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to The Faculty of Physics

in partial fulfillment of the requirements

for the degree of Ph.D. in Astrophysics.

Thesis advisor : Ph.D. Jorge Alfaro (PUC)

Informant Committee : Gonzalo Palma (UCH)

Rolando Dünner (PUC)

Alejandro Clocchiatti (PUC)

Leopoldo Infante (PUC)

September 2020, Santiago, Chile

©2020, Marco San Mart́ın Hormazábal
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by Marco San Mart́ın Hormazábal

We study the cosmological implications of Delta Gravity (DG), which is a gravitational

model based on the extension of General Relativity (GR) by a new symmetry called δ̃. In this

model, new matter fields are added to the original matter fields, motivated by the additional

symmetry. We call them δ̃ matter fields. This theory predicts an accelerating Universe

without the need to introduce a Cosmological Constant Λ by hand in the equations.

To test the Delta Gravity implications, we examine two critical observations in Cosmology:

the rate of the Universe expansion through type Ia supernovae (SNe-Ia) and the power

spectrum calculated from the cosmic microwave background radiation (CMB). To compare

the observations with these model’s predictions, we used a Markov Chain Monte Carlo

(MCMC) analysis with the most updated catalog of SNe-Ia and Planck satellite’s data.

We obtain the fitted parameters needed to explain both SNe-Ia data and CMB measure-

ments. We analyze the DG model’s compatibility with both observations and constrain the

cosmological parameters associated with the astrophysical evidence. Finally, we discuss if

the Hubble Constant and the Accelerating Universe are compatible with the observational

evidence in the DG context.
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Chapter 1

Introduction

1.1 ΛCDM

Cosmology is a subject where we can find many data and information to contrast them with

theoretical physics. In this context, the scientific community has evidence that shows most

of the composition of the Universe is unknown: Dark Matter (DM) and Dark Energy (DE)

[67, 53, 45, 20]. most of the matter is in the form of unknown matter, DM, and a mysterious

component of the Universe, called DE, governs the dynamics of the accelerating expansion.

Although General Relativity (GR) can accommodate both DM and DE, the interpretation of

the dark sector in terms of fundamental theories of elementary particles is problematic.[38]

The standard knowledge about cosmology is mainly based on the Standard Cosmological

model called ΛCDM. In this model, Λ represents the DE [38]. This constant is strictly

necessary to reproduce the acceleration of the Universe. Any other component only creates

deceleration (in the GR context). ΛCDM cosmology [53] can fit the observational SNe-Ia

data, but there is no fundamental physical reason to add the Λ constant in the Einstein

Field Equations or add the Λ constant at the level of the Einstein-Hilbert action [38].

In early times after the Big Bang, this constant is irrelevant, but at the later stages of the

evolution of the Universe, Λ will dominate the expansion, explaining the acceleration of the

Universe. Such small Λ is very difficult to generate in quantum field theory models, where

Λ is the vacuum energy, which is usually very large [26] even to 120 orders of magnitude

far from the observed Λ in cosmology [38]. Moreover, in other attempts to obtain a better

1
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value for this vacuum energy, the result is about 54 orders of magnitude far from the Λ

observed value (calculated from the CMB or SNe-Ia data in the ΛCDM model). [38]. This

explanation is not satisfactory.

Not only SNe-Ia data are useful to understand the cosmology. The CMB data and its power

spectrum provide more information to fit even more cosmological parameters [48]. From

here, it is possible to obtain (assuming that GR and ΛCDM work well), with reasonable

constraints, the value ΩΛ = 0.6911 ± 0.0062, implying that DE is the main component of

the Universe creating acceleration [53]

DG gives good results from the observational data obtained from SNe-Ia [14], and it does not

require DE to explain the acceleration. Despite this result, a good cosmological model also

has to explain the anisotropies of matter and energy fluctuations observed in the Cosmic

Microwave Background (CMB) because the temperature correlations give us information

about the constituents of the Universe, such as baryonic and dark matter. These fluctuations

have been deeply studied [2], and they have been numerically solved in programs such as

CMBFast [71, 59] or CAMB. [1, 35, 49]

From these two pieces of evidence and assuming ΛCDM is correct, and GR works, the scien-

tific community has to accept “ Dark Energy”. Nevertheless, the main problem with “ Dark

Energy” remains; what does it mean? Furthermore, the State-of-the-art is controversial; for

example, the last H0 measurements based on local SNe-Ia [56, 54, 55] are incompatible with

Planck results from [49]. Also, other works have found inconsistencies in the CMB analysis

[65] or in SNe-Ia analysis [21, 31].

A very controversial paper published in 2016 [56] about a H0 estimation (using new par-

allaxes from Cepheids) found an observed value H0 = 73.24 ± 1.74 km Mpc−1 s−1 which

is independent from cosmological model . This value is 3.4 σ higher than 66.93 ± 0.62 km

Mpc−1 s−1 predicted by ΛCDM with Planck. But the discrepancy reduces to 2.1 σ relative

to the prediction of 69.3± 0.7 km Mpc−1 s−1 based on the comparably precise combination

of WMAP+ACT+SPT+BAO observations. This value has been updated [54] using more

precises parallaxes for Cepheids. The H0 updated value at 2018 is 73.52 ± 1.62 km Mpc−1

s−1.

In this context, there are two exciting subjects that we want to study from the DG cos-

mological model, the first is the Hubble Constant (H0), and the second, the accelerating
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expansion of the Universe, both in the context of the compatibility between the CMB power

spectrum and the SNe-Ia data.

1.2 DG model

1.2.1 Why study an alternative model?

First of all, the standard cosmology is based on GR. This theory is valid on scales larger than

a millimeter to the solar-system scale [69, 63], but from the fundamental physics point of

view, this theory is non-renormalizable, which prevents its unification with the other forces

of nature. Many attempts have been developed to solve this problem, for example, string

theories trying to quantize GR [28, 50].

Second, recent discoveries in cosmology [67, 53, 45, 20] have revealed that most of the

matter is in the form of unknown matter, known as DM. Some alternative explanations have

been published based on modifying the dynamics for small accelerations [39, 18]. Although

Particle Physics candidates could play the role of DM, none have been detected yet.

A third problem is the accelerating expansion of the Universe and its relation with the DE

density [5, 43]. On the other side, DE can be explained if a small Cosmological Constant (Λ)

is present. In recent years there have been various proposals to explain the observed acceler-

ation of the Universe. They involve the inclusion of some additional fields in approaches like

Quintessence, Chameleon, Vector Dark Energy or Massive Gravity; The addition of higher-

order terms in the Einstein-Hilbert action, like f(R) theories and Gauss-Bonnet terms and

finally the introduction of extra dimensions for a modification of gravity on large scales (See

[62]). Other interesting possibilities, are the search for non-trivial ultraviolet fixed points in

gravity (asymptotic safety [66]) and the notion of induced gravity [72, 57, 32, 3, 37, 51, 16].

In this context, DG theory emerges as a model that could give clues about some incompat-

ibilities in cosmology, eventually produced by the GR theory.
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1.2.2 What is DG?

In a previous work [12], Jorge Alfaro studied a model of gravitation that is very similar to

classical GR but could make sense at the quantum level. In this construction, he considered

two different points. The first is that GR is finite on shell at one loop [61], so renormalization

is not necessary at this level. The second is a type of gauge theories, δ̃ Gauge Theories (Delta

Gauge Theories), presented in [6, 13], which main properties are: (a) New kinds of fields are

created, φ̃I , from the originals φI . (b) The classical equations of motion of φI are satisfied

in the full quantum theory. (c) The model lives at one loop. (d) The action is obtained by

extending the original gauge symmetry of the model, introducing an extra symmetry that

we call δ̃ symmetry since it is formally obtained as the variation of the original symmetry.

When we apply this prescription to GR, we obtain Delta Gravity.

We studied the classical effects of Delta Gravity at the cosmological level. For this, we

assume that the Universe is composed of non-relativistic matter (DM and baryonic matter)

and radiation (photons and massless particles), which satisfy a fluid-like equation p = ωρ.

Matter dynamics are not considered, except by demanding that the energy-momentum tensor

of the matter fluid is covariantly conserved. In this work, we used the exact solution of the

equations, corresponding to the above suppositions, to fit the SNe-Ia data and we obtained

an accelerated expansion of the Universe in the model without DE.

1.2.3 Purpose

We are going to provide an analysis using SNe-Ia data updated to 2018 [58] to fit cosmological

parameters in an Alternative Cosmological Model known as Delta Gravity [9].

We will also fit the TT CMB power spectrum (Planck satellite’s data, [49]) to constraint

the DG cosmological parameters. This observational data constraint more parameters, and

then, it can be contrasted with SNe-Ia information.

With both observations, we will analyze the compatibility between these observational pieces

of evidence and constraint DG parameters to understand if DG is a feasible cosmological

model. More specifically, we are interested in analyzing the acceleration of the Universe and

the Hubble Constant (H0) in the DG theory.
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1.2.4 Delta Gravity Action

In this subsection, we define the action and the symmetries of the model and derive the

equations of motion.

These modified theories consist of the application of a variation represented by δ̃. As a

variation, it has all the properties of a common variation such as:

δ̃(AB) = δ̃(A)B + Aδ̃(B),

δ̃δA = δδ̃A,

δ̃(Φ,µ) = (δ̃Φ),µ, (1.1)

where δ is another variation. The particular point with this variation is that, when we apply

it on a field (function, tensor, etc.), it will give new elements that we define as δ̃ fields, which

are an entirely new independent object from the original, Φ̃ = δ̃(Φ). We use the convention

that a tilde tensor is equal to the δ̃ transformation of the original tensor when all its indexes

are covariant.

First, we need to apply the δ̃ prescription to a general action. The extension of the new

symmetry is given by:

S0 =

∫
dnxL0(φ, ∂iφ)→ S =

∫
dnx

(
L0(φ, ∂iφ) + δ̃L0(φ, ∂iφ)

)
, (1.2)

where S0 is the original action, and S is the extended action in Delta Gauge Theories.

GR is based on Einstein-Hilbert action:

S0 =

∫
d4xL0(φ) =

∫
d4x
√
−g
(
R

2κ
+ LM

)
, (1.3)

where LM = LM(φI , ∂µφI) is the Lagrangian of the matter fields φI and κ = 8πG
c4

. Then, the

DG action is given by
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S = S0 + δ̃S0 =

∫
d4x
√
−g
(
R

2κ
+ LM −

1

2κ

(
Gαβ − κTαβ

)
g̃αβ + L̃M

)
, (1.4)

where we have used the definition of the new symmetry: φ̃ = δ̃φ and the metric convention

of [67]1 2 and

g̃µν = δ̃gµν , (1.5)

T µν =
2√
−g

δ (
√
−gLM)

δgµν
, (1.6)

L̃M = φ̃I

(
δLM
δφI

)
+ (∂µφ̃I)

(
δLM
δ(∂µφI)

)
, (1.7)

where φ̃I = δ̃φI are the δ̃ matter fields (also called called Delta matter fields). Then, the

equations of motion are:

Gµν = κT µν , (1.8)

F (µν)(αβ)ρλDρDλg̃αβ +
1

2
gµνRαβ g̃αβ −

1

2
g̃µνR = κT̃ µν , (1.9)

with:

F (µν)(αβ)ρλ = P ((ρµ)(αβ))gνλ + P ((ρν)(αβ))gµλ − P ((µν)(αβ))gρλ − P ((ρλ)(αβ))gµν ,

P ((αβ)(µν)) =
1

4

(
gαµgβν + gανgβµ − gαβgµν

)
,

T̃ µν = δ̃T µν ,

1In [10] you can find more about the formalism of the DG action and the new symmetry δ̃.
2We emphasize that DG is not a metric model of gravity because massive particles do not move on

geodesics. Only massless particles move on geodesics of a linear combination of both tensor fields.
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where (µν) denotes that µ and ν are in a totally symmetric combination. Note that our

equations are of second order in derivatives which is needed to preserve causality. We can

show that the Equation (1.9)µν = δ̃
[
(1.8)µν

]
.

Also, there are two conservation rules given by [10]:

DνT
µν = 0 (1.10)

DνT̃
µν =

1

2
TαβDµg̃αβ −

1

2
T µβDβ g̃

α
α +Dβ(g̃βαT

αµ) (1.11)

It is easy to see that the Equation (1.11) is δ̃ (DνT
µν) = 0.

1.3 T µν and T̃ µν for a perfect fluid

In DG, the energy-momentum tensors for a perfect fluid are [12] (where c = 1 is the speed

of light):

Tµν = p(ρ)gµν + (ρ+ p(ρ))UµUν (1.12)

T̃µν = p(ρ)g̃µν +
∂p

∂ρ
(ρ)ρ̃gµν +

(
ρ̃+

∂p

∂ρ
(ρ)ρ̃

)
UµUν+

(ρ+ p(ρ))

(
1

2
(UνU

αg̃µα + UµU
αg̃να) + UT

µ Uν + UµU
T
ν

) (1.13)

where UαUT
α = 0. p is the pressure, ρ is the density and Uµ is the four-velocity. For more

details you can see [12].

1.3.1 Geodesic equation for massless particles

In DG, a massless particle behaves according to the following equation:
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gµν ẋ
µẋν = 0, (1.14)

Where the Effective Metric gµν is a linear combination given by the two tensors:

gµν = gµν + g̃µν (1.15)

Thus, the massless particles follow null geodesic, like in the GR theory. 3

1.4 Cosmology in Delta Gravity

1.4.1 Effective Metric to describe the Universe in a cosmological

frame

We assume a flat Universe (k = 0). The usual metric to describe the Universe in cosmology

is the FLRW metric, given by the Equation (1.16):

ds2 = gµνdx
µdxν = −c2dt2 + a(t)2 (dx2 + dy2 + dz2

)
, (1.16)

where the Scale Factor is called a(t).

The objective is to build an Effective Metric for the Universe; then the equations need to

explain the photon trajectories, because these particles are what we observe and provide us

the information from the observables (such as the SNe-Ia data), showing us the expansion of

the Universe. As in the GR frame, we build the metric for the Universe using the massless

particle geodesic in DG. We have to include a “scale factor” in the space-metric component

to explain the expansion of the Universe. This factor must be space-independent because

we want to preserve the homogeneity and isotropy for the Universe. Therefore this can be

only time-dependent.

3It is important to consider that massive particles do not follow geodesics. [9]
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Thus, we have to find g̃µν from the gµν . We are going to do a change of variable in the

Standard Metric tensor, t→ u, where T (u) = dt
du

(u). Then,

gµνdx
µdxν = −T 2(u)c2du2 + a2(u)(dx2 + dy2 + dz2).

Now we add the new dependencies to the temporal and spatial components of the equa-

tion, building the most general metric without losing the homogeneity and isotropy of the

Universe:

g̃µνdx
µdxν = −Fb(u)T 2(u)c2du2 + Fa(u)a2(u)(dx2 + dy2 + dz2),

thus, we have to fix a gauge to delete the extra degrees of freedom. Fixing an Harmonic

gauge (described in [9]) we obtain:

T (u) = T0a
3(u),

Fb(u) = 3(Fa(u) + T1),

where T0 and T1 are gauge constants. Choosing T0 = 1 and T1 = 0 the gauge is fully fixed.

Finally, we can go back to the Effective Metric gµν = gµν + g̃µν (1.15) to substitute the fixed

gauges. This defines the Effective Metric for the Universe in DG:

gµν = gµν + g̃µν = − (1 + 3Fa(t)) c
2dt2 + a2(t) (1 + Fa(t)))

(
dx2 + dy2 + dz2

)
(1.17)

1.4.2 Delta Gravity equations of motion

To apply this theory to cosmology, we impose only two kinds of Universe components:

matter and radiation. With the new symmetry, two kinds of components appear which we

call Delta matter and Delta radiation, respectively. To calculate the equations that govern

the Universe, we assume gµν is expressed by the Equation (1.16) and we calculate the First

Field Equation given by the Equation (1.8):



Ph.D Thesis Marco San Mart́ın Hormazábal 10

(
ȧ(t)

a(t)

)2

=
κc4

3
(ρr(t) + ρm(t)) . (1.18)

If we solve the Equation (1.18), we obtain the following expression:

ρ̇i(t) = −3ȧ(t)

a(t)
(ρi(t) + pi(t)). (1.19)

Considering an equation of state, it is possible to relate ρ and p for each component i, and

assuming that there are only matter (baryonic, and if you want, dark matter) and radiation

(photons and other massless particles), we have (same as GR at this point):

for matter:

pm(a) = 0,

and for radiation:

pr(a) =
1

3
ρr(a).

With these equations we can solve the Equation (1.18) expressing t(a). Summarizing, we

have:
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ρ(a) = ρm(a) + ρr(a), (1.20)

pr(a) =
1

3
ρr(a), (1.21)

t(Y ) =
2
√
C

3H0

√
Ωr,0

(√
Y + C(Y − 2C) + 2C3/2

)
, (1.22)

Y (t) =
a(t)

a0

, (1.23)

a0 ≡ a(t = t0) ≡ 1, (1.24)

Ωr,0 ≡
ρr,0
ρc,0

, (1.25)

Ωm,0 ≡
ρm,0
ρc,0

, (1.26)

ρc,0 ≡
3H2

0

8πG
, (1.27)

Ωr,0 + Ωm,0 ≡ 1, (1.28)

where t0 is the age of the Universe (today). We emphasize that t is the Cosmic Time, a0

is the Scale Factor at the current time, C ≡ Ωr,0
Ωm,0

, where Ωr,0 and Ωm,0 are the density

energies normalized by the Critical Density today, defined as the same as the standard cos-

mology. Furthermore, we have imposed that Universe must be flat (k = 0), so we require

that Ωr,0 + Ωm,0 ≡ 1. Note that ρi is not a physical density. They are only density parame-

ters4 that are related to physical densities. We are going to discuss this aspect in the CMB

Chapter.

Using the second continuity Equation (1.11), where T̃µν is a new energy-momentum tensor,

we define two new densities called ρ̃m (Delta matter density) and ρ̃r (Delta radiation density).

They are associated with this new tensor. When we solve this equation, we find

ρ̃m(Y ) =
C1 − 3

2
ρm,0Fa(Y )

Y 3
, (1.29)

ρ̃r(Y ) =
C2 − 2ρr,0Fa(Y )

Y 4
(1.30)

4They are not energy per volume.
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where C1 and C2 are integration constants. It is crucial to clarify that ρ̃m and ρ̃r depend on

the Normalized Scale Factor Y . We can note that both energy density parameters (remember

that these parameters are not real physical densities. But they are related to the physical

densities) have terms that behave like the standard cosmology densities ∼ 1
Y 3 and ∼ 1

Y 4 that

also are preserved in DG:

ρr(Y ) =
ρr,0
Y 4

(1.31)

ρr(Y ) =
ρm,0
Y 3

(1.32)

If we preserve C1 6= 0 and C2 6= 0, we have equations that are considering two kinds of

dependence: ∼ 1
Y 3 + Fa(Y )

Y 3 and ∼ 1
Y 4 + Fa(Y )

Y 4 . This consideration implies that the total

energy density (proportional to the real physical densities) considers the standard energy

density and the new dependence given by DG, in other words, this is equivalent to consider

that ρ̃r is the standard density radiation ρr plus the new DG dependence. We only want

to consider the new dependence in the ρ̃r term without the standard radiation contribution.

This same reasoning is valid for the density of matter. Thus, defining C1 = C2 = 0, we

obtain the following equations:

ρ̃m(Y ) = −3ρm,0
2

Fa(Y )

Y 3
, (1.33)

ρ̃r(Y ) = −2ρr,0
Fa(Y )

Y 4
. (1.34)

There is another reason to define C1 and C2 equal to 0. When Y � C, the Effective Scale

Factor YDG (defined in Equations (1.39) and (1.37)) represents the evolution of the Universe

at the beginning. We know that an accelerated expansion appears at late times, then the

non-relativistic matter and radiation must drive the expansion at early times, this means

YDG = 1 + O(Y ). We fix C1 = 0 and C2 = 0 to guarantee that the behavior of expansion

seems like GR at early times. The full development of this idea can be found in [7, 8].

