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Abstract

Latent variables used in Item Response Theory (IRT) models are specified by

the axiom of local independence (ALI). By doing this, latent variables explain the

non random variations in the observed scores, thus, latent variable represent what is

meaningful to the researcher. High impact decisions are made based on the estimates

of them. Selection in some universities and grants are just some examples. However,

the marginal distribution of latent variables is not identified in IRT models, hence,

it is not possible to infer from the observed information an interpretation of a latent

variable in this context. Usually their distributions are assumed as normal, even if

they are meant to represent the substantive behind the data. Our main goal was

to identify the marginal distribution of latent variables in a set of IRT models, and

estimate this distribution.

We frame all IRT models that can be formulated as generalized linear mixed

models in a Hilbert space. In this framework the ALI is replaced by conditional

orthogonality, a weak version of ALI (WALI). We found that under WALI the only

element for which the Empirical Bayes estimator is zero, it is the zero element. Hence

the WALI resolve an indeterminacy problem, because if there was more information

in there, it would be impossible to recover it using the Empirical Bayes estimator.

We found that it is possible to have latent variables “living”among all the possibles

observed scores, thus they are unobserved and not unobservable. Also, using the

identification result of Székely and Rao (2000), we identify the marginal distribu-

tions of latent variables underlying the observed scores, including the error terms.

By expanding our Hilbert space to vectorial random variables, we generalized all

these results to multidimensional latent variables too. Then we implement the non-

parametric estimator proposed by Bonhomme and Robin (2010). In order to evaluate

under which conditions the estimator was able to recover the marginal distribution

of the latent variables, we perform a simulation study. Finally, we used real data
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and found that there are marginal distributions different from the standard normal

distribution (∼ N(0, 1)).
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Resumen

En los modelos de Teoŕıa de Respuesta al Ítem (TRI) las variables latentes son

especificadas por el Axioma de Independencia Local (ALI). De este modo las vari-

ables latentes explican las variaciones no aleatorias de los puntajes observados en

una prueba. Ellas se utilizan para representar elementos más substantivos de alguna

teoŕıa. Por ejemplo, en modelos TRI son interpretadas como habilidades cognitivas

de las personas en algunas ocasiones. Decisiones de alto impacto son tomadas a

partir de las estimaciones de estos modelos, tanto en Chile como en el extranjero.

Sin embargo, a pesar de su importancia, en el proceso de estimación de puntajes la

distribución marginal de ellas es asumida, no es deducida desde los puntajes obser-

vados. Más aún, se ha demostrado que en los modelos TRI la distribución de las

variables latentes no es identificada. El principal objetivo de esta tesis fue identificar

la distribución de las variables latentes utilizadas en un conjunto de modelos TRI, y

estimar esta distribución.

Nosotros enmarcamos todos los modelos de TRI que pueden ser formulados como

modelos generalizados lineales mixtos en un espacio de Hilbert. En este enfoque, el

ALI es reemplazado por el Axioma de Ortogonalidad Condicional (WALI), una ver-

sión débil de ALI. Encontramos que pueden haber variables latentes tomando valores

de entre los puntajes observados para las cuales WALI es cierto. Es decir pueden

haber variables latentes no-observadas y no no-observables. Además, utilizando el

resultado de identificación de Székely and Rao (2000), identificamos la distribución

de todas las variables latentes involucradas en los modelos TRI, incluidos los errores

y variables latentes multidimensionales. Expandiendo nuestro espacio de Hilbert a

variables aleatorias vectoriales, generalizamos todos nuestros resultados a variables

latentes multidimensionales. Luego implementamos el estimador no parámetrico

propuesto por Bonhomme and Robin (2010). Para conocer bajo qué condiciones el

estimador es capaz de recuperar las distribuciones marginales de las variables latentes

ix



realizamos un estudio de simulación. Finalmente aplicamos este procedimiento de

estimación con datos reales, y encontramos que la distribución marginal de la vari-

able latente que representa el constructo de interés sicológico-educacional no es una

distribución normal estándar (∼ N(0, 1)).
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I. Introduction

The latent variable concept has been widely used in Educational and Political

decisions. For example, in value-added models, a latent variable is interpreted as

the school effect (Raudenbush & Willms, 1995). In IRT models, latent variables are

used to represent information about persons (Embretson & P. Reise, 2000) . Based

in the estimates values of those latent variables, high impact decisions are made.

Ranking of schools, selection of students, scholarships and resource distributions are

just some examples (Biesta, 2014; Raudenbush, 2004; Koretz, 2008; Hargreaves &

Braun, 2013). Therefore, it is important to study these kinds of models to improve

the rightness and fairness of those decisions. In this work we studied the role of Latent

variables in a set of IRT models. Specifically, on those which can be formulated as

generalized linear mixed models (GLMM).

Latent variables have a major importance in IRT. The collected datas from a test

application are represented by observed variables, typically called observed scores,

whereas some aspects of a substantive theory are represented by latent variables.

Latent variables are intended to explain the observed variables. Sometimes they are

related with cognitives attributes of persons, depending on the items (or questions)

used, they can represent math or language skills, anxiety ... etc. Using latent vari-

ables, IRT (and social science in general) can model a structure within the observed

data, and not just describe the observed information through a small amount of

parameters. This structure is described by the relation between the observed infor-

mation and the latent variables (Pearl, 2009; Koopmans & Reiersol, 1950; Mouchart,

Russo, & Wunsch, 2010). ALI specified the latent variables of interest by describing

the structure of the datas. Due to this structure the joint distribution of the ob-

1



served information and the latent variables is decomposed as the product between a

particular (marginal) probability distribution of the latent variables and the condi-

tional distribution of the observed scores respect to the latent variables. Thus, this

marginal-conditional decomposition is taking into account that latent variables ex-

plain the non random variations in the observed score, variations in latent variables

precede variations in the observed information. Hence, it is (at least) possible to dis-

cuss if latent variable cause observed information (Sobel, 2011). But, in most cases,

not even the importance of latent variables prevent us of assuming the marginal

distribution of them.

Knowing the marginal distribution of latent variables (Gθ) is important. In the es-

timation process usually is assumed a standard normal distribution (Harwell, Baker,

& Zwarts, 1988). However, in a Rasch model, if the real Gθ (Gθ in the population)

of interest is not normal, the accuracy of the estimates values decrease when this

assumption is made. This is true for either items parameters or person parameters

(Woods & Lin, 2009; Finch & Edwards, 2016). On the other hand, a necessary condi-

tion for the estimated parameters in a model to be meaningful, it is the identifiability

of those parameters in that model (Koopmans & Reiersol, 1950; Manski, 2007). The

identification problems are different than the estimation problems. The former looks

for the conclusions that can be made for a given a population and a model, when

there is not restriction in the size of the sample. In other words, it solves the problem

of which parameters are estimable such that, they have an interpretation which is de-

duced from the available datas. While the estimation problems are related with how

to estimate the parameters given a sample. Usually, estimation problems are solved

once a large sample is available. Thus, in any psychometric investigation (and in any

investigation) identifiability is a necessary conditions for estimations, even when a

Bayesian approach is used (San Mart́ın, 2018; San Martin, Jara, Rolin, & Mouchart,

2011). However, to the best of our knowledge, all the improvements made in the

estimation of Gθ (Finch & Edwards, 2016; Karabatsos & Walker, 2009) were based

2



on IRT models that can be formulated as GLMM. And Gθ is not identified in those

models (San Martin, Rolin, & Castro, 2013; San Mart́ın, González, & Tuerlinckx,

2015; San Martin et al., 2011).

The main goal of this thesis was to identify and estimate de marginal distribution

of the latent variables in a set of IRT models. To this end, we framed all the IRT

models that can be formulated as GLMM in a Hilbert space. Zimmerman (1975)

explained how suitable Hilbert spaces are to frame psychometric models. Some com-

mon assumptions such as independence of the true score (conditional expected value)

and error, are natural properties of linear operators on these spaces. Our approach

to use Hilbert spaces geometry for the study of latent variables can be understood

as inspired by Zimmerman’s work (Zimmerman, 1975). However, is important to

highlight a difference with his work (and some others). We do not restrict the latent

variable to be the expected value of some observed random variable conditional on

a randomly selected person (random point). This restricts latent variables to the

sigma algebra generated from persons as a random variable (the random variable

being the process of picking persons). We start from something more general, using

only the restriction that random variables have finite variance (observed and latent).

Next, we explore the meaning of the Axiom of Local Independence (ALI) defined

on two observed scores respect to a latent variable. Our proposal to analyze the

information from test data is very general. There are no restrictions with respect to

the format of the observed information. The scores can be binary variables, sums of

binary variables, etc. Any function (i.e. random variable) of the raw observed scores

with finite variance qualifies. We worked with random variables from any probabil-

ity distribution. This approach allows to work with unidimensional as well as with

multidimensional latent variables. We have coined our approach as Neo-Classical

Test Theory , because it can be understood as a new formulation and an extension

of Classical Test Theory (CTT)(Holland & Hoskens, 2003; Dunn, 1992).

It is important to mention the term Neo-Classical Test Theory was already used

3



by Drewes (2017), however there is a fundamental difference with his work. Drewes

(2017) define the true score directly as the latent variable representing some attribute

of a person, but, how was already explained, we use the conditional expected value

of the observed information on the latent variable of interest as the true score. In

this way we analyze the relation between the observed score and the latent variables.

In particular we studied this relation under WALI.

The structure of this manuscript is as follow. In the first chapter we formally de-

fine some keys concept in this work (observed scores, latent variable, subspaces...etc.

). Then, by embedding IRT models in an orthogonal general orthogonal decompo-

sition, we studied some properties of them and the circumstances under which the

latent variables are identified. In the second chapter we use the identification result

to estimate the marginal distribution of latent variable. We show some simulations

and an application with real datas obtained from the PSU. The mathematical details

of some definitions, proofs and used codes are presented in Appendixes.

.
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II. Neo-Classical Test Theory: A

Geometrical Approach

In this chapter we present the theoretical bases of our approach. It is briefly

explained what a Hilbert space is. It includes explanations of how random variables

are represented in a Hilbert space. And by doing so, we introduce concepts as

Observed Subspaces and Latent Subspaces. Then we made use of the geometry of

Hilbert spaces to analyze IRT models.

2.1 Observed score, Latent variables and Hilbert

space

Let H denote the Hilbert space of all real random variables with finite variance

(Small, 1994). Thus H is the probabilistic space (see Appendix 1 for details on

probabilistic spaces and L2)

L2(M,M, P ) =

{f : (M,M)→ (R,B) is a random variable: E(|f 2| <∞)}. (2.1)

M contains all the relevant information on the observed scores and the latent vari-

ables. This includes all the possibles outcomes from a test and the items, along with

5



all the (raw) information about the latent variable. The sigma algebra generated

by a random variable contains all the events (associated with this random variable)

such that it is possible to assign a probability to them (see Appendix 2 for a for-

mal definition of sigma algebra). All the linear combinations of the elements in the

sigma algebra of the observed scores and the latent variable are contained in M,

the sigma algebra of our probabilistic space. If we denote σ(y) and σ(θ) the sigma

algebras generated by the observed scores and the latent variables respectively, and

σ(y) ∨ σ(θ) the set of linear combinations among the elements in σ(y) and σ(θ) (it

is a subspace actually), then the above affirmation is written as σ(y) ∨ σ(θ) ⊂ M1.

R and B are the Reals and the Borel σ−algebra respectively. Note H is the space

of all random variables with domain (M,M) and having as range all the Borel sets

in the real line. Thus H is the space of B−measurable random variables with finite

variance. Observe that any function of a random variable in H is also an element of

H, even if this function is not linear. We will be back on this point when we present

how different IRT models can be embedded in this approach.

Now let Y and Θ be two subspaces of H, thus two Hilbert spaces included in

H (see Appendix 3 for a formal definition of a subspace). The former is the sub-

space containing all the observed test information. These are all possibles real value

functions of the raw test score which belong to H. Thus Y contains all the random

variables with finite variance defined on (i.e. with domain in) (My, σ(y)). We call

these random variables observed scores, and are denoted by the letter y. My contains

all the relevant information from the observed scores. And σ(y) is the sigma algebra

of this subspace such that, if B is any Borel set in the real line and y is any element

(random variable) in Y, then y−1(B) ∈ σ(y). Hence, Y contains all the possibles

random variables with finite variance defined on the observed information, such that

it is possible to assign a probability to them. Due to Y is a vectorial subspace (see

1In this work we use the convention that a subspace can be contained in itself, which allows for
B ⊂ B. This convention is important in the interpretation of Theorem 1 about reliability, and in
the interpretation of Equation 2.33.
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Appendix 4), any linear combinations of two or more random variables is also a

random variable (closed under the sum). Thus, Y also contains all the linear com-

binations among the random variables defined over the raw test score. Now let j be

an integer subindex indicating a specific test (or item, we do not make a difference

between them), then Yj is the subspace of Y containing all the observed scores yj

(with finite variance) defined on the test (or item) j.

Table 2.1 shows an example of five observed scores defined in a test denoted by

the number 1. The test had six items, each one with four alternatives. The first

column shows a realization of the raw test information, thus, a pattern of answers

from one person. The other five columns shows the realizations of five different

observed scores. From left to right, the first observed score y1 is obtained according

to some criterion relating alternatives to numbers, a Likert Scale for example. The

second observed is a binary variable assigning ones and zeros. The third observed

score is the sum of the first observed score. This observed score is usually used as

an informative variable of the learning level reached. The fourth observed score is

a sum of the first three and the last three items separately. And the last observed

score is the mean of the components of the fourth observed score.

Table 2.1. Examples of Observed Scores.

Raw test Information y1 y′1 y′′1 y′′′1 y′′′′1

b 0 0

7

4

3.5

d 3 1
a 1 0
a 2 1

3b 0 0
b 1 0

Note. The first column shows a pattern of answers
from a examinee in a test of six items, each one
with four alternatives. The other columns are the
realizations of five different observed scores defined
on the test 1.

In addition, we denote by Θ the subspace containing all the information of the
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latent variable. This is the subspace containing the information of interest to the

researcher. It is the subspace containing all the random variables with finite variance

defined on (Mθ, σ(θ)). Again, σ(θ) is such that θ−1(B) ∈ σ(θ) where θ is any element

in Θ and B is any Borel set in the real line, so that a probability measure can be

assigned to every element (random variable) θ. Hence Θ is the subspace containing

the information on the attribute for which the test was constructed. We do not

make any assumption on the intersection of these two subspaces (Y ∩Θ). Depending

on what is in this intersection, we can conclude that the information in Θ is not

observable, not observed or something of both. If the intersection contains only the

zero element2, we conclude latent variables are unobservable, but if Θ is completely

contained in Yj, we conclude latent variables are unobserved but not unobservable,

because they take the same values as an (any) observed score. It is worth to mention

that any Hilbert subspace is a Hilbert space too, thus Y and Θ are Hilbert spaces

as well and hence, a unique probability measure is defined on each one of them.

It is important to clarify the different meanings of the term dimension we use in

this work. There is the geometrical dimension of any element in a Hilbert Space and

the dimension of the traits they represent. Regarding the geometrical dimension, in

the subspaces Y and Θ each random variable (i.e. each function) is a vector, where

the components are given by the possibles values that the function can take. Thus,

if the cardinality of the range of a function is infinity, the dimension of the vector

representing that function could be as well. Because each realization of a θ ∈ Θ

(and y ∈ Y ) corresponds to one sampled value, the dimension of any element θ (and

y) is given by the cardinality of his sample space. The dimension of the subspace

Θ (and Y ) equals the dimension of the element θ in Θ (y in Y ) with the largest

dimensionality. Hence, even if only one element in Θ (or Y ) is infinite-dimensional,

the dimension of Θ (and Y ) would be as well. Then, the sample space where any

element of Θ is defined is a subset of Mθ. Now, regarding the dimensionality of

2The zero element is a function which map every element in the sample space to zero.
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the attributes represented by the elements in Θ, note we used functions with ranges

in R (not in Rn, with n as an integer greater than one), and thus, the attributes

represented by the elements in Θ are unidimensional. In order to generalize our

results to multidimensional latent traits, we need to expand our Hilbert space to

random variables with ranges in Rn, with n being an integer greater than one. In

this work the multidimensionality of the attributes come from multiple attributes

explaining the observed scores in one test. Once we incorporate some relevant results,

we expand the Hilbert space to multidimensional random variables, i.e., multiple

attributes.

Also note that the sample space is not restricted to the sample of examinees. It is

the total space to sample from. Therefore, for example, the variance of E(w|x), where

w and x are random variables, must to be interpreted in general as the variation of

E(w|x) across different values of x, and not necessarily across different persons or

within a person. However, if the datas come from a group of persons, then the

realizations of the variable (sampled values) will come from different persons, and

then the variance must be interpreted as the variance between persons. Because

this is commonly the case, and to avoid confusion, we refer only to this type of

applications. Also, it is important to highlight that we use one probability measure

in each subspace, which means that we assume homogeneity across persons, so that

each realization of the latent variable comes from an identical independent probability

distribution (iid). Without this assumption estimation procedures could only be

applied to data which came from one person. However, it is discussable whether the

density function of the latent variable is the same for all persons, but also whether it

remains constant during a test application. Without the iid assumption, we would

have subsets of datas from an unknown number of different probability distributions,

so that it would be impossible to recover information from any of those density

functions. Furthermore, it is in these distributions where the information on the

attributes of interest resides. Hence, when we use the ALI to specify a latent variable,

9



we refer to a latent variable which we do not know his substantive meaning, but

we know that it represents an attribute which is common across the persons, and

persons with equivalent levels in the latent trait are indistinguishable with respect

to their tendency to produce observed scores in a test. This does not mean that

equal levels of θ imply equal observed scores, but the distribution of the observed

scores is determined by the levels of θ 3(this is the definition of ALI). Now that the

assumptions are clarified we present some features of Hilbert spaces.

A Hilbert space is a complete inner product space (Halmos, 1957). This means:

a) all Cauchy sequences (see Appendix 5) from elements in H converge to an element

in H; it can be said that there are no “holes” or emptiness in it; b) because Hilbert

spaces are provided with inner products (see Appendix 6), concepts like length and

angles can be used. An inner product is used to induce a norm (length) and the

sense of angle in a Hilbert space. This last sentence will become more clear in the

next paragraph.

The expected value of the product between two real-valued random variables is

an inner product in H (Florens, Marimoutou, & Peguin-Feissolle, 2007; Lindquist

& Picci, 2015) (see Appendix 7). If w and x are two random variables in H, we

denote the inner product between them as 〈w, x〉 = E(w·x). The norm of a random

variable x induced by this inner product is given by E(x2) = 〈x, x〉 = ‖x‖2. Then,

assume that E(x) = 0 implies that V ar(x) = ‖x‖2. Also, the inner product allows a

definition of orthogonality. Two random variables w and x are orthogonal, denoted

by w⊥x, if and only if 〈w, x〉 = 0, thus in H if θ1 ⊥ θ2 then E(θ1 · θ2) = 0. The

orthogonal complement of any subspace X of H is denoted by X⊥. It is the subspace

in H in which all the elements are orthogonal to each element in X. Thus,

X⊥ := {h ∈ H : 〈h, x〉 = 0, ∀x ∈ X}. (2.2)

3For more statistical details on this comments see Gyenis, Hofer-Szabó, and Rédei (2017).
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Figure 2.1. Orthogonal complement of a subspace X, the point zero indicate the zero
element.

An illustration of the orthogonal complement of X is showed in Figure 2.1. According

with the notation of Stone (1991), the lines in the intersection point indicate 90◦ with

the entire space X. A subspace can be denoted either for a line or using an ellipse

up to whether or not it is desirable to indicate other structures within the subspace.

Arrows will indicate operators.

On the other hand, the conditional expected value is an orthogonal projection

(Florens et al., 2007; Lindquist & Picci, 2015) (see Appendix 8). Then for any y

in Y , E(y|Θ) is the orthogonal projection from the vector y to Θ, it is the closest

element of Θ to y. There is only one element in Θ which is the closest to y. The sense

of length is given by the norm induced from the inner product. The vector from the

orthogonal projection of y onto Θ to y, belongs to Θ⊥ (note that a vector is a random

variable in our H). Because of expected values properties, if y = y1, y2, .., yn is a n

dimensional observed score (a n dimensional random vector), then, without restoring

in any argument of orthogonality, E(y1, y2, ..., yn|Θ) = E(y1|Θ), E(y2|Θ), ..., E(yn|Θ)

(Rencher & Schaalje, 2008). We can also perform an orthogonal projection from an

element θ onto an observed subspace Yj. If we use two observed scores to approximate

θ, then j = 1, 2. This correspond to an orthogonal projection of θ onto all the linear

11



Figure 2.2. Two orthogonal projection, one onto the subspace Θ and the other onto the
span generated from Y1 and Y2.

combinations among the elements in Y1 and Y2 (the span generated from Y1 and

Y2, Y1 ∨ Y2), which we denote by E(θ|Y1, Y2). Figure 2.2 illustrate an orthogonal

projection from H onto Θ and from H onto the span generated by Y1 and Y2.

