #todo-list li .edit input visible, enabling the setting

of the value “Example task edit” over this element. Then the blur event is triggered on it,

which completes the editing of this task. We confirm the actual editing by verifying that

the old text of the #todo-list li label element is different from the new one. The

results can be seen in figure 2.6.

2.4.2.3. Deleting one previously added task

Considering that a task was previously added, the event associated to clicking on

the #todo-list li button element (the cross key to eliminate a task) is triggered,

27

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
2

4
6

8
10

12
14

(1)
(1.2)

(2.6)

(0.9)

(0.5)

4.5
5.3

11.9

4

2.3

0
0.

4
0.

9
1.

3
1.

8
2.

2
2.

7
3.

1

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.6. Editing one previously added task.

which in fact eliminates the existing task. In order to confirm that this task has been

actually removed we check the size of the to-do list (which should be 0). See figure 2.7.

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
1

2
3

4
5

6
7

8
9

11

(1) (0.9)

(2.9)

(1)
(0.8)

3.5 3.2

10.1

3.4
2.8

0
0.

6
1.

1
1.

7
2.

3
2.

8
3.

4

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.7. Deleting one previously added task.

2.4.2.4. Adding a group of tasks

This test is very similar to the test explained in 2.4.2.1, only that instead of adding one

task, a group of tasks is added (set the value of the input and afterwards trigger the event

by pressing the ENTER key). This was done first for a group of 10 tasks and later for 100

28

tasks. Confirmation that this was successful is obtained by checking the size of the to-do

list (which should be 10 or 100 as the case may be). The corresponding results are shown

in figure 2.8.

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
10

30
50

70
90

(1)

(1.4)

(2.5)

(1.3)
(1.1)32.7

45.8

80.4

42.7
36

0
0.

6
1.

2
1.

8
2.

4

(a)

R
el

at
iv

e
(jQ

ue
ry

)

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
40

0
80

0
12

00
18

00
24

00

(1)

(0.3)
(0.4)

(0.3)

(0.2)

2055

601
800

713

479

0
0.

2
0.

5
0.

7
1

(b)

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.8. Adding multiple tasks, where (a) shows the case of adding 10 tasks,
and (b) 100 tasks.

2.4.2.5. Deleting a group of tasks

Asuming that a group of tasks was previously added, we delete them in the following

manner: we trigger the event associated to clicking over the #toggle-all element,

which causes all of the tasks to be selected. Following this, we trigger the event associated

to clicking over the #clear-completed element, which sets off the mass elimination

of the selected tasks. We confirm that these tasks were actually removed by checking the

size of the to-do list (which should be 0). This test was carried out twice, once with 10

tasks, and later with 100 tasks. These results are outlined in figure 2.9.

2.5. Analysis and Discussion

The results obtained in the initial loading tests show that, as we had suspected, Ember

appears to be slightly “heavier” in comparison with the rest. However, in light of the

results shown in the tests we do not observe an important or significant penalization with

29

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
5

15
25

35
45

(1)

(5.3)

(7.1)

(1.3) (1.2)
6.7

35.5

47.5

8.7 7.9

0
1.

5
3

4.
5

6
7.

5

(a)

R
el

at
iv

e
(jQ

ue
ry

)

T
im

e
(m

s)

jQ
ue

ry

B
ac

kb
on

e.
js

E
m

be
r.j

s

A
ng

ul
ar

JS

K
no

ck
ou

tJ
S

0
10

0
30

0
50

0
70

0

(1)

(9.9)

(7.4)

(1.5)
(2.3)68

676

510

102
156

0
2.

9
5.

8
8.

8
11

.7

(b)

R
el

at
iv

e
(jQ

ue
ry

)

FIGURE 2.9. Deleting multiple tasks, where (a) shows the case of deleting 10
tasks, and (b) 100 tasks.

regard to the use of any of these frameworks. In addition, if we consider the beginning of

the rendering process of the page, the instances associated with the different frameworks

improve with regard to the jQuery base line. Finally regarding the speed index in the use

of an MV* framework, which in our opinion is more relevant because it relates directly to

user perception, not only does it not worsen, but it rather produces an application which

is perceived as faster (with the only exception of Ember relating to the repeat view set of

results).