Using the Equation (1.9) with the solutions from the Equations (1.33) and (1.34) we found

(and redefining with respect to Y ):
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Fa(Y ) =
(
CC3
√
ρr,0
) Y
C

√
Y

C
+ 1, (1.35)

where L2 ≡ −3C−1/2C3
√
ρr,0 = −3C3

√
ρm,0 (L2 is defined as a new constant). Thus

Fa(Y ) = −L2

3
Y
√
Y + C. (1.36)

1.4.3 Relation between the Effective Scale Factor YDG and the

Normalized Scale Factor Y

The Effective Metric for the Universe is given by the Equation (1.17). From this expression,

it is possible to define the DG Scale Factor as follows:

aDG(t) = a(t)

√
1 + Fa(t)

1 + 3Fa(t)
. (1.37)

Defining that a(t0) ≡ 1, we have that a(t) = Y (t), and substituting the Equation (1.35) in

the Equation (1.37) we obtain:

aDG(t) = Y (t)

√
1− L2

3
Y
√
Y + C

1− L2Y
√
Y + C

. (1.38)

Furthermore, we define the Effective Scale Factor:

YDG(t) ≡ aDG(t)

aDG(t0)
. (1.39)

Thus, substituting the Equation (1.38) in (1.39), we obtain:

YDG(L2, C, Y ) =
Y

aDG(t0)

√
1− L2

Y
3

√
Y + C

1− L2Y
√
Y + C

. (1.40)

With the new definition of L2, the Delta densities are given by:
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ρ̃m(Y ) =

(
L2

2

)
ρm,0

√
Y + C

Y 2
, (1.41)

ρ̃r(Y ) =

(
2L2

3

)
ρr,0

√
Y + C

Y 3
. (1.42)

If we know the C and L2 values it is possible to calculate the Delta densities ρ̃m and ρ̃r. Note

that the denominator in the Equation (1.40) is equal to zero when 1 = L2Y
√
Y + C. Taking

into account that C = Ωr,0/Ωm,0 � 1, if Y = 1 (current time) then L2 ≈ 1. Furthermore,

we have imposed that ρ̃m > 0 and ρ̃r > 0, then L2 must be greater than 0. Then the valid

range for L2 is approximately 0 ≤ L2 ≤ 1.

C must be positive and small because the radiation is not dominant compared to matter.

Then, we can analyze cases close to the standardly accepted value for Ωr,0/Ωm,0 ∼ 10−4 (we

have assumed GR values to estimate an order of magnitude).

1.4.4 Useful equations for cosmology

Here we present the equations that are useful to fit the SNe-Ia data and to obtain cosmological

parameters.

1.4.4.1 Redshift dependence

The relation between the cosmological redshift and the Effective Scale Factor is preserved in

DG. The reason is straightforward: it is the same as in GR, but changing the Scale Factor

a(t)→ aDG(t) in the GR metric gµνdx
µdxν → gµνdx

µdxν [9]. Thus, the dependence is given

by:

aDG(t)

aDG(t0)
=

1

1 + z
, (1.43)

where z is the cosmological redshift. Substituting YDG(t) = aDG(t)/aDG(t0) in Equation

(1.43), we obtain

YDG(t) =
1

1 + z
. (1.44)
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It is important to consider that the current time is given by t0 → Y (t0)→ YDG(Y = 1) = 1.

1.4.4.2 Luminosity distance

The proof is the same as GR, because the main idea is based on the light traveling through a

null geodesic described by the Effective Metric given by the Equation (1.17) in DG. Then, the

equation that describes the luminosity distance for DG is the same as GR, but changing the

Scale Factor a(t) by the aDG(t), because aDG(t) is the factor that is describing the observable

expansion (or scaling) of the Universe. Then,

dL = c
a2(t0)

a(t1)

∫ t0

t1

dt

a(t)
→ dDGL = c

aDG
2(t0)

aDG(t1)

∫ t0

t1

dt

aDG(t)
, (1.45)

where t1 is the time when the light was emitted from the source.

We emphasize that the relation between the luminosity distance dDGL and angular distance

dDGA in DG is the same as in GR. This relation is a direct consequence of the structure of

the metric. This relation is given by the Equation (1.46),

dDGL = (1 + z)2dDGA . (1.46)

Using the Equation (1.22), we obtain

dt

dY
=

√
C

H0

√
Ωr,0

Y√
Y + C

.

Substituting dt = dt
dY
dY , and replacing dt in the Equation (1.45),

dDGL = c
aDG

2(t0)

aDG(t1)

√
C

H0

√
Ωr,0

∫ Y (t0)

Y (t1)

Y√
Y + C

dY

aDG(t)
.

Adding that H0 = 100h (Keep in mind that H0 is not the observable Hubble Constant in

the DG model, it is only an arbitrary constant that must be fixed from the observations.

We will define the observable Hubble Constant later), finally, we obtain (we must remember

the change of units for H0 given by km/(Mpc s))



Ph.D Thesis Marco San Mart́ın Hormazábal 16

dDGL = c
RDG

2(t0)

RDG(t1)

√
C

100
√
h2Ωr,0

∫ Y (t0)

Y (t1)

Y√
Y + C

dY

RDG(t)
.

Substituting the Equations (1.43) and (1.39), we obtain:

dDGL (z, L2, C) = c
(1 + z)

√
C

100
√
h2Ωr,0

∫ 1

Y (t1)

Y√
Y + C

dY

YDG(t)
, (1.47)

where Y = 1 denotes today. To solve Y (t1) at a given redshift z, we need to solve the

Equations (1.39) and (1.44) numerically. Furthermore, the integrand contains the Effective

Scale Factor YDG(t) that can be expressed in function of Y through the Equation (1.40). Do

not confuse c (speed of light) with C, a free parameter to be fitted by SNe-Ia data.

The parameter h2Ωr,0 can be simplified through the C definition: 5

dDGL (z, L2, C) = c
(1 + z)

100
√
h2Ωm,0

∫ 1

Y (t1)

Y√
Y + C

dY

YDG(t)
. (1.48)

If the integration takes Y � C (a good approximation for SNe-Ia), this equation can be

approximated to:

dDGL (z, L2) ≈ c
(1 + z)

100
√
h2Ωm,0

∫ 1

Y (t1)

√
Y

YDG(t)
dY, (1.49)

where dDGL is independent of C because in the Equation (1.40) we can replace C = 0. Also,

if C → 0, then Ωm,0 = 1/(1 + C)→ 1. In this context, to determine h2Ωm,0 is equivalent to

determine h.

We only need to know the values C and L2 (or only L2 in the approximation) to estimate

SNe-Ia distances. Note that in this case it is impossible to know the value of Ωr,0 only with

SNe-Ia data, but we will constraint this value using the TT CMB power spectrum [49].

5The h2Ωr,0 value is not the physical density of radiation. It is related with that, but they are not the
same. This will be discussed in the CMB chapter.
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1.4.5 Distance modulus

This relation is fundamental because it lets us calculate the dependence between the apparent

magnitude and the distance to the object. It is essential to consider that we need to know

the value of the absolute magnitude M . We will discuss this aspect in the next pages.

µ = m−M = 5 log10

(
d
DG/GR
L

10 pc

)
(1.50)

1.4.6 Normalized Effective Scale Factor

In DG, the “size” of the Universe is given by YDG(t), then every cosmological parameter

that in the GR theory was built up from the standard scale factor a(t), in DG will be built

from YDG(t). This value is equal to 1 at the current time, because the DG Scale Factor aDG

is normalized by itself: aDG(Y = 1).

1.4.7 Hubble Parameter

The Hubble parameter (and also, the Hubble Constant) is defined in GR cosmology as:

H(t) =
ȧ(t)

a(t)
. (1.51)

Thus, in DG we define the Hubble Parameter as follows:

HDG(t) ≡ ȧDG(t)

aDG(t)
. (1.52)

The Hubble Constant is the Hubble Parameter HDG(t) evaluated today, in other words,

when Y = 1. To evaluate the derivative, we apply the chain rule:

daDG
dt

=
daDG
dY

(
dt

dY

)−1

.

Therefore, the Hubble Parameter is given by
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HDG(t) =
daDG
dY

(
dt
dY

)−1

aDG
. (1.53)

Observe that all the DG parameters are written as a function of Y .

1.4.8 Deceleration Parameter

In the standard cosmology the Deceleration Parameter is given by:

qGR(t) = − äa
ȧ2
. (1.54)

Thus, in DG we define the Deceleration Parameter as follows:

qDG(t) = − äDGaDG
ȧ2
DG

, (1.55)

where

äDG =
dȧDG
dt

=
dȧDG
dY

dY

dt
=

d

dY

(
daDG
dY

(
dt

dY

)−1
)(

dt

dY

)−1

.

Then,

qDG(t) = −
d
dY

(
daDG
dY

(
dt
dY

)−1
) (

dt
dY

)−1
aDG(

daDG
dY

(
dt
dY

)−1
)2 (1.56)

1.4.9 Dependence between redshift and Cosmic Time

All the equations are parametrized as a function of Y , so we need to use the Equations

(1.22), (1.40) and (1.44) to relate redshift and Cosmic Time.
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1.4.10 Non-physical Densities of Common Components: Ωm,0 and

Ωr,0

We have imposed that Ωm,0 + Ωr,0 = 1 and C = Ωr,0
Ωm,0

, then

Ωr,0 =
1

1 + 1
C

; Ωm,0 = 1− Ωr,0. (1.57)

It is vital to consider that this equation only expresses a relation, or a proportion, between

the non-physical energy density for Common matter and Common radiation densities, and

does not express a real percentage of composition of the Universe because in DG we also

have Delta matter and Delta radiation. We will discuss the composition of the Universe in

the following chapters.

This condition is imposed when we assumed that T µν only expresses a standard composition,

and when we assumed that the DE does not exist either at the level of Action or Field

Equations.





Chapter 2

First Supernovae Analysis

This chapter focus on the published paper [14]. Here we presented an MCMC analysis to

fit an updated SNe-Ia catalog. The results were compatible with the local expansion of

the Universe, in other words, DG finds a HDG
0 close to the local H0 measured by Riess et

al. [56] because it can explain the SNe-Ia curve, and also predicts an accelerated Universe

considering the high-redshift SNe-Ia.

Note: This work was done before the CMB analysis. The results of this thesis are slightly

different from the values presented in this chapter (see Chapter 3). All the changes are a

consequence of the physical meaning of the parameter C. This is crucial to understand the

CMB and SNe-Ia compatibility. The C parameter will play an essential role in the next

chapters.

2.1 Luminosity distance

We use the definition given by the Equation (1.47). In this definition, Y = 1 indicates

today. To solve Y (t1) at a given redshift z, we need to solve the Equations (1.40) and (1.44)

numerically. Furthermore, the integrand contains YDG(t) that can be expressed in function

of Y in the Equation (1.40). In this expression, C is a free parameter that will be fitted

using the SNe-Ia data. To use this equation, we calculate the parameter h2Ωr,0 from the

CMB spectrum. The CMB spectrum can be described by a black body spectrum, where the

energy density of photons is given by

21
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ργ,0 = aT 4

From statistical mechanics, we know the neutrinos density is related with photons density

by [48]:

ρν,0 = 3
7

8

(
4

11

)4/3

ργ,0,

then,

h2Ωr,0 = h2Ωγ,0 + h2Ων,0. (2.1)

The h2Ωr,0 parameter given by the Equation (2.1) is a value that only depends on the

temperature of the black body spectrum of the CMB. Thus, we can fix this value as a known

cosmological parameter.

Therefore, we only need to find the C and L2 values. In this context, it is impossible to

know the Ωr,0 value without any other information.

Finally, with the Distance Modulus given in the Equations (1.50) and (1.47), we can fit the

SNe-Ia data.

2.2 Fitting the SNe-Ia data

We are interested in the viability of Delta Gravity as a real alternative cosmology theory

that could explain the accelerating Universe without Λ. Then it is natural to check if this

model fits the SNe-Ia data.

2.2.1 SNe-Ia data

To analyze this, we used the most updated type Ia supernovae catalog. We obtained the

data from Scolnic et al. [58]. We only needed the distance modulus µ and the redshift z to

the SN-Ia to fit the model using the luminosity distance dDGL predicted from the theory.
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The SNe-Ia are very useful in cosmology [53] because they can be used as standard candles

and allow to fit the ΛCDM model finding out free parameters such as ΩΛ. We are interested

in doing this in DG. The main characteristic of the SNe-Ia that makes them so useful is that

they have a very standardized absolute magnitude close to −19 [56, 19, 15, 52, 64].

From the observations, we only know the apparent magnitude and the redshift of each SN-

Ia. Thus, we have the option to use a standardized absolute magnitude obtained by an

independent method that does not involve ΛCDM model, or any other assumptions. To fit

the SNe-Ia data, we use M as a free parameter, and then we have 3 degrees of freedom 1.

We used 1048 SNe-Ia data in [58]2. All the SNe-Ia are spectroscopically confirmed. 3

In [58] they used the SNe-Ia data to try to obtain a better estimation of the DE state

equation. They define the distance modulus as follows:

µ ≡ mB −M + αx1 − βc+ ∆M + ∆B, (2.2)

where µ is the distance modulus, ∆M is a distance correction based on the host-galaxy

mass of the SN, and ∆B is a distance correction based on predicted biases from simulations.

Furthermore, α is the coefficient of the relation between luminosity and stretch, β is the

coefficient of the relation between luminosity and color, and MV is the absolute B-band

magnitude of a fiducial SN-Ia with x1 = 0 and c = 0. [58]

In this work, we are not interested in the specific corrections to observational magnitudes of

SN-Ia. We only take the values extracted from [58] to analyze the DG model. The SNe-Ia

data are the redshift zi and (µ+M)i with the respective errors.

1(Also, we are going to analyze the case where M = −19.23 ± 0.05[56]. The value was calculated using
210 SNe-Ia data from [56]. This value is independent of the model since it was calculated by building
the distance ladder from local Cepheids measured by parallax and using them to calibrate the distance to
Cepheids hosted in nearest galaxies (by Period-Luminosity relations) that are also SN-Ia host. Riess et al.
calculated the M and the H0 local value, and they did not use any particular cosmological model. Keep in
mind that the value of M found by Riess et al. is an intrinsic property of SNe-Ia, and that is why they are
used as standard candles.

2Scolnic’s data are available at https://archive.stsci.edu/hlsps/ps1cosmo/scolnic/.
3In this paper [14], we have used the full set of SNe-Ia presented in [58]. They present a set of spec-

troscopically confirmed PS1 SN-Ia and combine this sample with spectroscopically confirmed SN-Ia from
CfA1-4, CSP, PS1, SDSS, SNLS, and HST SN surveys.

https://archive.stsci.edu/hlsps/ps1cosmo/scolnic/
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2.2.2 Delta Gravity equations

We need to establish a relation between the redshift and the apparent magnitude for the

SNe-Ia:

[µ+M ]−M = 5 log10

(
dDGL (z, C, L2)

10 pc

)
, (2.3)

where dDGL (z, L2, C) is given by the Equation (1.48) and [µ+M ] are the SNe-Ia data given

at [58].

We have as free parameters in this expression: C and L2 to be found by fitting the model

to the points (zi, [µ+M ]i).

2.2.3 GR equations

For GR we use the following expression:

[µ+M ]−M = 5 log10

(
dL(z,H0,Ωm0)

10 pc

)
, (2.4)

where dL(z,H0,Ωm0) is given by

dL(z,H0,Ωm0) =
c(1 + z)

H0

∫ 1

1
1+z

du√
(1− Ωm,0)u4 + Ωm,0u

, (2.5)

and [µ + M ] are the SNe-Ia data given at [58]. Remember that we are always working on

a flat Universe, and in the GR standard model the Ωr,0 is negligible. We have the same

degrees of freedom as in DG. We are including DE as ΩΛ,0 ≡ ΩΛ ≡ 1− Ωm,0 in GR.

2.2.4 MCMC method

To fit the SNe-Ia data to GR and DG, we used Markov Chain Monte Carlo (MCMC). This

routine was implemented in Python 3.6 using PyMC2.4

4https://pymc-devs.github.io/pymc/.

https://pymc-devs.github.io/pymc/.
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MCMC consists of fitting a model, characterizing its posterior distribution. It is based on

bayesian statistics. We used the Metropolis-Hastings algorithm.

We used this bayesian approach because it allows us to know the posterior probability

distribution for every parameter of the model [29, 47]. Furthermore, it is possible to identify

dependencies between the fitted parameters, which it is not possible using other method

such as the least-square used in [12].

Initially, we propose initial distributions for the parameters that we want to fix, and then

PyMC2 will give us the posterior probability distribution for: C,L2 and M for DG and

H0,Ωm,0 and M for GR.

2.2.4.1 About the extra degrees of freedom

This subsection is dedicated to clarifying the differences between the original model published

in [7], and the model used in this chapter. It is not essential to understand these

equations because they are not useful in this full-form. The objective is to show

the evolution of the research during these years.

Initially, the Fa function was given by

Fa(Y ) = −3

2
C1
Y

C

√(Y
C

+ 1

)
ln


√

Y
C

+ 1 + 1√
Y
C

+ 1− 1

− 2

+ C3
Y

C

√
Y

C
+ 1, (2.6)

where C1 y C3 were integration constants. This implied that the Effective Scale Factor was

given by

YDG(Y, L1, L2, C) = Y

√√√√√√√
1− L2

Y
3

√
Y + C + L1

Y
c

(√
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+ 1 ln
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+ 1 ln

(√
Y
c

+1+1√
Y
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+1−1

)
− 2

) , (2.7)

where C1 = −2L1

3
and C3 = −C3/2L2

3
(L1 and L2 were new constants).
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This definition implied different Delta matter and Delta radiation contents, given by the

Equations (1.29) and (1.30). These expressions were discarded because of the reasons exposed

in section 1.4.2. Furthermore, any fit that included these parameters were degenerate with

the result shown in this chapter. Initially, the degeneration given by these extra parameters

creates some undesirable effects, for instance, the other parameters could take an arbitrarily

large number implying that the Delta densities could change arbitrarily, while the fitted

curve always would be the same. Before this work, the parameters were degenerate, and

I found physical arguments to discard these parameters (Section 1.4.2). Furthermore, the

extra parameters implied arbitrary densities.

Note 1: A possible inflation effect caused by the F function’s log term was also discarded

because it does not imply an exponential expansion rate.

Note 2: We want to use DG as a model to fit SNe-Ia data, then we want to preserve extra

effects that create acceleration, but not effects that change the early Universe (this constraint

was done before the CMB analysis). In other words, we impose that Ỹ = Y +O(Y 2). Then,

C2 have to be 0 because Ỹ '
√

1−2C2

1−6C2
Y +O(Y 2) when Y � C. This observation about the

scale factor was no sufficient to delete all the degeneracy between the parameters. Finally

(today), we only preserve the L2 as a free parameter.

Note 3: In previous works, Ỹ is equivalent to the new notation Y DG. (This was the notation

at the beginning of the DG publications).

2.3 Results and analysis

We present the results for DG and GR fitted data, and with these values, we obtain different

cosmological parameters. We divide the results in two fits: DG fit and GR fit.

From the MCMC analysis, we obtain a non-convergent result. In DG model, the C, and M

parameters are dependent, but L2 is independent. Figure 2.1 shows the degeneration.

A second-order polynomial can fit the dependence for DG parameters. This dependence is

given by:

C = 8.59× 10−5M2 + 3.15× 10−3M + 2.9× 10−2 (2.8)
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Figure 2.1: This MCMC analysis assumes M as a free parameter in the DG Model. The Figure
shows the posterior probability densities.

If we use M = −19.23 ± 0.05 [56], it fixes C which agrees with the SNe-Ia results. This

implies a HDG
0 = 74.47± 1.63 km/(Mpc s).

For GR, we did the same procedure, but in this model, the dependence appears between

h2 and M . These parameters degenerates; indeed, it easy to see from the Equation (1.50)5.

The polynomial is showed in Figure 2.2 and is given by:

h2 = 0.177M2 + 7.335M + 75.896 (2.9)

Again, if we evaluate the Equation (2.9) at M = −19.23 ± 0.05, we obtain h2 → H0 ≈
74.08± 0.24 km/(Mpc s).

5We decide to include this degeneration as an MCMC and not as an equation only to show that the
program works and to obtain figures that can be easily compared because they were generated with the
same code: GR vs. DG.
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Figure 2.2: MCMC analysis assumes M as a free parameter in GR. The Figure shows the posterior
probability densities.

2.3.1 Fitted curves

As we see in Figures 2.3 and 2.4, both models describe very well the mB vs. z SNe-Ia data.

While in GR frame Λ 6= 0 is needed to find this well-behaved curve (Ωm,0 6= 1), in DG, Λ

is not needed to fit the SNe-Ia data. Essentially, DG predicts the same behavior, but the

accelerating Universe is explained without the need to include Λ, or anything like “Dark

Energy”.