Finally, the cosine of the angle between two subspaces (Bouldin, 1973) is given

by,

cosα := sup

{
〈f, g〉
‖f‖‖g‖

; f ∈M, g ∈ N
}
, (2.3)

where α is the angle between the subspaces M and N taking values from the interval

[−π/2, π/2] (in radians), and sup denotes the supremum. In what follows we use

only random variables with zero mean. Because concepts like angles and length

are invariants under translations, this assumption do not means a lose of generality.
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Following the notation of Stone (1991) we provided some figures to illustrate the

geometric interpretation of this work. With all these elements we can rescue the

greek tradition and do geo-metric with psychometric models.

2.2 Neo-Classical Test Theory

From the axiomatization of Lord and Novick (1968), we can rewrite the CTT as

yj = E(yj|Θ) +
(
yij − E(yj|Θ)

)
(2.4)

where yj is an element of Yj representing an observed scores in a test j, it is one

among all the random variables with finite variance that can be defined over the

outcomes in a test j. Equation 2.4 is a typical orthogonal decomposition in H (see

Appendix 5). Note that E(yj|Θ) ∈ Θ and
(
yj − E(yj|Θ)

)
∈ Θ⊥. Because E(yj|Θ)

is an orthogonal projection, E(yj|Θ) is the element in Θ which minimize the size of

yj−E(yj|Θ) given by ‖yj−E(yj|Θ)‖. The error term (yj−E(yj|Θ)) is a consequence

of Yj being different from Θ, in other words, this is the result of try to measure Θ

trough Yj by the true score E(yj|Θ), and not directly. As in CTT, Decomposition

2.4 make persons equivalents, but respect to latent variable realizations instead of

observed score realizations. Equation 2.4 is the starting point of the Neo-Classical

Test Theory (N-CTT). This is why we may refer to Equation 2.4 as N-CTT. Figure

2.3 illustrate this decomposition in the entire subspace Θ. Note in this figure the

arrow is used to indicate the orthogonal projection operator from a subspace Y onto

Θ.

Because always in H E(yj|Θ) ⊥ (yj − E(yj|Θ), and taking into account that
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Following the notation of (Stone, 1991), this is an illustration of the orthogonal
decomposition.

Figure 2.3. The set of all true score in our space H.

variance is the square of the length of a vector, it is possible to see that

〈yj, yj〉 = 〈E(yj|Θ) + yj − E(yj|Θ), E(yj|Θ) + yj − E(yj|Θ)〉 (2.5)

‖yj‖2 = ‖E(yj|Θ)‖2 + ‖yj − E(yj|Θ)‖2. (2.6)

Because the variance is the norm of a vector (a random variable) in this framework,

more variability is equivalent to a larger yj.

All this may seem very familiar. What is new in our formulation is that Equation

2.4 is a general decomposition, for discrete as well as for continuous observed vari-

ables. From a psychometric point of view N-CTT is a general decomposition. Some

IRT models can be embedded in this framework if the true score can be formulated

as generalized linear mixed models (de Boeck & Wilson, 2004). What changes from

one model to another is the link function (Krzanowski, 2002) used in the true score

E(yij|Θ). For example, in the Rasch model the link function is the logit function.
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When a link function is used to model the true score in N-CTT, we take a decision

on which subspace of Θ we are orthogonally projecting. For instance, if we use the

identity link function and an unidimensional latent variable, then we are project onto

the subspace of Θ composed of linear functions of an element θ i.e. φ(θ) = β0 +β1θ
4.

Hence the orthogonal projection interpretation still holds for different latent vari-

ables. We believe that it is beneficial to study psychometric models at this level of

generality.

2.2.1 Classical and Dual reliabilities

Before analyzing the reliability associated to a test from the Hilbert space frame-

work, let’s look the next variance decomposition of the observed scores,

V ar(yj) = V ar[E(yj|Θ)] + E[V ar(yj|Θ)]. (2.7)

We can see there is a classification problem underlying the CTT. The latent variable

induce groups in the realizations of an observed score, and those groups depends on

the distribution of the observed score conditional to the latent variable. Each group

contains a set of observed scores realizations associated with a given realization

of θ. Hence, the total variance can be partitioned in two parts: the true score

variance V ar[E(yj|Θ)] (between groups); and the variance within realizations of θ,

which is represented as the expected value across the observed score variance given

a realization of θ E[V ar(yj|Θ)](within groups) 5. The psychometric problem behind

4In a more formal way, and using the standard notation in probabilities, observe that φ(θ) =
φ(θ(ω)) = φ ◦ θ (ω) = g(ω), hence the random variable φ (a function), proved that has finite
variance, belong to our Hilbert space.

5It is important to pointed out a mistake of Holland and Hoskens (2003) in the Appendix B.
They said that V ar(yj −E(yj |Θ)) is different from E[V ar(yj |Θ)], but comparing Equation 2.6 and
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this is: once we have a realization of the observed score, we want to known from

which level in the latent trait they came.

Now, the reliability ηyj |θ in the test j is defined by the ratio (Holland & Hoskens,

2003)

ηyj |θ :=
V ar[E(yj|Θ)]

V ar(yj)

(
=
‖E(yj|Θ)‖2

‖yj‖2

)
, (2.8)

for every yj in Yj. This is the proportion of the observed score variance which

correspond to the true score variance(Lord & Novick, 1968; McDonald, 2011). From

the decomposition in Equation 2.7 it follows that ηyj |θ ∈ [0, 1]. By specifying yj, the

definition given by Equation 2.8 is open to a dependency on the score formula used.

Note that if Yj ⊥ Θ then E(yj|Θ) = 0 ∀ yj ∈ Yj, therefore ηyj |θ = 0. The same holds

in the opposite implication order, this is, ηy|θ = 0 implies Yj ⊥ Θ. Thus, it is possible

to group the realizations of the observed scores in values of true scores if and only

if Yj is not orthogonal to Θ. On the other hand if ηyj |θ = 1 then ‖E(yj|Θ)‖ = ‖yj‖,

which implies that Yj is contained in Θ (Yj ⊂ Θ). Hence, every observed scores yj

will have the same outcomes that some θ in Θ. Therefore the reliability can be one

only if every observed score defined in a test j, almost sure6, is equal to a latent

variables in Θ.

The main goal of a psychometric model is to capture information of some θ in Θ

from the observed score in a test j. That is why the decomposition in Equation 2.9

is of interest:

Equation 2.7 they are not different.
6See Appendix 7 for an explanation of why we use an almost sure equality and not just an

equality.

16



θ = E(θ|Yj) +
(
θ − E(θ|Yj)

)
. (2.9)

Here E(θ|Yj) ⊥
(
θ − E(θ|Yj)

)
. Recall E(θ|Yj) is the best approximation of θ from

the subspace Yj in a minimal error size sense. This is the EB of θ. The variance of(
θ − E(θ|Yj)

)
is the prediction error. Also note that

‖E(θ|Yj)‖ ≤ ‖θ‖, (2.10)

where equality holds when the norm of the prediction error is zero (i.e., Θ ⊂ Yj),

and how will be explained in the section 2.2.3, when ALI is true. Thus, unless one

of these conditions is true, the EB always shows shrinkage compared with the latent

variable. It has no sense correct for shrinkage because there is an inherent loss of

information in projecting, and when no information is lost, the EB does not show

shrinkage.

By decomposing the variance of θ as,

V ar(θ) = V ar[E(θ|Yj)] + E[V ar(θ|Yj)] (2.11)

it is showed that E[V ar(θ|Yj)] is the quantification of the prediction error, and not
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V ar(θ|Yj) as had been proposed by people working in generalized linear models

(Skrondal & Rabe-Hesketh, 2009; Welham, Cullis, Gogel, Gilmour, & Thompson,

2004; McCulloch & Neuhaus, 2011). Based on Equation 2.11 it is possible to define

a dual reliability in a test j as,

ηθ|yj :=
V ar[E(θ|Yj)]
V ar(θ)

(
=
‖E(θ|Yj)‖2

‖θ‖2

)
. (2.12)

In analogy with the classical reliability definition in Equation 2.8, from Equation

2.12 it follows that:

1. ηθ|yj ∈ [0, 1],

2. Θ⊥Yj ⇔ ηθ|yj = 0 ∀yj ∈ Yj and

3. ηθ|yj = 1 if every latent variable in Θ is almost sure equal to an observed score

yj in Yj (Θ ⊂ Yj).

2.2.2 Relation between Reliabilities

The symmetry between the dual and classical reliabilities suggest a relation be-

tween them. The following theorems summarize this relation.

Theorem 1 The classical and dual reliabilities are equals.

To prove theorem 1 we need the following lemma.

Lemma 1 The classical reliability for a given observed score is the square cosine

of the angle between the observed score and the true score.

In order to proof lemma 1 observe that
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〈yj, E(yj|Θ)〉 = 〈E(yj|Θ) + (yj − E(yj|Θ)), E(yj|Θ)〉

= 〈E(yj|Θ), E(yj|Θ)〉. (2.13)

Because we only use random variables with zero expected value, the numerator in

Definition 2.8 is the last term in the right side of Equation 2.13. Hence, the variance

of the true score can be represented as the inner product between the observed score

and the true score. Thus the classical reliability can be rewritten as

ηyj |θ =
〈yj, E(yj|Θ)〉2

‖yj‖2‖E(yj|Θ)‖2
. (2.14)

This is the square cosine of the angle between the observed score yj and the

true score E(yj|Θ). When the angle between these two vectors is close to zero, the

reliability tends to one. For different applications of a test in different populations of

persons, the observed scores and the true scores will be different. As a result, does

not make sense to force this angle to be invariant across populations (of persons).

The reliability as defined in Equation 2.8 (and 2.14), does not only depends on

the score formula used, but also on the population of examinees. Therefore, the

reliability is not a property of a test, but of the scores formula used together with

the population of examinees. When we expand H to the space of vectorial random

variables (functions in Rn), Definition 2.14 will apply to multidimensional latent

variables too, and these observations will still be valid.

Now we are closer to proof theorem 1. In first place note that we can use the
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same procedure of lemma 1 in Definition 2.12. Thus the dual reliability is

ηθ|y =
〈θ, E(θ|Yj)〉2

‖θ‖2‖E(θ|Yj)‖2
, (2.15)

this is the square cosine of the angle between the latent variable θ and the EB for

each value of θ. For notation convenient, and to simplify Equation 2.14 and Equation

2.15, let ĥ denote h/‖h‖, where h is any vector in H (any random variable), and ĥ

is a vector of norm 1 in the same direction as h. Thus

ηyj |θ = 〈ŷj, E(ŷj|Θ)〉2 and ηθ|yj = 〈θ̂, E(θ̂|Yj)〉2. (2.16)

On the other hand, it can be proved that any subspace X can be orthogonality

decomposed by using another subspace W as

X = Ē(W |X)⊕X ∩W⊥. (2.17)

Where Ē(W |X) is the smallest subspace which includes all the orthogonal projec-

tions from W to X, and X ∩W⊥ is the subspace composed from all the elements

in common between X and the orthogonal complement of W , thus every element

in this intersection is orthogonal to W . In Equation 2.17, and in all equations, ⊕
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denote direct sum (see Appendix 10 for details on this decomposition).

Now, let us denote by yj⊥ and θ⊥ any element in Θ∩Y ⊥j and Yj∩Θ⊥ respectively.

Using the decomposition in Equation 2.17 for the elements θ̂ and ŷj we obtain,

〈ŷj, θ̂〉 = 〈ŷj, E(yj|Θ)⊕ yj⊥〉 = 〈ŷj, E(yj|Θ)〉 (2.18a)

〈ŷj, θ̂〉 = 〈E(θ|Yj)⊕ θ⊥, θ̂〉 = 〈E(θ|Yj), θ̂〉. (2.18b)

This procedures is valid for any yj in Yj and for any θ in Θ. Also, because in

real values random variables 〈x,w〉 = 〈w, x〉, and as a consequence of the angles

invariance respect to changes in the norms of vectors, it is concluded that

ηyj |θ = ηθ|yj �. (2.19)

Both reliabilities are the same because each of them is the angle between the observed

score and the latent variable. Theorem 1 implies that in test theory η = 1 if and

only if Θ = Y . Thus, a reliability equal to one is possible only if we have a direct

“look” on what we are interesting in. Furthermore, η = 1 means that the realizations

of a yj are in one to one correspondence with the realizations of some latent variable

θ in Θ. Thus, there will be one true score for each realization of yj.

Given Theorem 1, we propose the next definition of reliability in a test j applied

in a given population,
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ηj := sup
{
〈ŷj, θ̂〉

}
. (2.20)

Due to the definition in Equation 2.3, Definition 2.20 is the square cosine of the angle

between Yj and Θ. Definition 2.20 is the maximum possible reliability a cross the

observed scores that can be defined in a test j and the latent variables in a given

population. The maximum occurs when the angle between the observed score and

the latent variable is the closest to zero, or zero.

Now let consider two observed subspaces Y1 and Y2 intended to obtain information

of the same latent variable θ. The instruments associated with Y1 and Y2 are not

necessarily parallels. A dual decomposition of this situation is

θ = E(θ|Y1, Y2) +
(
θ − E(θ|Y1, Y2)

)
, (2.21)

where the EB E(θi|Y1, Y2) is the orthogonal projection onto all the possibles linear

combinations between the elements in Y1 and Y2.

We can use another orthogonal decomposition by partitioning the true score as

follows

θ = E(θ|Y1) +
(
E(θ|Y1, Y2)− E(θ|Y1)

)
+
(
θ − E(θ|Y1, Y2)

)
(2.22)
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where all the quantities in parenthesis are orthogonal to each other. Note that the

first two terms at the right side of the equation correspond to the EB estimator.

Now let decompose the variance of θ using Equation 2.21 and Equation 2.22.

Using the fact that variance is the norm of a vector, we get:

‖θ‖2 = ‖E(θ|Y1)‖2 + ‖E(θ|Y1, Y2)− E(θ|Y1)‖2 + ‖θ − E(θi|Y1, Y2)‖2 (2.23)

‖θ‖2 = ‖E(θ|Y1, Y2)‖2 + ‖θ − E(θ|Y1, Y2)‖2. (2.24)

From Equations 2.23 and 2.24 we can obtain the reliability as the norm of the EB

over the norm of the latent variable.

‖E(θi|Y1, Y2)‖2

‖θ‖2
=
‖E(θ|Y1)‖2

‖θ‖2
+
‖E(θ|Y1, Y2)− E(θ|Y1)‖2

‖θ‖2
. (2.25)

The first term at the right hand of the equation corresponds to the reliability asso-

ciated with the scores of the first test. The second term is always positive (even if

Y1 and Y2 are negatively correlated) hence, for every y1, y2 in Y1, Y2, Equation 2.25

implies

ηθ|y1,y2 ≥ ηθ|y1 . (2.26)
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It is clear from the result that the dual reliability improves with the number of

measures even if the measures contain errors, and even if the true scores and the relia-

bilities are different between them. Considering theorem 1, this is a generalization of

the spearman-brown equation because we do not restored on parallels tests (Holland

& Hoskens, 2003; Zimmerman & Williams, 1966).The inequality in equation 2.26 has

other implications too.

Proposition 1 The precision of the Empirical Bayes estimator improves with the

numbers of measurements.

As consequence of Equation 2.11 the dual reliability improves when the prediction

error is smaller, and thus, the precision of the EB improves. Hence, Proposition 1 is

the result of Equations 2.19 and 2.26.

So far we have shown a new perspective to analyze psychometric models. We

showed generalizations and demonstrations of some already known or intuitable re-

sults. Now we go one step further in the Hilbert space geometry. We introduce

some new insights of the role of ALI when latent variables are studied from observed

information, as in tests applications.

2.2.3 Splitting Subspaces and Axiom of Local Independence

The ALI is of great importance in social science. In psychometric, latent variables

underlying a set of observed random variables are specified by the ALI. This means

that after conditioning on it, the observed scores are independent. In other words,

they explain the associations (correlation for example) among the observed scores.

In linear subspaces, such as the observed and latent subspaces, this condition is re-

placed by conditional orthogonality. This is a weaker assumption than ALI (Florens,

Mouchart, & Rolin, 1993; Florens & Mouchart, 1985), we call it WALI. Is weaker

in the sense that ALI implies WALI, but WALI does not implies ALI (unless the

joint distribution of the orthogonal variable is normal). If WALI is true for a latent
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variable θ respect to two observed scores y1 and y2, then θ explains the correlation

between y1 and y2, hence after conditioned on θ the observed scores are no longer

correlated. Recall that here observed scores are observed random variables from any

probability distribution, such that they have mean equal to zero and finite variance.

In what follows we expand this concept to subspaces.

Suppose we have two observed scores from two tests (or items) y1 and y2 related

to the same latent variable θ. For a given θ, different realizations of y1 and y2 are

possibles. If those realizations are orthogonal for any value of θ, we say they are

orthogonal conditional on θ, and this is denoted by y1 ⊥ y2 | θ. If this is true for

all possible observed scores defined on the outcomes in the tests (or items) 1 and

2, and for all possible latent variables (with finite variance and zero mean and from

any probability distribution), we will say the subspaces Y1 and Y2 are orthogonal

conditional on the subspace Θ. This is denoted by

Y1⊥Y2 | Θ. (2.27)

Lindquist, Picci, and Ruckebusch (1979) called splitting subspace the spaces that

behave like Θ respect to Y1 and Y2. This means that for any y1 in Y1 and for any y2

in Y2.

〈y1 − E(y1 | Θ), y2 − E(y2 | Θ)〉 = 0. (2.28)

Figure 2.4 illustrate the orthogonality of the errors.

Using the notation of Lindquist et al. (1979), let Y0 be the subspace formed from
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Figure 2.4. The latent subspace Θ is a minimal splitting subspace respect to the observed
subspaces Y1 and Y2.

the sum of Y1 and Y2 (i.e., all possibles linear combinations between the elements in

Y1 and Y2 denoted as Y1∨Y2), then we say that Θ splits Y0 into two parts Y1 and

Y2 such that 2.28 hold. If Θ is a subspace of Y0 then is called an internal splitting

subspace, and if there is not a proper subspace of Θ satisfying 2.27 (or 2.28) then Θ

is a minimal splitting subspace. Recall that the space where we work on is H, which

is defined in Equation 2.1, section 2.3.1. Thus any subspace that we use will be a

subspace of H.

Lemma 2 If Θ is a minimal splitting subspace respect to Y1 and Y2, the only

element θ for which E(θ|Y1) = E(θ|Y2) = 0 is the zero element.

In order to proof Lemma 2, we need to considerer that find all the Θ’s which

are minimal subspaces respect to Y1 and Y2, is equivalent to find all the splitting

subspaces satisfying (see Appendix 11)

Θ ∩ Y ⊥1 = 0 (2.29a)

Θ ∩ Y ⊥2 = 0. (2.29b)
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On the other hand, we can apply the orthogonal decomposition in Equation 2.17 on

Θ with respect to Y1 and Y2 as follows

Θ = Ē(Y1 | Θ)⊕Θ ∩ Y ⊥1 (2.30a)

Θ = Ē(Y2 | Θ)⊕Θ ∩ Y ⊥2 . (2.30b)

Now let Θ′ be the subspace of Θ defined as:

Θ′ = {θ ∈ Θ : E(θ | Yj) = 0} j = 1, 2. (2.31)

Θ′ is the kernel of the EB based on Y1 and Y2, i.e., is the subspace of Θ formed from

all the elements in Θ which are orthogonal to Y1 and Y2. Thus, Θ′ = Θ ∩ Y ⊥j for

j = 1, 2. Therefore, if Θ is a minimal splitting subspace respect to Y1 and Y2, the only

element in Θ′ will be the {0}. In other words, the only element of Θ that cannot be

approximated from the observed information will be the zero element. Thus, when

WALI holds, we maximize how much we can known about the latent variables from

the observed information �.

The WALI solves an indeterminacy problem. By measuring θ through the EB

estimates, one may fear to lose hidden information. The WALI ensures that only

the zero element is in the kernel of the EB, and thus, no information is lost (no

shrinkage). This point is clearer when decomposition in Equation 2.17 is applied on

θ, and replaced in E(θ|Y ) as follows:
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E(θ|Y ) = E
[
E(yi|Θ)|Y

]
+ E(θy⊥|Y ) (2.32)

where θy⊥ denotes the part of the latent variable which is in the orthogonal comple-

ment of Y . The orthogonal projection of any θy⊥ onto Y is always zero, no matter

how much of Θ is shared with Y ⊥. There is no way to recover information from θy⊥

through the EB estimator. If WALI holds, only the zero element is in there, so that

the indeterminacy problem is solved.