The interaction tests reinforce the idea that there is no significant cost in performance

when programming the application based upon one of these frameworks, as compared to

doing it simply using the jQuery library. In this case, however, it is necessary to consider

some interesting aspects. First, the action of adding one task resulted in it being much

slower in all of the instances associated with the frameworks, in some cases up to 8 times

slower with Ember than with jQuery. Once again, the trend repeats itself in that Ember

shows performance somewhat slower than the rest. But more significant than this is to

observe what occurs if we repeat the action 10 or 100 times; these numbers now end

up being much closer to those of the base instance. In effect, for the base instance the

additional time associated to adding 10 tasks is close to 10 times the one we had with

30

one task, while in almost all the other instances it only increased 3 times or less. These

results suggest that the variations may be product of the strategy used by the programmer

who generated the corresponding application, than to an intrinsic factor associated with

the actual framework.

Finally, in comparative terms, the results obtained confirm to some degree our ini-

tial suspicions with regards to Backbone and Ember, in that these frameworks should be

on the opposite performance spectrums. This is because Backbone is a low-level frame-

work where the programmer has greater control over the code. Ember is a framework that

operates at a higher abstraction level which facilitates programming as well as its main-

tainability, but which generally carries with it a higher cost in terms of performance. The

Angular and Knockout frameworks showed fairly similar results in our performance tests

and it is interesting to note that in many cases they are better than those of Backbone, in

spite of both being frameworks which operate at a much higher abstraction level.

2.6. Conclusion and future work

This new architecture of Web applications where the client takes on the main role

thereby reducing the interaction with the server to mainly services of synchronization of

data, has arrived and is here to stay. The ample popularity and growing use of the Web

from mobile devices only accentuates this tendency and demands that the applications be

designed as SPAs.

Some years ago the MVC architecture was established as a paradigm which allowed

the arrangement of code of a Web application in a manner in which it could be maintained

over time. Since then, several frameworks have emerged which became popular because

they greatly facilitated development work and forced this type of architecture. What is oc-

curring today is completely analogous: the surge and popularization of frameworks which

facilitate development and force architecture of better maintainability. The difference now

is that the greatest part of the code lies in the client and must be expressed in the JavaScript

language.

31

Few developers who have been involved in SPA type applications would doubt the

virtues of these frameworks with regard to accelerating its development, facilitating its

maintainability, and handling the complexity, etc. However, not many could answer ques-

tions related to how much cost in terms of performance this entails. The objective of this

study had been to contribute to answering some questions in this area and in the process

dispel some myths as well.

The more relevant findings, in our opinion, relate to demystifying affirmations of the

type “if you need it to run fast don’t use any framework”. The results show that the use

of these components in general does not generate a significant performance cost when

compared to a library such as jQuery. Another “urban myth” is that if you are forced to

use a framework, the one with the lowest level of abstraction is the one that would deliver

the highest performance. Once again our findings show that this is not necessarily true, as

we were able to verify that the Angular and Knockout frameworks produce better results

than Backbone.

The availability of several instances of the same application (TodoMVC) allowed us

to isolate variables that, in general, make it difficult to evaluate the performance of tools

or software products. However, the application is too simple, meaning that it is possible

that it does not totally represent the family of applications that concern us.

In our opinion there are two interesting lines of work in the future. First, it would be

interesting to carry out a similar study with a more complex, or “real” application. This

has the difficulty of writing several high quality applications so as to eliminate other fac-

tors. It would also be interesting to consider not only a more complex application, but

also different categories of applications, since two applications may be similar in terms of

complexity, but serve completely different purposes (which means using different frame-

work features). Secondly, we believe that, given the fact we have access to the source code

of each one of these frameworks, we should design “white box” tests (altering frameworks

source code) that could be used to highlight the weaknesses of each one of these frame-

works and explain the reasons for their good or bad performance in specific situations.

32

3. CHAPTER 3: CONCLUSION AND FUTURE RESEARCH

3.1. Review of the Results and General Remarks

The main motivation of this research was to generate quantitative knowledge that

allowed us to contribute with a study, from a performance perspective, on the decision

of whether or not to incorporate a JavaScript MV* framework inside the client code of a

modern Web application. The idea was to answer questions like:

• Is there a significant performance cost when using a MV* framework in an SPA

(independently of the development and maintainability advantages)?