The Table 2.1 shows the coefficients of determination (r2) and residual sum of squares (RSS)

for both fitted models.

Table 2.1: Statistical parameters.

Model r2 RSS

DG 0.99709 21.39
GR 0.99708 21.44

Both coefficients of determination are excellent, and the RSS is similar for both cases.

The fitted parameters for GR and DG models are shown in Tables 2.2 and 2.3, respectively.
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Table 2.2: Fitted parameters using MCMC for DG.

DG Value Error

L2 0.455 0.008
C 0.000169 0.000003

Table 2.3: Fitted parameters using MCMC for GR.

GR Value Error

Ωm,0 0.28 0.01
h2 0.549 0.004

Figure 2.3: The fitted curve for the DG model assuming M = −19.23. On the right corner,
the residual plot for the fitted data.

The convergence test were included in the Appendix C.

2.3.2 The Hubble Constant and H0 and the Deceleration Param-

eter

With the fitted parameters found by MCMC for GR and DG, we can find H(t) and H0.

Note the superscript for GR as GR and DG as DG. For GR, H0 is easily obtained from the h2

fitted (H0 = 100h). We evaluate HDG at YDG = 1 obtaining the Hubble Constant HGR
0 and

HDG
0 . We present the results for both models and we compare these values with previous

measurements in Table 2.4.
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Figure 2.4: The fitted curve for the GR model assuming M = −19.23. On the right corner,
the residual plot for the fitted data.

Table 2.4: H0 values found by MCMC with SNe-Ia data, assuming MV = −19.23. Furthermore,
we tabulate Planck [49] and Riess [54] H0 values.

Model H0 ( km/(s Mpc) ) Error

Planck 2018 [49] 67.36 0.54
Riess 20186 [54] 73.52 1.62
Riess 20187 [54] 73.83 1.48

GR 74.08 0.24
Delta Gravity 74.47 1.63

Also, we show the Deceleration Parameter for both models in Table 2.5.

Table 2.5: q0 values found by MCMC with SNe-Ia data, assuming MV = −19.23.

Model q0 Error

DG −0.664 0.002
GR −0.57 0.02

In both models q0 < 0, then in DG the Universe is accelerating at a similar rate (compared

to GR).
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2.3.3 Relation with Delta Components

In DG, we are interested in determining the Delta Composition of the Universe. Using the

Equations (1.41) and (1.42), we can obtain the densities for Delta matter and Delta radiation

with the C and L2 fitted values:

ρ̃m,0 = 0.22777ρm,0 = 0.22773ρc,0 (2.10)

ρ̃r,0 = 0.68330ρr,0 = 0.000115ρc,0 (2.11)

The Common Components are dominant compared with Delta Components. Matter is

always dominant compared with radiation (in both cases). See Figure 2.5.

In both, Common Components and Delta Components, there is a transition between matter

and radiation that is indicated in the zoom-in included in the Figure 2.5. These transitions

occur at a very early stage of the Universe.

Remember that in DG we do not know ρc,0, but we know the densities of each component

in units of ρc,0, because they are given by C and L2 fitted values from SNe-Ia data.

2.3.4 Importance of L2 and C

To understand the role that L2 and C are playing in the DG model, we need to plot some

cosmological parameters as a function of both coefficients. We are interested in analyzing

the accelerating expansion of the Universe as a function of these two parameters, then we

plotted HDG
0 in Figures 2.6 and 2.7 and qDG0 in Figures 2.8 and 2.9.

The Figure 2.6 shows that there is a big zone that is prohibited because the results become

complex values at a certain level of the equations. Only the allowed values are colored.

Almost all the allowed HDG
0 values are close to the axis L2 = 0. Only the contour of the

colored area shows HDG
0 6= 0. The Figure 2.7 is the same as the upper one, but with a big

zoom-in close the fitted values obtained from MCMC analysis. These ranges of C and L2

are reasonable to make an analysis. We emphasize that HDG
0 has a strong dependence with

C and L2 values.
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Figure 2.5: Temporal evolution of density components for Delta Gravity. The vertical axis is
normalized by the critical density at the current time ρc,0. On the top right corner, there is a
zoom-in very close to YDG = 0 showing the transition between Delta matter and Delta radiation
(Delta Components), and the transition between matter and radiation (Common Components). In

general, the Common Density is higher than the Delta Density.

Remember that L2 only makes sense between values 0 and 1, because we only want to allow

positive Delta densities and, from the Equation (1.40), the denominator could be equal to 0.

Figure 2.8 is very interesting because it shows the dependence of the current value of the

acceleration of the Universe expressed by the deceleration parameter qDG0 . If we examine the

zone close to the fitted values in the Figure 2.9, we can highlight that the acceleration of the

Universe only depends on the value of L2. The most significant result is that the accelerating

Universe is determined by the L2 parameter. This parameter appeared naturally like an

integration constant from the differential equations when we solved the DG field equations.

Then, in this model, and exploring the closest area to the Universe with a little amount of

radiation compared to matter, we found that a higher L2 value, higher the acceleration of

the Universe (today): qDG0 becomes more negative when L2 → 1 independently of C.
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Figure 2.6: HDG
0 for a different combination of L2 and C values. The fitted values found by

MCMC analysis are indicated in the Figure. C values go from 0 to 6 to explore various types of
Universe, even one dominated by radiation.
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Figure 2.7: HDG
0 for a different combination of L2 and C values. The fitted values found by

MCMC analysis are indicated in the Figure. The C values are bounded to very small values, nearly
close to the C fitted value obtained by MCMC.
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Figure 2.8: qDG0 for different combination of L2 and C values. The fitted values found by MCMC
analysis are indicated in the Figure. C values go from 0 to 6 to explore various Universes, even a

Universe dominated by radiation.
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Figure 2.9: qDG0 for different combination of L2 and C values. The fitted values found by MCMC
analysis are indicated in the Figure. The C values are bound to minimal values, nearly close to the

C fitted value obtained by MCMC.



Chapter 3

Supernovas

We are interested in the viability of DG as a real alternative cosmology theory that could

explain the accelerating Universe without Λ. The first Section shows the SNe-Ia data and

the equations, the Section 2 shows the results and the last Section contains the analysis

and the conclusions. This chapter is similar to the previous one, but the meaning of some

parameters and their numerical values change. This change is relevant to be able to explain

the CMB later.

3.1 Fitting the SNe-Ia data

3.1.1 SNe-Ia data

To analyze the expansion of the Universe, we used 1048 SNe from the most updated type Ia

supernovae catalog presented in the Subsection 2.2.1.

From the observations, we only know the apparent magnitude and the redshift for each SN-

Ia. We have two options: try to fit the absolute magnitude M or use a standardized absolute

magnitude obtained by an independent method that does not involve ΛCDM model or any

other assumptions. In this chapter we even do not assume a C value, because it is related

with the CMB and other cosmological constraints that can be derived from the CMB and

35
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not from SNe-Ia.

In consequence, in DG we assume a scenario with M fixed, and try to find L2 value assuming

C = 0. We will use M = −19.23 ± 0.05. This value was calculated using 210 SNe-Ia data

from [56]. This absolute magnitude is significant for us because it is independent of the

Model.

We emphasize that we are always working in a flat Universe, and in the GR standard model,

the Ωr,0 is negligible. Then, we have the same degrees of freedom as DG: 2, where we are

including DE as ΩΛ,0 ≡ ΩΛ ≡ 1 − Ωm,0. Summarizing, in DG we fit L2 and h while in GR

we fit ΩΛ and h. Both models with 2 degrees of freedom.

3.1.2 GR fit

To fit the SNe-Ia data, we used the Least Squares Method. The Figure 3.1 assumes

M = −19.23, curvature 0 and Ωr,0 = 0. It is important to note that in GR h and M

are degenerated. We fix M because it is an independent value obtained from a local mea-

surement [54, 55, 56]. The objective is to compare this SNe-Ia fit with the DG fit.

0.0 0.5 1.0 1.5 2.0
redshift
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16
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20

22

24

26

[
+

M
]

Best fit with h=0.740 m, 0=0.283 M=-19.23
SNe Ia data

Figure 3.1: The fitted curve for the GR model assumes M = −19.23.
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Both parameters, h and Ωm,0, are not degenerated and are well-determined. These are shown

in Table 3.1.

Parameter Value Standard Error Relative Error
Ωm,0 0.28 0.01 4.20%
h 0.740 0.002 0.33%

Table 3.1: Fitted values for GR model.

3.1.3 DG fit

To fit the SNe-Ia data we used Least Squares Method. We present two fitted curves. The

Figure 3.2 assumes a luminosity distance with C = 0. The Figure 3.3 assumes a luminosity

distance with C = 4.5× 10−4. Both curves are very similar, but we decided to include both

plots to show that the fit does not change.

0.0 0.5 1.0 1.5 2.0
redshift

14

16

18

20

22

24

26

[
+

M
]

Best fit with C=0, L=0.457, h=0.496, M=-19.23
SNe Ia data

Figure 3.2: The fitted curve for the DG model assumes C = 0 and M = −19.23.

Both parameters, h and L2, are not degenerated and are well-determined.

The results of the fit for the case C = 0 are the same as for C = 4.5× 10−4, then both cases

are presented in only one Table 3.2 (considering the standard error).

Note: the Figure 3.2 is a fit and the Figure 3.3 is a plot where we changed the C value.
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0.0 0.5 1.0 1.5 2.0
redshift

14

16

18

20

22

24

26
[

+
M

]

C=4.50E-03, L=0.457, h=0.496, M=-19.23
SNe Ia data

Figure 3.3: This curve assumes that C is 4.5× 10−4 instead of 0. The other parameters are not
changed.

Parameter Value Standard Error Relative Error
L2 0.457 0.007 1.57%
h 0.496 0.004 0.77%

Table 3.2: Fitted values for DG model.

The differences between both cases are tiny. We decided to show the error distribution vs.

the redshift in the Figure 3.4, and we calculated the squared error associated with different

C values in the Figure 3.5.

3.2 Analysis

The results from SNe-Ia analysis indicate that DG explains the accelerating expansion of the

Universe without including Λ or anything like “Dark Energy”. The acceleration is naturally

produced in DG, caused by a coefficient named L2, which appears when we solve the differ-

ential equations that describe the cosmology. L2 was not introduced by hand, as the case

of Λ in the standard cosmological model. The accelerating Universe occurs naturally, and

comes from the variation of the E-H action, assuming that the Delta symmetry is a real sym-

metry about the physics that describes the Universe. Note that L2 and h are not degenerated.



Ph.D Thesis Marco San Mart́ın Hormazábal 39
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Figure 3.4: Error dispersion for DG model assuming a fitted model with C = 0,L2 = 0.457 and
M = −19.23.

We assumed that M = −19.23 is a right value calculated from [56]. This value was obtained

by local measurements (this is essential) and SNe-Ia calibrations, and then, it is independent

of any cosmological model. Therefore the procedure presented does not use ΛCDM assump-

tions. We only assume that the calibrations from Cepheids and SN-Ia are correct; then, the

absolute magnitude is given by M = −19.23 for SNe-Ia.

DG needs L2 6= 0 to explain Dark Energy, and this implies that it must exist a new kind

of energy density that we have called Delta matter and Delta radiation. It is not clear if

this Delta Composition is made of real particles or is a kind of energy that underlies the

space-time. We are going to clarify this aspect in the Chapter 4.

Also, DG can predict a high value for H0, and it is in concordance with the last measurement

of the local Hubble Constant. This value is not necessarily preserved in a local expansion

of the luminosity distance. In DG, a low redshift expansion of the dL term gives the same

equation as a polynomial in z as GR. This aspect is crucial because the current H0 value is

in tension [56][54] between SNe-Ia analysis and CMB data, thus in the next chapter, we are

going to use the L2 value, which is the only option to preserve the Riess et al. observations

as a correct measurement. In the next Section, we will show a local expansion in terms of z

and a local fit of the HDG
0 . It is essential to understand that the parameters that we usually
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Figure 3.5: Squared errors for DG model assuming a fitted model with C = 0,L2 = 0.457 and
M = −19.23.

know in standard cosmology could change in DG. For example, the rate of expansion of the

Universe is given by HDG
0 , and not by h. Indeed, HDG

0 6= 100h because they are entirely

different in our model. h is a parameter inherited from GR background, but the real rate of

expansion HDG
0 is determined by the Effective Scale Factor YDG and not by a or Y .

An important result from the fitted curves is the independence between the curve fitting and

C value in a wide range of 0 ≤ C � 10−2. First of all, we analyzed if the errors were normally

distributed around the observed SNe-Ia magnitudes. This distribution is not necessarily true

for every combination of h, C, and L2, but it is true for all C � 10−2. If C is about 10−4 it

is impossible to distinguish a curve with C = 0 or with C ∼ 10−4. This indistinguishable is

crucial because the range of C allows us to fit the CMB without changing the SNe-Ia fit (if

C is small). Nonetheless, we decide to show how much the fit changes (the squared error)

if C value changes. This was depicted in the Figure 3.5, while the effect of the C value in

the fitted curve can be visualized in the Figure 3.6. A higher C value moves the predicted

curve to lower values. Then, the mean of the normal distribution of the errors moves to

lower prediction values, resulting in a worse fit if the C value is sufficiently high. In other
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Figure 3.6: There are three different curves fitted to SNe-Ia data in a log-scaled horizontal plot.
All the curves assume the parameters obtained for the best fit for DG, but changing C. At a higher
C value, the predicted curve tends to be lower than the observed values. If C is small, it appears

almost similar to the C = 0 case.

words, the SNe-Ia data constraint the DG model to consider only small values of C, but it

does not give more information about it.

3.3 Cosmological parameters

With the parameters fixed from the SNe-Ia data, we can find the Hubble Constant, the

Deceleration parameter, the Age of the Universe, and the evolution of these parameters with

time. Also, we decided to show the luminosity distance as a local expansion in terms of z.

3.3.1 Local expansion

3.3.1.1 Approximation up to first order in redshift

The luminosity distance is given by the Equation (1.48):

dDGL (z, L2, C) = c
aDG,0(1 + z)

H0

√
Ωm

∫ 1

Y (z)

Y√
Y + C

dY

aDG
, (3.1)
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Taking the limit where C = 0 and using the relation between the DG Scale Factor and

redshift given by the Equation (1.43):

aDG =
aDG,0
1 + z

, (3.2)

we obtain an expression around z = 0 given by

m = 5 log
cz

HDG
0

+M + 25. (3.3)

This expression is in concordance with the standard Hubble Parameter and the Deceleration

Parameter definitions, where we have replaced the a by aDG (See appendix A).

3.3.1.2 Local fit of SNe-Ia data

Riess et al. [54] found values for M and H0 that are independent of any assumptions (only

depends on the dL definition, where they assumed a flat Universe) and that are not degen-

erate. Therefore, the local analysis for DG is valid, where the Hubble Constant measured in

this context is HDG
0 and not H0. Only to clarify any doubt, we have fitted 150 SNe-Ia with

redshift less than 0.05 [58], as is shown in the Figure (3.7).

This local measurement constraints the Hubble Constant to HDG
0 = 73.5 ± 0.4(0.6%) as-

suming M = −19.23, because HDG
0 and M are degenerated by the equation (3.3) but this

relation is constrained by the Cepheids calibration [56, 54, 55].

The local measurement is vital because any conclusion from Riess et al. can be extrapolated

to DG. After all, the local behavior between redshift and magnitude is preserved.

We expect that M must be constant because it is an intrinsic property of the SNe-Ia. This

result depends on the local data used to obtain this constraint: a local measurement could

be slightly different from a high redshift measurement because cosmological effects must be

considered, where the luminosity distance plays an important role. Also, note that H0 is very

different from HDG
0 , which is not a problem in DG. DG can accept that the real (physical or

observable) rate of expansion HDG
0 is high and not necessarily is contradictory with the CMB

measurements). Until here, we are trying to conciliate local and high redshift measurements
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Figure 3.7: 150 SNe-Ia data fitted with equation (3.3) in DG model.

of SNe-Ia data. If any of these observations or data are wrong, all the analyses presented

here must be revisited because it depends on both observations.

3.3.2 HDG and qDG

3.3.2.1 Hubble parameter and H0

With the fitted parameters found in Section 3.1, we can find H(t) and H0. For GR, HGR
0 is

easily obtained from the h2 fitted (H0 = 100h) and HGR(t) can be obtained using the first

Friedmann equation

H2 =

(
ȧ

a

)2

=
8πG

3

(ρm,0
a3

+
ρr,0
a4

+ ρΛ,0

)
(3.4)

Taking into account that Ωm,0 + Ωr,0 + ΩΛ,0 = 1, Ωr,0 ≈ 0 and ρc,0 =
3H2

0

8πG
, where Ωi,0 =

ρi,0
ρc,0

for every i component in the Universe, we obtain
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H2 = H2
0

(
Ωm,0

a3
+ (1− Ωm,0)

)
(3.5)

With the Equation (3.5), we obtain HGR(t) and using the Equation (1.53) we obtain HDG(t).

For the current time we evaluate HGR at a = 1 and for DG we evaluate HDG at YDG = 1

obtaining the Hubble Constants HGR
0 and HDG

0 , respectively. It is important to highlight

that these values are not local fitted parameters. They were obtained using all the SNe-Ia

data, and both fitted analysis have the same degrees of freedom. They were made to compare

both models. Therefore, this GR fit does not imply that HGR
0 must be the same value that

Riess et al. obtained, because it is not local. However, this value is higher than the CMB

Hubble Constant. Still, in this section, we are only working with SNe-Ia, and we are not

going to discuss this aspect until the last part of this thesis, nevertheless we show all the

Hubble Constant estimations.

The HDG
0 value can be found using (1.53), but also, we can obtain an approximate equation

that depends on h and L2 (that assumes C = 0). This estimation is very precise1:

HDG
0 ≈ 50h

(−6 + 11L2 − 7L2
2 + 2L3

2)

(−3 + L2)(−1 + L2)2
(3.6)

We present the results from both models, and we compare these values with measurements

in the Table 3.3. Finally, we plot the values in the Figure 3.8.

Model H0 ( km/(s Mpc) ) Error ( km/(s Mpc) )

Planck 2015 [48] 67.74 0.46

Planck 2018 [49] 67.4 0.5

Riess 2016 [56] 2 73.24 1.74

Riess 20183 [54] 73.52 1.62

Riess 20194 [54] 74.03 1.42

GR 74.0 0.2

DG 74.3 1.3

1This equation is straightforward from the definition of (1.53).
2First local determination of the Hubble Constant: “A 2.4% Determination of the Local Value of the

Hubble Constant”
3The calibration was made including the new MW parallaxes from HST and Gaia.
4Precision HST photometry of Cepheids in the Large Magellanic Cloud (LMC) reduce the uncertainty in

the distance to the LMC from 2.5% to 1.3%
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DG approx 74.2 -

DG local 73.5 0.4

Table 3.3: H0 values found by Least Squares Method with SNe-Ia data. Furthermore, we tabulate
Planck satellite’s data [48] and [49], and Riess et al. [54] H0 values. GR and DG are the H0 values
obtained in Section 3.1 using all the SNe-Ia data. DGapprox was calculated from the Equation

(3.6) and DGlocal was obtained fitting local SNe-Ia using the Equation (3.3).

H0 Planck 2015

H0 Planck 2018

H0 Riess 2016 

H0 Riess 2018 

H0 Riess 2019 HGR
0 HDG

0
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72

74

76

Figure 3.8: Different measurements of the Hubble Constant from Planck [48, 49] and local SNe-Ia
[56, 54, 55]. We include the two results obtained in the fitting analysis presented in the Section 3.1

The Figure 3.8 shows the DG prediction for H0, and clearly, this is in concordance with

the last H0 measurement. This compatibility is a consequence of the excellent fit obtained

from the model (we are only working with h and L2). GR also predicts a high H0 value

with the same assumptions, but it needs to include Λ to fit the SN-Ia data. The last two

data labeled as GR and DG in Figure 3.8 are related to the full SNe-Ia data set, and not

with a local measurement. DG describes the acceleration given by high redshift data and

fits the local (low redshift) regime. This acceleration is a consequence of the definition of dL

in DG. This term can be expanded as a z series, with the same physical significance, such

as the Hubble Constant and the Deceleration Parameter (but these parameters depend in a
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Figure 3.9: Hubble Parameter for DG and GR fitted models assuming M = −19.23

very different form compared to GR) 5. Furthermore, the discrepancy about H0 value could

be indicating new physics behind the Standard Cosmology Model Assumptions, and maybe,

one possibility could be the modification of GR.