It is possible to go further using the geometry of Hilbert spaces and construct

boundaries on Θ when it is a minimal splitting. It can be proved (see Appendix

12) that if Θ is a minimal splitting subspace with respect to Y1 and Y2, such that Θ

contains Y2
7, then

Y2 ⊂ Θ ⊂ (Y2 ∨ Y 2)⊕ Y ⊥0 . (2.33)

Where Y 2 is defined as E(Y1|Y2)∨E(Y2|Y2), the subspace composed of all the linear

combinations between E(Y1|Y2) and E(Y2|Y1). Here E(Y1|Y2) represents the set of all

possibles orthogonal projections from Y1 onto Y2, and similarly for the set E(Y2|Y1).

Hence, because Y1 and Y2 are subspaces of observed scores, Y 2 contains observable

information from the tests. On the other hand, Y ⊥0 stands for the orthogonal comple-

ment of Y0 (remember that Y0 := Y1∨Y2). This means Y ⊥0 does not contains observed

scores, and hence, represent unobservable information from the tests. Keeping these

7If this assumption is replaced for Y1 ⊂ Θ interchange every Y2 for Y1 in the boundaries.
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last observations in minds, from Equation 2.33 we can see that if a minimal splitting

latent subspace exists in:

a) Y2 ⊂ Θ ⊂ (Y2 ∨Y 2)⊕Y ⊥0 , means latent variables could take unobservable val-

ues from the tests. We say they may be unobservable and not just unobserved.

This is a result of the term Y ⊥0 which contains unobservable information from

the tests.

b) Y2 ⊂ Θ ⊂ (Y2 ∨ Y 2), means latent variables are unobserved but not unob-

servable. These bounds show latent variables can only take values among the

possibles observed scores defined in the two tests, thus they are actually consti-

tuted by observable information from the tests, its just that we may or may not

see this information during an application of the tests. Thus, Θ is an internal

minimal splitting and it is possible to construct tests with perfect reliability.

Also it can be shown that if Θ hold ALI respect to Y1 and Y2, and Θ is contained in

Y2 (or Y1) then the minimal splitting subspace is E(Y1|Y2) (or E(Y2|Y1), see Appendix

13). This means the orthogonal projections of the observed scores in test 1 onto the

observed scores in test 2, is the minimal subspace of Y2 for which Y1 is conditional

orthogonal to Y2. Of course this also correspond to not observed latent variables.

On the other hand, in the section Classical and Dual Reliabilities, was mentioned

that reliability equals to one implies that the latent variable is a function of the ob-

served score. Hence, it is important to check if Θ being a minimal splitting subspace

implies that reliability is always equal to one. In order to clarify this, remember the

reliability is related with the angle between the observed and the latent subspaces

(Equations 2.18a and 2.18b). Now, if Θ is a minimal splitting subspace respect to

Y1 and Y2, Equation 2.30a implies that all the elements in Θ will be the true scores

obtained from Y1 (and Y2). Thus, θ can be replaced by the true scores E(y1|Θ) (or

E(y2|Θ) ). In this way the reliability of the scores associated to Y1 is given by
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η =
‖E(yj | Θ)‖2

‖yj‖2
≤ 1.

This shows that it is possible to have values of reliability less than one if Θ is a

minimal splitting subspace.

Finally, from Equations 2.29a and 2.29b, and from decompositions 2.30a and

2.30b, it can be seen that under WALI the true scores of any two elements y1 ∈ Y1
and y2 ∈ Y2 is

E(y1 | Θ) = θ (2.34a)

E(y2 | Θ) = θ, (2.34b)

therefore, the N-CTT (Equation 2.4) decomposition of y1 and y2 can be expressed

as

y1 = θ + e1 (2.35a)

y2 = θ + e2 (2.35b)

where e1 and e2 are the error terms. By induction, all the results based on WALI

can be easily generalized to J items (or tests), where J can be any integer. A very
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important fact about 2.35a and 2.35b is that Kotlarski (1967) proved that the joint

distribution of y1 and y2, determines the marginal distributions of θ, e1 and e2 up

to a translation of the curve. Thus, on this framework the shape of the marginal

distributions of the latent variables and the error terms are all identified. There is

not need to assume the marginal distributions of either of these three random latent

variables. Note that denoting by yi1 the realizations of the random variable y1 from

the person i, and similarly for yi2, θi, ei1 and ei2, Equation 2.35a and Equation 2.35b

implies

yi1 = θi + ei1 (2.36a)

yi2 = θi + ei2. (2.36b)

In Equations 2.36a and 2.36b we use the fact that any random variable in our

Hilbert space (i.e. y1, y2, θ, e1 and e2) is a vector whose components are each possible

realization of the random variable (the sample space). And thus, considering that a

vector sum is component a component, Equation 2.35a can be understood as


y11

y21
...

yn1

 =


θ1

θ2
...

θn

+


e11

e21
...

en1

 , (2.37)

where n is the sample space cardinality. The same representation can be used in

Equation 2.35b. Thus, when the realizations are one per each person i, Equations

2.36a and 2.36b hold.
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2.2.4 Multidimensional Latent Variables

The inner product from which we define angles and distances is 〈x,w〉 = E(xw),

the expectation of the product between two random variables. And all the (random)

latent variables used in this work are described as f : (M,M)→ (R,B), with finite

variance and zero mean. Hence, each realization of any of these random variables

is associated with a single value on the Real Line (R). This means all the latent

variables used represent one-dimensional traits8.

To explore multidimensional latent variables, we need to expand our Hilbert space

to random variables with range in Rn, where n is any positive integer bigger than

one. For example if n = 4, then we are able to work up to four-dimensional random

variables. We need to define an inner product for this kind of random variables, so

we can make use of geometry.

For example, for any integer n, the n-dimensional observed score corresponding

to a person i in a test (or item) j is denoted by yij = (yij1, yij2, ..., yij(n−1), yijn),

and the realization of a n-dimensional latent variable in a person i is denoted by

θi = (θi1, θi2, ..., θi(n−1), θin). Because n one-dimensional observed scores could be

arranged in one n-dimensional observed score, it could be more appropriate to drop

the subindex j. The inner product that we propose is as follows:

〈θ, y〉 = 〈θ1, y1〉+ 〈θ2, y2〉+ ...+ 〈θn, yn〉, (2.38)

where each inner product at the right side of Equation 2.38 is as before. For example

8Remember the distinction made at the beginning of the chapter between: the geometrical
dimension of a random variable in H, which is related with how many values can take (all the
possibles realizations); and the trait (represented by the latent variable) dimension, which is related
with the dimension of each realization of the random variable.
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〈θ1, y1〉 = E(θ1y1). It is important to highlight that each component of the vectorial

random variable belongs to the original Hilbert space. Recall that two vectors are

orthogonal if the inner product between them is zero. Thus when multidimensional

observed scores and latent variables are used, the error term will still being orthogonal

to the true score. This is easy to check by noting that each inner product at the

right side of Equation 2.38 will be zero.

Now let analyze a test from which we obtain a one dimensional observed scores,

this is a single observed score per person. Let assume these observed scores are

explained, just for the sake of simplicity, for three latent variables and not for n. We

know the reliability is the square cosine of the angle between the observed scores

and latent variable (see theorem 1). Also the cosine of the angle between any two

vectors is defined as the inner product between them over their norms (Equation 2.3).

To avoid large expressions, we use the same notation used in Equations 2.16 (ĥ =

h/‖h‖). Because we consider a three-dimensional latent variable, θ is represented by

the triplet (θ1, θ2, θ3) and the observed scores by y1 = (y1, y1, y1) (because it is a one

dimensional observed score). Thus, the reliability would be

η = 〈ŷ, θ̂〉2 (2.39a)

= (〈y1, θ1〉+ 〈y1, θ2〉+ 〈y1, θ3〉)2. (2.39b)

In the right side of Equation 2.39b, each term is smaller than the square root of

the reliability of the observed score respect to the latent variables θ1, θ2 and θ3

respectively, because they are divided by the products of the norms of y1 with θ

(multidimensional). Hence, if we apply the square root on both sides, we obtain
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√
η <

√
η1 +

√
η2 +

√
η3. (2.40)

Equation 2.40 is a superior limit in the reliability of a multidimensional test. If

one of the reliabilities η1, η2 or η3 is equal to one, the others must be zero. This

is because the multidimensional inner product that we used assume θ1 ⊥ θ2 ⊥

θ3... ⊥ θn, thus if a reliability is one, the observed score must be perpendicular to

the other components of the latent variable. Hence reliability is related with which

latent variable are generated the observed scores, in this sense reliability cannot be

distinguished from validity. The fact that the multidimensional reliability is less than

one, is a consequence of the Cauchy−Schwarz inequality (see Appendix 14).

The result presented in Equations 2.34a and 2.34b is valid for multidimensional

latent traits too. They are implied by Equations 2.30a, 2.30b, 2.29a and 2.29b; and

the proofs of these equations (Appendixes 10 and 11) are valid for any Hilbert space,

thus are valid for the Hilbert space of real random vectors with the inner product

proposed in Equation 2.38. To illustrate how would looks Equations 2.34a and 2.34b

with a multidimensional latent variable instead, we continue with the example of

a three-dimensional latent trait, but this time using two one-dimensional observed

scores. Let denote Θ3 the latent subspace of three dimensional latent variables

(each component of the three-dimensional latent variable with zero mean and finite

variance ). Because we have two observed scores, we can put them together in a

two-dimensional observed score as y = (y1, y2), in this way,
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E((y1, y2)|Θ3) =
[
E(y1|Θ3), E(y2|Θ3)

]
with (2.41a)

E(y1|Θ3) = θ1, θ2, θ3 (2.41b)

E(y2|Θ3) = θ1, θ2, θ3. (2.41c)

The identification result of Kotlarski (1967) is not valid in this case, but Székely and

Rao (2000) generalized his result to multi-factor linear models, as the one presented

in Equations 2.42b and 2.42b

y1 = θ1 + θ2 + θ3 + e1 (2.42a)

y2 = θ1 + θ2 + θ3 + e2. (2.42b)

In the next chapter are more details about the restrictions of these identification

results.

It is important to highlight that this framework allows to understand a mul-

tidimensional error. In geometric terms, is the orthogonal vector from the “plane”

(spam)9 formed for the components of θ to the observed score. And in more substan-

tive terms, is all the information with none correlation with any of the components

of Θn (n dimensional Latent subspace), such that, explain the variations in Yj that

can no be explained by any components of Θn.

9In other fields usually these multidimensional planes are called hyperplanes.
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2.2.5 Final Comments

The boundaries presented in Equation 2.33 are functions of the observed sub-

spaces and information not contained in the tests. This implies that the existence or

size of Θ could depend on the items or tests used. If the observed subspaces are mul-

tidimensional, this may no be a problem, because it is clear that more dimensions

in the observed score, the more likely that we measure a multidimensional latent

trait. But when the observed scores are unidimensional could seem counterintuitive,

because this suggest that the bigger of the subspace Y2, the bigger the subspace Θ is.

And, because Θ is meant to represent some attribute of persons, one would expect

that Θ will not depend in the size of Y2. Thus, we need to look again careful the

meaning of “size” in subspaces of real random variables (not vectorial).

In H, our original Hilbert space defined in Equation 2.1, each function is a vector.

And each possible outcome of the function represents a component of the vector.

Thus, if the range of a function is infinite, the real numbers for example, then his

dimension will be infinite as well. The “size” of the subspaces used here (subspaces

of H) is related with all the possibles realizations of a random variable, and hence,

with the dimension of the function with the biggest range. Thus, Θ ⊂ Yj for one

side means that latent variables can take the same values as an observed score. And

it also means that the function with the largest range in Yj have a larger or equal

range than the function with the largest range in Θ. Now let us consider the next

illustration. Someone wants to measure the length of different pencils in a classroom.

In this example, the length represents a latent variable and the pencils represent the

examinees. Probably, their lengths will be similar, but not equal, let us say most of

them will be around 20 cm. If one would measure the pencils lengths with a stick

that had marks only at 5, 10, 15, etc., centimeters (each mark in the stick represents

a possible observed score), due to lack of precision, one could not distinguish between

the lengths of the pencils. But if a stick with millimeters marks is used, we may be

able to differentiate among different lengths. Therefore, even if vastly admitted that
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the length of any object does not depend on whether it is measured10, how much we

can know about it depends on what is used to measure it. Thus, even if Θ could

be ontologically independent of Y , it is reasonable to expect an increase in Θ when

some Y2 does it, how Equation 2.33 shows.

Now let take a deeper look at the example above. One can say that the length

of an object can be defined as how much space is covered in a given direction. This

is the attribute that we measure. However, when somebody asks for the length of

something, we give information in the set of positive reals numbers, we give a number.

The variable length is a function from this attribute into the reals numbers. How was

defined Θ (as the subspace of random variable from (Mθ, σ(θ)) to (R,B)) does not

represent the quality, but the information that we can know regards this attribute, Θ

is constituted by (mathematical) functions (Appendix 7 have more comments related

with this). We use WALI or ALI to ensure that the information (the numbers) in

Θ are meaningful respect the variation of the observed scores. But we do not know

from where these numbers come, in statistical terms, we do not have information

about the sample space of Θ. It is important to identify with which specific person’s

(or societies’s) aspects these values are related with. In order to come up with a

concept relating the values of some θ with something in the “universe” we need to

identify from where these values came from.

10Leaving aside speeds close to the speed of light and the microscopical world.

37



III. Marginal Distribution

Estimation of a Latent Variable

In this chapter we use the identification result showed in Equations 2.42b and

2.42b. The identification result is based in a deconvolution. There is a long tradition

of estimators based in deconvolution (Chen, Hong, & Nekipelov, 2011; Delaigle &

Gijbels, 2002, 2004; Delaigle, Hall, & Meister, 2008; Li & Vuong, 1998). Here,

we propose the method of Bonhomme and Robin (2010) to estimate the marginal

distribution of the latent variables. The main three advantages of this method are: a)

they did not assume a distribution of the errors; b) neither assume errors with equal

distributions (but they must be orthogonal); and c) is valid for multidimensional

latent variables. In this chapter we discuss the limitations and assumptions of the

chosen method. Finally we present an application using real datas.

Some keys ideas in this chapter are: a) the characteristic function is the Fourier

transform of the density function (of a random variable), hence identify-estimate the

characteristic function is equivalent to identify-estimate the density function. For

each density function there is only one characteristic function; b) Non vanishing

characteristic functions means characteristic functions without zeros in their image.

The characteristic function is a complex value function, when we refer to not van-

ishing characteristic functions, we are referring for both, the real and imaginary

component; c) because all the integrals and derivate are numerical, it is important

to properly choose a bandwidth, this is, the distance between two values in the inde-

pendent variable. If this distance is too large, we would not recover the real function,

and if it is too small, we would include more error.
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3.1 Model Specifications

The identification result presented by Kotlarski (1967) is as follows. Consider

Equations 2.35a and 2.35a from the chapter one showed next,

y1 = θ + e1

y2 = θ + e2.

In these equations, y1 and y2 are the only observed variables. Kotlarski (1967) proved

that the joint distribution of y1 and y2 determines the distributions of θ, e1 and e2

up to a change of location (see Appendix 15). In this proof he assumes that: a)

the characteristic functions of θ, e1 and e2 do not vanish; and b) θ, e1 and e2 are

mutually independent. This identification result is valid if instead of two observed

random variables, y1 and y2, there are J observed random variables (J is an integer

bigger than 2), and J linear combinations y1 = θ+e1, y2 = θ+e2, ..., yJ = θ+eJ . In

Hilbert spaces, independence is equivalent to orthogonality, thus the second assump-

tion do not suppose any additional restriction in our model. In order to explain this

assertion, remember that E(y|Θ) = θ is a consequence of the orthogonality of the er-

rors (WALI), and because E(y|Θ) is an orthogonal projection, θ is orthogonal to any

error term. But the first assumption impose an additional restriction. Some char-

acteristic functions have zeros in their image. For example, a Bernoulli distribution

with parameter bigger or equal than 0.5. This means that it would be impossible to

recover the marginal distribution of binary latent variables with parameters bigger or

equal than 0.5. Also, the identification result of Kotlarski (1967) is valid only for uni-

dimensional random variables. Regarding these limitations, is important to mention

that there have been two major advances in this identification result (Evdokimov &
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White, 2012; Székely & Rao, 2000).One of them relax the assumption of not vanish

characteristic function, and the other is valid for multidimensional latent variables.

Evdokimov and White (2012) relaxed the assumption of non-vanishing charac-

teristic functions used by Kotlarski (1967). Let denote by ϕθ, ϕe1 and ϕe2 the char-

acteristic functions of θ, e1 and e2 respectively, and let ϕ′ denote the first derivate

of the characteristic function ϕ. In the work of Evdokimov and White (2012) ϕe1

can have reals zero, as long as: a) ϕ′e1 at those points is not zero; and b) ϕe2 have

countable zeros. There are not restriction on the zeros of ϕθ. In other words, is

possible for ϕe1 to have real zeros, as long they are not a local minimum and ϕe2 is

not zero in some finite segment of t (t ∈ R). These are less restrictive assumptions

than those used by Kotlarski (1967). For instance, continuing with the example of

binary latent variables, it would be possible to identified his marginal distribution if

the parameter is different from 0.5 (and not less than 0.5).

On the other hand, Székely and Rao (2000), without relaxing the assumptions

of Kotlarski (1967), generalized the identification result including multidimensional

dimensional random variables. They proved that the maximum number n of latent

variables that can be identified, depends on the numbers of linear combinations J

and the number of known moments m as

(
J +m

m+ 1

)
, (3.1)

the binomial coefficient between l + m and m + 1. We are using random variables

with zero mean, thus we known one moment, m = 1. If we had three observed

scores, we would have three linear combinations, J = 3. Thus the maximum num-

ber n of identified latent variables would be 6. Therefore, we would identified the
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marginal distributions of a three dimensional latent variable θ = (θ1, θ2, θ3) and the

distributions of three error terms e1, e2 and e3.

The estimator that we propose is based in the work of Székely and Rao (2000),

thus we use the restriction of non vanish characteristic functions. However, we restrict

the simulations and applications to one dimensional latent variables. There are

others estimator based in the restrictions of Kotlarski (1967) and Székely and Rao

(2000) which could be useful to estimate one dimensional latent variables, but those

estimators are not explicitly written as a function of the observed information, or

they assume errors with known or equals distributions (Dattner, Goldenshluger, &

Juditsky, 2011; Delaigle et al., 2008; Li & Vuong, 1998) . Observe that in our

approach the error terms are unavoidable, unless we use an operational definition of

the latent variable, in which case Θ ⊂ Y , and then, the errors would be zero. Hence,

in our approach there is not a priori reason to believe that the errors are normally

distributed. Due to this, is important for us to manipulate the distribution of the

error terms too.

3.2 Method of Estimation

How was already mentioned, we propose the estimator developed by Bonhomme

and Robin (2010), which is based in the identification result of Kotlarski (1967) and

Székely and Rao (2000). The main idea is to estimate the characteristic function of

each latent variable (θ, e1 and e2). Once the characteristic function is estimated, it

only remains to perform a Fourier transform to obtain the distribution.1

The method is as follows. The characteristic function of a random variable x

with distribution f(x) is given by

1Each marginal distribution is uniquely determined by his characteristic function by the Fourier
transform.
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ϕx(t) :=

∫
exp(itx)xf(x)dx, (3.2)

where i =
√

(−1). From Equations 2.35a and 2.35a, the joint characteristic function

of the observables y1 and y2 ϕy, can be written as

ϕy(t1, t2) = ϕe1(t1)ϕe2(t2)ϕθ(t1 + t2). (3.3)

Now, following the notation of Bonhomme and Robin (2010), let denote κx the

cumulant characteristic function of a random variable x, defined as ln(ϕx). Due to

the restriction of non zeros, κx is defined in every point in the image of a charac-

teristic function. Observe that the joint κy is a linear combination of κθ, κe1 and

κe2 , thus there is one equation and three unknowns functions. What they did then

is differentiate two times, so they have more equations, and the matrix associated

with the system of equations become invertible. The same reasoning can be applied

to multidimensional latent variables. Putting aside the error terms, the maximum

number of identifiable latent variable is J(J − 1)/2, with J being the number of

linear combinations as before.

As an example, if we use four observed score to estimate the latent variable θ,

the estimator will be,

κθ(t) = 0.167

∫ t

0

∫ v

0

(∂212 + ∂213 + ∂214 + ∂223 + ∂224 + ∂234)κy

(u
4
,
u

4
,
u

4
,
u

4

)
dudv, (3.4)
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where ∂2jm is the second order partial derivate respect to j and m. The constant 0.167

depends in the number of observed scores used (see Appendix 16), if it would have

been used ten observed scores, then the constant would been 0.022. As Bonhomme

and Robin (2010) explained, the speed of convergence of the estimation depends on

the assigned weights to each components in the argument of κy, and this choice is

arbitrary. We always chosen the one which maximize the speed of convergence.