• Is there significant performance differences between the most popular MV*

frameworks?

• If a developer uses a low-level framework (like Backbone.js), will this translate

in performance advantages comparing it to using a high-level abstraction one

(like Ember.js)?

We believe that this research allowed us to answer those questions satisfactorily. First,

although in general terms the associated framework code translates in a slower first loading

time, it does not appear to be a significant cost in performance related to include or not a

framework in a Web application. This is especially evident when analyzing the results of

the repetitive interaction tests carried out in this research. Secondly, we can say that there

are indeed differences in performance between the different MV* frameworks, mainly

because in the majority of the tests carried out, AngularJS and Knockout JS showed better

numbers than the rest. However, these differences are not quite significant and it is possible

that they depend greatly on what kind of application is been considered. Finally, the

answer to the third question is clearly negative. In several of the tests carried out, the

Backbone framework is not better that some of the high-level ones, and even appears as a

disadvantage with respect to the others.

33

3.2. Value of the research

The contribution of this research can be divided into three different areas:

(i) Provide quantitative data that allows the resolution of doubts in terms of perfor-

mance at the moment of choosing what MV* framework to use.

(ii) Emphasize the value of having a “canonical” application available, written in

several languages/platforms/paradigms and validated by the Web community.

This is not a common case in the software field, and that is why we were very

lucky to count with the TodoMVC project. This project has a completely differ-

ent goal, which is related to allow the comparison of the different frameworks

in terms of development patterns, but it was fundamental when we needed to

compare frameworks between each other in terms of performance.

(iii) Contribute with tools, methodologies ahd measurement processes for other re-

search related to Web application performance.

3.3. Future Research Topics

This research was a starting point for analyzing performance of the different JavaScript

MV* frameworks. Much work can be done from here. It would be a good idea to explore if

the obtained results can be extrapolated to real Web applications (which used to be much

bigger than TodoMVC). This represents a big challenge, because it is necessary not to

just include an important programming effort (real application instances would need to be

generated), but also isolate variables like the expertise degree and skills of the developer

when using a certain framework. This work would require one to also consider different

categories of applications, because two applications may seem similar from a complexity

perspective, but serve two absolutely different purposes, implying the need to use different

features of the framework.

There is also another type of work that can be done: design “white box” tests, where

each framework can be subject to special scenarios (favorable or not), trying to force them

34

to limit situations (and measure all of them). This could be important to understand in

a better and deeper way the detailed reasons of performance costs that each framework

exhibits.

3.4. Future of JavaScript MV* frameworks

As has been previously mentioned, the more attractive scenarios for the use of SPAs

involve Mobile Web. The penetration of smartphones and tablets is impressive even in

the least developed countries and, more importantly, the use of mobile devices to access

the Web is growing at a very high rate. Considering these factors, the need to incorporate

a significant component of client code in a Web application is growing. There is also

agreement within the community of software developers in that, in this kind of scenario,

it is very hard to build the JavaScript component without the support/help of one of these

MV* frameworks. Therefore, its use will continue to grow.

There is also research into new ways of doing things that MV* frameworks already

include. For example, there is a recent framework named Om (Nolen, 2013), which han-

dles data in an innovative way, showing much better performance than other known and

popular MV* frameworks. It may be possible that future development go in this direction.

It is very possible that the dozens of frameworks available today will converge into a

smaller number in the future, with these ones being used in the majority of Web applica-

tions.

35

References

Berners-Lee, T. (1989). The original proposal of the www, htmlized. Retrieved

from http://www.w3.org/History/1989/proposal.html (Accessed

16-January-2014)

Borodescu, C. (2013). Web Sites vs. Web Apps: What the experts think — VisionMo-

bile. Retrieved from http://www.visionmobile.com/blog/2013/07/

web-sites-vs-web-apps-what-the-experts-think/ (Accessed 16-

January-2014)

Docs, W. P. (2014). the web standards model · concepts · WPD · Web-

Platform.org. Retrieved from http://docs.webplatform.org/wiki/

concepts/internet and web/the web standards model (Accessed

16-January-2014)