The Figure 3.9 shows the change in the Hubble parameter for both models. In the DG case,

the Hubble parameter increases after YDG ≈ 1.2, and the Universe starts to increases its size

to end with a Big Rip. In contrast, as we know, LCDM does not predict a Big Rip. The

H(a) tends to be constant when a→∞.

The Figures 3.10 and 3.11 shows how the Deceleration Parameter depends on C and L2. In

the regime of interest, where C → 10−4, HDG
0 is independent of C and it increases with L2.

5“The direct measurement is very model-independent, but prone to systematics related to local flows
and the standard candle assumption. On the other hand, the indirect method is very robust and precise,
but relies completely on the underlying model to be correct. Any disagreement between the two types of
measurements could in principle point to a problem with the underlying ΛCDM model.” [41]
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Figure 3.10: Dependence of the Hubble Parameter for DG with C and L2.

3.3.3 Deceleration Parameter q(t)

In GR the Deceleration Parameter is calculated from the Equation (1.54) and the Friedmann

equations (see Appendix B).

q0 =
1

2
Ωm,0 − ΩΛ,0. (3.7)

This equation is straightforward from (1.54).

For DG, we used the Equation (1.56). To evaluate at current time, we choose a = 1 for GR,

and Y = 1 for DG.

We show the Deceleration Parameters for both models in the Table 3.4

Model q0 Error
DG -0.700 0.001
GR -0.58 0.02

Table 3.4: q0 values were found using Least Squares Method with SNe-Ia data.
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Figure 3.11: This is a zoom of the Figure 3.10 in the area near to C ∼ 10−4.

Both models have q0 < 0; in other words, the Universe is accelerating but with slightly

different rates.

In the Figure 3.12 we show how the Deceleration Parameter depends on C and L2. It is

important to take into account that acceleration only depends on L2. This plot is extended

to an arbitrary C value. However, our physical interest is in a small range of C, see Figure

3.13.

In Figure 3.13 the dependence with C disappear, in contrast with Figure 3.12. L2 drives

all the acceleration of the Universe, also if we have L2 = 0, there is no acceleration, and

also, there is no Delta Composition. This parameter is driving the acceleration, and it is

describing the SNe-Ia data. If L2 → 1, then q0 is more negative, and the Universe has a

higher acceleration.
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Figure 3.12: The Figure shows the dependence of the Deceleration Parameter for DG with C and
L2.

3.3.4 Other interesting relations

3.3.4.1 Cosmic Time and redshift

To calculate the Cosmic Time in DG, we used the Equation (1.22). The redshift is obtained

by numerical solution from the Equation (1.44).

Meanwhile, for the GR model, we obtained the Cosmic Time integrating the first Friedmann

equation and solving t(Ωm,0, H0). Here we have included ΩΛ = 1−Ωm,0 and we chose a flat

cosmology and Ωr,0 = 0. The integral for the first Friedmann equation can be analytically

solved (from the Equation 3.5):

t =

∫ a

0

1√
Ωm,0
x

+ (1− Ωm,0)x2

dx =
2

3
√

1− Ωm,0

ln

(√
−Ωm,0a3 + Ωm,0 + a3 +

√
1− Ωm,0a

3/2√
Ωm,0

)
,

(3.8)
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Figure 3.13: This is a zoom in the physical area of interest, close C ∼ 10−4. In this regime, the
Deceleration Parameter is independent of C, and L2 drives all the acceleration of the Universe.

where t in (3.8) is the Cosmic Time for GR. The behavior of Cosmic Time dependence with

redshift for both models is very similar. This is shown in Figure 3.14, while, the relations

between the size of the Universe and the cosmic time is shown in Figure 3.15.

3.3.4.2 Age of the Universe

The age of the Universe in DG is calculated using the Equation (1.22). t(Y ) only depends

on h and C, but not on L2. In GR, we calculate the age of the Universe using (3.8). The age

for DG model is 13.1±0.1 Gyrs and for GR is 13.0±0.2 Gyrs. With these same expressions,

we can compare the behavior between Cosmic Time and the Scale Factor in GR (or the

Effective Scale Factor in DG).

The Figure 3.15 shows the evolution for YDG(t) with the time. At t ≈ 28.7 Gyr, YDG goes

to infinity, and the Universe ends with a Big Rip dominated by the L2 value. Then, in this

model, the Universe has an end (in time). Also, we plot the dependence between the Scale

Factor a and the Cosmic Time t. In this last case, the Universe has no Big Rip.
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Figure 3.14: Cosmic Time for GR and DG assuming M = −19.23.

The higher the Hubble Constant, the lower the age of the Universe. This relation is vital

since if the local fit of supernovae radically changes H0, then the age of the Universe changes.

The age of the Universe for DG and GR are small (13.1 Gyrs for DG and 13.0 Gyrs for

GR) compared with the age calculated from Planck (13.8 Gyrs). A crucial and precise

estimation based on the measurement of globular clusters’ age in the Milky Way [42], which

is independent of cosmology, indicates that the Universe has to be older than 13.6 ± 0.8 Gyrs.

DG, assuming the results of SNe’s local measurements, is on the verge of this observational

constraint. We emphasize that the problem goes beyond DG because this discrepancy is

related to the local measurements and it is due to the calibration made by Riess et al. [56].

For instance, other researchers have tried to measure theH0 value using methods independent

of distance ladders and the CMB. They found that the Hubble Constant exceeds the Planck

results, with the confidence of 95% [46]. However, other measurements based on the tip

of the red giant branch (TRGB) have found that H0 is close to 69.6 km/(Mpc s) [24, 25].

Other methods based on lensed quasars found that H0 = 73.3 Mpc/(km s) agrees with local

measurements but tension with Planck observations [70].There is no agreement about this

problem in the ΛCDM model (for DG is the same).
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Figure 3.15: The size of the Universe vs. age of the Universe. In the DG model, the size of the
Universe YDG depends on the Cosmic Time t and C. The blue line indicates the Effective Scale
Factor in DG. The gray zone shows the error associated with YDG. For GR, the Scale Factor a
depends on the Cosmic Time t and on Ωm,0. The red line indicates the Scale Factor evolution in

GR. The gray zone shows the error associated with a (these are tiny).

3.3.4.3 Relation with Delta Components

With these values, through the Equations (1.41) and (1.42), we obtain the following param-

eters for Delta matter and Delta radiation:

ρ̃m,0 = 0.23ρm,0 (3.9)

ρ̃r,0 = 0.69ρr,0 (3.10)



Chapter 4

CMB

To fit the CMB power spectrum with DG equations, we have to define the physical density

in this theory. In other words, until here, the theory explains the acceleration of the Universe

with C ≈ 0 and a L2 value obtained in the Chapter 3. There are many possibilities to find

parameters that adjust the CMB values, but we want to preserve one important aspect: the

acceleration of the Universe that preserves the H0 value found by Riess et al. [55]. Then,

L2 and h are no more free parameters, but C is free. There are constraints over C. First,

it cannot be 0 because the CMB is sensible to the presence of radiation and cannot be a

high value because the SNe-Ia analysis showed that we require a small C value. It is not

an arbitrary condition; it is an observational constraint required to preserve the M and H0

observed. Only the results from Chapter 3 are valid, but keep in mind that the L2 value

never changed between Chapters 2 and 3. Finally, it is crucial to remark that an arbitrary

C value can be contradictory for the SNe-Ia measurements. In this context, we will assume

the L2 value obtained from Chapter 3, and we are going to constraint the C value fitting

the CMB spectrum.

4.1 Comments about the thermodynamics in DG

This section is essential to fit the CMB. Any change in this definition affects everything in

numerical precision because the CMB shape is very accurate. Now, we develop the physical

argument.

53
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The physical element of volume is dV = a3
DGdxdydz (given by the effective metric), which

is described by the DG Scale Factor:

aDG(t) = a(t)

√
1 + F (t)

1 + 3F (t)
.

With the volume, we can define the density of any kind of matter as

ρ =
U

c2V
, (4.1)

where U is the internal energy, and V is the volume (defined in the cosmology model).

Therefore, if we apply the first law of thermodynamics,

dU

dt
= T

dS

dt
− P dV

dt
, (4.2)

and assuming that the evolution of the Universe is adiabatic as in GR 1, the entropy must

be preserved, then

ρ̇ = −3HDG

(
ρ+

P

c2

)
. (4.3)

To solve this equation for a fluid, we need to know the equation of state of it. In order to

know the evolution of ρ, we need an equation of state P (ρ). In cosmology, the equations of

state are written as P = ωρ, then

ρa
3(1+ω)
DG = ρ0a

3(1+ω)
DG 0 , (4.4)

where ρ0 is the density today.

In DG, we preserve the standard solutions of GR, then the standard evolution of the “GR

densities” behaves as usual, but with the GR Scale Factor a(t):

1See for instance T. Padmanabhan, Theoretical Astrophysics, Volume III: Galaxies and Cosmology, First
Edition, Chapter 4 (Cambridge University Press, Cambridge, England, 2002).
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ρGRa
3(1+ω) = ρGR 0a

3(1+ω)
0 . (4.5)

Note: ρGR goes for GR background in DG equations. These are not physical densities. The

physical densities in the perturbative theory are indicated as ρ without sub or super index.

Finally, we can relate both densities by the ratio between them as follows

ρ

ρGR

(√
1 + Fa(t)

1 + 3Fa(t)

)3(1+ω)

= constant(ω). (4.6)

This ratio is essential for the study of the perturbations. The evolution of fractional pertur-

bations at the last-scattering moment are defined as

δGR α =
δρGR α

ρ̄GR α + p̄GR α

, (4.7)

where α = γ, ν, B or D (photons, neutrinos, baryons and dark matter, respectively). The

crucial part of this development is that the physical densities perturbations depend on this

relation, but at the time of the Last Scattering surface Y ∼ 10−3 (denoted as a ls subindex)

this extra factor tends to 1. This is essential in the development of the perturbative equations,

because at that moment the physical densities were proportional to the GR densities, and by

definition, the density perturbations are fractional, then this factor is simplified, and then

we obtain

δphys α(tls) = δGR α(tls) = δα(tls). (4.8)

This very accurate approximation is valid from the beginning of the Universe (z → ∞) to

z ∼ 10.

4.1.1 The shape of the black body spectrum

We want to preserve the shape of the Black Body spectrum because it is an observable (the

CMB). The black body spectrum is given by
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nT (ν)dν =
8πν2dν

e
hν
kBT − 1

. (4.9)

After the Last Scattering surface, the photons traveled without being perturbated until

us (photons were not coupled with baryons), then the spectrum only changes because the

frequency is redshifted cause of the expansion of the Universe. Then the frequency changes

as ν = νlsaDG(tls)/aDG, and the volume V = Vlsa
3
DG/a

3
DG(tls), then, the number of photons

dN must be preserved, and this implies that the number of photons dN = nT (ν)dνdV must

preserve the following relation:

TaDG = constant→ T =
T0

YDG
, (4.10)

where T0 is the CMB temperature.

In other words, the temperature of the Universe evolves as usual, but with the Effective

Scale Factor described by YDG.2

All these definitions and interpretations are essential to fit the CMB because we understand

how the real physical densities evolve, and then, we can obtain indirect physical implications

(that will appear in the CMB) that are measurable.

Some observations correlate the T with redshift in this sense. This correlation is important

because DG preserves this relation. This deviation has been studied [36] as an arbitrary

dependence in the T , where the results indicate that T = T0(1 + z) is correct. [22, 17]

2e
hν
kT = e

hν0aDG
kT0aDG = e

hν0
kT0 . Keep in mind that aDG,0 6= 1 today, but YDG,0 = 1.
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4.2 Perturbative equations

The perturbation theory has been developed in previous work, where the perturbation terms

have been decomposed as the standard Scalar-Vector-Tensor method. Here we show a sum-

mary of the main equations required to obtain the CMB and fit the parameters. 3

gµν = ḡµν + hµν , (4.11)

g̃µν = ˜̄gµν + h̃µν . (4.12)

4.3 Evolution of cosmological fluctuations

We are interested in the study of the evolution of the cosmological fluctuations, including

the Delta evolutions. The perturbation equations are complicated, and they can be solved

only using numerical methods, such as CMBfast [59, 71] and CAMB [1, 35]. However, such

computer programs can not give a clear understanding of the physical phenomena involved.

In particular, the following equations were obtained using the Weinberg’s approach [67] (he

developed this method in the synchronous gauge 4), which consist in two main aspects: the

first one is the so-called hydrodynamic limit, which consists on that near recombination time

photons were in local thermal equilibrium with the baryonic plasma, then photons could be

treated hydro-dynamically, like plasma and cold dark matter. The second assumption is a

sharp transition from thermal equilibrium to complete transparency at last scattering mo-

ment tL.

In this context, the standard components of the Universe are photons, neutrinos, baryons,

and cold dark matter, but we had to include Delta-counterpart. The approximation used here

neglected anisotropic both energy-momentum tensor and took the usual state equation for

pressures and energy densities and perturbations. Besides, as we treated photons and Delta

photons hydro-dynamically, we used δuγ = δuB and δũγ = δũB (velocity perturbations).

3For a full development about the DG perturbation theory, the reader can visit the preprint in https:

//arxiv.org/abs/2001.08354.
4There are other methods, to solve the equations analytically, assuming some approximations [40, 67].

https://arxiv.org/abs/2001.08354
https://arxiv.org/abs/2001.08354
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Moreover, as the synchronous scheme did not fully fix the gauge, the remaining degree of

freedom were used to fix δuD = 0, which means that cold dark matter evolves at rest with

respect to the Universe expansion. In our theory, the extended synchronous scheme also had

an extra degree of freedom, which we used to put δũD = 0 as its standard part.

It is useful to rewrite these equations in terms of the following dimensionless term:

δαq =
δραq

ρ̄α + p̄α
, (4.13)

where α can be γ, ν, B and D (photons, neutrinos, baryons and dark matter, respectively).

Also we use R = 3ρ̄B/4ρ̄γ and R̃ = 3˜̄ρD/4˜̄ργ. By the other side, in the Delta sector we used a

dimensionless fractional perturbation. However, this perturbation was defined as the Delta

transformation of Equation (4.13) 5,

δ̃αq ≡ δ̃δαq =
δρ̃αq

ρ̄α + p̄α
−

˜̄ρα + ˜̄pα
ρ̄α + p̄α

δαq . (4.14)

The equations for the GR sector are

5We choose this definition because the system of equations now seems as an homogeneous system exactly
equal to the GR sector (where now the variables were the Delta-fields) with external forces mediated by the
GR solutions. Maybe the most intuitive solution should be

δ̃intαq =
δρ̃αq

˜̄ρα + ˜̄pα
,

however these definitions are related by

δ̃αq =
˜̄ρα + ˜̄pα
ρ̄α + p̄α

(
δ̃intαq − δαq

)
.
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d

dt

(
a2Ψ̇q

)
= −4πGa2

(
ρ̄DδDq + ρ̄BδBq +

8

3
ρ̄γδγq +

8

3
ρ̄νδνq

)
, (4.15)

δ̇γq − (q2/a2)δuγq = −Ψ̇q , (4.16)

δ̇Dq = −Ψq , (4.17)

δ̇Bq − (q2/a2)δuγq = −Ψ̇q , (4.18)

δ̇νq − (q2/a2)δuνq = −Ψ̇q , (4.19)

d

dt

(
(1 +R) δuγq

a

)
= − 1

3a
δγq , (4.20)

d

dt

(
δuνq
a

)
= − 1

3a
δνq. (4.21)

While, the equations for the DG sector are

[
2Ḟ

ȧ

a
+ F̈

]
a2Ψq +

[
6F

ȧ

a
+

5

2
Ḟ

]
a2Ψ̇q + 3Fa2Ψ̈q −

d

dt

(
a2 ˙̃Ψq

)
=

κ

2
a2
[
ρ̄Dδ̃Dq

+ ρ̄B δ̃Bq +
8

3
ρ̄γ δ̃γq +

8

3
ρ̄ν δ̃νq −

F

2
(ρ̄DδDq + ρ̄BδBq)−

8

3
F (ρ̄γδγq + ρ̄νδνq)

]
, (4.22)

˙̃δγq −
q2

a2
(δũγq + Fδuγq) + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.23)

˙̃δDq + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.24)

˙̃δBq −
q2

a2
(δũγq + Fδuγq) + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.25)

˙̃δνq −
q2

a2
(δũνq + Fδuνq) + ˙̃Ψq − ∂0(FΨq) = 0 ,(4.26)

δ̃γq
3a

+
d

dt

(
(1 +R)δũγq

a

)
+ 2F

d

dt

(
(R− R̃)δuγq

a

)
− F d

dt

(
(1 +R)δuγq

a

)
−2Ḟ (R̃−R)

δuγq
a

= 0 ,(4.27)

δ̃νq
3a

+
d

dt

(
δũνq
a

)
− F d

dt

(
δuνq
a

)
= 0 .(4.28)
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4.3.1 Matter era

In this era a� C 6, and the perturbative equations for GR can be approximated and solved.

These solutions are given by 7

δDq =
9q2t2RqT (κ)

10a2
, (4.29)

Ψ̇q = −3q2tRqT (κ)

5a2
, (4.30)

δγq = δνq =
3Rq

5

[
T (κ)− S(κ) cos

(
q

∫ t

0

dt√
3a

+ ∆(κ)

)]
, (4.31)

δuγq = δuνq =
3tRq

5

[
−T (κ) + S(κ)

a√
3qt

sin

(
q

∫ t

0

dt√
3a

+ ∆(κ)

)]
, (4.32)

where T (κ), S(κ) and ∆(κ) are functions that only depend on the following dimensionless

value:

κ ≡ q
√

2

aEQHEQ

, (4.33)

where aEQ and HEQ are, respectively, the Scale Factor and the expansion rate at the matter-

radiation equality.[67].

To get all the Transfer functions, we have to compare solutions with the full equation system

(with ρB = ρ̃B = 0). To do this, we define y ≡ a/aEQ = a/C and use the following change

of variable:

d

dt
=
HEQ√

2

√
1 + y

y

d

dy
. (4.34)

Also, the following new variables are useful:

6and R = R̃ = 0.
7Rq is defined as q2Rq ≡ −a2HΨq + 4πGa2δρq + q2Hδuq. It is a gauge invariant quantity, which take a

time independent value for q/a� H. [67]
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δDq = κ2R0
qd(y)/4 , δγq = δνq = κ2R0

qr(y)/4 ,

Ψ̇q = (κ2HEQ/4
√

2)R0
qf(y) , δuγq = δuνq = (κ2

√
2/4HEQ)R0

qg(y) ,

and

δ̃Dq = κ2R0
q d̃(y)/4 , δ̃γq = δ̃νq = κ2R0

q r̃(y)/4

˙̃Ψq = (κ2HEQ/4
√

2)R0
q f̃(y) , δũγq = δũνq = (κ2

√
2/4HEQ)R0

q g̃(y) .

Then perturbative equations given in the matter era for GR and DG can be rewritten as

√
1 + y

d

dy

(
y2f(y)

)
= −3

2
d(y)− 4r(y)

y
, (4.35)√

1 + y
d

dy
r(y)− κ2g(y)

y
= −yf(y), (4.36)√

1 + y
d

dy
d(y) = −yf(y), (4.37)√

1 + y
d

dy

(
g(y)

y

)
= −r(y)

3
, (4.38)

and
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− [(1 + 2y)yF ′(y) + y(1 + y)F ′′(y)] d(y) +

[
6F (y) +

5

2
yF ′(y)

]
y
√

1 + yf(y)

+3F (y)y2
√

1 + yf ′(y)−
√

1 + y
d

dy

(
y2f̃(y)

)
=

3d̃(y)

2
+

4r̃(y)

y

−3F (y)d(y)

4
− 4F (y)r(y)

y
, (4.39)√

1 + y
d

dy
d̃(y) = −yf̃(y)−

√
1 + y

d

dy
d(y), (4.40)√

1 + y
d

dy
r̃(y) =

κ2

y
[g̃(y) + F (y)g(y)]− yf̃(y)−

√
1 + y

d

dy
d(y), (4.41)√

1 + y
d

dy

(
g̃(y)

y

)
= − r̃(y)

3
+
√

1 + yF (y)
d

dy

(
g(y)

y

)
. (4.42)

Now, we have to calculate the initial condition-behavior described by the radiation-dominated

era (we have to approximate the original equations in this regime). In other words, at the

beginning of the matter-dominated era, we have the following initial conditions

d(y) = r(y)→ y2,

f(y)→ −2,

g(y)→ −y
4

9
,

d̃(y) = r̃(y)→ −L2C
3/2

3
y3,

f̃(y)→
√

2L2C
3/2y,

g̃(y)→ L2C
3/2

2
y5.