3.3 Simulation Study

In this section we present a simulation study in order to test the estimator in

different situations. We use the version 3.5 of the statistical software R (R Core

Team, 2018). In Appendixes 18 to 21 are some codes of the simulations. Following

the protocol of Bonhomme and Robin (2010) we use a second order kernel to smooth

the densities. The optimums bandwidth in terms of the mean integrated squared

error (MISE), was chosen using an adaptation of the plug-in method. This method

was explained in details in Delaigle and Gijbels (2002). The adaptation was sug-

gested by Bonhomme and Robin (2010)2. Following the simulations protocol used in

Bonhomme and Robin (2010), in each simulation we used 100 samples, each one of

size 1000. The numerical integration method used was the trapezoid with 201 nodes

in each integral. All the random variables simulated had zero mean.

Figure 3.1 and Figure 3.2 shows the marginal distribution of θ (one dimensional)

estimated from two observed scores. Assuming the WALI, the observed scores can be

modeled as in Equations 2.35a and 2.35a. In all the graphs the green line represent a

95% confidence interval, the blues lines are the estimated densities and the black lines

represent some density of reference. In Figure 3.1 both error terms were sampled

2In Appendix 17 is described in details the application of the method.
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from a standard normal distribution. From left to right, the figure 3.1 shows the

estimated densities using the proposed method, and then as the latent variable θ were

observed3. From top to bottom, the figure 3.1 shows the estimated densities when

θ is sampled from a standard normal distribution, and from a gamma distribution

with shape parameter 5 and scale parameter 1. In this circumstances, it can be

seen that when θ came from a standard normal distribution, the estimator works

very well. But when θ came from a gamma distribution of parameters (5, 1), the

estimator recovers the general shape of the curve, but fails in the top.
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Figure 3.1. From left to right and top to bottom, estimated distributions when each error
was sampled from a standard normal distribution, and: θ∼Normal(0, 1) using the proposed
method; θ∼Normal(0, 1) if we could observed it (kernel estimator); θ∼Gamma(5, 1) using
the proposed method; and θ∼Gamma(5, 1), if we could observed it (kernel estimator)

Figure 3.2 is similar to 3.1, but e1 is a random sample from a gamma distributions

of parameters (5, 1), and e2 is a random sample from a normal distribution with zero

3This correspond to a kernel density estimated with a gaussian smoothing.
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mean and variance equal to nine. In both cases the proposed estimator it seems

to fail to fully recover the shape of the distribution. But still is able to distinguish

between a normal and a gamma distribution.
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Figure 3.2. From left to right and top to bottom, estimated distributions when e1 was
sampled from a Gamma(5, 1) distribution and e2 from a Normal(0, 9) distribution, and:
θ∼Normal(0, 1) using the proposed method; θ∼Normal(0, 1) if we could observed it (ker-
nel estimator); θ∼Gamma(5, 1) using the proposed method; and θ∼Gamma(5, 1), if we
could observed it (kernel estimator)

However, this bad behavior in the estimator it could be expected. Because the

bigger the variance (longer norm of the errors), the less of the reliability of the test

(angle closer to 90◦ between θ and y). A test with low reliability would not provide

good information about θ, and thus the estimations is not as good as with bigger

reliabilities. To see this point, Figure 3.3 shows the same conditions that Figure 3.2,

except with less spread errors. Here, e1 was sampled from a gamma distribution with

shape parameter 2 and scale parameter 1, and e2 from a normal distribution with
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zero mean and variance 4. In Figure 3.3 the estimated distribution match better

the real distribution than in Figure 3.2. Again, the more significant discrepancy

occurs at the top of the distributions. When θ is normally distributed, the true

density slightly goes out of the confidence interval for the top, but when θ follows

a gamma distribution, goes out for the bottom. Thus the estimated mode will be

significantly biased in both cases. Overestimated when the θ is normally distributed

and underestimated when θ follows a gamma distributions.
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Figure 3.3. From left to right and top to bottom, estimated distributions when e1 was
sampled from a Gamma(2, 1) distribution and e2 from a Normal(0, 4) distribution, and:
θ∼Normal(0, 1) using the proposed method; θ∼Normal(0, 1) if we could observed it (ker-
nel estimator); θ∼Gamma(5, 1) using the proposed method; and θ∼Gamma(5, 1), if we
could observed it (kernel estimator)

Table 3.1 report the MISE of the proposed estimator of the simulations. MISE

measure the distance between the estimated function and the real functions, when

the distance is understood as in Chapter 1 (see Appendix 20 for details of the code).
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Table 3.1. MISE

θ∼N(0, 1) θ∼Γ(5, 1)
e1∼N(0, 1) and e2∼N(0, 1) 0.016 0.032
e1∼N(0, 9) and e2∼Γ(5, 1) 0,041 0,035
e1∼N(0, 4) and e2∼Γ(2, 1) 0.031 0.024

Note. MISE in the simulations presented in Figure 3.1,
Figure 3.2 and Figure 3.3

Thus, the closer to zero the better the estimation.

Table 3.1 is coherent with the graphs. When the latent variable θ came from a

gamma distribution, the estimation was better when one of the errors had a gamma

distribution too. This can be seen by comparing the first and the third rows of the

second column in Table 3.1. The best approximation occurs for normal standard

errors and standard normal θ. This is good, because in case that actually the latent

variable and errors follows a standard normal distribution, the estimator will perceive

that. Also, even if for other distributions the estimator would not have a good fit,

probably it would reproduce the real distribution better than assuming a normal

distribution. Therefore, it may be advisable to use the estimator in order to assign

fairer scores to students.

From Table 3.1 it can be see that MISE get bigger along with the variance of

the errors. Figure 3.4 shows how the values of MISE increase with the standard

deviations of the errors. Here, the latent variable was sampled from a standard

normal distribution, and both errors from normal distributions with equal variances.

Each point correspond to a different error variance.

Another case of interest it may be a test with binaries observed scores. There are

high impact test in this format. SIMCE and PSU are just two examples from Chile

among others. We simulated this kind of test and estimates the errors distributions.

In this case the approach was different. Before we took a random sample of θ from

a known distribution, and did the same with the errors. Then each pair (θ, ej), with
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Figure 3.4. The values of MISE where multiplied by 100 to benefit the reading of the
data.

j={1,2}, was summed to get the observed score y1 and y2. And then we see if we

could recover the known distribution of θ from y1 and y2. Regarding the simulation

of binaries items, the binaries observed scores were directly sampled from a Bernoulli

distribution of parameter π. We used four observed scores, y1, y2, y3 and y4. The

(closed) intervals of π from where the observed scores y1, y2, y3 and y4 were sampled,

respectively were (0.02, 0.35), (0.25, 0.65), (0.5, 0.85) and (0.755, 0.97). Thus, y4 was

the easiest item and y1 the more difficult4.

Figure 3.5 shows the distributions. In the top row at the left, there is the dis-

tribution of the errors in the observed score y1, in the same row at the right, the

distribution of errors in y2. At the bottom from left to right, the distributions of the

errors in y3 and y4 respectively. Again, the green lines represent a 95% confidence in-

terval. The estimation was very precise. Observe that most of the errors are grouped

4The parameter π is represented as the fraction between the “ability” of a person (θ) and the
difficulty of an item (β) (San Mart́ın, 2015). In this simulation we assume that the same person
answered the four items, and the ability of each person to respond the four items is the same. That
is why we interpret the π parameter as an indicator of the difficulty of the items.
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Figure 3.5. Error distributions for binaries observed scores. From top to bottom and left
to right, the items are ordered from hardest to easiest.

around two values. Thus, the errors are almost binaries too. They are not perfectly

grouped around zero and one because in the simulation process the mean of each

sample was subtracted. Thus, observed scores were binaries variables with one of

the values being less than zero and bigger than minus one, and the other bigger than

zero and less than one. Due to observed scores become from a binary distribution,

the distance between the peaks of a distribution give none relevant information. All

the estimated distributions are bimodal, but in the easiest and the hardest items

most of the errors take values around zero and one respectively. This make sense

because one may expect that item 1, the more difficult, is not sensible enough to

differentiate among persons with lowers levels of θ, which is the people that more

likely had a zero in y1. The same reasoning can be applied to the other three items.

This suggest that error distributions give information about the difficulty of binary

items. Also from their distributions (and form their characteristic functions) we can

have a qualitative idea about the variance of the errors, and thus have a qualitative
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Figure 3.6. Estimated distributions of a discrete θ. The blue line represents the proposed
estimator, the green lines represents a 95% confidence interval and the black represents the
estimations as θ was observed.

idea about the reliability of a test. For instance, if the peak closer to one is wider

than the other, it means that the test is less reliable in that region.

As a final comment, it is important to highlight that it is possible to distingue

between a discrete and a continuous random variables from his characteristic func-

tion. The characteristic function of a discrete random variable is a discrete Fourier

transform, and hence is a periodic function. This means the characteristic function,

after fixed increasing of his argument, repeat his values.However, when θ is discrete,

the proposed estimator fails to recover it, as shows Figure 3.6. Here, θ can take

only four values, 1, 2, 3 and 4, each one with probabilities 0.35, 0.15, 0.15 and 0.35

respectively. The black line indicate the estimated distribution if we could have seen

θ (using a kernel estimator with normal window). The blue line is the estimated

distribution with the proposed estimator and, as before, the green lines indicate a

95% confidence interval.
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Figure 3.7. Estimated distributions of θ from real datas. From top to bottom the
distributions in a math and language test. The black line is a standard normal density, the
blue line is the estimated distribution and the green lines are a 95% confidence interval.

3.4 Application with real datas

In this section we shows the estimated distributions of θ using binaries observed

scores. The datas correspond to an application of two tests in Chile at the end of

2018, a mathematic and a language test. Both tests were an admission requirement

at most universities, and the imputed scores were used to select students in the

most prestigious universities in Chile. The name of the test is “Prueba de Selección

Universitaria”(PSU). It is applied at the end of each year. To estimate the distri-

bution of θ and the distributions of the error terms we used six items of each test.

The six questions of language were applied to 66603 students, and the six question

of mathematic to 66075 students. We took 100 samples of 1000 students.
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Figure 3.7 shows the estimated marginal distributions of θ using the items from

the mathematic and language tests. Both densities are very similar between them,

but quite different from a standard normal. When a standard normal density is

assumed, the graph suggest that the variance of θ is overestimated on both cases.

This means, considering only the six selected questions per test, both tests are less

sensible to differentiate among different levels of θ than it is assumed when a standard

normal distribution is used. In order to capture more variance of θ it may be advisable

to use polytomous items. It is important for high impact tests to capture differences

of θ in the population (great variance), otherwise decisions could be taken under

unfair criteria. PSU does not use the IRT framework to assign scores, but if it would

used, then it should considerer to use polytomous items.
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Figure 3.8. Estimated error distributions of the six selected from the Language test. The
blue line is the estimated distribution and the green lines are a 95% confidence interval.

The Figure 3.8 and Figure 3.9 presents the error estimated distributions of the
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six selected items from the Language and Mathematic test respectively. How was

explained before, these distributions gave us information about the difficulty of the

items (see Figure 3.5). In general, the Language selected items were easier than

the Mathematic selected items. For instance, in Language, the items P1, P2 and

P6 were easy for most students. Because of that, most of the errors were grouped

around the lowest levels of θ. The exception is the item P5, which was very difficult

for the students. This item works good to differentiate among high levels of θ,

hence most errors are around the incorrect answer (remember these are binaries

items). The items P2 and P4 had a good metric behavior in the sense that the

errors were balanced between the wrong and correct answers. Thus, they were able

to differentiate among the medium levels of θ in the population. Regarding the

Mathematic items, the items P4 and P6 were slightly difficult, and the item P2 was

the exception, it was slightly easy. In general the distributions of the errors were

more balanced than the same distributions in Language. It is reasonable to expect

less variance in θ if the errors distributions in a test are unbalanced in the same

direction (either to the highest or the lowest levels of θ).

It is important to mention that, with real datas, the plug-in method fails to

select the best bandwidth. The method return the biggest possible bandwidth. This

may happened because at two equidistant points from the origin, the characteristic

function jump from one value to other near to zero, is not smooth in those points. So

it behavior is similar to a discrete function. It is well known that the characteristic

function (Fourier transform) is a linear operator, and in infinite dimensional Hilbert

spaces, the linear operators are bounded if and only if they are continuous. Hence,

the method may be looking for an infinity bandwidth. We opt for truncated the

limits of the integrals near to the points where the characteristic function abruptly

goes near to zero. Due to properties of the Fourier transform, when we truncated the

limits in the integral of the characteristic function, we only could be overestimating

the variance of the latent variable, but not underestimating it. Thus, from Figure
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Figure 3.9. Estimated error distributions of the six selected from the Mathematic test.
The blue line is the estimated distribution and the green lines are a 95% confidence interval.

3.7, we can conclude that may be, the difference between the estimated density and

the standard normal is even more appreciable. However, there are deconvolution’s

estimators not based in Fourier transform, but in those works the error densities are

assumed (Lee et al., 2013).

As a final comment, the results presented in this work are also valid for longi-

tudinal applications of tests. In this case we should use one Hilbert space (and one

of the subspaces Θ and Yj) per person, if the interest is in one person. A Hilbert

space for this kind of procedures could have a different probability measure. This

bring the possibility of empirically answer the problem regarding the interpretation

of θ described by Borsboom, Mellenbergh, and Heerden (2003), which is as follow:

Imagine two persons A and B, respectively a level θa and θb was assigned to A and

B in θ, such that θb > θa. Hence, for a given item, probably B will have a better
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score than A. It is valid question to ask, is this means that an increase from θa to

θb, would result in A having the same probability of B of having a given observed

score in a fixed item? or is this just means that all the persons, in the moment of

examination, with the same level in θ will have the same probability of generate a

given observe score in a given item? This problem is important. Whether we are

measuring something constructed among the persons, or something constructed at

the person level depends on the answer to the problem. We could empirically solve

this problem. For example, we could apply several times some tests to a person

during the period that she (or he) is learning to sum. Let say she goes for three

levels of learning to sum. Then we could apply the same tests to a sample of persons

representing the same levels of learning. If the estimated marginal distributions of θ

are very similar in these two cases (with similars errors too), this will suggest that, if

A increase his level to θb, she (or he) will be equivalent to B respect to the probability

of have a given score in a given item. This experiment will certainly give us new

insights about the ontological status of θ.
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IV. Conclusion

This thesis present a framework where different IRT models can be embedded.

The geometry of Hilbert spaces allowed to explore the psychometric models from two

sides, the observed and not observed information. In this framework was possible

to define a Multidimensional Reliability. Also we were able to interpret the errors

involved when a multidimensional θ is used. We proved that under WALI, there is

not lost information about θ when the EB estimator is used. We found boundaries to

the subspace of latent variables Θ when WALI is assumed. Those boundaries show us

that is possible for a latent variable to take the same values than an observed score.

Hence, they can be not observed and not observable random variables. Finally we

accomplish the main objectives which were: a) identified the marginal distribution

of the latent variables involved in some IRT models, b) and implement a method to

estimate it.

Because of the work of Kotlarski (1967), Equation 2.35a and Equation 2.35b im-

plies that there is no need to make assumptions regarding the marginal distributions

of the latent variables. It is important to highlight that E(yij|Θ) = θi is presented as

a consequence of WALI and not as a definition of the latent variable (see Appendix

11). This result allows to propose an estimator of the marginal distributions of the

latent variables involved in Equation 2.35a and in Equation 2.35b. This would add

fairness to score assignment, which is really important considering how many high

impact decisions are made based on the estimation of latent variables.

Regarding the multidimensional latent variables, the inner product used implies

that the covariance between two components of a latent variables is zero. This is

a restrictive assumption, because if latent variables are indeed modeling some per-
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son’s cognitive attributes, there is not apparent reason to assume that two of those

attributes are not correlated. However, if covariance between the components is al-

lowed, then the entire Hilbert space should be restricted to multidimensional random

variables (observed or latent), such that the variance of the sum of their compo-

nents is different from zero. For example, if a latent variable is two-dimensional,

θi = (θi1, θi2), then V ar(θ1) + V ar(θ2) 6= −2Cov(θ1, θ2). Therefore, it will be not

a Hilbert space, because it will be no complete, and concepts as orthogonal projec-

tions may no longer be useful as they are in this work. Also the identification of the

marginal distributions of multidimensional latent variables, is valid only if they are

orthogonal to each other. In this sense it could be beneficial to explore mathematical

tools more suitable to the problems of psychology.

On the other hand, the proposed estimator is based in the identification result

of Székely and Rao (2000), which identify multidimensional latent variable, but do

not relax the assumptions of none vanishing characteristic function. It would be

beneficial for the study of multidimensional latent variable to generalize the identi-

fication result of Evdokimov and White (2012) to multidimensional latent variables.

And also to adapt other estimators which do not assume equal densities of the errors

and neither a particular density. May be, this could lead us to an estimator which

not produce “jumps” in the tails of the characteristic function. However, when this

restriction in multidimensional random variable is left aside (as in the large used one

dimensional latent variables IRT models), Hilbert spaces represent a great mathe-

matical framework to increase our understanding on psychometric models, and the

consequences in the properties of the random variables that we use on them.

Regarding the possible theoretical contributions, the assumption of conditional

orthogonality at least opens the possibility of discussion about if latent variable

are the cause of the observed information in a test. It is known that causality

is have been used has criterion of existence (Bhaskar, 2015). For instance, in a

classical point of view (in the physical sense), the agreement of the existence of
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fields like electric and gravitational is based in a causal criterion, otherwise these

concepts would be as esoteric as the luck or the ether. Because we are assuming a

sort of causality to estimate the distributions of the latent variables, we can say, if

something is creating the observed scores, that something is distributed in this way

in the population. Therefore, if we were able to correlate the estimated distributions

with some substantive attribute of the population, we will be closer to discover an

attribute with great potential to create a concept.

In summary, the flexibility of Hilbert spaces in included different distributions of

random variables, and in embedded many IRT models, along with the utility of the

proposed estimator, help us to understand in a deeper way the role of latent variables

in some psychometric context. And at the same time, these new methodological tools

proved to be useful to open new topics of research in psychometrics.
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and used? Actualidades en Psicoloǵıa, 29 , 91 - 102. Retrieved from

http://www.scielo.sa.cr/scielo.php?script=sciarttextpid = S2215 −

35352015000200091nrm = iso doi: 10.15517ap.v29i119.18911

San Mart́ın, E. (2018). Identifiability of structural characteristics: How relevant is

it for the bayesian approach? Brazilian Journal of Probability and Statistics ,

32 , 346-373. doi: 10.1214/16-BJPS346
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Appendix 1: Definition of a L2 space

It is the set of square integrable functions with domain in a measurable space

(Rektorys, 1977; Hunter & Nachtergaele, 2001).

Appendix 2: Definition of a sigma algebra

This definition was obtained from the Florens, Mouchart, and Rolin (1990) and

Ito (1986). Let M be a set (all the possibles outcomes of a random variable) andM

be a family of subsets of M (a collection of subset of M). M is a sigma-algebra if

1 ∅ ∈ M (the empty set is in M)

2 A ∈M ⇒ Ac ∈M (if any event A (a subset of M) is inM, then his complement

in M also is in M)

3 An ∈M (n = 1, 2, 3...) ⇒ ∪∞n=1Ai ∈M

Appendix 3: Definition of a Hilbert subspace

Let M be a subset of a Hilbert space H such that if x and y are any elements of

M , then αx + βy also belong to M , where α and β are scalars (reals or complex).

If also M is complete, then M is a Hilbert subspace of H (Halmos, 1957). Note M

is a Hilbert space on his own, hence a Hilbert subspace is a Hilbert space which is

part of a bigger Hilbert space.

Appendix 4: Definition of a Vectorial subspace (or Linear

subspace)

It is a vectorial space which is part of a bigger vectorial space. A set of vectors V

is a vectorial space over a field f (could be the reals or complex numbers) if (Shilov,

2012):
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i x and y are two elements of V , then the sum rule x+y is in V (closed under sum).

ii α is a scalar in f and x is any element in V , then the multiplication by a scalar

rule αx lead to a unique value in V (closed under multiplication by a scalar).

And for any x, y, z ∈ V and α, β ∈ f these rules (sum and multiplication by a scalar)

must obey:

• 1x = x.

• (x+ y) + z = x+ (y + z).

• There is a zero element 0 such that x+ 0 = x.

• ∀x there is an y such that x+ y = 0.

• x+ y = y + x.

• α(βx) = (αβ)x.

• (α + β)x = αx+ βx.