Garrett, J. J. (2005). Ajax: A New Approach to Web Applications — Adap-

tive Path. Retrieved from http://www.adaptivepath.com/ideas/ajax

-new-approach-web-applications/ (Accessed 16-January-2014)

Gelbmann, M. (2013). Top 10 rising web technologies in 2012. Re-

trieved from http://w3techs.com/blog/entry/top 10 rising web

technologies in 2012 (Accessed 17-January-2014)

Gizas, A. B., Christodoulou, S. P., & Papatheodorou, T. S. (2012, April). Compar-

ative Evaluation of JavaScript Frameworks. In Proceedings of the 21st international

conference companion on world wide web (p. 513—514). ACM.

Graziotin, D., & Abrahamsson, P. (2013). Making Sense Out of a Jungle of

JavaScript Frameworks. In Product-focused software process improvement (pp.

334–337). Springer Berlin Heidelberg.

36

http://www.w3.org/History/1989/proposal.html
http://www.visionmobile.com/blog/2013/07/web-sites-vs-web-apps-what-the-experts-think/
http://www.visionmobile.com/blog/2013/07/web-sites-vs-web-apps-what-the-experts-think/
http://docs.webplatform.org/wiki/concepts/internet_and_web/the_web_standards_model
http://docs.webplatform.org/wiki/concepts/internet_and_web/the_web_standards_model
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://w3techs.com/blog/entry/top_10_rising_web_technologies_in_2012
http://w3techs.com/blog/entry/top_10_rising_web_technologies_in_2012

Gómez, R. (2013). How Complex are TodoMVC Implementations. Retrieved

from http://blog.coderstats.net/todomvc-complexity/ (Ac-

cessed 16-January-2014)

Hales, W. (2012). HTML5 and JavaScript Web Apps. O’Reilly Media.

Hidayat, A. (2014). Phantomjs. Retrieved from http://phantomjs.org/

(Accessed 17-January-2014)

MDN. (2014). XMLHttpRequest - Web API Interfaces — MDN. Retrieved

from https://developer.mozilla.org/en-US/docs/Web/API/

XMLHttpRequest?redirectlocale=en-US&redirectslug=DOM%

2FXMLHttpRequest (Accessed 16-January-2014)

Meenan, P. (2014). WebPagetest - Website Performance and Optimization Test. Re-

trieved from http://www.webpagetest.org/ (Accessed 17-January-2014)

Mesbah, A., & van Deursen, A. (2007, March). Migrating multi-page web appli-

cations to single-page Ajax interfaces. In Software maintenance and reengineering,

2007. csmr ’07. 11th european conference on (pp. 181–190). IEEE.

MSDN. (2013). About Native XMLHTTP (Internet Explorer). Retrieved from

http://msdn.microsoft.com/en-us/library/ms537505(vs.85)

.aspx (Accessed 16-January-2014)

Nolen, D. (2013). The Future of JavaScript MVC Frameworks. Re-

trieved from http://swannodette.github.io/2013/12/17/

the-future-of-javascript-mvcs/ (Accessed 16-January-2014)

Osmani, A. (2012). Review of JS Frameworks — Journey Through The

JavaScript MVC Jungle — Smashing Coding. Retrieved from http://

coding.smashingmagazine.com/2012/07/27/journey-through

-the-javascript-mvc-jungle/ (Accessed 17-January-2014)

37

http://blog.coderstats.net/todomvc-complexity/
http://phantomjs.org/
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest?redirectlocale=en-US&redirectslug=DOM%2FXMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest?redirectlocale=en-US&redirectslug=DOM%2FXMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest?redirectlocale=en-US&redirectslug=DOM%2FXMLHttpRequest
http://www.webpagetest.org/
http://msdn.microsoft.com/en-us/library/ms537505(vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms537505(vs.85).aspx
http://swannodette.github.io/2013/12/17/the-future-of-javascript-mvcs/
http://swannodette.github.io/2013/12/17/the-future-of-javascript-mvcs/
http://coding.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/
http://coding.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/
http://coding.smashingmagazine.com/2012/07/27/journey-through-the-javascript-mvc-jungle/

Osmani, A. (2013). Developing backbone.js applications. O’Reilly Media.