Now, we have to include the R and R̃ factors that were not considered as a part of the

equations. This step was done with WKB approximation [67]. Also, we have to include the

damping effect acting on the fluid of baryons and photons. This effect is known as the Silk

damping and considers coefficients of shear viscosity, heat conduction, bulk viscosity, and
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Thomson scattering associated with the fluid. [30, 60, 68]. Then the full solutions for the

photon density perturbations are

δγq =
3Ro

q

5
[T (κ)(1 + 3R)

−(1 +R)−1/4e−
∫ t
0 ΓdtS(κ) cos

(∫ t

0

qdt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
, (4.43)

δuγq =
3Ro

q

5
[−tT (κ)

+
aDG√

3q(1 +R)3/4
e−

∫ t
0 ΓdtS(κ) sin

(∫ t

0

qdt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
,(4.44)

where

Γ =
q2tγ

6a2
DG(1 +R)

[
16

15
+

R2

1 +R

]
. (4.45)

Note that at this level, we used a ∼ aDG because these solutions are valid when DG ap-

proaches to GR. In particular, we will see that those solutions at the moment of the last

scattering will play a crucial role when we compute the temperature multipole coefficients

of the CMB.

4.3.2 The TT CMB spectrum in DG model

To calculate the TT CMB spectrum in the hydrodynamical approach, we have to express

the temperature’s perturbation as a function of the densities perturbations. This procedure

is long and takes many pages. It is not the objective of this thesis to show the steps to

obtain this result. However, it is vital to understand the physics behind the equations, the

approximations, and the numerical contributions behind every term. First of all, we show

four essential functions called Form Factors that are the contributions to calculate the TT

CMB spectrum,
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F(q) = −1

2
a2
DG(t)B̈q(tls)−

1

2
aDG(t)ȧDG(tls)Ḃq(tls) +

1

2
Eq(tls) +

δTq(tls)

T̄ (tls)
, (4.46)

F̃(q) = −1

2
a2
DG(t) ¨̃Bq(tls)−

1

2
aDG(tls)ȧDG(tls)

˙̃Bq(tls), (4.47)

G(q) = −q
(

1

2
aDG(tls)Ḃq(tls) +

1

(1 + 3F (tls))aDG(tls)
δuγ(tls)

)
, (4.48)

G̃(q) = −q
(

1

2
aDG(tls)

˙̃Bq(tls) +
1

(1 + 3F (tls))aDG(tls)
δũγ(tls)

)
. (4.49)

where the TT CMB spectrum is given by the Equation (4.72). These formulas will be very

useful 8.

These Form Factors can be rearranged using many new definitions that introduce physics

notation. Before doing that, it is important to define many physical terms.

Angular distance dDGA The Etherington’s distance duality [23] is preserved in DG: the

relation between luminosity distance and angular distance that is expressed as

dDGA =
dDGL

(1 + z)2
. (4.50)

From this relation, it is possible to find the Angular Distance in DG.

Note: in DG the angular distance appears naturally as dA = rlsaDG(tls). This equation is the

same definition given here, evaluated at the Last Scattering surface. The Angular Distance

is crucial to define the physical meaning of the next equations.

Horizon distance dDGH We have to consider the Effective Metric. This will produce

the same integrand as the Equation 1.48 but substituting a(t) → YDG(Y ). Note that Y DG

depends on Y (t). We have to apply the chain rule and also change the integral limits to∫ Y (z)

0
. Finally, the Horizon distance in DG is given by

8The Bq, B̃q and Eq are scalar perturbative terms that appears in the SVT decomposition. For more
details please see the preprint in https://arxiv.org/abs/2001.08354

https://arxiv.org/abs/2001.08354
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dDGH (z, L2, C) =

√
C

(1 + z)100
√
h2Ωr,0

∫ Y (z)

0

cs
Y√
Y + C

dY

YDG
, (4.51)

dDGH (z, L2, C) =

√
1 + C

(1 + z)100h

∫ Y (z)

0

cs
Y√
Y + C

dY

YDG
. (4.52)

Note 1: the speed of light c has been replaced by cs, where the subscript s represents the

sound. This change is introduced because we want to use this equation to calculate the

acoustic horizon distance and not the light’s horizon distance. This acoustic horizon is the

maximum distance that a fluid with speed cs has traveled between redshift ∈ (∞, z).

Note 2: Do not confuse C in terms of GR densities that are not physical with physical

densities labeled with DG or DG. For example, h2Ωr,0 is not a physical density.

This term (in standard cosmology) is given by

c2
s =

δp

δρ
=

1√
3(1 +R)

, (4.53)

where R = 4ρb
3ργ

in GR. We emphasize that Delta matter and Delta radiation could change

this equation. In the simplest case, Delta particles do not affect the speed of sound of the

fluid because we are assuming that Delta particles behave like dark matter particles: they

are non-interacting particles. Neither dark matter appears in this equation nor the Delta

particles.

In DG, we use the following definition:

R =
4h2ΩDG

b,0

3h2ΩDG
γ,0

. (4.54)

Now, R is a function of real densities. We did not include Delta matter or Delta radiation.

The procedure to determine the value of this integral is the same as given in Section 1.48

for dDGL (note the integral limits).

Unfortunately, due to all the approximations we have used, we need to add one more cor-

rection to the GR sector’s solutions. We considered a sharp transition from the moment
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when the Universe was opaque to transparent. However, this was not instantaneous, yet it

could be considered gaussian. This normal distribution implies an effect known as Landau

damping[33], and it is related to the distribution’s dispersion of a plasma’s wavefront. This

consideration is relevant, and it is related to the standard deviation of temperature at the

Last Scattering moment (labeled as ls). With these considerations, the solutions of the

perturbations are given by:

Ψ̇q(tls) = −
3q2tlsRo

qT (κ)

5a2
DG(tls)

, (4.55)

δγq(tls) =
3Ro

q

5

[
T (κ)(1 + 3Rls)− (1 +Rls)

−1/4e−q
2d2D/a

2
DG(tls)

× S(κ) cos

(
q

∫ tls

0

dt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
, (4.56)

δuγq(tls) =
3Ro

q

5

[
−tlsT (κ) +

aDG(tls)√
3q(1 +Rls)3/4

e−q
2d2D/a

2
DG(tls)

× S(κ) sin

(
q

∫ tls

0

dt√
3(1 +R(t))aDG(t)

+ ∆(κ)

)]
, (4.57)

where

d2
D = d2

Silk + d2
Landau , (4.58)

d2
Silk = Y 2

DG(tls)

∫ tls

0

tγ
6Y 2

DG(1 +R)

{
16

15
+

R2

(1 +R)

}
dt , (4.59)

d2
Landau =

σ2
t

6(1 +Rls)
, (4.60)

and tγ is the mean free time for photons and R = 3ρ̄DGB /4ρ̄DGγ = 3h2ΩDG
b,0 YDG/4h

2ΩDG
γ,0 .

In order to evaluate the Silk damping, we have

tγ =
1

neσT c
, (4.61)

where ne is the number density of electrons, and σT is the Thomson cross-section.
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On the other hand

q

∫ rls

0

csdr = q

∫ tls

0

dt√
3(1 +R(t))aDG(t)

≡ qrSHls

=
q

aDG(tls)
· (aDG(tls)r

SH
ls ) =

q

aDG(tls)
· dH(tls) (4.62)

where cs is the speed of sound, rSHls is the sound horizon radial coordinate and dH is the

horizon distance, and κ = qdDGT /aDG(tls) (defined in Equation (4.33)) implies

dDGT (tls) ≡ c

√
2aDG(tls)

aEQHEQ

= c
aDG(tls)

√
ΩR

H0ΩM

= c
aDG(tls)

100h

√
C(C + 1). (4.63)

The final consideration that we must include is that when zreion ∼ 10 (reionization), the

neutral hydrogen left over from the time of recombination becomes reionized by ultraviolet

light from the first generation of massive stars [67, 47]. The photons of the cosmic microwave

background have a small but nonnegligible probability 1 − exp(−τreion) (where τreion is the

optical depth of the reionized plasma) of being scattered by the electrons set free by this

reionization. The TT spectrum is a quadratic function of the the temperature fluctuations,

then we have to weigh the spectrum by a factor exp(−2τreion)9.

On the other hand, we will use a standard parametrization of R0
q given by

|R0
q|2 = N2q−3

(
q/R0

κR

)ns−1

, (4.64)

where ns is the spectral index. It is usual to take κR = 0.05 Mpc−1.

We emphasize that dDGA (tls) = rlsaDG(tls) is the angular diameter distance of the last scat-

tering surface, because

9In the standard GR case, the observations from polarization spectrum suggests that exp(−2τreion) ≈ 0.8.
We use this value to fit the spectrum. We did not study the reionization process and we did not develop the
polarization spectrum.
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dDGA (tls) = caDG(tls)

∫ t0

tls

dt′

aDG(t′)
= c

aDG(t0)

1 + zls

∫ t0

tls

dt′

aDG(t′)
= c

1

1 + zls

∫ t0

tls

dt′

YDG(t′)
(4.65)

= c
1

1 + zls

∫ 1

Yls

dY ′

YDG(Y ′)

dt

dY ′
=

dDGL (tls)

(1 + zls)2
. (4.66)

This is consistent with the luminosity distance definition given in the Equation (1.48). Then,

if we use q = βl/rls we obtain

|R0
βl/rls
|2 = N2

(
βl

rls

)−3(
βl

κRrls

)ns−1

= N2

(
βl

rls

)−3(
βlaDG(tls)

κRrlsaDG(tls)

)ns−1

(4.67)

= N2

(
βl

rls

)−3(
βlaDG(tls)

κRdA(tls)

)ns−1

≡ N2

(
βl

rls

)−3(
βl

lR

)ns−1

. (4.68)

Using similar calculations for the other distances, the final form of the Form Factors are

given by

F(q) =
Ro
q

5

[
3T (βl/lT )Rls − (1 +Rls)

−1/4e−β
2l2/l2DS(βl/lT ) cos (βl/lH + ∆(βl/lT ))

]
,(4.69)

G(q) =

√
3Ro

q

5(1 +Rls)3/4
e−β

2l2/l2DS(βl/lT ) sin (βl/lH + ∆(βl/lT )) , (4.70)

where

lR =
κRd

DG
A (tls)

aDG(tls)
, lH =

dDGA (tls)

dDGH (tls)
, lT =

dDGA (tls)

dDGT (tls)
, lD =

dDGA (tls)

dDGD (tls)
. (4.71)

To summarize, for reasonably large values of l, CMB multipoles are given by

l(l + 1)CS
TT,l

2π
=

4πT 2
0 l

3 exp(−2τreion)

r3
ls

∫ ∞
1

βdβ√
β2 − 1

×

[(
F

(
lβ

rls

)
+ F̃

(
lβ

rls

))2

+
β2 − 1

β2

(
G

(
lβ

rls

)
+ G̃

(
lβ

rls

))2
]
.(4.72)



Ph.D Thesis Marco San Mart́ın Hormazábal 69

We emphasize that the structure of the Equation (4.72) considers that the Delta sector

contributes additively inside the integral. If we set all Delta sector equal to zero, we recover

the result for the scalar temperature-temperature multipole coefficients in GR given by

Weinberg [67]. One of the purposes of this Thesis is to calculate the scalar TT CMB spectrum

using the DG model. Thus, the Equation (4.72) is the main expression to implement the

numerical analysis.

Finally, from SNe-Ia fit, we know that C � 1 and L ≈ 0.457 [7][14], therefore we can estimate

that Delta matter perturbation at the beginning of the Universe was much smaller than the

Common matter fluctuation.10 For example, at y ∼ 10−3 the ratio between components of the

Universe is |δ̃α/δα| ∼ 10−10. This does not mean that the intuitive fractional perturbation

of Delta matter δ̃intαq = δρ̃α/(˜̄ρα + ˜̄p) was much lower than the standard perturbations δα

because δ̃αq(t) ∝ (δ̃intαq − δαq) , implying that δ̃intαq ∼ δαq.

4.4 DG contribution to the CMB spectrum

The DG contribution appears in many different forms in the Equation (4.72). The most

notorious contribution is given by the functions F̃ and G̃. These functions are given by the

functions f, r, d, g and f̃ , r̃, d̃, g̃ through the Equations (4.35) - (4.38), and (4.39) - (4.42).

They are related to the evolution of the perturbation, and all these functions are coupled

with the GR solutions.

The standard way to solve this problem is to obtain an analytical solution for the approxi-

mated equations, like the equations given by the Transfer Functions given by the Equations

(4.29) - (4.31), and then, solve the equations, for every κ (for example, from 0 to 100), thus

match both results numerically, and solve for T, S and ∆ as a function of κ.

It is crucial to understand that, at this moment, the solutions are approximations in the

matter-dominated era, and they are independent of R and R̃. It is essential Then, if we

apply this same methodology to the DG equations, we would include all the posterior effects

produced by dampings and WKB effects (when the radiation and matter regime must match).

10See https://arxiv.org/abs/2001.08354.

https://arxiv.org/abs/2001.08354
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Figure 4.1: F.

Figure 4.2: G.

Figure 4.3: Form Factors.

Besides, these equations evolve the perturbations given by the f, r, d, g and f̃ , r̃, d̃, g̃ func-

tions, and then they must be evaluated inside the matter regime. They start to evolve inside

the matter-era but,very close the radiation era. This parametrization is given by y = a/aEQ.

The solutions were obtained starting from y < 10−4 and stopping at y ≈ 102. If the solutions

are evaluated after the equality time, they could change, but, they are stable after y ≈ 102.

The TT CMB spectrum needs these solutions because they build the Form Factors, and they

are evaluated in an arbitrary κ that is related to β and l through the Equation (4.72).

First, we found the results for the numerical solutions of f, r, d, g and f̃ , r̃, d̃, g̃, and then

solve the expressions T, S and ∆. Then we calculate the Delta perturbations, and finally

we obtain the Delta Form Factors. The Figure 4.3 shows the Delta Factors. They are tiny

compared to the standard cosmological contributions given by F and G.

Numerically, the Delta contribution is ≈ 1039 times smaller than the Common Form Factor.

This result is crucial for the next steps. First of all, we can neglect those Delta terms,

allowing us to forget about the posterior corrections that the hydrodynamic approach has.



Ph.D Thesis Marco San Mart́ın Hormazábal 71

For example, the dampings corrections and the WKB match never must be applied because

the Delta part is neglected. Nevertheless, also, this creates more constraint over the DG

model. This implies that any additional term, like a new damping term, cannot be applied

to compensate a lousy fitting of the DG model. This constraint is essential.

Note: this allows us to avoid a damping definition for the Delta densities. We do not require

that, and even more, it has no physical consequence in the physical observables.

However, the DG contribution appears in other exciting ways. The next stage is going to

be divided in three parts. The first is about the li factors, the physics behind them, and

the dependencies with physical processes. This is the biggest constraint that DG has. The

second part is about the algorithm to include all the physical effects and the equations to

obtain the TT CMB spectrum. The third and final part is about the results.

4.5 li coefficients

Here we analyze the li coefficients showed in the Equation (4.71). These are degrees of

freedom that DG has to fit in order to find the TT CMB spectrum. These values are the

arguments for the Form Factors F and G.

Note 1: There are more free parameters, indicated at the beginning of the Equation (4.72)

as a fraction in front of the integral.

Note 2: The full code is extensive. Then, I decided to include some essential parts of the

code to understand the way that the TT CMB spectrum was fitted.

4.5.1 lR

This coefficient depends on the angular distance and the DG Scale Factor aDG evaluated at

the Last Scattering time. This term is associated with the F and G functions and depends

on ns, the spectral index of the primordial spectrum. In the case where the contribution to

the Delta Form Factors is ∼ 0, then the coefficient given by the Equation (4.68) appears

as a number powered to ns − 1. This factor appears in the Equation (4.72) in front of the

integral and regulates all the spectrum amplitude. In the case of ns → 1, these terms go to
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0, and the lR coefficient tends to be very unstable (for instance: if ns − 1 = 10−4, lR has to

compensate the small value of this exponent. This numerical part could take time because

the initial guess must be close the correct value; in other cases could take too much time

and could never converge). However, we decided to assume an arbitrary ns to include the lR

coefficient. This assumption is important because, at first glance, these parameters appear

to be correlated: N , ns and lR. This idea is incorrect because the lR value depends on the

Last Scattering moment, defined by zls, and this redshift appears in many other places of

the Equation (4.72). If zls is not arbitrary, then the coefficient (4.68) is unique, and then

N2 have to compensate for the scale of the spectrum to fit the observable data.

In terms of the code, this part is defined as:

1 de f f a c t o r 1 ( beta , l , lR , ns ) :

2 re turn np . power ( ( beta ∗ l / lR ) , ns−1)

Listing 4.1: factor1 depends on lR and ns.

The lR function has been implemented in the code as

1 de f lR ( params ) :

2

3 z ,C = params [ 0 ] , params [ 1 ]

4

5 kappaR = 0.05

6 Y = f l o a t ( Y so lve ( z ,C, L f i t ) )

7 dA = da DG(Y,C)

8

9 re turn kappaR∗dA/R DG(Y,C, L f i t )

Listing 4.2: lR function depends on z and C. L2 has been used as an established value. the dA

function is the angular distance in DG: dDGA , and the R DG function is the DG Scale Factor aDG.

4.5.2 lH

In [67], this parameter is defined as in the Equation (4.71), where the most known notation

is θ = 1/lH . If we want to preserve the CMB TT spectrum, we must use a value close the
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standard θ, but not strictly the same. In this context, it is essential to remember that in

the SNe-Ia analysis, we worked with C = 0. This implies that there is no radiation and

it is contradictory to the CMB procedure. Nonetheless, the SNe-Ia analysis is compatible

with C small values. Then, we can try to fit the TT CMB spectrum assuming a small C

value, where M ≈ −19.3 and the H0 local value is preserved. We are going to work only in

this scenario. Then, the CMB fit assumes a fixed L2 value from SNe-Ia (we do not want to

change this value) and a C value close 0. After this process, we have to check that the C

value found by this method is compatible with the SNe-Ia data.

The most notorious constraint from the CMB spectrum is the acoustic peak position. This

parameter determines the TT CMB spectrum (in the l scale) and fits the hydrodynamic

approach to the l-axis. Also, another important property of θ is that is obtained directly

from the CMB spectrum. It’s not a derived parameter [4]:

100θPlanck = 1.0411± 0.0003. (4.73)

This value almost always appears in the literature as θMC , where it was obtained by fitting

the CMB data. However, in this work we calculate lH = 1/θ as a function of dH and dA.

In our case, θ is not constraining the peak position by itself, we are constraining the zls, C,

and h2Ωb,0 values.

This physical meaning of this parameter is: the angle that subtends the size of fluctuation

respect to the distance to this fluctuation. dH is the horizon distance (size of the Universe

at a specific redshift given by when the photons were decoupled). dA is the angular distance

between us and the TT CMB fluctuation. This relation must be corrected changing the speed

of light c by cs (the speed of sound) because it is the growing fluctuation speed. [48, 49].

The correction has been introduced in Equations (4.54) and (4.52).

The Fourier modes give an easy way to understand the dependence between θ and l. For

simplicity, in a flat Universe, the modes of wavelength λ ∼ 2πa(tls)/k on the Last Scattering

surface seen today under an angle θ = λ/dA(tls) ∼ 2π/l (the factor 2 appears because for

a given multipole, π/l gives the angle between a maximum and a minimum. This is half of

the wavelength of the perturbation on the surface). [34, p. 228] This position of the peak is

very well determined; then, this parameter is very well constrained. This condition imposes
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constraints over C or zls or cs (the speed of sound in a specific period: from z =∞ to zls).

In this analysis L2 is fixed, and is independent of any other value that we are changing.

From the Equation (4.53) and knowing the R value, we can obtain the dH(z) value in order

to calculate θ. As we have seen, R is the baryons-photons relation. This factor considers

particles that interact with the fluid, and then, the physical phenomena are described as

sound waves. We can change this parameter if we suppose that more components interact

in the fluid. But, we assume only the case where the photon-baryon relation determines the

horizon distance.