• α(x+ y) = αx+ αy.

Appendix 5: Definition of a Cauchy series

Let {xn}n∈N be a sequence (of vectors or scalars). {xn} is a Cauchy sequence if

for all ε > 0 in the reals, there is a positive integer N such that for m,n > N in the

natural numbers

‖xm − xn‖ < ε (0.1)
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In this study the norm ‖ · ‖ is induced for the inner product. A Cauchy sequence

is a sequence where his elements become arbitrary close to each other, but not

necessarily converge to the same number (Halmos, 1957).

Appendix 6: Definition of inner product

Restricted to vectorial spaces defined over the reals, an inner product is a real-

valued function acting on the cartesian product of a vectorial space V (in this research

was H) and itself:

〈·, ·〉 : V × V → R (0.2)

having the next properties (Halmos, 1957):

• symmetry, 〈x, y〉 = 〈y, x〉

• linearity in the first argument, 〈αx, y〉 = α〈x, y〉 and 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• Positive definiteness, 〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = ~0

for all x, y and z in V , and for any real number α. ~0 represents the zero vector i.e.,

a vector with all his components equals to zero.

Appendix 7: Proof, expected value as an inner product

To demonstrate that the expected value of the product between two scalars ran-

dom variables is an inner product, we must to check the properties described in the

definition of inner product (Appendix 2). The expected value of the product between

two random variables is
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E(xy) =

∫
xyp(x, y)dxdy. (0.3)

Because xy = yx and the joint distribution of x and y is the same that y and x,

E(xy) is symmetric. Regarding linearity in the first argument, using the function

g(x) = αx

E
[
g(x)z

]
=

∫
αxyp(x, y)dxdy = αE(xz). (0.4)

Also,

E
[
(x+ y)z

]
=

∫
(x+ y)p(x+ y, z)d(x+ y)dz (0.5)

=

∫
xp(x+ y, z)dxdz +

∫
yp(x+ y, z)dydz. (0.6)

Note in the first integral that y is constant and in the second integral x is constant,

thus they only translate the curve of the probability function, but do not alter his

form. Thus, arbitrarily, we can fix y and x respectively in the first and second integral

to zero, in this way we get the linearity in the first argument.

The demonstration of positiveness definition is crucial to improve our understand-

ing of the Hilbert where we have worked. The first part is painless (E(x2) ≥ 0), but
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we need to be more careful with the second part. If we choose g(x) = x2 then

E(x2) =

∫
x2p(x)dx. (0.7)

This integral is zero when almost sure x = 0, not only when x is zero. To deal with

this problem in H it has been agree that two random variables are “equals” when

they have the same values almost everywhere, in this way the positiveness definition

is obtained. This is why this space is called the space of equivalent functions and

not the space of functions.

Appendix 8: Proof, conditional expected value as an orthog-

onal projection

Previous to show that the conditional expected value is an orthogonal projection,

we need the next result. If x and w are any two random variables in H and f(w) is

any function of w in H, then f(w)⊥x− E(x|w). Thus,

〈f(w), x− E(x|w) = E
[
f(w)(x− E(x|w))

]
0 = E

{
E
[
f(w)(x− E(x|w))|w

]}
0 = E

{
f(w)E

[
x− E(x|w)|w

]}
0 = E

{
f(w) ∗ 0

}
.

hence x− E(x|w) is perpendicular to any function of w.
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Now, to proof that E(x|w) is an orthogonal projection in H (L2, the equivalent

functions space) we need to show that E
[
x−E(x/w)

]2 ≤ E
[
x−f(w)

]2
, i.e., that the

distance between x and any function f(w) is minimal when this function is E(x|w).

In this way,

E
[
x− f(w)

]2
= E

[
x− E(x|w) + E(x|w)− f(w)

]2
= E

[
x− E(x|w)

]2 − 2E
{[
x− E(x|w)

][
E(x|w)− f(w)

]}
+E
[
E(x|w) + f(w)

]2

Note that the negative term is an inner product between x−E(x|w) and E(x|w)−

f(w). Also E(x|w) − f(w) is a function of w, therefore the negative term is zero.

Also E
[
E(x|w) + f(w)

]2
is always positive, thus the distance between x and any

function of w is always larger than the distance between the same x and E(x|w) �.

Appendix 9: Proof, orthogonality between the true score and

the error term

In Appendix 4 was proved that x − E(x|w) is perpendicular to any function of

w. Because the true score is a function of θ, the error term and the true score are

perpendicular.

Appendix 10: Proof, orthogonal decomposition

To prove the orthogonal decomposition
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A = Ē(B|A)⊕A∩B⊥ (0.8)

where A and B are two Hilbert subspaces, we follow the next procedure. First

we name two subspaces A1 = Ē(B|A) and A2 = A∩B⊥, and then we show that

there is an orthogonal projection such that his range (the closure) is equal to A1 and

his kernel is equal to A2. To simplify the notation, during this demonstrations PAb

will denote the orthogonal projection from an element in B onto A. Hence, in this

notation, the decomposition to proof can be written as

A = PAB⊕A∩B⊥ (0.9)

Then, how was explained, let (the subspace) A1 be the closure of the imagine of

B under the orthogonal projection PA, and (the subspace) A2 be A∩B⊥.

First we prove that there is an orthogonal projection different from PA such that

the closure of his range is A1. To this end let define a subspace B′ as,

B∗ = {b ∈ B : PAb = b} (0.10)

B′ = B∗ (closure of B∗) (0.11)

Note that B′ ⊆ A, thus for any b′ ∈ B′ and for any a ∈ A:

PAb
′ = PB′a = b′ (0.12)
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where PB′ is an orthogonal projection onto B′. On the other hand, because how was

defined A1, it is contained in B and

∀a1 ∈ A1

a1 = PAb = PA(PAb) = PA(a1), (0.13)

hence every element of A1 is in B′ too, but because B′ ⊆ B then A1 ⊇ B′. There-

fore from Equation 0.12 and Equation 0.13 is concluded that A1 = Ran(PA) =

Ran(PB′) = B′, where PB′ is the operator formally defined as:

PB′ : A −→ B′ (0.14)

a −→ b′ (= a1) (∀a∈A), (0.15)

hence it is the operator which orthogonal project A onto B′.

Only remain to prove that A∩B⊥ = Ker(PB′). To this end let call A∩B⊥ = A2

and a2 any element in it. We can define A2 under the condition:

A2 = {a ∈ A : PBa = 0} (0.16)
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Also we can define a subspace A′2 = A∩B′⊥ as:

A′2 = {a ∈ A : PB′a = 0} (0.17)

Note that A2 and A′2 are the kernels of PA and PB respectively, hence we are

interested in verifying if A2 = A′2. From the definition of B′ we see:

B′⊆B⇒B′⊥⊇B⊥ (0.18)

∴ A′2⊃A2 or A2 = A′2 (0.19)

Also B′ is the biggest subspace of B contained in A, thus all what is in B′⊥ which

is not in B⊥ is contained in A. Thus A2 = A′2 or what is the same Ker(PB′) = A∩B⊥

(which is closed).

Therefore Decomposition 2.17 is equivalent to the very well known decomposition

of any subspace as the range of an orthogonal decomposition and his kernel �.

Appendix 11: Proof, minimal splitting and identification

This proof is a reconstruction of the paper (Lindquist et al., 1979). In order to

prove Equation 2.29a and Equation 2.29b we need to prove two others equivalences

first. Let us start with showing that the definition given in the Equation 2.28 is

equivalent to
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〈y1, y2〉 = 〈E(y1|Θ), E(y2|Θ)〉 ∀y1 ∈ Y1, ∀y2 ∈ Y2. (0.20)

Note that Equation 2.28 (〈y1 − E(y1|Θ), y2 − E(y2|Θ)〉 = 0) can be rearranged as,

〈y1, y2〉 − 〈y1, E(y2|Θ)〉 − 〈E(y1|Θ), y2〉+ 〈E(y1|Θ), E(y2|Θ)〉 (0.21)

But each y1 and y2 can be orthogonality decomposed as y1 = E(y1|Θ) +
(
y1 −

E(y1|Θ)
)

and y2 = E(y2|Θ) +
(
y2 − E(y2|Θ)

)
, then,

〈E(y1|Θ), y2〉 = 〈E(y1|Θ, E(y2|Θ)〉+ 0 and (0.22)

〈y1, E(y2|Θ)〉 = 0 + 〈E(y1|Θ), E(y2|Θ)〉 (0.23)

∴ 〈E(y1|Θ), y2〉 = 〈y1, E(y2|Θ)〉 = 〈E(y1|Θ), E(y2|Θ)〉. (0.24)

Therefore:

〈y1 − E(y1|Θ), y2 − E(y2|Θ)〉 = 〈y1, y2〉 − 〈E(y1|Θ), E(y2|Θ)〉 = 0 � (0.25)
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Still there is one more result that we need in order to prove the identification

result. We can decompose Θ into two orthogonal subspaces as Θ = Θ1 ⊕ Θ2, (⊕ is

the orthogonal direct sum), if Θ is a splitting subspace respect to Y1 and Y2 then Θ1

is also splitting subspace respect to Y1 and Y2 if and only if

E(Y1|Θ2)⊥E(Y2|Θ2) (0.26)

Using Equation 0.20 we can rewrite this condition as:

〈y1, y2〉 = 〈E(y1|Θ), E(y2|Θ)〉

= 〈E(y1|Θ1), E(y2|Θ1)〉+ 〈E(y1|Θ2), E(y2|Θ2)〉 (0.27)

Thus if Θ1 is a splitting subspace necessarily:

〈E(y1|Θ2), E(y2|Θ2)〉 = 0 ⇔ E(Y1|Θ2)⊥E(Y2|Θ2) � (0.28)

Now, with these two results, we can prove that find the splitting subspaces that

obey to Equation 2.29a and Equation 2.29b, it is equivalent to find all the minimal

splitting subspaces respect to Y1 and Y2.

Let first assume that Θ is a minimal splitting subspace. Note that Θ1 = Ē(Y1|Θ)
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and Θ2 = Θ∩Y ⊥1 which implies E(Y1|Θ2) = 0, so E(Y1|Θ2)⊥E(Y2|Θ2) = 0, therefore

Θ1 is a splitting subspace. But Θ was assumed to be a minimal splitting subspace,

so Θ1 = Θ = Ē(Y1|Θ). This reasoning can easily be applied to Θ and Y2. Therefore

Θ being a minimal splitting subspace respect to Y1 and Y2 implies 2.29a and 2.29b.

Now let assume that Θ obey Equation2.29a and Equation 2.29b, and Θ1 is any

splitting subspace contained in Θ. We need to prove that Θ2 = 0 thus Θ is a minimal

splitting subspace. Because Θ1 is a splitting subspace E(Y1|Θ2)⊥E(Y2|Θ2). On the

other hand using Decomposition 2.17,

Θ = Ē(Y1|Θ)

Θ = Ē(Y2|Θ).

Also Θ2 ⊂ Θ, then Θ2 = Ē[Θ|Θ2] = Ē[E(Y1|Θ)|Θ2] = Ē(Y1|Θ2), in the same way

Ē(Y2 | Θ2) = Θ2. Therefore, because Equation 0.26, the only way that Θ1 is a

splitting subspace is that Θ2 = 0, so Θ is a minimal splitting subspace �. This ends

the demonstration.�

Appendix 7: Proof, boundaries of a minimal splitting sub-

space

This proof is also a reconstruction of the the one presented by Lindquist et al.

(1979). To deduce the boundaries in the Latent subspace when WALI is true, we

need first two other affirmations. Let start with the next affirmation: The subspace

Θ ⊂ H (H is our Hilbert space defined in Equation 2.1) is a splitting subspace

satisfying 2.34a (E(y1|Θ) = θ) if and only if Θ = Ē(Y1|S) for some subspace S ⊃ Y2

To proof this we can rearrange the definition of splitting subspace in Equation
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2.28 (〈y1 − E(y1|Θ), y2 − E(y2|Θ)〉 = 0) as

〈y1 − E(y1|Θ), y2〉 − 〈y1 − E(y1|Θ), E(y2|Θ)〉 = 0 (0.29)

Recall in Equation 0.29 E(y1|Θ) and E(y2|Θ) represent vectors with the true

scores in the population of interest. Note that E(y2|Θ) ∈ Θ and
(
y1−E(y1|Θ)

)
⊥ Θ.

Hence:

〈y1 − E(y1|Θ), y2〉 = 0

= 〈y1 − E(y1|Θ), y2 + θ+〉; ∀θ ∈ Θ and ∀y2 ∈ Y2. (0.30)

The right side of Equation 0.30 means that
(
y1 − E(y1|Θ)

)
⊥ Y2 ∨Θ. Then

E(y1 − E(y1|Θ)|Y2 ∨Θ) = 0 (0.31)

E(y1|Y2 ∨Θ) = E
(
E(y1|Θ) | Y2 ∨Θ

)
(0.32)

Since Θ ⊂ Y2 ∨ Θ the right side of Equation 0.32 is equal to E(y1|Θ). Thus if

Y1 ⊥ Y2|Θ then, E(y1|Y2 ∨ Θ) = E(y1|Θ). Therefore by Equations 2.29a and 2.30a

(θ = Ē(y1|Θ) and θ = E(y1|Y2 ∨ Θ)∀(θ, y1) ∈ (Θ, Y1)) , and Y2 ∨ Θ ⊃ Y2, choosing

S = Y2 ∨Θ the first part of the demonstration its ended.
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For the second part we need to prove that some S ⊃ Y2 If Θ = E(Y1|S) if

Θ = E(Y1|Θ). From Θ = E(Y1|S) it is deduced that Θ ⊂ S, hence E
(
E(y1|S)|Θ

)
=

E(y1|Θ). Also, from the last condition, E(y1|Θ) = E(y1|S). On the other hand, as

a result of the first part of the proof, we choose S ⊃ Y2 ∨ Θ hence E(y1|Y2 ∨ Θ) =

E(y1|Θ) which is true only if Θ is a splitting subspace (this was proved in the first

part of the demonstration). Thus, Θ = E(Y1|S) and S ⊃ Y2 is equivalent to Θ being

a minimal splitting subspace respect to Y1 and Y2. This end the demonstration.

Before to prove the boundaries of the latent spaces we need this second affirma-

tion. Let S ⊃ Y2, then E(Y1 ∩ Y ⊥2 | S) = E(Y1 | S) ∩ Y ⊥2 .

A demonstration of this result is as follows; it is direct that E(Y1 ∩ Y ⊥2 |S) ⊂

Ē(Y1|S), but is not so clear that Ē(Y1 ∩ Y ⊥2 |S) ⊂ Y ⊥2 . In order to prove the last

inclusion let y be any element in this intersection, thus y ∈ Y1∩Y ⊥2 so E(Y1∩Y ⊥2 |S) =

E(y|S). From y ⊥ Y2 is straightforward that E(y|Y2) = 0, also Y2 ⊂ S therefore

E[E(y|S)|Y2] = 0 so Ē(y|S) ∈ Y ⊥2 ∀y ∈ Y1 ∩ Y ⊥2 �.

Now we can prove that the boundaries of Θ are Y2 ⊂ Θ ⊂ (Y2∨Y 2)⊕Y ⊥0 , where

Y 2 = E(Y1|Y2) ∨ E(Y2|Y1). The bottom boundary is already proved, as in all the

previous results we used for some S ⊃ Y2. Thus it only remains to deduce the upper

bound. Due to Equation 2.29b implies to demonstrate that S ⊂ (Y2 ∨ Y 2) ⊕ Y ⊥0 if

and only if Ē(Y1|S) ∩ Y ⊥2 = 0.

Because Ē(Y1∩Y ⊥2 |S) = Ē(Y1|S)∩Y ⊥2 this last condition implies S ⊂ (Y1∩Y ⊥2 )⊥.

In the other hand using the orthogonal decomposition 2.17 in Y1:

Y0 = Y1 ∨ Y2 (0.33)

Y0 = Y2 ∨ E(Y2|Y1)⊕ Y1 ∩ Y ⊥2 (0.34)

Y0 = Y2 ∨ E(Y1|Y2) ∨ E(Y2|Y1)⊕ Y1 ∩ Y ⊥2 (0.35)

Y0 = Y2 ∨ Y 2 ⊕ Y1 ∩ Y ⊥2 (0.36)
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Therefore (Y1 ∩ Y ⊥2 )⊥ = (Y2 ∨ Y 2) ⊕ Y ⊥0 . Where (Y1 ∩ Y ⊥2 )⊥ is the orthogonal

complement in all the space H. So S ⊂ (Y1 ∩ Y2)⊥ ⇔ S ⊂ (Y2 ∨ Y 2)⊕ Y ⊥0 �.

It is important to highlight that we used the result E(Y1 ∩ Y ⊥2 | S) = E(Y1 |

S) ∩ Y ⊥2 for some S ⊃ Y2 in order to proof the boundaries of a minimal splitting

subspace, and not E(Y1 ∩ Y ⊥2 | S) = E(Y1 | S) ∩ Y ⊥2 how was used by Lindquist

et al. (1979). Florens and Mouchart (1985) pointed out this mistake. Lindquist et

al. (1979), assumed that all the subspaces are closed, but an orthogonal projection,

even between two closed subspace, can be open if we work on infinite dimensional

subspaces. Hence, because Θ must be closed (equivalent to complete) we need the

proof of E(Y1 ∩ Y ⊥2 | S) = E(Y1 | S) ∩ Y ⊥2 . Recall a closed subspace contain all

his limit point (it is complete), thus if Θ where open, there will be always the risk

that some true scores do not exist, or some random variables defined over some

psychological attribute could partiality exist in Θ, because some values just will be

forbidden. In mathematical terms, it is a space without holes. The next is an example

recovered from Halmos (2012) where is shown that an image under a projection of

an infinite dimension (closed) subspace is open.

Let H be a Hilbert space (could be the one we use in this thesis, but the proof

is more general). Considerer the direct sum H⊕H. If T is an operator acting on H,

such that 0 ≤ ||T || ≤ 1 (||T || is the norm of the operator T ) then P is a projection

acting on H⊕H,

P =

 T
√
T (1− T )√

T (1− T ) 1− T

 .

Because 0 ≤ ||T || ≤ 1 the square root is positive. To prove that P is a projection
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we must show that P is idempotent, thus if v is any vector in H⊕H, then Pv = PPv.

We can decompose v as v = x+ y, where x and y are vectors in the first and second

H respectively in the expression H⊕H. Hence

P

 x

y

 =

 Tx+
√
T (1− T )y√

T (1− T )x+ (1− T )y


applying P again and after reordering terms we get

P

 Tx+
√
T (1− T )y√

T (1− T )x+ (1− T )y

 =

 Tx+
√
T (1− T )y√

T (1− T )x+ (1− T )y



thus P is idempotent therefore it is a projection.

Now we can choose an operator T in l2 (the Hilbert space of sequences because

the easier to calculate a norm) with the desired qualities (0 < ||T || < 1). We choose

T to be:

T = diag

{
1

2
,
1

3
,
1

4
, ...,

1

k

}
,

where k can be infinite. It is possible to make a projection P out of T . To prove

that the imagen under a projection can be no closed, we are going to apply P on all

the vectors of the form (x, 0)t (zero component in the second H of H⊕H). Recall

that if the limit of a sequence of vectors in a given inner product space do not belong

to the inner product space, then the inner product space is not closed (a Hilbert

space is a complete inner space). Then, applying P to a vector of the wanted form

we get,
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P

 x

0

 =

 Tx√
T (1− T )x



Thus the image under P of the vectors of the form (x, 0)t is (Tx,
√
T (1− T )x)t.

Just for simplicity, if k was four and we choose a three-dimensional vector x =

(x0, x1, x2)
t to applied T, we get,

Tx =


1
2

0 0

0 1
3

0

0 0 1
4



x0

x1

x2

 =


x0
2

x1
3

x2
4



Hence, in this example a vector v = (v0, v1, v2)
t belong to the image of T, if

x0 = 2v0, x1 = 3v1 and x2 = 4v2. Hence (because T act on l2) if an infinite-

dimensional vector v belong to the range T then,

∞∑
n=0

(n+ 2)2|vn|2 <∞ (0.37)

in a similar way if the infinite-dimensional vector v belong to the range of
√
T (1− T )

then,

∞∑
n=0

(n+ 2)2

n+ 1
|vn|2 <∞ (0.38)
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It only remains to find a sequence of vectors vi in l2 such that the limit of the

sequence composed by the image of each vi does not belong to the range of P . One

example of this is

vi =

(
1√
2
,

1√
3
, ...,

1√
i+ 1

, 0...

)t
(0.39)

When i tends to infinity both series in Equation 0.37 and Equation 0.38 approach

to infinity, hence it does not belong to the range of P . Therefore the range of the

projection P in this example is not closed, and thus the range of a projection can be

no closed in an infinite-dimensional vector space.