Osmani, A., & Sorhus, S. (2014). TodoMVC. Retrieved from http://todomvc

.com/ (Accessed 17-January-2014)

Owen, J. (2010). Implicit Interfaces as a Dynamic Adaptation Strategy in Frame-

works (Master’s thesis). Pontificia Universidad Católica de Chile.

Petersson, J. (2012). Designing and implementing an architecture for single-page

applications in JavaScript and HTML5 (Master’s thesis). Department of Computer

and Information Science, Software and Systems, Linköping University.

Podila, P. (2013). Important Considerations When Building Single Page Web Apps

— Nettuts+. Retrieved from http://net.tutsplus.com/tutorials/

javascript-ajax/important-considerations-when-building

-single-page-web-apps/ (Accessed 17-January-2014)

Runeberg, J. (2013). To-do with JavaScript MV* : A study into the differences

between Backbone.js and AngularJS (Degree thesis). Arcada University of Applied

Sciences.

Shan, T. C., & Hua, W. W. (2006, October). Taxonomy of Java Web Applica-

tion Frameworks. In e-Business Engineering, 2006. ICEBE ’06. IEEE International

Conference on (pp. 378–385). IEEE.

SourceMaking. (n.d.). Spaghetti Code. Retrieved from http://

sourcemaking.com/antipatterns/spaghetti-code (Accessed

17-January-2014)

Synodinos, D. (2013). Top JavaScript MVC Frameworks. Retrieved

from http://www.infoq.com/research/top-javascript-mvc

-frameworks (Accessed 17-January-2014)

38

http://todomvc.com/
http://todomvc.com/
http://net.tutsplus.com/tutorials/javascript-ajax/important-considerations-when-building-single-page-web-apps/
http://net.tutsplus.com/tutorials/javascript-ajax/important-considerations-when-building-single-page-web-apps/
http://net.tutsplus.com/tutorials/javascript-ajax/important-considerations-when-building-single-page-web-apps/
http://sourcemaking.com/antipatterns/spaghetti-code
http://sourcemaking.com/antipatterns/spaghetti-code
http://www.infoq.com/research/top-javascript-mvc-frameworks
http://www.infoq.com/research/top-javascript-mvc-frameworks

Takada, M. (n.d.). Single page apps in depth. Retrieved from http://

singlepageappbook.com/index.html

W3C. (2012). XMLHttpRequest. Retrieved from http://www.w3.org/TR/

XMLHttpRequest/ (Accessed 16-January-2014)

Webb, D. (2012). Improving performance on twitter.com, The Twitter Engineering

Blog. Retrieved from https://blog.twitter.com/2012/improving

-performance-twittercom (Accessed 13-January-2014)

39

http://singlepageappbook.com/index.html
http://singlepageappbook.com/index.html
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/
https://blog.twitter.com/2012/improving-performance-twittercom
https://blog.twitter.com/2012/improving-performance-twittercom

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	ABSTRACT
	RESUMEN
	1. CHAPTER 1: INTRODUCTION
	1.1. What is the Web?
	1.2. How the Web works
	1.2.1. Client and Server architecture
	1.2.2. Browsers
	1.2.3. Web applications

	1.3. Traditional Web applications
	1.4. Ajax appearance
	1.5. JavaScript frameworks
	1.6. Single-page applications (SPA)
	1.6.1. Issues related to SPAs

	1.7. JavaScript MV* frameworks
	1.7.1. MVC design pattern
	1.7.2. MV* concept

	1.8. Hypothesis
	1.9. Objectives
	1.9.1. Overall objective
	1.9.2. Specific objectives

	2. CHAPTER 2: JAVASCRIPT MV* FRAMEWORKS FROM A PERFORMANCE POINT OF VIEW
	2.1. Preamble
	2.2. Methodology
	2.3. Related work
	2.4. Tests performed
	2.4.1. Initial Loading Tests
	2.4.2. Interaction Tests with the Application

	2.5. Analysis and Discussion
	2.6. Conclusion and future work

	3. CHAPTER 3: CONCLUSION AND FUTURE RESEARCH
	3.1. Review of the Results and General Remarks
	3.2. Value of the research
	3.3. Future Research Topics
	3.4. Future of JavaScript MV* frameworks

	References