Note: the R relation to calculate the speed of sound, is determined with h2ΩDG
b,0 and h2ΩDG

γ,0

values. This is essential because these parameters are physical and not apparent magnitudes.

First of all, they depend on YDG and not directly on Y . Second, they are physical magnitudes,

they represent the real density of energy per volume, and then the interactions determine a

real speed of sound. This is the reason because we use these parameters. In any other case,

the speed of sound (based in ρi) is not physical, therefore, it does not represent the speed of

a wave sound.

The CMB radiation gives physical density of photons: the blackbody spectrum has associated

the T0 temperature, where the real density is described as ρr,0 ∝ T 4
0 (Stefan-Boltzmann law).

We know that the real physical densities in DG evolve with YDG, then it is easy to evolve

any physical parameter as a function of YDG
11.

Finally, the lH parameter is a function of zls, C and h2ΩDG
b,0 .

1

2 de f theta DG (C, z , h2Ob ) :

3

4 Y = f l o a t ( Y so lve ( z ,C, L f i t ) )

5

6 num = dH DG(Y,C, h2Ob)

7

8 den = da DG(Y,C)

9

10 re turn num/den

11

11Note: the parameters h2Ωi,0 does not depend on H or any other cosmological parameters. They are
pure physical densities because of the critical density definition.
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12 de f lH ( params ) :

13

14 z ,C, h2Ob = params [ 0 ] , params [ 1 ] , params [ 2 ]

15

16 re turn 1/ theta DG (C, z , h2Ob)

Listing 4.3: lH function depends on zls, C and h2ΩDGb,0 . The calculation requires to call the angular

distance and the horizon distance as da DG and dH DG, respectively.

The lH parameter is like a kind of frequency-argument of the cos and sin functions in Equa-

tions (4.69) and (4.70).

4.5.3 lT

The lT parameters appear also inside of cos and sin functions in Equations (4.69) and (4.70).

Nevertheless, they move the cos and sin on the horizontal axis through the ∆ Transfer

Function. They also appear outside the sinusoidal solutions, regulating the amplitude of

these oscillations. The role of these parameters is to convert the arguments of the Transfer

functions into the correct units. The origin of this normalization comes from Equations (4.33)

and (4.63). Those definitions are important because it implies that dT ∝ aDG(tls), where zls

determines the DG Scale Factor at the moment of the Last Scattering. This normalization

of the wave-number appears until this step of the numerical evaluation.

1

2 de f lT ( params ) :

3

4 z ,C = params [ 0 ] , params [ 1 ]

5

6 Y = f l o a t ( Y so lve ( z ,C, L f i t ) )

7

8 dT = np . d iv id e ( c∗R DG(Y,C, L f i t ) ,100∗ h f i t )∗np . s q r t (C∗(C+1))

9

10 dA = da DG(Y,C)

11

12 re turn dA/dT

Listing 4.4: lT function depends on zls and C.
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To evaluate this function, first the program solves Y as function of zls, and then evaluates

aDG(tls). Finally, it returns dDGA /dDGT for that particular combination of zls and C. Remem-

ber that lT parameter modulates the position and the amplitude of the sin and cos functions.

Thus it is not trivial to know if this parameter is degenerated with another. Also, this is the

only parameter that appears as an argument for the Transfer functions. Then, the result

depends on the numerical solution of the Transfer functions. The T ,S and ∆ functions, can

be solved numerically from the differential equations given by Equations (4.35) - (4.38) and

the T ,S and ∆ definitions.

1

2 de f equat ions (p ,∗ data ) :

3

4 T, S ,D= p

5 k , y s top = data

6

7 re turn (T−5∗dk ( k )/(8∗ y stop ) ,\
8 T−S∗np . cos (2∗k∗(np . s q r t (1+ y stop )−1)/np . s q r t (3)+D)−5∗k∗∗2∗ rk ( k )/12 ,\
9 −T+S∗np . s q r t (3)∗ np . s i n (2∗k∗(np . s q r t (1+ y stop )−1)/np . s q r t (3)+D)\

10 /(2∗k∗np . s q r t ( y s top ))−5∗k∗∗2∗gk ( k )/(8∗ y stop ∗∗ ( 3/2 ) ) )

11

12 T k = [ ]

13 S k = [ ]

14 D k = [ ]

15

16 f o r i in tqdm( x ) :

17

18 data = ( i , y s top )

19

20 so l1 , so l2 , s o l 3 = f s o l v e ( equat ions , ( 0 . 0 1 , 2 , 0 . 0 0 3 ) , a rgs=data , x t o l =0.00000001)

21

22 T k . append ( s o l 1 )

23 S k . append ( s o l 2 )

24 D k . append ( s o l 3 )

Listing 4.5: T ,S and ∆ definitions as functions of , r, d and g. k is the wavenumber, y stop ≈ 100

and corresponds to evaluate the functions inside the matter-dominated era. The equations are

solved for every k number, and then we obtain the Transfer functions depending on k.

These solutions can be fitted by a very useful analytical approximation given by [67]:
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1 de f Tk( k ) :

2

3 re turn np . l og (1+(0.124∗k )∗∗2)/ (0 . 124∗ k )∗∗2∗\
4 np . s q r t ((1+(1.257∗k )∗∗2+(0.4452∗k )∗∗4+(0.2197∗k )∗∗6)\
5 /(1+(1.606∗k )∗∗2+(0.8568∗k )∗∗4+(0.3927∗k )∗∗6) )

6

7 de f Sk ( k ) :

8

9 re turn ((1+(1.209∗k )∗∗2+(0.5116∗k)∗∗4+np . s q r t ( 5 )∗ ( 0 . 1657∗ k )∗∗6)/\
10 (1+(0.9459∗k )∗∗2+(0.4249∗k )∗∗4+(0.1657∗k )∗∗6))∗∗2

11

12 de f Dk( k ) :

13

14 re turn np . power ( ( ( 0 . 1 5 8 5∗ k )∗∗2+(0.9702∗k )∗∗4+(0.2460∗k )∗∗6)/\
15 (1+(1.180∗k )∗∗2+(1.540∗k )∗∗4+(0.9230∗k )∗∗6+(0.4197∗k )∗∗8) , 1/4)

Listing 4.6: T ,S and ∆ definitions as functions of , r, d and g. k is the wavenumber, y stop ≈ 100

and corresponds to evaluate the functions inside the matter-dominated era. The equations are

solved for every k number, and then we obtain the Transfer functions depending on k.

Finally, with the numerical approximations for every Transfer function, and evaluating them

with the solution of lT as a function of zls and C, it is possible to obtain the third step to

evaluate the TT CMB spectrum.

4.5.4 lD

Finally, the fourth parameter is incredibly difficult because it includes many steps that are

physical and numerical (specific routines) processes.

Note: This explanation continues in the next section because it is related to the MCMC

method. Here we explain the physical approaches to obtain the dampings, the functions

needed, and the relation with the MCMC algorithm.

The lD parameter appears as a result of the physical damping of the oscillations, which is

related to both processes: Silk and Landau dampings. These effects only appear next to

every cos and sin function in the Equation (4.72) as an exponential. The TT CMB spectrum

is very sensitive to this value because it changes the whole spectrum’s amplitude.
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First, the Silk damping is described by a special-relativistic non-perfect fluid. This approx-

imation implies damping. The cosmology part appears when the damping effect acts on a

range of time, and the effect must be integrated and corrected by the expanding Universe.

The expression that describes the Silk damping is the Equation (4.59), where the cosmolog-

ical correction appears with YDG. This term appears inside and outside the integral. Take a

look for a moment at this equation.

The instantaneous Silk damping, only appears like a damping length, where there is no

integration and without the YDG term. This term is a length (multiply it by c to take length

units). Each t variable must be scaled with c and then, d2
Silk appears like a squared variable.

This term is normalized instantaneously by the squared Scale Factor, and then it is evaluated

when we want to know the Silk effect. This procedure is the same that GR uses, but where

the scale factor is a(t) instead of YDG(t). This notation is useful to parametrize everything

in terms of YDG. Also, it is important that YDG depends on C,L2 and Y . L2 is fixed, but C

and Y are variables, and they have to be evaluated as zls changes.

Second, the calculation of Landau damping is challenging. Despite the Equation (4.60)

is very short, its intrinsic relation with the dispersion of the temperature creates many

calculations. σT is the standard deviation of the temperature at the Last Scattering moment

when the transparency is a normal distribution function centered around the zls. This is a

good approximation, but it requires many calculations provided by interactions related to

the free electrons and photons. In terms of the dispersion,

σt =
σT

THDG

, (4.74)

because,

σtdt = σTdT →
dt

dT
=

dt

dY

dY

dYDG

dYDG
dT

→ dt

dT
=

1

HDGT

With this transformation, we can express the time-dispersion in terms of temperature.

To obtain the dispersion, first, we have to find the visibility function in DG, and before that,

we have to define the Opacity function. This function is described in by [67, 125p.] and it

is defined as follows
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O(T ) = 1− exp
(
−
∫ t0

t(T )

cσThomsonne(t)dt

)
. (4.75)

This describes the probability12 that a photon present at a time t(T ) when the temperature

is T will undergo at least one more scattering before the present. The exponent is related

to the number of collisions; therefore, it is related to physical densities. In other words, the

amount of electrons that describes a scattering process is related to the physical quantity of

particles in a real volume in the DG context. We can integrate this equation changing the

variable from t to T , but the time t depends on Y (and not YDG). However, the physical

densities depends on YDG.

Another essential physical definition is the Visibility Function. The probability that the

last scattering of a photon was before the temperature dropped to T is 1 − O(T ), and the

probability that the last scattering was after the temperature dropped further to T − dT is

O(T − dT ), then the probability that the last scattering of a photon was at a temperature

between T and T − dT is 1 − (1 − O(T )) − O(T − dT ) = O′(T )dT . Finally, the function

O(T ) increases monotonically with temperature from O = 0 at T = T0 because O → 1 for

T → ∞. Therefore, O′(T ) behaves like a probability distribution. We try to fit a Normal

distribution and obtain an estimation of σT using the Visibility function.

O′fit(T ) ≈ 1

σT
√

2π
e
− (T−TL)2

2σ2
T . (4.76)

There is another option to calculate the σT . It consist in evaluate the maximum of the

distribution, where the O′(Tmax) ≈ 1
σT
√

2π
. This method is faster than the fitting algorithm.

Then we decide to use it.

To calculate the Opacity function, we have to know the physical electron density at that

epoch. This is strictly related to the H,e−, and p abundances at that moment. These values

can be easily correlated using an equation that describes the formation of the H. There

are many methods to do this calculation. The most naive approximation is assuming an

equilibrium through the Saha Equation. The equilibrium involves only atomic parameters,

and it does not depend on cosmological parameters. Then, any assumption and equation in

this calculation is preserved in DG. We emphasize that the evolution is given in terms of T .

12This definition is extracted from [67].
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Furthermore, the relation between T and z in DG is the same as in GR. Then, this procedure

is totally preserved. In order to clarify any doubt, we are going to show the general scheme.

The naive approximation [67, p. 113] begins at a time early enough so that protons, electrons,

hydrogen, and helium atoms were in thermal equilibrium at the radiation’s temperature.

Then, the number density of any non-relativistic non-degenerate particle of type i is given

by the Maxwell-Boltzmann distribution:

ni =
gi

(2π~)3
e

µi
kBT

∫
d3qe

−

(
mi+

q2

2mi

)
kBT (4.77)

where mi is the particle mass, gi is the number of its spin states, and µi is the chemical

potential of particles of type i. gp = ge = 2 while the 1s ground state of the H has two

hyperfine states with spins 0 and 1, so g1s = 1 + 3 = 4. The most dominant reaction is given

by p+ e� H1s. The equilibrium is described by

µp + µe � µ1s. (4.78)

Then, the relation between the density numbers is described by

n1s

npne
=

(
mekBT

2π~2

)−3/2

e
B1
kBT , (4.79)

where B1 ≡ mp + me −mH = 13.6 eV is the binding energy of the 1s ground state of the

hydrogen. Now, including that ne = np because the Universe has to be neutral, and also

consider that 76% of the baryons were neutral or ionized hydrogen: np + n1s = 0.76nB [67,

114], we can define the fractional hydrogen ionization as X ≡ np/(np +n1s), where the Saha

equation is satisfied as:

X(1 + SX) = 1. (4.80)

Finally, S can be expressed as

S =
(np + n1s)n1s

n2
p

= 0.76nB

(
mekBT

2π~2

)−3/2

eB1/kBT . (4.81)
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Note that S can be expressed in terms of T and h2ΩDG
b,0 as

S = 1.747× 10−22e157894/TT 3/2h2ΩDG
b,0 . (4.82)

This dependence is significant for DG. First of all, the evolution is in terms of T and not

cosmic time, and also, the fraction S depends on the baryon density parameter h2ΩDG
b,0 , then

it will appear as a free parameter in the TT CMB spectrum. In DG, as we have said, the

effect of Delta fields does not affect the spectrum (they are minimal). Only the evolution in

time, represented by distances, can be affected by DG.

To improve the calculation, it is possible to add more corrections, including the 2p and 2s

levels of the H atom. The full discussion about the decay and the emission processes can be

found in [67, 116].

The differential equation that describes this process with all those corrections is given by

dX

dT
=

αn

HDGT

(
1 +

β

Γ2s + 8πHDG

λ3αn(1−X)

)−1(
X2 − 1−X

S

)
, (4.83)

where α = α(T ), β = β(T ), n = n(h2ΩDG
b,0 , T ), HDG = HDG(C,L2, Y (T )) are functions

related to the transitions of the H and λα is the wavelength of Lyman α photons 13. This

equation depends on the Hubble parameter: HDG. This is important because in the deriva-

tion of this equation, HDG appears in two different places: the first term 1/THDG is a

coefficient that comes from changing t to T (to evolve the equations in temperature instead

of time) and the second term (where HDG appears as 8πHDG) comes from the change of

the frequency (or wavelength) produced by the cosmic expansion. Therefore, both of those

corrections appear in DG as HDG and not like the standard H (then, this equation looks

similar, but it is different because the dependence between the variables is totally different)

[67, p. 122].

In DG, this effect could be crucial because the evolution could change due to that the Hubble

parameter is a function of the Effective Scale Factor Y DG, and this is a function of Y (t).

Furthermore, the T preserves the standard dependence with the Effective Scale Factor Y DG,

in other words, in standard cosmology, we have T = T0(1 + z) and this relation is preserved

in DG, but the dependence between z in DG appears related to aDG(Y (t)). Furthermore, the

13For more details see [67].
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numerical solution with all these corrections changes the Saha approximation, and then also

changes the GR solution. It is also essential to note that the differential equations are evolved

in a high range of T , and DG tends to be very similar to the standard GR at the beginning.

The Scale Factor tends to be the same because the Delta field contributions disappear when

Y → 0. Nevertheless, all these aspects must be taken into account to compute X(T ) in order

to obtain an excellent numerical value to fix zls and ne affecting the Visibility function: the

peak position in redshift (zls) and the standard deviation (σT ).

It is essential to highlight that the Visibility function appears two times in the code. First,

these equations are useful to calculate the Landau damping, and second, they are also used

to estimate the zls in the MCMC algorithm.

We show some crucial definitions related to these functions:

1 de f S(T, h2Ob ) :

2

3 re turn 1.747∗10∗∗(−22)∗np . exp (157894/T)∗T∗∗(3/2)∗h2Ob

4

5 de f model (X,T, h2Ob ,C) :

6

7 Y = Y don T (T,C)

8

9 Coef = 1 + beta (T)/( Gamma 2s + ( 8∗np . p i ∗H DG(Y,C) ) \
10 /( Lambda alpha∗∗3∗n(T, h2Ob)∗(1−X) ) )

11

12 N = alpha (T)∗n(T, h2Ob)/(T∗H DG(Y,C) )

13

14 dXdt = N∗Coef ∗∗(−1)∗(X∗∗2−(1−X)/S(T, h2Ob ) )

15

16 re turn dXdt

17

18 de f equ i l i b r ium (X,T, h2Ob ) :

19

20 re turn X∗(1+S(T, h2Ob)∗X)−1

21

22 de f solve ode DG (C, h2Ob ) :

23

24 X0 = X so lve r (6000 ,h2Ob)

25

26 i f h2Ob < 0 :
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27

28 re turn np . f u l l ( [ l en ( temp ) ] , np . nan )

29

30 e l s e :

31

32 re turn ode int ( model , X0 , temp , args=(h2Ob ,C) , r t o l =0.0000001)

Listing 4.7: These equations correspond to the DG modified equations to obtain the X(T ) frac-

tion. The function “S” and “equilibrium” correspond to the Saha Solution, while the model and

solve ode DG functions calculate the X(T ) fraction with all the modifications: including the DG

effects and the two levels correction (for the H atom). Note: h2Ob represents a physical density in

the code.

The α(T ) and β(T ) are numerical functions of T [44]. They are exact, and there is no

cosmological influence here, then it does not affect the DG calculations.

Finally, the Visibility function is calculated in a function called calc vis fun, which takes as

arguments: C and h2ΩDG
b,0 . This function returns an array with the O′(T ) values at different

T . We omit the code for this function because it is too long. All the code is attached in

the Appendix F and G. This function is essential to find the zls: due to this, the Visibility

function also appears in the following Section.

4.5.5 Tables

To compute all the li coefficient, we have to use all the equations described in the previous

subsection. All the equations depend on only 3 parameters C, h2ΩDG
b,0 , zls, and 2 extra pa-

rameters that are ns and N . There are differences between both kinds of parameters. The

former type is used to calculate the li parameter, these calculations are hard because they

use many equations, but the last two parameters are used straightforwardly. They are only

needed to evaluate the TT CMB spectrum multiplying all the Form Factors by a simple

fraction given by a function called factor1 in the code.

The procedure is the following; first, we calculate tables of the li coefficients that depend

on C, h2ΩDG
b,0 , and zls, and then, we can interpolate the li coefficients with these values. We

created the following arrays:

1 a r ray z = np . l i n s p a c e (900 ,1200 ,50)
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2 array C = np . l i n s p a c e (0 . 00 0 1 , 0 . 00 0 9 , 6 0 )

3 array h2Ob = np . l i n s p a c e ( 0 . 0 1 , 0 . 0 4 , 1 0 0 )

Listing 4.8: Arrays created to calculate the li tables.

then, we calculate all the li coefficient for all the previous combinations. The range of values

was estimated after many attempts, polishing the mesh and the interpolation ranges.

4.6 Algorithm to obtain the CMB

The MCMC algorithm consists of a modified Adaptative Metropolis MCMC algorithm.

We explain briefly what it is. An MCMC is a method that uses Markov chains to sample

from a probability distribution. A Markov chain is a chain of random values, where the next

step always depends on the previous value. Each value is linked to the next value through

an algorithm creating a chain. In a Metropolis algorithm, the prior or proposal distribution

depends on the previous distribution of values. This algorithm is useful to find what value is

better to describe a sample. The Monte Carlo algorithm adds some randomness to explore

different values, where these values always depend on the previous probability distribution

of values.

The more steps that are included, the more closely the sample’s distribution matches the

actual desired distribution.

Note: the predicted TT CMB spectrum requires interpolating the spectrum to find the best

combination of parameters that fit the Planck satellite’s data 14. Due to this, the tables

must be dense to create smooth interpolations, where the MCMC can estimate suitable

parameters. This MCMC uses the tables generated by the code described in the previous

subsection.

In our case, we want to find all the possible values that match, in the best way, the TT CMB

spectrum. The algorithm works as follows: we propose an original distribution of values,

called priors: C, h2ΩDG
b,0 , zls, ns and N . All the priors are normally distributed. We calculate

the predicted TT CMB spectrum and comparing with the TT CMB spectrum from [49]; we

calculate the squared error. Then we pick a random parameter based on each probability

14The data were obtained from https://pla.esac.esa.int/#cosmology.

https://pla.esac.esa.int/#cosmology
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distribution for every parameter. We calculate the squared error again and compare it with

the last step. Strictly, we compare the ∼ e−χ
2

values given by the following part of the code

(for more details see Appendix G):
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1 va l = np . random . rand ( )

2

3 va l2 = f ( e r r o r a r r a y [ j ] , e r ror new )

4

5 i f va l < va l2 :

6

7 # we move to t h i s new p r o b a b i l i t y

8

9 e l s e :

10

11 # we don ' t move to the new p r o b a b i l i t y

Listing 4.9: How to advance to the next step.

where the error is calculated as

1

2 de f f ( o , n ) :

3

4 re turn np . exp ( o − n)

5

6 de f e r r o r ( a , s i gma d i s t ) :

7

8 n = np . square ( TT planck obs − a )

9

10 re turn np . sum(n)/ s i gma d i s t

Listing 4.10: Estimation of the acceptance ratio.