Appendix 13: Proof, minimal splitting subspace contained in

Y2

This proof was recover from Florens et al. (1990). Let call Θ a splitting subspace

respect to two observed scores subspaces Y1 and Y2 such that Θ ⊂ Y2. Equation 0.32

implies that E(y1|Y2 ∨ Θ) = E(y1|Θ). Then, because Θ ⊂ Y2 E(y1|Y2) = E(y1|Θ).

Therefore E(Y1|Y2) ⊂ Θ. Hence, for any splitting subspace Θ contained in Y2, it is

true that:

E(Y1|Y2) ⊂ Θ ⊂ Y2 (0.40)

Thus the minimal splitting subspace contained in Y2 is E(Y1|Y2). The same procedure

can be done changing Y2 for Y1 �.
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Appendix 14: Definition of Cauchy-Schwarz inequality

If x and y are any two vectors in a inner subspace (H and all his subspaces are

inner product space) the Cauchy-Schwarz inequality is (Halmos, 1957):

〈x, y〉 ≤ ‖x‖‖y‖ (0.41)

Appendix 15: Proof, identification result of Kotlarski

Kotlarski (1967) proved that if

y1 = θ + e1 and y2 = θ + e2 (0.42)

The joint distribution of y1 and y2 completely determines the distributions of θ,

e1 and e2. The proof is as follow.

Let denote by ϕ(t1, t2) the joint characteristic function of (y1, y2), and ϕθ(t),

ϕe1(t) and ϕe2(t) the characteristic functions of θ, e1 and e2 respectively, then

ϕ(t1, t2) = Eexp
{
i
[
t1y1 + t2y2

]}
(0.43)

ϕ(t1, t2) = Eexp
{
i
[
t1(θ + e1) + t2(θ + e2)

]}
(0.44)

ϕ(t1, t2) = ϕe1(t1)ϕe2(t2)ϕθ(t1 + t2). (0.45)

Now let denote by τ , ε1 and ε2 another three independent real random variables
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with no vanishing characteristics functions ψτ , ψε1 , ψε2 respectively. Considering

x1 = τ + ε1, x2 = τ + ε2, just as before

ψ(t1, t2) = ψε1(t1)ψε2(t2)ψτ (t1 + t2). (0.46)

Any distribution is completely determined by the characteristic function. Then,

if ψ(t1, t2) = ϕ(t1, t2) implies that each characteristic function are equals up to a

change of scale, the result will be demonstrated. Proceeding in this way,

ψε1(t1)ψε2(t2)ψτ (t1 + t2) = ϕe1(t1)ϕe2(t2)ϕθ(t1 + t2). (0.47)

Now, in Equation 0.47 let use ψτ (t) = ϕθ(t)pθ(t), ψε1(t) = ϕe1(t)pe1(t) and

ψε2(t) = ϕe2(t)pe2(t), with p(t) being a complex function that satisfies p(0) = 1

and t ∈ R. Replacing in Equation 0.47 we get,

pe1(t1)pe2(t2)pθ(t1 + t2) = 1. (0.48)

To solve equation 0.48, let evaluate it in t2 = 0 and then in t1 = 0. By doing this

we get,
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pe1(t1) = p−1θ (t1) ; pe2(t2) = p−1θ (t2) (0.49)

Replacing these results in 0.48

pθ(t1 + t2) = pθ(t1)pθ(t2) (0.50)

The only complex continuous function which is a solution of 0.50 under the con-

dition pθ(0) = 1 is the exponential function, thus pθ(t) = ect. Then, for each ψ(t),

ϕ(t) and p(t), ψ(t) = ectϕ(t). And because each ψ(t) is a characteristic function,

ψ(−t) = ψ̄(t), then c = ib. Where i2 = −1 and b ∈ R. Therefore the distribution of

y1 and y2 determines the distributions of e1, e2 and θ up to a change of location �.

Appendix 17: Plug-In method

Let call θ the random variable of interest. In order to get the optimum band-

width to estimate the distribution of θ, at some point is necessary to asume some

distribution, usually the normal. The method is iterative, more steps ensure less

influence of the assumed distribution used. But more steps increase the variance of

the parameter of interest (R). Because the increase in variance is more important

with the numbers of steps, and following the recommendation of Delaigle and Gijbels

(2004), we used two steps. The procedure is as follows:

1. Compute

R4 =
8!

29V ar9(θ)4!
√
π

(0.51)
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The variance is estimated from the characteristic function of θ, ϕθ(t). For this

step is chosen the bigger wider bandwidth used in the method. This decision

is justified by theorem 2 in Bonhomme and Robin (2010).

2. Replace R̂4 in the expression

−µR4

T 2
3

+
1

2πN

∫
v6
∣∣∣∣ϕH2

(
v

T3

)∣∣∣∣2 |ϕe(v)|−2dv, (0.52)

and then minimize the expression respect to T3 to obtain T̂3.

3. Replace T̂3 in the next expression to estimate R3

R3 =
1

2π

∫
v6
∣∣∣∣ϕH2

(
v

T3

)∣∣∣∣2 ∣∣∣∣ϕy(v)

ϕe(v)

∣∣∣∣2 dv. (0.53)

4. Replace the estimated value of R3 in

−µR3

T 2
2

+
1

2πN

∫
v4
∣∣∣∣ϕH2

(
v

T3

)∣∣∣∣2 |ϕe(v)|−2dv, (0.54)

and minimize it respect to T2 to obtain T̂2.
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5. Replace T̂2 in the next expression to estimate R2,

R2 =
1

2π

∫
v4
∣∣∣∣ϕH2

(
v

T2

)∣∣∣∣2 ∣∣∣∣ϕy(v)

ϕe(v)

∣∣∣∣2 dv. (0.55)

6. Finally, replace R̂2 in

MISE(TN) = −µR2

4T 4
N

+
1

2πN

∫ ∣∣∣∣ϕH2

(
v

T3

)∣∣∣∣2 |ϕe(v)|−2dv, (0.56)

and minimize it respect to TN . This estimated value goes in the limits of the

integrals to estimate the characteristics function. Due to we use a fixed number

of nodes, find the limit TN is equivalent to find the bandwidth.

Delaigle and Gijbels (2002, 2004) treated as know the distribution of the error

(s)e. One aspect of the modification made by Bonhomme and Robin (2010) is

related with this distribution. They propose replace ϕe(v) by

ϕy(v)

ϕθ(v)
. (0.57)

The bold letter were used to distingue the joint characteristic function of all

the observed scores from the characteristic function of a single observed score.
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In all these expressions N is sample size, H2 is the kernel of order 2, and µ,

under the condition considerers here, is equal to 6.

Appendix 17: Bonhomme estimator

In order to estimate the marginal distributions of the errors and latent variables

we use the estimator developed by Bonhomme and Robin (2010). In this paper they

considered:

• Y = (y1, y2, ..., yl, ..., yL)T , is a vector of L observed random variables with zero

mean (Observed scores).

• X = (x1, x2, ..., xk, ..., xK)T , is a vector of K mutually independent latent vari-

able with zero mean and finite variance (Latent trait and errors).

• Y = AX where A is a L × K matrix of scalar parameters and any two rows

are linearly independent.

If we were interested in two measurements

y1 = θ1 + e1 & y2 = θ1 + e2,

Y = (y1, y2)
T , X = (θ, e1, e2)

T

A =

 1 1 0

1 0 1


Thus

Y = AX

Before continuing, it could be useful to give some notation,
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• Ak is the k th column of the matrix A.

• ϕxk(τ) is the characteristics function of xk, ϕxk(τ) = E (eixkτ ).

• κxk(τ) = ln(ϕxk(τ)) is the cumulant generating function of xk.

• And similarly for the multivariate case κY (t) and ϕY (t), where t ∈ RL.

• ∂lκ(t), ∂2lmκ(t) are the first and second order partial derivates with respect to tl

and tm, respectively. ∇κ(t) is the gradient vector and ∇∇Tκ(t) is the Hessian

matrix.

Because the Xk were assumed independent, the cumulant generating function of

Y is given by,

κY (t) =
K∑
k=1

κxk(tTAk) (0.58)

∇κY (t) =
K∑
k=1

κ′xk(tTAk)Ak (0.59)

∇∇TκY (t) =
K∑
k=1

κ′′xk(tTAk)AkAk
T (0.60)

Bonhomme and Robin (2010) also called vech the matrix operator that acts on

symmetric matrices, by selecting only the components below or on the diagonal. For

example,

M =


a b c

b d e

c e f


vech(M) = (a, b, c, d, e, f)

91



And define a matrix Q as

Q =
[
vech(A1A1

T ), ..., vech(AKAK
T )
]

with dimensions L(L+ 1)/2 ×K.

Using the vech operator and the Q matrix, Equation 0.60 can be expressed as

vech
(
∇∇TκY (t)

)
=

K∑
k=1

κ′′xk(tTAk)vech(AkAk
T )

= Q


κ′′x1(t

TA1)
...

κ′′xK (tTAK)

 .

Therefore the cumulant generating function of the latent variables are
κ′′x1(t

TA1)
...

κ′′xK (tTAK)

 = Q−vech
(
∇∇TκY (t)

)

where Q− = (QTQ)−1QT is a pseudo inverse of Q.

Note that for any θ ∈ RL\{0} and τ ∈ R,

t =
τθ

θTAk
.

Thus,

κ′′xk(τ) = Q−k vech

(
∇∇TκY

(
τθ

θTAk

))
.
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Then

κxk(τ) =

∫ τ

0

∫ v

0

Q−k vech

(
∇∇TκY

(
uθ

θTAk

))
dudv

When we refer to the choice of a direction of integration, we are referring to the

choice of θ, because in principle its arbitrary. But Bonhomme and Robin (2010)

proved that the rate of convergence of the estimator depends on the choice of θ, and

there is a choice which maximize this rate of convergence.

What follows is an example of the estimator when two items (or tests) are used.

Starting form

vech
(
∇∇TκY (t)

)
= Q


κ′′x1(t

TA1)
...

κ′′xK (tTAK)



Q =


1 1 0

1 0 0

1 0 1



vech
(
∇∇TκY (t)

)
= vech

∂11κy(t1, t2) ∂12κy(t1, t2)

∂21κy(t1, t2) ∂22κy(t1, t2),


Hence


∂11κy(t1, t2)

∂12κy(t1, t2)

∂22κy(t1, t2)

 =


1 1 0

1 0 0

1 0 1



κ′′θ(t1, t2)

κ′′e1(t1)

κ′′e2(t2)


And after integrate,
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κθ =

∫ τ

0

∫ u

o

∂212κY

(v
2
,
v

2

)
dvdu

κe1 = κy1(τ)−
∫ τ

0

∂2κY (u, 0)du

κe2 = κy2(τ)−
∫ τ

0

∂1κY (0, u)du

The constant mentioned regarding Equation 3.4 is one here. It appears after

perform the pseudo inverse on the matrix Q.

Appendix 18: Code, Plug-In method

s_s<- 1000 #sample size

s_r<- 100 #number of samples

nod<- 201 #intervals in the integrals

n_tn<- 30 #Bandwidths tested in the plug-in method

#pa<-c(0.35,0.15,0.15,0.35)

#theta<- replicate(s_r,sample(c(1,2,3,4),s_s,replace=FALSE,prob=pa))

theta<-t(replicate(s_r, rnorm(s_s,0,1)))

u1<- t(replicate(s_r, rnorm(s_s,0,1)))

u2<- t(replicate(s_r,rnorm(s_s, 0,1)))

Y1<- theta+u1

Y2<- theta+u2 #matrix s_r x s_s

###################################################################

ch_ntn<-function(t)

{

tt<-match(0,t[1,])
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Y1_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y1_s[,,i]=replicate(nod,Y1[i,])}

Y2_s<-array(,c(s_s,nod,s_r))# same of Y1.

for(i in 1:s_r){Y2_s[,,i]=replicate(nod,Y2[i,])}

En<-array(,c(s_s,nod,s_r))

for (i in 1:s_r) {En[,,i]=exp(1i*(Y1_s[,,i]+Y2_s[,,i])*(t/2))}

#derivates

ENXA<-Y1_s*En

ENXB<-Y2_s*En

ENXE<-Y1_s*Y2_s*En

ENXA<-apply(ENXA,c(2,3),mean)

ENXB<-apply(ENXB,c(2,3),mean)

ENXE<-apply(ENXE,c(2,3),mean)

ENXC<-apply(En,c(2,3),mean)

DENX<-((ENXA*ENXB)/(ENXC*ENXC))-(ENXE/ENXC)

rm(En,ENXA,ENXB,ENXE,ENXC,Y1_s,Y2_s)

#first integral

iden<-replicate(s_r,1)

Int1<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int1[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int1<-ifelse(is.na(Int1),0,Int1)

for(i in 1:(nod-tt)) {Int1[,,i]=Int1[,,i]*DENX}

Int1<-2*Int1

for(i in 1:(nod-tt)) {Int1[(tt+i),,i]=0.5*Int1[(tt+i),,i]}
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Int1<-apply(Int1,c(2,3),sum)

Int1<-(max(t)/(nod-1))*Int1

IntN1<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN1[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN1<-ifelse(is.na(IntN1),0,IntN1)

for(i in 1:(nod-tt)) {IntN1[,,i]=IntN1[,,i]*DENX}

IntN1<-2*IntN1

for(i in 1:((nod-tt))) {IntN1[i,,i]=0.5*IntN1[i,,i]}

IntN1<-apply(IntN1,c(2,3),sum)

IntN1<-(max(t)/(nod-1))*IntN1

Int1<-t(cbind(IntN1,replicate(s_r,0),Int1))

rm(IntN1)

#Second integral

Int<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int<-ifelse(is.na(Int),0,Int)

for(i in 1:(nod-tt)) {Int[,,i]=Int[,,i]*Int1}

Int<-2*Int

for(i in 1:(nod-tt)) {Int[(tt+i),,i]=0.5*Int[(tt+i),,i]}

Int<-apply(Int,c(2,3),sum)

Int<-(max(t)/(nod-1))*Int

IntN<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}
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IntN<-ifelse(is.na(IntN),0,IntN)

for(i in 1:(nod-tt)) {IntN[,,i]=IntN[,,i]*Int1}

IntN<-2*IntN

for(i in 1:((nod-tt))) {IntN[i,,i]=0.5*IntN[i,,i]}

IntN<-apply(IntN,c(2,3),sum)

IntN<-(max(t)/(nod-1))*IntN

Int<-t(cbind(IntN,replicate(s_r,0),Int))

rm(IntN,Int1)

#Characteristics function

ch<- exp(Int)

rm(Int)

ch[Mod(ch)>1.1]=0

tau<- t[1,]

KrnlP<- (1-(tau/max(tau))^2)^3

KrnlP<- replicate(s_r, KrnlP)

ch<- ch*KrnlP

ch<- apply(ch,1,mean)

return(ch)

}

t<- array(,c(s_s,nod,n_tn))

for(i in 1:n_tn)

{t[,,i]=t(replicate(s_s, seq(-1.2*(i-0.5),1.2*(i-0.5), length.out=nod)))}

for (i in 1:n_tn){

t[abs(t[,,i])==min(abs(t[1,,i]))]<-0

}
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n_tn_ch<- apply(t,3,ch_ntn)

n_tn_ch[Mod(n_tn_ch)>1.1]=0

#first step

der<- numeric(length(n_tn_ch[,n_tn])-1)

delta<- t[1,3,(n_tn)]-t[1,2,(n_tn)]

for(i in 1:length(der)){

der[i]=n_tn_ch[i+1,(n_tn)]-n_tn_ch[i,(n_tn)]

}

der<-der/delta

der2<- numeric(length(der)-1)

for(i in 1:length(der2)){

der2[i]= der[i+1]-der[i]

}

der2<- der2/delta

tt<-numeric(n_tn)

for (i in 1:n_tn)tt[i]=match(0,t[1,,i])

variance<- Mod(der2[tt[(n_tn)]]-1)

R_4<- (factorial(8))/((2^9)*(sqrt(variance)^9)*factorial(4)*sqrt(pi))

#second step

Y1_s<- array(,c(s_s,nod,n_tn))

for(i in 1:n_tn){Y1_s[,,i]=replicate(nod,t(Y1)[,1])}

Y2_s<- array(,c(s_s,nod,n_tn))

for(i in 1:n_tn){Y2_s[,,i]=replicate(nod,t(Y2)[,1])}

chY<- array(,c(s_s,nod,n_tn))

for (i in 1:n_tn) {chY[,,i]=exp(1i*((Y1_s[,,i]+Y2_s[,,i])/2)*t[,,i])}

98



chY<- apply(chY,c(2,3),mean)

chY[Mod(chY)>1.1]=0

chu<- chY/n_tn_ch

chu[Mod(chu)>1.1]=1

chu<- (Mod(chu))^(-2)

KrnlP<- matrix(,nod,n_tn)

for (i in 1:n_tn) {KrnlP[,i]=(1-(t[1,,i]/max(t[1,,i]))^2)^3}

KrnlP<- (Mod(KrnlP))^2

v<- matrix(,nod,n_tn)

for (i in 1:n_tn){v[,i]=t(t[1,,i])}

v<- v^6

int_s2<- v*KrnlP*chu

int_s2<- (1/(2*pi*s_s))*apply(int_s2,2,sum)

delta<-numeric(n_tn)

for (i in 1:n_tn){ delta[i]=t[1,2,i]-t[1,1,i]}

int_s2<-int_s2*delta

T_3<- numeric(n_tn)

for (i in 1:n_tn) {T_3[i]=t[1,nod,i] }

a<- (6*R_4)/T_3^2

a_2 <- abs(int_s2-a)

min<-which(a_2==min(a_2))

T_3<- T_3[min]

#third step

chy1<- matrix(,s_s,nod)

for (i in 1:nod) {chy1[,i]=exp(1i*(Y1_s[,i,1])*t[,i,min])}

chy1<- apply(chy1,2,mean)

chy1[Mod(chy1)>1.1]=0
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chy1<- Mod(chy1)

chy1<- chy1^2

chu1<- chu[,min]

chy1<- chy1*chu1

KrnlP_t<- KrnlP[,min]

v<- numeric(nod)

for (i in 1:nod){v[i]=t(t[1,i,min])}

v<- v^6

delta<- t[1,2,min]-t[1,1,min]

R_3<- v*KrnlP_t*chy1

R_3<- ifelse(is.na(R_3),0,R_3)

R_3<- delta*sum(R_3)

R_3

#quarter step

v<- matrix(,nod,n_tn)

for (i in 1:n_tn){v[,i]=t(t[1,,i])}

v<- v^4

int_s3<- v*KrnlP*chu

int_s3<- (1/(2*pi*s_s))*apply(int_s3,2,sum)

delta<-numeric(n_tn)

for (i in 1:n_tn){ delta[i]=t[1,2,i]-t[1,1,i]}

int_s3<-int_s3*delta

T_2<- numeric(n_tn)

for (i in 1:n_tn) {T_2[i]=t[1,nod,i] }

a<- (6*R_3)/T_2^2

a_2<- abs(int_s3-a)

min<-which(a_2==min(a_2))
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T_2<-T_2[min]

#Fifth step

chy1<- matrix(,s_s,nod)

for (i in 1:nod) {chy1[,i]=exp(1i*(Y1_s[,i,1])*t[,i,min])}

chy1<- apply(chy1,2,mean)

chy1[Mod(chy1)>1.1]=0

chy1<-Mod(chy1)

chy1<-chy1^2

chu1<-chu[,min]

chy1<-chy1*chu1

KrnlP_t<-KrnlP[,min]

v<- numeric(nod)

for (i in 1:nod){v[i]=t(t[1,i,min])}

v<- v^4

delta<-t[1,2,min]-t[1,1,min]

R_2<-v*KrnlP_t*chy1

R_2<-ifelse(is.na(R_2),0,R_2)

R_2<-delta*sum(R_2)

#sixth step

int_s6<- KrnlP*chu

int_s6<- (1/(2*pi*s_s))*apply(int_s6,2,sum)

delta<-numeric(n_tn)

for (i in 1:n_tn){ delta[i]=t[1,2,i]-t[1,1,i]}

int_s6<-int_s6*delta

TN<- numeric(n_tn)

for (i in 1:n_tn) {TN[i]=t[1,nod,i] }
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a<- (36*R_2)/(4*(TN^2))

a_2<- abs(int_s6-a)

min<-which(a_2==min(a_2))

TN<-TN[min]#this is the limit in the integral

sub<-which(t[1,nod,]==TN)

rm(Y1_s,Y2_s,n_tn_ch,chY,chu,chy1,chu1,KrnlP,KrnlP_t,v,int_s2,

int_s3,int_s6,R_2,R_3,R_4,T_2,T_3,a,a_2,min,der,der2)

Appendix 19: Code, density estimation and graphs

t<-t[,,sub]#sub was obtained from plug-in code.

tt<-match(0,t[1,])

Y1_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y1_s[,,i]=replicate(nod,Y1[i,])}

Y2_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y2_s[,,i]=replicate(nod,Y2[i,])}

En<-array(,c(s_s,nod,s_r))

for (i in 1:s_r) {En[,,i]=exp(1i*(Y1_s[,,i]+Y2_s[,,i])*(t/2))}

#derivates

ENXA<-Y1_s*En

ENXB<-Y2_s*En

ENXE<-Y1_s*Y2_s*En

ENXA<-apply(ENXA,c(2,3),mean)

ENXB<-apply(ENXB,c(2,3),mean)
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ENXE<-apply(ENXE,c(2,3),mean)

ENXC<-apply(En,c(2,3),mean)

DENX<-((ENXA*ENXB)/(ENXC*ENXC))-(ENXE/ENXC)

rm(En,ENXA,ENXB,ENXE,ENXC,Y1_s,Y2_s)

#first integral

iden<-replicate(s_r,1)

Int1<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int1[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int1<-ifelse(is.na(Int1),0,Int1)

for(i in 1:(nod-tt)) {Int1[,,i]=Int1[,,i]*DENX}

Int1<-2*Int1

for(i in 1:(nod-tt)) {Int1[(tt+i),,i]=0.5*Int1[(tt+i),,i]}

Int1<-apply(Int1,c(2,3),sum)

Int1<-(max(t)/(nod-1))*Int1

IntN1<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN1[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN1<-ifelse(is.na(IntN1),0,IntN1)

for(i in 1:(nod-tt)) {IntN1[,,i]=IntN1[,,i]*DENX}

IntN1<-2*IntN1

for(i in 1:((nod-tt))) {IntN1[i,,i]=0.5*IntN1[i,,i]}

IntN1<-apply(IntN1,c(2,3),sum)

IntN1<-(max(t)/(nod-1))*IntN1

Int1<-t(cbind(IntN1,replicate(s_r,0),Int1))

rm(IntN1)
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#Second integral

Int<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int<-ifelse(is.na(Int),0,Int)

for(i in 1:(nod-tt)) {Int[,,i]=Int[,,i]*Int1}

Int<-2*Int

for(i in 1:(nod-tt)) {Int[(tt+i),,i]=0.5*Int[(tt+i),,i]}

Int<-apply(Int,c(2,3),sum)

Int<-(max(t)/(nod-1))*Int

IntN<-array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN<-ifelse(is.na(IntN),0,IntN)

for(i in 1:(nod-tt)) {IntN[,,i]=IntN[,,i]*Int1}

IntN<-2*IntN

for(i in 1:((nod-tt))) {IntN[i,,i]=0.5*IntN[i,,i]}

IntN<-apply(IntN,c(2,3),sum)

IntN<-(max(t)/(nod-1))*IntN

Int<-t(cbind(IntN,replicate(s_r,0),Int))

rm(IntN,Int1)

#Characteristics function

ch=exp(Int)

rm(Int)
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ch[Mod(ch)>1.1]=0

tau=t[1,]

KrnlP=(1-(tau/max(tau))^2)^3

KrnlP=replicate(s_r, KrnlP)

ch=ch*KrnlP

#Fourier Transform

invf=array (,c(nod,nod,s_r))

for(i in 1:s_r){invf[,,i]=replicate(nod,ch[,i])}

x=t(replicate(nod, seq(min(t),max(t), length.out=nod)))

t_1=t(replicate(nod, seq(min(t),max(t), length.out=nod)))

invf2=array(,c(nod,nod,s_r))

for(i in 1:s_r){invf2[,,i]=invf[,,i]*exp(-1i*x*t(t_1))}

invf2=2*invf2

invf=(max(t)/(2*(nod-1)*pi))*apply(invf2,c(2,3), sum)

rm(invf2)

xp=seq(min(x),max(x), length.out=nod)

edensity=apply(invf,1,mean)

den<-density(theta)#if we could observe theta

sd=apply(Mod(invf),1,sd)

error=qnorm(0.975)*sd/sqrt(s_r)

Upper=Mod(edensity)+error

Lower=Mod(edensity)-error

#real density

a<-dnorm(xp,0,1)
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#graphs

quartz()

par(mfrow = c(2, 1))

plot(xp, Mod(edensity), type="l", col="blue",

main= "Standard Normal", xlim=c(-6,6), ylim=c(0,0.80), xlab="theta",

ylab="Densities")

lines(xp-1,a, col="black")

lines(xp,Upper, col="green")

lines(xp,Lower, col="green")

plot(den, type="l", col="blue", main="Standard Normal",

xlim=c(-6,6), ylim=c(0,0.80), xlab="theta", ylab="Densities")

lines(xp-1,a, col="black")

Appendix 20: Code, MISE

dif<-which(a==max(a))-which(Mod(edensity)==max(Mod(edensity)))

ise=matrix(,(nod-dif),s_r)

for (i in 1:(nod-dif)){

for (j in 1:s_r){

ise[i,j]=(Mod(invf[i,j])-a3[i+dif])^2

}}

delta=xp3[2]-xp3[1]

ise2=numeric(s_r)

for (i in 1:s_r){

ise2[i]=(ise[1,i]+ise[s_r,i])/2

}
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MISE=mean(delta*apply(ise,2,sum)-ise2)

Appendix 21: Code, distributions of the errors in one item

with real datas

data<-read.csv("Libro",header=TRUE,sep=",")

data$X=NULL

s_s<- 1000 #sample size (all sample have the same size)800

s_r<- 100 #number of samples70

nod<- 201 #amount of intervals in the integrals

t=t(replicate(s_s, seq(-23,23, length.out=nod)))

Y1<- t(replicate(s_r,sample(data[,"Item1"] , s_s, replace=FALSE)))

Y1<- Y1-apply(Y1,1,mean)

Y2<- t(replicate(s_r,sample(data[,"Item2"] , s_s,replace=FALSE)))

Y2<- Y2-apply(Y2,1,mean)

Y3<- t(replicate(s_r,sample(data[,"Item3"] , s_s,replace=FALSE)))

Y3<- Y3-apply(Y3,1,mean)

Y4<- t(replicate(s_r,sample(data[,"Item4"] , s_s,replace=FALSE)))

Y4<- Y4-apply(Y4,1,mean)

Y5<- t(replicate(s_r,sample(data[,"Item5"] , s_s,replace=FALSE)))

Y5<- Y5-apply(Y5,1,mean)

Y6<- t(replicate(s_r,sample(data[,"Item6"] , s_s,replace=FALSE)))

Y6<- Y6-apply(Y6,1,mean)

tt<-match(0,t[1,])

Y1_s<-array(,c(s_s,nod,s_r))
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for(i in 1:s_r){Y1_s[,,i]=replicate(nod,Y1[i,])}

Y2_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y2_s[,,i]=replicate(nod,Y2[i,])}

Y3_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y3_s[,,i]=replicate(nod,Y3[i,])}

Y4_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y4_s[,,i]=replicate(nod,Y4[i,])}

Y5_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y5_s[,,i]=replicate(nod,Y5[i,])}

Y6_s<-array(,c(s_s,nod,s_r))

for(i in 1:s_r){Y6_s[,,i]=replicate(nod,Y6[i,])}

EnU6=array(,c(s_s,nod,s_r))

for (i in 1:s_r) {EnU6[,,i]=exp(1i*Y6_s[,,i]*t)}

EnU5=array(,c(s_s,nod,s_r))

for (i in 1:s_r) {EnU5[,,i]=exp(1i*Y5_s[,,i]*t)}

EnU4=array(,c(s_s,nod,s_r))

for (i in 1:s_r) {EnU4[,,i]=exp(1i*Y4_s[,,i]*t)}

EnU3=array(,c(s_s,nod,s_r))

for (i in 1:s_r) {EnU3[,,i]=exp(1i*Y3_s[,,i]*t)}

EnU2=array(,c(s_s,nod,s_r))

for (i in 1:s_r) {EnU2[,,i]=exp(1i*Y2_s[,,i]*t)}

EnU1=array(,c(s_s,nod,s_r))

for (i in 1:s_r) {EnU1[,,i]=exp(1i*Y1_s[,,i]*t)}

#first order derivate

ENU6=log(apply(EnU6,c(2,3),mean))

ENU6=log(apply(EnU5,c(2,3),mean))

ENU5=log(apply(EnU5,c(2,3),mean))
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ENU4=log(apply(EnU4,c(2,3),mean))

ENU3=log(apply(EnU3,c(2,3),mean))

ENU2=log(apply(EnU2,c(2,3),mean))

ENU1=log(apply(EnU1,c(2,3),mean))

ENU21<- Y2_s*EnU1

ENU21<- apply(ENU21,c(2,3),mean)

ENU21<- 1i*(ENU21/exp(ENU1))

ENU23<- Y3_s*EnU1

ENU23<- apply(ENU23,c(2,3),mean)

ENU23<- 1i*(ENU23/exp(ENU1))

ENU24<- Y4_s*EnU1

ENU24<- apply(ENU24,c(2,3),mean)

ENU24<- 1i*(ENU24/exp(ENU1))

ENU25<- Y5_s*EnU1

ENU25<- apply(ENU25,c(2,3),mean)

ENU25<- 1i*(ENU25/exp(ENU1))

ENU26<- Y6_s*EnU1

ENU26<- apply(ENU26,c(2,3),mean)

ENU26<- 1i*(ENU26/exp(ENU1))

rm(EnU2,EnU3,EnU4,EnU5,EnU6)

#the second order derivates

ENXA213<- Y2_s*EnU1

ENXB213<- Y3_s*EnU1

ENXE213<- Y2_s*Y3_s*EnU1

ENXA213<- apply(ENXA213,c(2,3),mean)

ENXB213<- apply(ENXB213,c(2,3),mean)

ENXE213<- apply(ENXE213,c(2,3),mean)
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ENXC<- apply(EnU1,c(2,3),mean)

DENX213<- ((ENXA213*ENXB213)/(ENXC*ENXC))-(ENXE213/ENXC)

rm(ENXA213,ENXB213,ENXE213)

ENXA214<- Y2_s*EnU1

ENXB214<- Y4_s*EnU1

ENXE214<- Y2_s*Y4_s*EnU1

ENXA214<- apply(ENXA214,c(2,3),mean)

ENXB214<- apply(ENXB214,c(2,3),mean)

ENXE214<- apply(ENXE214,c(2,3),mean)

DENX214<- ((ENXA214*ENXB214)/(ENXC*ENXC))-(ENXE214/ENXC)

rm(ENXA214,ENXB214,ENXE214)

ENXA215<- Y2_s*EnU1

ENXB215<- Y5_s*EnU1

ENXE215<- Y2_s*Y5_s*EnU1

ENXA215<- apply(ENXA215,c(2,3),mean)

ENXB215<- apply(ENXB215,c(2,3),mean)

ENXE215<- apply(ENXE215,c(2,3),mean)

DENX215<- ((ENXA215*ENXB215)/(ENXC*ENXC))-(ENXE215/ENXC)

rm(ENXA215,ENXB215,ENXE215)

ENXA216<- Y2_s*EnU1

ENXB216<- Y6_s*EnU1

ENXE216<- Y2_s*Y6_s*EnU1

ENXA216<- apply(ENXA216,c(2,3),mean)

ENXB216<- apply(ENXB216,c(2,3),mean)

ENXE216<- apply(ENXE216,c(2,3),mean)
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DENX216<- ((ENXA216*ENXB216)/(ENXC*ENXC))-(ENXE216/ENXC)

rm(ENXA216,ENXB216,ENXE216)

ENXA234<- Y3_s*EnU1

ENXB234<- Y4_s*EnU1

ENXE234<- Y3_s*Y1_s*EnU1

ENXA234<- apply(ENXA234,c(2,3),mean)

ENXB234<- apply(ENXB234,c(2,3),mean)

ENXE234<- apply(ENXE234,c(2,3),mean)

DENX234<- ((ENXA234*ENXB234)/(ENXC*ENXC))-(ENXE234/ENXC)

rm(ENXA234,ENXB234,ENXE234)

ENXA235<- Y3_s*EnU1

ENXB235<- Y5_s*EnU1

ENXE235<- Y3_s*Y5_s*EnU1

ENXA235<- apply(ENXA235,c(2,3),mean)

ENXB235<- apply(ENXB235,c(2,3),mean)

ENXE235<- apply(ENXE235,c(2,3),mean)

DENX235<- ((ENXA235*ENXB235)/(ENXC*ENXC))-(ENXE235/ENXC)

rm(ENXA235,ENXB235,ENXE235)

ENXA236<- Y3_s*EnU1

ENXB236<- Y6_s*EnU1

ENXE236<- Y3_s*Y6_s*EnU1

ENXA236<- apply(ENXA236,c(2,3),mean)

ENXB236<- apply(ENXB236,c(2,3),mean)

ENXE236<- apply(ENXE236,c(2,3),mean)

DENX236<- ((ENXA236*ENXB236)/(ENXC*ENXC))-(ENXE236/ENXC)
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rm(ENXA236,ENXB236,ENXE236)

ENXA245<- Y4_s*EnU1

ENXB245<- Y5_s*EnU1

ENXE245<- Y4_s*Y5_s*EnU1

ENXA245<- apply(ENXA245,c(2,3),mean)

ENXB245<- apply(ENXB245,c(2,3),mean)

ENXE245<- apply(ENXE245,c(2,3),mean)

DENX245<- ((ENXA245*ENXB245)/(ENXC*ENXC))-(ENXE245/ENXC)

rm(ENXA245,ENXB245,ENXE245)

ENXA246<- Y4_s*EnU1

ENXB246<- Y6_s*EnU1

ENXE246<- Y4_s*Y6_s*EnU1

ENXA246<- apply(ENXA246,c(2,3),mean)

ENXB246<- apply(ENXB246,c(2,3),mean)

ENXE246<- apply(ENXE246,c(2,3),mean)

DENX246<- ((ENXA246*ENXB246)/(ENXC*ENXC))-(ENXE246/ENXC)

rm(ENXA246,ENXB246,ENXE246)

ENXA256<- Y5_s*EnU1

ENXB256<- Y6_s*EnU1

ENXE256<- Y5_s*Y6_s*EnU1

ENXA256<- apply(ENXA256,c(2,3),mean)

ENXB256<- apply(ENXB256,c(2,3),mean)

ENXE256<- apply(ENXE256,c(2,3),mean)

DENX256<- ((ENXA256*ENXB256)/(ENXC*ENXC))-(ENXE256/ENXC)

rm(ENXA256,ENXB256,ENXE256)
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#integrals

iden=replicate(s_r,1)

Int1=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int1[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int1=ifelse(is.na(Int1),0,Int1)

for(i in 1:(nod-tt)) {Int1[,,i]=Int1[,,i]*ENU21}

Int1=2*Int1

for(i in 1:(nod-tt)) {Int1[(tt+i),,i]=0.5*Int1[(tt+i),,i]}

Int3=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int3[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int3=ifelse(is.na(Int3),0,Int3)

for(i in 1:(nod-tt)) {Int3[,,i]=Int3[,,i]*ENU23}

Int3=2*Int3

for(i in 1:(nod-tt)) {Int3[(tt+i),,i]=0.5*Int3[(tt+i),,i]}

Int4=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int4[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int4=ifelse(is.na(Int4),0,Int4)

for(i in 1:(nod-tt)) {Int4[,,i]=Int4[,,i]*ENU24}

Int4=2*Int4

for(i in 1:(nod-tt)) {Int4[(tt+i),,i]=0.5*Int4[(tt+i),,i]}

Int5=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int5[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int5=ifelse(is.na(Int5),0,Int5)
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for(i in 1:(nod-tt)) {Int5[,,i]=Int5[,,i]*ENU25}

Int5=2*Int5

for(i in 1:(nod-tt)) {Int5[(tt+i),,i]=0.5*Int5[(tt+i),,i]}

Int6=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int6[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int6=ifelse(is.na(Int6),0,Int6)

for(i in 1:(nod-tt)) {Int6[,,i]=Int6[,,i]*ENU26}

Int6=2*Int6

for(i in 1:(nod-tt)) {Int6[(tt+i),,i]=0.5*Int6[(tt+i),,i]}

Inte1=apply(Int1,c(2,3),sum)

Inte1=(max(t)/(nod-1))*Inte1

dim(Inte1)

Inte3=apply(Int3,c(2,3),sum)

Inte3=(max(t)/(nod-1))*Inte3

Inte4=apply(Int4,c(2,3),sum)

Inte4=(max(t)/(nod-1))*Inte4

Inte5=apply(Int5,c(2,3),sum)

Inte5=(max(t)/(nod-1))*Inte5

Inte6=apply(Int6,c(2,3),sum)

Inte6=(max(t)/(nod-1))*Inte6

IntN1=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN1[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN1=ifelse(is.na(IntN1),0,IntN1)

for(i in 1:(nod-tt)) {IntN1[,,i]=IntN1[,,i]*ENU21}
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IntN1=2*IntN1

for(i in 1:((nod-tt))) {IntN1[i,,i]=0.5*IntN1[i,,i]}

IntN3=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN3[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN3=ifelse(is.na(IntN3),0,IntN3)

for(i in 1:(nod-tt)) {IntN3[,,i]=IntN3[,,i]*ENU23}

IntN3=2*IntN3

for(i in 1:((nod-tt))) {IntN3[i,,i]=0.5*IntN3[i,,i]}

IntN4=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN4[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN4=ifelse(is.na(IntN4),0,IntN4)

for(i in 1:(nod-tt)) {IntN4[,,i]=IntN4[,,i]*ENU24}

IntN4=2*IntN4

for(i in 1:((nod-tt))) {IntN4[i,,i]=0.5*IntN4[i,,i]}

IntN5=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN5[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN5=ifelse(is.na(IntN5),0,IntN5)

for(i in 1:(nod-tt)) {IntN5[,,i]=IntN5[,,i]*ENU25}

IntN5=2*IntN5

for(i in 1:((nod-tt))) {IntN5[i,,i]=0.5*IntN5[i,,i]}

IntN6=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN6[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN6=ifelse(is.na(IntN6),0,IntN6)

for(i in 1:(nod-tt)) {IntN6[,,i]=IntN6[,,i]*ENU26}
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IntN6=2*IntN6

for(i in 1:((nod-tt))) {IntN6[i,,i]=0.5*IntN6[i,,i]}

InteN1=apply(IntN1,c(2,3),sum)

InteN1=(max(t)/(nod-1))*InteN1

InteN3=apply(IntN3,c(2,3),sum)

InteN3=(max(t)/(nod-1))*InteN3

InteN4=apply(IntN4,c(2,3),sum)

InteN4=(max(t)/(nod-1))*InteN4

InteN5=apply(IntN5,c(2,3),sum)

InteN5=(max(t)/(nod-1))*InteN5

InteN6=apply(IntN6,c(2,3),sum)

InteN6=(max(t)/(nod-1))*InteN6

Int1=t(cbind(InteN1,replicate(s_r,0),Inte1))

Int3=t(cbind(InteN3,replicate(s_r,0),Inte3))

Int4=t(cbind(InteN4,replicate(s_r,0),Inte4))

Int5=t(cbind(InteN5,replicate(s_r,0),Inte5))

Int6=t(cbind(InteN6,replicate(s_r,0),Inte6))

rm(InteN1,InteN3,InteN4,InteN5,InteN6,IntN1,IntN3,IntN4,IntN5,

IntN6,Inte1,Inte3,Inte4, Inte5,Inte6)

#double integrals

Int113=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int113[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int113=ifelse(is.na(Int113),0,Int113)
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for(i in 1:(nod-tt)) {Int113[,,i]=Int113[,,i]*DENX213}

Int113=2*Int113

for(i in 1:(nod-tt)) {Int113[(tt+i),,i]=0.5*Int113[(tt+i),,i]}

Inte113=apply(Int113,c(2,3),sum)

Inte113=(max(t)/(nod-1))*Inte113

Int114=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int114[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int114=ifelse(is.na(Int114),0,Int114)

for(i in 1:(nod-tt)) {Int114[,,i]=Int114[,,i]*DENX214}

Int114=2*Int114

for(i in 1:(nod-tt)) {Int114[(tt+i),,i]=0.5*Int114[(tt+i),,i]}

Inte114=apply(Int114,c(2,3),sum)

Inte114=(max(t)/(nod-1))*Inte114

Int115=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int115[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int115=ifelse(is.na(Int115),0,Int115)

for(i in 1:(nod-tt)) {Int115[,,i]=Int115[,,i]*DENX215}

Int115=2*Int115

for(i in 1:(nod-tt)) {Int115[(tt+i),,i]=0.5*Int115[(tt+i),,i]}

Inte115=apply(Int115,c(2,3),sum)