Essentially, if the next step’s squared error is lower than the previous step, then the proba-

bility of that val would be less than val2 is high, then the algorithm moves to the next step

(with a high probability).

Note: the squared errors tend to be big numbers, and the exponential tends to be 0 or ∞.

To avoid this problem, we implement an adaptative Metropolis. This algorithm corrects the

sigma dist value to maintain the acceptance ratio close the interval [0, 1]. This method is

based on that if the last seven steps of the MCMC always advanced to the next step or

always stayed in the same values, then the acceptance ratio must be redefined. With this

little modification, we maintain the MCMC working.
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However, this is not sufficient, because the zls must be estimated differently. Originally, the

spectrum is predicted using probability distributions that are centered based on a previous

step for every parameter: C, h2ΩDG
b,0 , zls, ns and N . This is not true for the Last Scattering

redshift, because we expect that zls must be close the peak of the Visibility function. Then,

to add randomness to the election of zls, but constraining it close the Visibility function

peak, we choose the probability of choosing zls based on a normal distribution centered in

the previous visibility function peak. This function depends on C and h2ΩDG
b,0 . These two

values constraint the zls, but they do not determine the zls value. It is not deterministic.

The results (next section) shows that the peak of the visibility function and the zls that gives

the best TT CMB spectrum, are similar, but not equal. Strictly speaking, we fit a zls near

to the peak of the Visibility function, and we are using adaptative Metropolis MCMC only

in the other four parameters that determine the li parameters.
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Figure 4.4: TT CMB spectrum. The blue line indicates the observational data and errors. The
red dots were chose to fit the TT CMB spectrum.

The squared error calculated in every step is based on evaluating the differences of the

predictions and the observation in that points determined by the l moments.
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4.7 Results

Before presenting the results, it is crucial to clear that the right way to prove that the

MCMC is working is to use the Gelman-Rubin convergence diagnostic. All the chains always

converged to the same values; all are independent of the prior distributions. Now, we present

the results. This corresponds to a chain with 20.000 steps for every parameter. The chains

are plotted in Figure 4.5.
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Figure 4.5: Chains for every parameter. This result was obtained after 20.000 steps.

The posterior distribution for every parameter are shown in Figures 4.6,4.7,4.8,4.9 and 4.10.

All the distributions show only one peak, but some of them are not normally distributed at

all. We specify the case of h2ΩDG
b,0 and ns. These parameters show multimodal distributions.

We fit in both cases a normal distribution but the error was defined such that the σx includes

the smallest multimodal distributions with its errors. Then, all the parameter have errors

defined as ±1σx, with exception of h2ΩDG
b,0 and ns.

In every posterior distribution, we fitted a normal distribution where we calculated the mean

and standard deviation. These results are shown also in Table 4.1
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Figure 4.6: Posterior distribution for zls.

Table 4.1: MCMC fit results for the DG free parameters. These values are related to posterior
distributions.

Parameter Mean Standard deviation
zls 1075.3 9.4
C 4.6× 10−4 0.3× 10−4

h2ΩDG
b,0 0.026 0.002

ns 1.09 0.08
N 1.34× 10−5 0.04× 10−5

Figure 4.11 shows all the combinations for the 5 free parameters. All the parameters are

constrained to a normal-like distribution, and they are independent of each other.

Then, the shape of the TT CMB spectrum constraint all the parameters to “accurate” values.

The fitted curve is shown in the Figure 4.12

These results are good according to the approximation given by Weinberg in [67]. This

analytic and hydrodynamic approach shows a good fit for the most prominent three peaks,

including the acoustic peak, but it is inaccurate at larger multipoles. The Figure 4.12 shows

that DG prediction is very similar to the observable data, but the prediction is inaccurate

from the third peak. However, the precision of the approximation includes that error scale.
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Figure 4.7: Posterior distribution for C.

In [67] the TT CMB spectrum has a similar error, and the differences also appear at larger

multipoles.

Two important aspects must be checked: the C value and the Visibility function peak

compatibility with the zls needed to fit the TT CMB spectrum.

Respect to the C value, the TT CMB spectrum fix this value around C = 4.6 × 10−4.

This result is completely in concordance with the analysis presented in Chapter 3, and in

Section 3.2. The C parameter is so small that the SNe-Ia analysis cannot detect a difference

between 0 and ≈ 10−4. Then, the M and H0 observables obtained from [56, 54, 55] are

in concordance with our results, assuming a standard error in the approximation of the

hydrodynamic approach similar to GR.

In the Last Scattering redshift case, we have to check if zls is near to the Visibility function

peak. The Figure 4.13 shows how the fraction of free electrons X depends on T and z. At

lower temperatures X → 0, meanwhile at higher temperatures X → 1. The X function

depends on C, h2ΩDG
b,0 and T , where the MCMC results have fixed the two first parameters.

This case is shown in the Figure 4.13.
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Figure 4.8: Posterior distribution for h2ΩDGb,0 .

Then, the visibility function given by X(T ) has a maximum close Tmax ≈ 2942 K (zmax ≈
1078) with a temperature dispersion σT ≈ 244 K. This function is shown in the Figure 4.14.

Furthermore, we add a normal distribution centered at the same peak to show the similarity

between the Visibility function and a normal distribution.

The σT was estimated from the height of the peak (not by fitting a distribution, FWHM, or

any other method).

The GR case [67] finds Tmax ≈ 2941 K with a σT ≈ 248 K.

The DG peak around z ≈ 1078 is near to the MCMC results zls ≈ 1075. Despite zls was

obtained varying the redshift around the peak estimation, the zls is not exactly the peak

associated with the Visibility function, but it is near.

Finally, the density of matter and radiation is related to the C and L2 values through the

definition of the physical densities.
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Figure 4.9: Posterior distribution for ns.

In GR, the equality moment is vital because the hydrodynamic approach uses equality to

match the equations when the Universe was dominated by radiation and dominated by

matter. In the case of GR, naturally appears that

ρGR m

ρGR r

=
Y

C
, (4.84)

where C = Ωr,0/Ωm,0 by definition. Then the moment of equality in GR corresponds to

YEQ = C. But, for DG densities, the physical densities depend on YDG, thus

ρphys;m
ρphys r

=
YDG
CDG

, (4.85)

where CDG = ΩDG
r,0 /Ω

DG
m,0. In DG, we imposed that the equality moment must occur in both

sectors at the same time. In other words,
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Figure 4.10: Posterior distribution for N .

YDG(YEQ) = CDG → CDG = C

√
1+F (C)
1+3F (C)√
1+F (1)
1+3F (1)

, (4.86)

From the MCMC results, we know that C � 1 and L2 ≈ 0.45, then

CDG ≈ C

√
1− L2

1− L2/3
. (4.87)

This result is useful because if we know the physical density of radiation, we can find the

physical density of matter. Then,

CDG ≈ C

√
1− L2

1− L2/3
≈ 0.80C ≈ 3.7× 10−4. (4.88)

Note 1: Henceforth, all the densities expressed as numbers with units energy per volume are

physical quantities.
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Figure 4.11: Contour plot for all posterior probabilities associated to the DG parameters.

Note 2: To be clear, in the next calculations we emphasize the observable (physical) densities

with a DG sub or superscript.

To calculate the physical densities, we can use the photon density given by the black body

spectrum integrated (based on the TT CMB spectrum):

ρDGγ,0 c
2 = aBT

4
0 , (4.89)

,
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Figure 4.12: TT CMB spectrum was predicted by DG vs. the observed TT CMB spectrum.
The blue line corresponds to the Planck observations, the green line is the DG prediction, and the

greyscale is the error associated with the MCMC posterior probabilities.

where

aB =
8π5k4

B

15h3c3
= 7.56577× 10−16 J m−3 K−4, (4.90)

is the radiation energy constant. With T0 = 2.7255K, we get the today density associated

to the photons ρDGγ,0 = aBT
4
0 /c

2 = 4.64511× 10−31kg m3. This is a physical quantity.

The neutrinos density (physical quantity) is related to the photon density as following [2]

ρDGν,0 = Neff
7

8

(
4

11

)4/3

ρDGγ,0 , (4.91)

whereNPlanck
eff = 3.04678 [49]. The relation given by the Equation (4.91) is based on statistical

mechanics: photons and neutrinos are in thermal equilibrium, but neutrinos are fermions

and photons are bosons. Thus,
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Figure 4.13: X(T ) fraction as function of temperature T and redshift z assuming C and h2ΩDGb,0
MCMC results.

ρDGν,0 = 3.21334× 10−31 kg m−3, (4.92)

and the total radiation density (physical quantity) is given by

ρDGr,0 = ρDGγ,0 + ρDGν,0 = 7.85846× 10−31 kg m−3. (4.93)

Until here, we have assumed that neutrinos are relativistic particles and contribute to the

radiation density. We can also write these values divided by the critical density given by:

ρc,0 =
3H2

0

8πG
= 1.87847h2 × 10−26 kg m−3, (4.94)

where the GR Hubble Constant have been expressed in terms of the dimensionless param-

eter h, where H0 = 100h km s−1Mpc−1. Therefore, the density parameters are (these are
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physical!, we emphasize that the h constant is simplified, these parameters are independent

of h.)

h2ΩDG
γ,0 =

ρDGγ,0
ρc,0

h2 = 2.47× 10−5,

h2ΩDG
ν,0 =

ρDGν,0
ρc,0

h2 = 1.71× 10−5,

h2ΩDG
r,0 = h2ΩDG

γ,0 + h2ΩDG
ν,0 = 4.18× 10−5,

(4.95)

and (cdm is “cold dark matter”)

h2ΩDG
m,0 ≡ h2ΩDG

b,0 + h2ΩDG
cdm,0 + (3−Neff)h2ΩDG

r,0 ≈ h2ΩDG
b,0 + h2ΩDG

cdm,0, (4.96)
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Finally, we assume that Neff = 3 (we emphasize, again, that h2ΩDG
x,0 quantities are not related

with H0. They are related only with the physical density and 3× 1002/8πG) the quantities

are:

h2ΩDG
r,0 = 4.18× 10−5, (4.97)

h2ΩDG
b,0 = 0.026, (4.98)

h2ΩDG
m,0 = 0.113, (4.99)

h2ΩDG
cdm,0 ≡ h2ΩDG

m,0 − h2ΩDG
b,0 = 0.087. (4.100)

We include the relations between the five parameters and the shape of the TT CMB spectrum

in Appendix E. This could be useful to understand how the parameters change the shape of

the TT CMB spectrum.



Chapter 5

Conclusions

Here we have studied the cosmological implications for a modified gravity theory named

Delta Gravity. The results from SNe-Ia analysis indicate that DG explains the accelerating

expansion of the Universe without Λ or anything like “Dark Energy”. The Delta Gravity

equations naturally produce the acceleration .

In this work we performed a fit to the SNe-Ia data considering three free parameters M ,

C and L2, finding that C is not relevant if it is small: less than 10−2. Also we found that

L2 ≈ 0.457 and h ≈ 0.496.

In order to derive cosmological parameters, we assumed that M = −19.23 is a suitable value

calculated from [56]. We want to emphasize that the local measurements and calibrations

of SNe-Ia obtained this value: it is independent of any cosmological model. The procedure

presented does not use ΛCDM assumptions. We only assume that the calibrations from

Cepheids and SNe-Ia are correct; therefore, the absolute magnitude M = −19.23 for SNe-Ia

is correct.

We emphasize that if C is small, the TT CMB spectrum will not be affected. This aspect is

crucial because L2 establishes the acceleration of the Universe in DG, as we have shown in

Chapter 3; thus, even in the case where M could be wildly inaccurate, L2 does not change

because this parameter is independent of M , where M is degenerated with h. In this case,

the Universe is accelerating as a result of L2 > 0.

The acceleration in DG is given by L2 6= 0. L2 also determines that the Universe contains

Delta matter and Delta radiation. This can be associated with the new Delta fields. It is

99
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not clear if this Delta Composition is made of real particles, or not. However, we can assume

two different interpretations. The first is that the Universe only contains matter (baryonic

and cold dark matter) and radiation. The other scenario is that the Universe also contains

Delta matter and Delta radiation. In both scenarios, the Universe shows the same behavior,

and it is accelerating, but the difference is that the Delta Sector could be invisible because

the geometry provides the fundamental physics behind Delta Sector and not the particles.

This is part of the interpretation, and for now, we cannot conclude more about this aspect.

Also, Delta Gravity is in concordance with a high H0 value (assuming M = −19.23). This

is a consequence of the local expansion in terms of the redshift of the luminosity distance

dDGL (z). This aspect is vital because the current H0 value is in tension [56][54] between

SNe-Ia analysis and the Planck satellite’s data. GR also predicts a high H0 value with the

same assumptions, but it needs to include Λ to fit the SNe-Ia and also seems to be problems

to explain all together: the CMB, BAOs and SNe-Ia [56, 54, 55, 49, 65, 21, 31].

The most crucial point is that the local measurement of H0 is model-independent. Then, we

want to preserve this constraint to analyze the TT CMB spectrum.

Another difference between Delta Gravity and GR models is that DG model predicts a Big

Rip dominated by the L2 value. This is a consequence of the accelerated expansion produced

by L2 (Delta Sector).

The TT CMB Spectrum is well-reproduced by the DG model. To fit the spectrum, we had

to use 5 free parameters: C, h2ΩDG
b,0 , zls, ns and N .

The lH = 1/θ parameter, which fixes the position of the first peak (it is not the only cause),

is very sensitive to C and then constrains the C value. We can examine the C influence

in the Appendix E. The position of the first peak is very well determined. Therefore the θ

error or lH error dominates the TT CMB fitting. The position of the peak is also related to

h2ΩDG
b,0 and zls. The other two peaks, in the GR case, tend to be fitted by the dark matter

and baryon density [1] 1 (principally). Nevertheless, in the hydrodynamic approach [67], the

dark matter evolution is assumed as dominant considering that all the gravitational potential

is driven by dark matter. This approximation is useful because the equations are easy to

solve, however it is not accurate according to [67, p. 358]: this approach introduced 10%

errors or less. Despite this approximation, the TT CMB spectrum is very well described,

1Any dependence can be easily verified with https://camb.readthedocs.io/en/latest/CAMBdemo.

html. Specifically, the dependence of the height peaks and its relative positions respect to the h2Ωx.

https://camb.readthedocs.io/en/latest/CAMBdemo.html
https://camb.readthedocs.io/en/latest/CAMBdemo.html
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but the large multipoles show deviations from the observable data. The integral limits of the

equations constrain the zls value in Equation 4.52, and the angular distance is determined

by the Equation (4.50). The zls obtained from the MCMC is compatible with the transition

range showed in Figure 4.13, and the peak of the Visibility function showed in Figure 4.14.

The amount of baryonic matter given by h2ΩDG
b,0 = 0.026 is close to the GR case: 0.022. It

is important to contrast this value with other measurements, especially because DG has a

very different description of the Universe, where other equations, different to GR, give the

distances. Then, other observational constraints must be examined meticulously in order to

conclude if DG fit those observations.

The parameters related to the primordial spectrum, A and ns, are close to the standard

values: the spectral index is close to 1, and the amplitude is ∼ 10−5. It is vital to consider

that those values were obtained from an approximation called hydrodynamic approach, and

then, the numerical values contain intrinsic errors associated with the approximations, then

they are not accurate. Nonetheless, these values are very similar to the GR case.

An assumption that is essential for all the CMB analysis is that the plasma fluid, which is

described with the speed of sound cs within the horizon radius, is only affected by baryons

and radiation. This aspect could indicate that Delta Components do not interact with

common radiation and matter, but it would be interesting to analyze all the changes that

introduce a Delta Sector that interacts with Common matter and radiation. This aspect may

change many approximations and, then, could affect enormously the TT CMB spectrum.

This could be part of future research.

The observable rate of expansion of the Universe in DG is given by HDG
0 . This parameter

is determined by L2 and h. In the context of the TT CMB analysis, if C is very small, then

the SNe-Ia observations can be compatible with the TT CMB spectrum. The results show

that C ∼ 10−4. In this regime, the SNe-Ia is not affected, and the compatibility between

both observations is possible. It is important to emphasize that there are two values that

are different. One is h, which is provided from the GR background, and second, the HDG
0 ,

that is the observable Hubble Constant in this model.

A relevant cosmological value that can be constrained from the observations, is the age of

the Universe. The higher the Hubble Constant, the lower the age of the Universe. This

relation is vital since if the local fit of supernovae radically changes H0, then the age of

the Universe changes. Therefore, there could be conflicts with some estimates of the age

of the Universe that are independent of cosmology. We remark the fact that according to
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local measurements of supernovae, the age of the Universe for DG and GR are: 13.1 Gyrs

for DG and 13.0 Gyrs for GR. Instead, Planck’s data imply a larger age of the Universe:

13.8 Gyrs. A crucial and precise estimation based on the measurement of globular clusters

age in the Milky Way [42] 2, which is independent of cosmology, indicates that the Universe

has to be older than 13.6 ± 0.8 Gyrs. DG and GR, assuming the results of SNe’s local

measurements, are on the verge of this observational constraint. According to this, one

wonders if SNe can be in conflict with the age of the Universe. It is a very recent discussion,

and we are only commenting on the problems when astrophysicists try to make SNe and

CMB compatible. We emphasize that the problem goes beyond DG because a high Hubble

Constant causes it, and it also involves other types of measurements that yield high values

of the Hubble Constant. This discrepancy could be caused by the calibrations and methods

used by Riess et al., but this tension between both observations has been widely discussed

and until now there is no agreement. Even, other researchers have tried to measure the H0

value using methods independent of distance ladders and the CMB. They found that the

Hubble Constant exceeds the Planck results, with the confidence of 95% [46]. However, other

measurements based on the tip of the red giant branch (TRGB) have found that H0 is close

to 69.6 km/(Mpc s) [24, 25]. Other methods based on lensed quasars found that H0 = 73.3

Mpc/(km s) agrees with local measurements but tension with Planck observations [70].

All the TT CMB spectrum analyses were made in the DG context were the Delta contribu-

tions represented by F̃ and G̃ in Chapter 4 can be neglected. This is an essential part of the

development of the perturbation theory, and it implied many simplifications when we want

to calculate the spectrum and creates more constraints on the spectrum fitting.

Furthermore, the definition of what is a physical density was only possible when we devel-

oped the equations that describe physical processes such as the Thomson scattering or the

evolution of the transparency of the Universe, described by the Visibility function. Before

the CMB analysis, it was impossible to understand the meaning of physical density, and even

we did not define a total composition of the Universe in terms of percentage. Now, we have

a picture of the Universe, but the questions continue about what the Delta Components are.

DG requires more development to compare with other constraints such as the He produced

at the Big Bang nucleosynthesis, or the BAOs constraints, or even cosmological simulations.

This last aspect could be relevant if the interpretation of the Delta Sector is given in terms

2https://www.eso.org/public/chile/news/eso0425/

https://www.eso.org/public/chile/news/eso0425/
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of particles that create gravitational interactions. In fact, at the Newtonian limit, the Delta

matter appears as a new source of the gravitational potential [11].

Finally, it is remarkable that DG finds a well-behaved TT CMB spectrum, where it is

possible to constraint new parameters, even related to inflation. However, this analysis does

not use all the numerical precision, because the equations are only an approximation, and

even more, we are calculating only the scalar contributions to the total TT CMB spectrum.

Furthermore, many other sources that contribute to the “spectrum” have been avoided to

simplify the analytical solution, such as Sachs-Wolfe effect or lensing. This is only a first order

approximation, and it shows that DG could fit the TT CMB spectrum, but it is essential

to fit the spectrum with all the numerical precision without approximations because the

conclusions drawn in that case could be different. Thus, these numerical results must be

understood as values that are near to the correct value, not as a final and undeniable result.