Inte115=(max(t)/(nod-1))*Inte115

Int116=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int116[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int116=ifelse(is.na(Int116),0,Int116)

for(i in 1:(nod-tt)) {Int116[,,i]=Int116[,,i]*DENX216}
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Int116=2*Int116

for(i in 1:(nod-tt)) {Int116[(tt+i),,i]=0.5*Int116[(tt+i),,i]}

Inte116=apply(Int116,c(2,3),sum)

Inte116=(max(t)/(nod-1))*Inte116

Int134=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int134[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int134=ifelse(is.na(Int134),0,Int134)

for(i in 1:(nod-tt)) {Int134[,,i]=Int134[,,i]*DENX234}

Int134=2*Int134

for(i in 1:(nod-tt)) {Int134[(tt+i),,i]=0.5*Int134[(tt+i),,i]}

Inte134=apply(Int134,c(2,3),sum)

Inte134=(max(t)/(nod-1))*Inte134

Int135=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int135[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int135=ifelse(is.na(Int135),0,Int135)

for(i in 1:(nod-tt)) {Int135[,,i]=Int135[,,i]*DENX235}

Int135=2*Int135

for(i in 1:(nod-tt)) {Int135[(tt+i),,i]=0.5*Int135[(tt+i),,i]}

Inte135=apply(Int135,c(2,3),sum)

Inte135=(max(t)/(nod-1))*Inte135

Int136=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int136[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int136=ifelse(is.na(Int136),0,Int136)

for(i in 1:(nod-tt)) {Int136[,,i]=Int136[,,i]*DENX236}

Int136=2*Int136
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for(i in 1:(nod-tt)) {Int136[(tt+i),,i]=0.5*Int136[(tt+i),,i]}

Inte136=apply(Int136,c(2,3),sum)

Inte136=(max(t)/(nod-1))*Inte136

Int145=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int145[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int145=ifelse(is.na(Int145),0,Int145)

for(i in 1:(nod-tt)) {Int145[,,i]=Int145[,,i]*DENX245}

Int145=2*Int145

for(i in 1:(nod-tt)) {Int145[(tt+i),,i]=0.5*Int145[(tt+i),,i]}

Inte145=apply(Int145,c(2,3),sum)

Inte145=(max(t)/(nod-1))*Inte145

Int146=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int146[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int146=ifelse(is.na(Int146),0,Int146)

for(i in 1:(nod-tt)) {Int146[,,i]=Int146[,,i]*DENX246}

Int146=2*Int146

for(i in 1:(nod-tt)) {Int146[(tt+i),,i]=0.5*Int146[(tt+i),,i]}

Inte146=apply(Int146,c(2,3),sum)

Inte146=(max(t)/(nod-1))*Inte146

Int156=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int156[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int156=ifelse(is.na(Int156),0,Int156)

for(i in 1:(nod-tt)) {Int156[,,i]=Int156[,,i]*DENX256}

Int156=2*Int156

for(i in 1:(nod-tt)) {Int156[(tt+i),,i]=0.5*Int156[(tt+i),,i]}
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Inte156=apply(Int156,c(2,3),sum)

Inte156=(max(t)/(nod-1))*Inte156

IntN113=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN113[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN113=ifelse(is.na(IntN113),0,IntN113)

for(i in 1:(nod-tt)) {IntN113[,,i]=IntN113[,,i]*DENX213}

IntN113=2*IntN113

for(i in 1:((nod-tt))) {IntN113[i,,i]=0.5*IntN113[i,,i]}

InteN113=apply(IntN113,c(2,3),sum)

InteN113=(max(t)/(nod-1))*InteN113

IntN114=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN114[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN114=ifelse(is.na(IntN114),0,IntN114)

for(i in 1:(nod-tt)) {IntN114[,,i]=IntN114[,,i]*DENX214}

IntN114=2*IntN114

for(i in 1:((nod-tt))) {IntN114[i,,i]=0.5*IntN114[i,,i]}

InteN114=apply(IntN114,c(2,3),sum)

InteN114=(max(t)/(nod-1))*InteN114

IntN115=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN115[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN115=ifelse(is.na(IntN115),0,IntN115)

for(i in 1:(nod-tt)) {IntN115[,,i]=IntN115[,,i]*DENX215}

IntN115=2*IntN115

for(i in 1:((nod-tt))) {IntN115[i,,i]=0.5*IntN115[i,,i]}
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InteN115=apply(IntN115,c(2,3),sum)

InteN115=(max(t)/(nod-1))*InteN115

IntN116=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN116[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN116=ifelse(is.na(IntN116),0,IntN116)

for(i in 1:(nod-tt)) {IntN116[,,i]=IntN116[,,i]*DENX216}

IntN116=2*IntN116

for(i in 1:((nod-tt))) {IntN116[i,,i]=0.5*IntN116[i,,i]}

InteN116=apply(IntN116,c(2,3),sum)

InteN116=(max(t)/(nod-1))*InteN116

IntN134=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN134[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN134=ifelse(is.na(IntN134),0,IntN134)

for(i in 1:(nod-tt)) {IntN134[,,i]=IntN134[,,i]*DENX234}

IntN134=2*IntN134

for(i in 1:((nod-tt))) {IntN134[i,,i]=0.5*IntN134[i,,i]}#to

InteN134=apply(IntN134,c(2,3),sum)

InteN134=(max(t)/(nod-1))*InteN134

IntN135=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN135[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN135=ifelse(is.na(IntN135),0,IntN135)

for(i in 1:(nod-tt)) {IntN135[,,i]=IntN135[,,i]*DENX235}

IntN135=2*IntN135

for(i in 1:((nod-tt))) {IntN135[i,,i]=0.5*IntN135[i,,i]}#to

InteN135=apply(IntN135,c(2,3),sum)
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InteN135=(max(t)/(nod-1))*InteN135

IntN136=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN136[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN136=ifelse(is.na(IntN136),0,IntN136)

for(i in 1:(nod-tt)) {IntN136[,,i]=IntN136[,,i]*DENX236}

IntN136=2*IntN136

for(i in 1:((nod-tt))) {IntN136[i,,i]=0.5*IntN136[i,,i]}#to

InteN136=apply(IntN136,c(2,3),sum)

InteN136=(max(t)/(nod-1))*InteN136

IntN145=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN145[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN145=ifelse(is.na(IntN145),0,IntN145)

for(i in 1:(nod-tt)) {IntN145[,,i]=IntN145[,,i]*DENX245}

IntN145=2*IntN145

for(i in 1:((nod-tt))) {IntN145[i,,i]=0.5*IntN145[i,,i]}#to

InteN145=apply(IntN145,c(2,3),sum)

InteN145=(max(t)/(nod-1))*InteN145

IntN146=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN146[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN146=ifelse(is.na(IntN146),0,IntN146)

for(i in 1:(nod-tt)) {IntN146[,,i]=IntN146[,,i]*DENX246}

IntN146=2*IntN146

for(i in 1:((nod-tt))) {IntN146[i,,i]=0.5*IntN146[i,,i]}#to

InteN146=apply(IntN146,c(2,3),sum)

InteN146=(max(t)/(nod-1))*InteN146
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IntN156=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN156[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN156=ifelse(is.na(IntN156),0,IntN156)

for(i in 1:(nod-tt)) {IntN156[,,i]=IntN156[,,i]*DENX256}

IntN156=2*IntN156

for(i in 1:((nod-tt))) {IntN156[i,,i]=0.5*IntN156[i,,i]}#to

InteN156=apply(IntN156,c(2,3),sum)

InteN156=(max(t)/(nod-1))*InteN156

Int113=t(cbind(InteN113,replicate(s_r,0),Inte113))

Int114=t(cbind(InteN114,replicate(s_r,0),Inte114))

Int115=t(cbind(InteN115,replicate(s_r,0),Inte115))

Int116=t(cbind(InteN116,replicate(s_r,0),Inte116))

Int134=t(cbind(InteN134,replicate(s_r,0),Inte134))

Int135=t(cbind(InteN135,replicate(s_r,0),Inte135))

Int136=t(cbind(InteN136,replicate(s_r,0),Inte136))

Int145=t(cbind(InteN145,replicate(s_r,0),Inte145))

Int146=t(cbind(InteN146,replicate(s_r,0),Inte146))

Int156=t(cbind(InteN156,replicate(s_r,0),Inte156))

rm(InteN113,InteN114,InteN115,InteN116,InteN134,InteN135,InteN136,

InteN145,InteN146,InteN156,IntN113,IntN114,IntN115,IntN116,IntN134,

IntN135,IntN136,IntN145,IntN146,IntN156,Inte113,Inte114,Inte115,Inte116,

Inte134, Inte135,Inte136,Inte145,Inte146,Inte156)

#Second integral
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Int13=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int13[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int13=ifelse(is.na(Int13),0,Int13)

for(i in 1:(nod-tt)) {Int13[,,i]=Int13[,,i]*Int113}

Int13=2*Int13

for(i in 1:(nod-tt)) {Int13[(tt+i),,i]=0.5*Int13[(tt+i),,i]}

Inte13=apply(Int13,c(2,3),sum)

Inte13=(max(t)/(nod-1))*Inte13

Int14=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int14[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int14=ifelse(is.na(Int14),0,Int14)

for(i in 1:(nod-tt)) {Int14[,,i]=Int14[,,i]*Int114}

Int14=2*Int14

for(i in 1:(nod-tt)) {Int14[(tt+i),,i]=0.5*Int14[(tt+i),,i]}

Inte14=apply(Int14,c(2,3),sum)

Inte14=(max(t)/(nod-1))*Inte14

Int15=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int15[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int15=ifelse(is.na(Int15),0,Int15)

for(i in 1:(nod-tt)) {Int15[,,i]=Int15[,,i]*Int115}

Int15=2*Int15

for(i in 1:(nod-tt)) {Int15[(tt+i),,i]=0.5*Int15[(tt+i),,i]}

Inte15=apply(Int15,c(2,3),sum)

Inte15=(max(t)/(nod-1))*Inte15

Int16=array(,c(nod,s_r,(nod-tt)))
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for (i in 1:(nod-tt))

{Int16[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int16=ifelse(is.na(Int16),0,Int16)

for(i in 1:(nod-tt)) {Int16[,,i]=Int16[,,i]*Int116}

Int16=2*Int16

for(i in 1:(nod-tt)) {Int16[(tt+i),,i]=0.5*Int16[(tt+i),,i]}

Inte16=apply(Int16,c(2,3),sum)

Inte16=(max(t)/(nod-1))*Inte16

Int34=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int34[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int34=ifelse(is.na(Int34),0,Int34)

for(i in 1:(nod-tt)) {Int34[,,i]=Int34[,,i]*Int134}

Int34=2*Int34

for(i in 1:(nod-tt)) {Int34[(tt+i),,i]=0.5*Int34[(tt+i),,i]}

Inte34=apply(Int34,c(2,3),sum)

Inte34=(max(t)/(nod-1))*Inte34

Int35=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int35[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int35=ifelse(is.na(Int35),0,Int35)

for(i in 1:(nod-tt)) {Int35[,,i]=Int35[,,i]*Int135}

Int35=2*Int35

for(i in 1:(nod-tt)) {Int35[(tt+i),,i]=0.5*Int35[(tt+i),,i]}

Inte35=apply(Int35,c(2,3),sum)

Inte35=(max(t)/(nod-1))*Inte35

Int36=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))
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{Int36[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int36=ifelse(is.na(Int36),0,Int36)

for(i in 1:(nod-tt)) {Int36[,,i]=Int36[,,i]*Int136}

Int36=2*Int36

for(i in 1:(nod-tt)) {Int36[(tt+i),,i]=0.5*Int36[(tt+i),,i]}

Inte36=apply(Int36,c(2,3),sum)

Inte36=(max(t)/(nod-1))*Inte36

Int45=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int45[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int45=ifelse(is.na(Int45),0,Int45)

for(i in 1:(nod-tt)) {Int45[,,i]=Int45[,,i]*Int145}

Int45=2*Int45

for(i in 1:(nod-tt)) {Int45[(tt+i),,i]=0.5*Int45[(tt+i),,i]}

Inte45=apply(Int45,c(2,3),sum)

Inte45=(max(t)/(nod-1))*Inte45

Int46=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int46[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}

Int46=ifelse(is.na(Int46),0,Int46)

for(i in 1:(nod-tt)) {Int46[,,i]=Int46[,,i]*Int146}

Int46=2*Int46

for(i in 1:(nod-tt)) {Int46[(tt+i),,i]=0.5*Int46[(tt+i),,i]}

Inte46=apply(Int46,c(2,3),sum)

Inte46=(max(t)/(nod-1))*Inte46

Int56=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{Int56[((nod-tt)+2):((nod-tt)+1+i),,i]=t(replicate(i, iden))}
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Int56=ifelse(is.na(Int56),0,Int56)

for(i in 1:(nod-tt)) {Int56[,,i]=Int56[,,i]*Int156}

Int56=2*Int56

for(i in 1:(nod-tt)) {Int56[(tt+i),,i]=0.5*Int56[(tt+i),,i]}

Inte56=apply(Int56,c(2,3),sum)

Inte56=(max(t)/(nod-1))*Inte56

IntN13=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN13[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN13=ifelse(is.na(IntN13),0,IntN13)

for(i in 1:(nod-tt)) {IntN13[,,i]=IntN13[,,i]*Int113}

IntN13=2*IntN13

for(i in 1:((nod-tt))) {IntN13[i,,i]=0.5*IntN13[i,,i]}

InteN13=apply(IntN13,c(2,3),sum)

InteN13=(max(t)/(nod-1))*InteN13

IntN14=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN14[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN14=ifelse(is.na(IntN14),0,IntN14)

for(i in 1:(nod-tt)) {IntN14[,,i]=IntN14[,,i]*Int114}

IntN14=2*IntN14

for(i in 1:((nod-tt))) {IntN14[i,,i]=0.5*IntN14[i,,i]}

InteN14=apply(IntN14,c(2,3),sum)

InteN14=(max(t)/(nod-1))*InteN14

IntN15=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN15[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN15=ifelse(is.na(IntN15),0,IntN15)
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for(i in 1:(nod-tt)) {IntN15[,,i]=IntN15[,,i]*Int115}

IntN15=2*IntN15

for(i in 1:((nod-tt))) {IntN15[i,,i]=0.5*IntN15[i,,i]}

InteN15=apply(IntN15,c(2,3),sum)

InteN15=(max(t)/(nod-1))*InteN15

IntN16=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN16[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN16=ifelse(is.na(IntN16),0,IntN16)

for(i in 1:(nod-tt)) {IntN16[,,i]=IntN16[,,i]*Int116}

IntN16=2*IntN16

for(i in 1:((nod-tt))) {IntN16[i,,i]=0.5*IntN16[i,,i]}

InteN16=apply(IntN16,c(2,3),sum)

InteN16=(max(t)/(nod-1))*InteN16

IntN34=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN34[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN34=ifelse(is.na(IntN34),0,IntN34)

for(i in 1:(nod-tt)) {IntN34[,,i]=IntN34[,,i]*Int134}

IntN34=2*IntN34

for(i in 1:((nod-tt))) {IntN34[i,,i]=0.5*IntN34[i,,i]}

InteN34=apply(IntN34,c(2,3),sum)

InteN34=(max(t)/(nod-1))*InteN34

IntN35=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN35[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN35=ifelse(is.na(IntN35),0,IntN35)

for(i in 1:(nod-tt)) {IntN35[,,i]=IntN35[,,i]*Int135}
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IntN35=2*IntN35

for(i in 1:((nod-tt))) {IntN35[i,,i]=0.5*IntN35[i,,i]}

InteN35=apply(IntN35,c(2,3),sum)

InteN35=(max(t)/(nod-1))*InteN35

IntN36=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN36[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN36=ifelse(is.na(IntN36),0,IntN36)

for(i in 1:(nod-tt)) {IntN36[,,i]=IntN36[,,i]*Int136}

IntN36=2*IntN36

for(i in 1:((nod-tt))) {IntN36[i,,i]=0.5*IntN36[i,,i]}

InteN36=apply(IntN36,c(2,3),sum)

InteN36=(max(t)/(nod-1))*InteN36

IntN45=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN45[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN45=ifelse(is.na(IntN45),0,IntN45)

for(i in 1:(nod-tt)) {IntN45[,,i]=IntN45[,,i]*Int145}

IntN45=2*IntN45

for(i in 1:((nod-tt))) {IntN45[i,,i]=0.5*IntN45[i,,i]}

InteN45=apply(IntN45,c(2,3),sum)

InteN45=(max(t)/(nod-1))*InteN45

IntN46=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN46[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN46=ifelse(is.na(IntN46),0,IntN46)

for(i in 1:(nod-tt)) {IntN46[,,i]=IntN46[,,i]*Int146}

IntN46=2*IntN46
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for(i in 1:((nod-tt))) {IntN46[i,,i]=0.5*IntN46[i,,i]}

InteN46=apply(IntN46,c(2,3),sum)

InteN46=(max(t)/(nod-1))*InteN46

IntN56=array(,c(nod,s_r,(nod-tt)))

for (i in 1:(nod-tt))

{IntN56[(nod-tt):i,,i]=t(replicate((nod-tt+1)-i, iden))}

IntN56=ifelse(is.na(IntN56),0,IntN56)

for(i in 1:(nod-tt)) {IntN56[,,i]=IntN56[,,i]*Int156}

IntN56=2*IntN56

for(i in 1:((nod-tt))) {IntN56[i,,i]=0.5*IntN56[i,,i]}

InteN56=apply(IntN56,c(2,3),sum)

InteN56=(max(t)/(nod-1))*InteN56

Int13<- t(cbind(InteN13,replicate(s_r,0),Inte13))

Int14<- t(cbind(InteN14,replicate(s_r,0),Inte14))

Int15<- t(cbind(InteN15,replicate(s_r,0),Inte15))

Int16<- t(cbind(InteN16,replicate(s_r,0),Inte16))

Int34<- t(cbind(InteN34,replicate(s_r,0),Inte34))

Int35<- t(cbind(InteN35,replicate(s_r,0),Inte35))

Int36<- t(cbind(InteN36,replicate(s_r,0),Inte36))

Int45<- t(cbind(InteN45,replicate(s_r,0),Inte45))

Int46<- t(cbind(InteN46,replicate(s_r,0),Inte46))

Int56<- t(cbind(InteN56,replicate(s_r,0),Inte56))

rm(InteN13,InteN14,InteN15,InteN16,InteN34,InteN35,InteN36,InteN45,

InteN46,InteN56,IntN13,IntN14,IntN15,IntN16,IntN34,IntN35,IntN36,

IntN45,IntN46,IntN56,Inte13,Inte14,Inte15,Inte16,Inte34,Inte35,Inte36,

Inte45,Inte46,Inte56)
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ch<- exp(ENU1-0.1666667*(Int1+Int3+Int4+Int5+Int6+

Int13+Int14+Int15+Int16+Int34+Int35+Int36+Int45+Int46+Int56))

rm(Int1,Int3,Int4,Int5,Int6,Int13,Int14,Int15,Int16,Int34,Int35,

Int36,Int45,Int46,Int56)

ch[Mod(ch)>1.1]=0

tau<- t[1,]

KrnlP<- (1-(tau/max(tau))^2)^3

KrnlP<- replicate(s_r, KrnlP)

ch=ch*KrnlP

chmean<- apply(ch,1,mean)

invf=array (,c(nod,nod,s_r))

for(i in 1:s_r){invf[,,i]=replicate(nod,ch[,i])}

x=t(replicate(nod, seq(min(t)+20,max(t)-20, length.out=nod)))

t_1=t(replicate(nod, seq(min(t),max(t), length.out=nod)))

invf2=array(,c(nod,nod,s_r))

for(i in 1:s_r){invf2[,,i]=invf[,,i]*exp(-1i*x*t(t_1))}

invf2=2*invf2

invf=(max(t)/(2*(nod-1)*pi))*apply(invf2,c(2,3), sum)

rm(invf2)

xp=seq(min(x),max(x), length.out=nod)

edensity=apply(invf,1,mean)

sd=apply(Mod(invf),1,sd)

error=qnorm(0.975)*sd/sqrt(s_r)

Upper=Mod(edensity)+error

Lower=Mod(edensity)-error
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area<- sum(edensity3)*(xp[2]-xp[1])

#area under the curve of the estimated distribution using

the trapezoidal rule.

#graph

quartz()

par(mfrow = c(1, 1))

plot(xp, Mod(edensity), type="l", col="blue",

main="Distribution of the Errors", xaxt="n",xlim=c(-2.5,2.5),

ylim=c(0,2.5), xlab="Errors", ylab="Density")

axis(1, at = seq(-2, 2, by = 0.25))

lines(xp,Upper, col="green")

lines(xp,Lower, col="green")

legend(0.7,2.4,c("Estimated", "Confidence Interval"),lty=c(2,1),

col=c("blue", "green"))
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