The incompatibility between the SNe-Ia and CMB occurs when ΛCDM model is constrained

using BAOs and SNe-Ia. Even when the model uses curvature: if all the parameters describe

the same Universe, the whole model must be compatible with only one geometry given by

Ωk. For example, recently, it was published an article that shows a discrepancy between the

Planck’s data [49]. These differences can be caused by the assumption that the Universe is

flat. Despite this curvature assumption in the ΛCDM model, the cosmological parameters are

incompatible because some of them are compatible with a flat Universe, but others indicate

a closed Universe [65]. Furthermore, regarding the SNe-Ia analysis, another article shows

an anisotropy in the SNe-Ia distribution, and then, the acceleration measurement could be

wrong [21]. All the DG analysis could change because the L2 value will be different, and all

the distances would change [31]. . In this context, it is relevant to emphasize that there are

many approximations in our procedure, and DG must be contrasted with other observations

to conclude with a good precision if this model is a solution for today’s paradigm. BAOs

could be an excellent option to verify the model, mainly because these observations are

related to the angular distance and could constrain the DG model and verify if DG can

survive to describe SNe-Ia and BAOs.

Despite these interpretations, problems, and approximations, DG can fit both SNe-Ia and

TT CMB spectrum data, without Dark Energy. There are many open problems and in-

terpretations: what is Delta matter and Delta radiation? BAOs can be explained without

tension with SNe-Ia and Planck in the DG model? Can DG reproduce the Big Bang Nucle-

osynthesis without tension? What is the role, in terms of gravitation, of the Delta Sector?
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What are the cosmological parameters obtained from a complete numerical fit of the CMB

spectrum?



Appendix A

Local Expansion in terms of redshift

We develop the approximation for dL in terms of redshift z up to the second order. The

polynomial expansion is the same as in the Standard Cosmological Model.

The luminosity distance in DG is given by (1.48):

dDGL (z, L2, C) = c
aDG,0(1 + z)

H0

√
Ωm

∫ 1

Y (z)

Y√
Y + C

dY

aDG
, (A.1)

In the previous work, we found that C ≈ 0, thus the dL can be approximated to

dDGL (z, L2) = c
aDG,0(1 + z)

H0

∫ 1

Y (z)

√
Y

aDG(Y )
dY, (A.2)

where (by equation (1.43))

aDG =
aDG,0
1 + z

. (A.3)

If we expand Y around z = 0 (near today), we obtain

Y (z) = Y (0)︸︷︷︸
1

+
dY

dz

∣∣∣∣
z=0

z +
1

2

d2Y

dz2

∣∣∣∣
z=0

z2. (A.4)

Furthermore, we define
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F (u) ≡
√
u

aDG(u)
, (A.5)

then

f(Y ) ≡
∫ 1

Y

F (u)du (A.6)

and

df

dY

∣∣∣∣
Y=1

= − 1

aDG,0
. (A.7)

If we define the deceleration parameter as

q0 = −R̈DG,0aDG,0

(ṘDG,0)2
, (A.8)

the deceleration parameter today is given by:

q0 =
aDG,0

2R′DG,0
− RDG,0a

′′
DG

(R′DG,0)2
. (A.9)

Finally, the d2f
dz2

term is given by

d2f

dz2
=

1

a′DG,0
(−1− q0). (A.10)

Finally, replacing all these equations into the luminosity distance, we obtain

dDGL (z, L2, C) ≈ c

HDG,0

(
z +

1

2
(1− q0)z2

)
. (A.11)

This relation is important because it can be used to fit SNe-Ia at low redshift.

Note that HDG
0 in DG is the observable. This term describes the real expansion of the

Universe on the effective metric. if we compare this expression with the standard expansion of
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the luminosity distance in GR, we obtain the same term that appears in standard cosmology.

[56, 54] Then, if we replace dDGL expression into dL up to first order in z we find

m = 5 log
cz +O(z2)

HDG
0

+M + 25. (A.12)





Appendix B

Friedmann Equations in GR

B.1 Friedmann Equations

The Friedmann equations are obtained from the Einstein Field Equations: (using the FLRW

metric)

Gµν = Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν ,

where Λ is called the Cosmological Constant or DE. To calculate Tµν we can use the Fluid

Perfect equation. Finally, the Friedmann Equations are

H2 =

(
ȧ

a

)2

=
8πGρ+ Λ

3
−K c2

a2
(B.1)

3
ä

a
= Λ− 4πG

(
ρ+

3p

c2

)
(B.2)

B.2 q(t) equation

By definition, the deceleration parameter is
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q(t) ≡ − äa
ȧ2
.

We can use the Friedmann Equations given by to rewrite this terms in function of densities:

q(t) = − ä

a(ȧ/a)2
= − ä

aH2

1

a

d2a

dt2
= −4πG

3

∑
i

[
ρi +

3pi
c2

]
+

Λ

3

q(t) =
8πG

3H2

[
1

2
ρm + ρr − ρΛ

]

Where we used r,m,Λ to denote radiation, matter and Dark Energy, and ρ and p for density

and pressure, respectively. The critical density is

ρc ≡
3H2

8πG
.

Finally,

q(t) =
1

ρc

[
1

2
ρm + ρr − ρΛ

]
=

1

2

∑
i

((1 + 3ωi)Ωi(t)) , (B.3)

where ωm = 0, ωr = 1/3 y ωΛ = −1.



Appendix C

Convergence Test

A useful convergence test is the Gelman-Rubin statistic[27].

The Gelman-Rubin diagnostic uses an analysis of variance approach to assessing conver-

gence. This diagnostic uses multiple chains to check for lack of convergence, and is based

on the notion that if multiple chains have converged, by definition, they should appear very

similar to one another; if not, one or more of the chains has failed to converge (see PyMC 2

documentation).

In practice, we look for values of R̂ close to one because this is the indicator that shows

convergence.

We ran 16 chains for the DG model. Figure C.1 shows the L2 and C predicted values for

every chain of the Monte Carlo simulation. Figure C.4a,b shows the convergence of L2 and

C. All the chains converge to a similar value assuming different priors. These final values

predicted for every chain are shown in Figure C.1. From all these chains, it is clear that the

Delta Gravity MCMC analysis is convergent for the two free parameters.
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Figure C.1: Gelman-Rubin test for Delta Gravity model assuming MV = −19.23. The Gelman-
Rubin test was run with 16 different chains, all with different L2 and C priors. The R̂ coefficient

(Gelman-Rubin coefficient) was calculated for each parameter.
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Figure C.2

Figure C.3

Figure C.4: Gelman-Rubin test for Delta Gravity model. There are 16 chains with different
priors. (a) All the chains converge to a L2 ≈ 0.455. (b) All the chains converge to a C ≈ 0.000169.





Appendix D

Other parameters

D.1 Cosmic Time and Redshift

By using Equation (1.22) we obtain the Cosmic Time in Delta Gravity, where the redshift

is obtained by numerical solution from Equation (1.44).

Meanwhile for GR model, we obtained the cosmic time from the integration of the first

Friedmann equation and solving t(Ωm0, H0). Here we have included ΩΛ = 1 − Ωm0 and we

did Ωk (k = 0) and Ωr0 = 0. The integral for the first Friedmann equation can be analytically

solved:

t =

∫ a

0

1√
Ωm0

x
+ (1− Ωm0)x2

dx =
2

3
√

1− Ωm0

ln

(√
−Ωm0a3 + Ωm0 + a3 +

√
1− Ωm0a

3/2

√
Ωm0

)
(D.1)

where t in (D.1) is the cosmic time for GR.

We plot the results in Figure D.1:

The behavior of cosmic time dependence with redshift for both models is very similar.
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Figure D.1: Cosmic time for GR and Delta Gravity.

D.1.1 Age of the Universe

The age of the Universe in Delta Gravity is calculated using (1.22). t(Y ) only depends on

C and not on L2. In GR we calculate the age of the Universe using (D.1).

With these expressions, we can compare the behavior between cosmic time and the scale

factor in GR (or the effective scale factor in Delta Gravity).

In Figure D.2, it is possible to see the evolution for YDG(t) in time. At t = 28.75 Gyr, YDG

goes to infinity, and the Universe ends with a Big Rip, then, in this model the Universe has

an end (in time). Also, we see the dependence between the scale factor a and cosmic time t.

The Universe has no end (in time) in GR.

D.2 Deceleration Parameter q0

For Delta Gravity, we used Equation (1.56). For today, we evaluate a = 1 for GR, and YDG =

1 for Delta Gravity.

In Figure D.5, we can see the evolution in time for both GR and Delta Gravity models.
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Figure D.2: The size of the Universe vs. age of the Universe. In the Delta Gravity model, the size
of the Universe YDG depends on cosmic time t and on C. The blue line indicates the effective scale
factor in Delta Gravity. The gray zone shows the error associated with YDG. For GR, the scale
factor a depends on cosmic time t and on Ωm0. The red line indicates the scale factor evolution in

GR. The gray zone shows the error associated with a (these are tiny).
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Figure D.5: Deceleration parameter for both models. (a) Evolution of deceleration parameter in
GR. (b) Evolution of deceleration parameter in Delta Gravity.



Appendix E

CMB and the free parameters

We plot the five relations with the free parameters used to fit the TT CMB spectrum. They

are C, h2ΩDG
b,0 , zls, ns and N . To create the Figures, we fix all the parameters equal to the

results obtained from the MCMC, and vary only one parameter around the mean of the

posterior distribution.
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Figure E.1: TT CMB spectrum vs. C.
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Figure E.2: TT CMB spectrum vs. h2ΩDGb,0 .
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Figure E.3: TT CMB spectrum vs. zls.
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Figure E.4: TT CMB spectrum vs. ns.
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Figure E.5: TT CMB spectrum vs. N .





Appendix F

Table generator - Code

This code generates the tables from all the combinations given by the C, zls and h2ΩDG
b,0

arrays.

1 # In [ ] :

2

3

4 import numpy as np

5 import csv

6 from tqdm import tqdm notebook

7 from i t e r t o o l s import product

8 from j o b l i b import P a r a l l e l , de layed

9 from sc ipy . opt imize import f s o l v e , r o o t s c a l a r , c u r v e f i t

10 from sc ipy . i n t e g r a t e import quad , odeint , cumtrapz , quadrature

11 from sc ipy . misc import d e r i v a t i v e

12 from sc ipy import i n t e r p o l a t e

13 from matp lo t l i b import pyplot as p l t

14 p l t . rcParams [ ' f i g u r e . dpi ' ]= 200

15

16

17 # ## PARAMETERS

18

19 # In [ ] :

20

21

22 a r ray z = np . l i n s p a c e (900 ,1200 ,50)

23 array C = np . l i n s p a c e (0 . 00 0 1 , 0 . 00 0 9 , 6 0 )
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24 array h2Ob = np . l i n s p a c e ( 0 . 0 1 , 0 . 0 4 , 1 0 0 )

25

26

27 # In [ ] :

28

29

30 with open ( ”z . csv ” , ”w” ) as F1 :

31

32 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

33

34 f o r i in tqdm notebook ( range ( l en ( a r ray z ) ) ) :

35

36 w r i t e r . writerow ( [ a r r ay z [ i ] ] )

37

38

39 # In [ ] :

40

41

42 with open ( ”C. csv ” , ”w” ) as F1 :

43

44 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

45

46 f o r i in tqdm notebook ( range ( l en ( array C ) ) ) :

47

48 w r i t e r . writerow ( [ array C [ i ] ] )

49

50

51 # In [ ] :

52

53

54 with open ( ”h2Ob . csv ” , ”w” ) as F1 :

55

56 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

57

58 f o r i in tqdm notebook ( range ( l en ( array h2Ob ) ) ) :

59

60 w r i t e r . writerow ( [ array h2Ob [ i ] ] )

61

62

63 # ## $$\mathcal{ l } H$$
64

65 # In [ ] :



Ph.D Thesis Marco San Mart́ın Hormazábal 125

66

67

68 c = 299792.458 # l i g h t speed in km/ s

69

70 T0 = 2.725 #Black Body Spectrum T CMB

71

72 L f i t = 0.45741271 # from SNe

73 h f i t = 0.49638699 # from SNe

74

75 h2Og = 2.47∗10∗∗(−5) # photon dens i ty

76

77 # Mpc and km

78 mpc to km = 3.086∗10∗∗19

79 km to mpc = 3.24078∗10∗∗(−20)

80

81

82 # In [ ] :

83

84

85 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86

87 de f EQ(Y, z ,C, L ) :

88

89 re turn 1/(1+z ) − Y DG(Y,C, L)

90

91 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92

93 de f F(Y,C, L ) :

94

95 value = − L∗(Y/3)∗np . s q r t (Y+C)

96

97 re turn value

98

99 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
100

101 de f R DG(Y,C, L ) :

102

103 t ry :

104

105 value = Y∗np . s q r t ( ( 1+F(Y,C, L) )/ ( 1+3∗F(Y,C, L) ) )

106

107 except :



Ph.D Thesis Marco San Mart́ın Hormazábal 126

108

109 value = np . nan

110

111 re turn value

112

113 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
114

115 de f Y so lve ( z ,C, L ) :

116

117 outputs = f s o l v e (EQ, 0 . 3 , args=(z ,C, L) , f u l l o u t p u t=True , x t o l =0.1)

118

119 i f outputs [ 2 ] == 1 :

120

121 re turn outputs [ 0 ]

122

123 e l s e :

124

125 re turn np . nan

126

127 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
128

129 de f Y DG(Y,C, L ) :

130

131 t ry :

132

133 value = R DG(Y,C, L)/R DG(1 ,C, L)

134

135 except :

136

137 value = np . nan

138

139 re turn value

140

141

142 # In [ ] :

143

144

145 de f dt dY (Y,C) : # re tu rn s seconds

146

147 re turn np . s q r t (1+C)/(100∗ h f i t )∗Y/np . s q r t (Y+C)∗ mpc to km

148

149 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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150 de f dY DGtodY(Y,C, L ) :

151

152 re turn d e r i v a t i v e (Y DG, args = (C, L) , x0 = Y, dx = 1e−6)

153

154 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

155

156 de f H DG(Y,C) : #retorna en 1/ s

157

158 re turn dY DGtodY(Y,C, L f i t )/ ( dt dY (Y,C)∗Y DG(Y,C, L f i t ) )

159

160

161 # In [ ] :

162

163

164 #−−−−−−−−−−−−−− DG Equations −−−−−−−
165

166 de f integrand DG sound (Y,C, h2Ob ) : # i n t e g r a t i o n in seconds

167

168 R=3∗h2Ob/(4∗h2Og)∗Y DG(Y,C, L f i t )

169

170 in tegrand = dt dY (Y,C)/( Y DG(Y,C, L f i t )∗np . s q r t ( 3∗(1+R) ) )

171

172 re turn integrand

173

174 de f dH DG(Y,C, h2Ob ) : #re tu rn s in Mpc

175

176 re turn c∗Y DG(Y,C, L f i t )∗ \
177 ( quad ( integrand DG sound , 0 ,Y, args=(C, h2Ob) , e p s r e l =1) ) [ 0 ] / mpc to km

178

179 de f integrand DG (Y,C) : # i n t e g r a t i o n in seconds

180

181 in tegrand = Y/(np . s q r t (Y+C)∗Y DG(Y,C, L f i t ) )

182

183 re turn integrand

184

185 de f da DG(Y,C) : # re tu rn s in Mpc

186

187 re turn Y DG(Y,C, L f i t )∗ c∗np . s q r t (1+C)/(100∗ h f i t )∗ \
188 ( quad ( integrand DG ,Y, 1 , args=(C) , e p s r e l = 0 . 0 0 1 ) [ 0 ] )

189

190 de f theta DG (C, z , h2Ob ) :

191
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192 Y = f l o a t ( Y so lve ( z ,C, L f i t ) )

193

194 num = dH DG(Y,C, h2Ob)

195

196 den = da DG(Y,C)

197

198 re turn num/den

199

200

201 # ## $$ l H$$
202

203 # In [ ] :

204

205

206 de f lH ( params ) :

207

208 z ,C, h2Ob = params [ 0 ] , params [ 1 ] , params [ 2 ]

209

210 re turn 1/ theta DG (C, z , h2Ob)

211

212

213 # In [ ] :

214

215

216 paraml i s t=l i s t ( product ( array z , array C , array h2Ob ) )

217

218 r e s u l t s l i n = \
219 P a r a l l e l ( n j obs = 6) ( de layed ( lH ) ( e ) f o r e in tqdm notebook ( paraml i s t ) )

220

221

222 # In [ ] :

223

224

225 k = 0

226

227 with open ( ”lH . csv ” , ”w” ) as F1 :

228

229 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

230

231 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
232 , range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
233 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :
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234

235 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , i [ 2 ] , f l o a t ( r e s u l t s l i n [ k ] ) ] )

236

237 k += 1

238

239

240

241 # ## $$ l T$$
242

243 # In [ ] :

244

245

246 de f lT ( params ) :

247

248 z ,C = params [ 0 ] , params [ 1 ]

249

250 Y = f l o a t ( Y so lve ( z ,C, L f i t ) )

251

252 dT = np . d iv id e ( c∗R DG(Y,C, L f i t ) ,100∗ h f i t )∗np . s q r t (C∗(C+1)) # Mpc

253

254 dA = da DG(Y,C)

255

256 re turn dA/dT

257

258

259 # In [ ] :

260

261

262 paraml i s t=l i s t ( product ( array z , array C ) )

263

264 r e s u l t s l i n = P a r a l l e l ( n j obs = 6) ( de layed ( lT ) ( e ) \
265 f o r e in tqdm notebook ( paraml i s t ) )

266

267

268 # In [ ] :

269

270

271 k = 0

272

273 with open ( ” lT . csv ” , ”w” ) as F1 :

274

275 w r i t e r=csv . w r i t e r (F1 , d e l i m i t e r=” ” , l i n e t e r m i n a t o r=”\n” , )
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276

277 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
278 , range ( l en ( array C ) ) ) , t o t a l=len ( a r ray z )∗ l en ( array C ) ) :

279

280 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , r e s u l t s l i n [ k ] ] )

281

282 k += 1

283

284

285 # ## $$ l R$$
286

287 # In [ ] :

288

289

290 de f lR ( params ) :

291

292 z ,C = params [ 0 ] , params [ 1 ]

293

294 kappaR = 0.05

295 Y = f l o a t ( Y so lve ( z ,C, L f i t ) )

296 dA = da DG(Y,C)

297

298 re turn kappaR∗dA/R DG(Y,C, L f i t )

299

300

301 # In [ ] :

302

303

304 paraml i s t=l i s t ( product ( array z , array C ) )

305

306 r e s u l t s l i n = \
307 P a r a l l e l ( n j obs = 6) ( de layed ( lR ) ( e ) f o r e in tqdm notebook ( paraml i s t ) )

308

309

310 # In [ ] :

311

312

313 k = 0

314

315 with open ( ”lR . csv ” , ”w” ) as F1 :

316

317 w r i t e r=csv . w r i t e r (F1 , d e l i m i t e r=” ” , l i n e t e r m i n a t o r=”\n” , )



Ph.D Thesis Marco San Mart́ın Hormazábal 131

318

319 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
320 , range ( l en ( array C ) ) ) , t o t a l=len ( a r ray z )∗ l en ( array C ) ) :

321

322 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , r e s u l t s l i n [ k ] ] )

323

324 k += 1

325

326

327 # In [ ] :

328

329

330 #−−−−−−−−− don = depends on −−−−−−−−−−−−−−−−
331

332 de f z don T (T) :

333

334 re turn T/T0 − 1

335

336 z don T = np . v e c t o r i z e ( z don T )

337

338 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
339

340 de f T don z ( z ) :

341

342 re turn T0∗(1+z )

343

344 T don z = np . v e c t o r i z e ( T don z )

345

346 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
347

348 de f Y don T (T,C) :

349

350 YDG = T0/T

351

352 z = 1/YDG − 1

353

354 re turn Y so lve ( z ,C, L f i t )

355

356 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
357

358 de f T don Y (Y,C) :

359
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360 re turn T0/Y DG(Y,C, L f i t )

361

362

363 # ## $$ l D$$
364

365 # In [ ] :

366

367

368 # Some cons tant s :

369

370 T g = 2.725 # T CMB in K

371

372 G = 6.67430∗10∗∗(−11) ∗100∗∗3 # Grav i t a t i ona l constant cmˆ3 kgˆ−1 sˆ−2

373

374 m p = 1.6726219∗10∗∗(−27) # Proton mass kg

375

376 Lambda alpha = 1215.682∗10∗∗(−8) # cm

377

378 f r a c = 0 .76 # H f r a c t i o n ( vs He)

379

380 Gamma 2s = 8.22458 # sˆ−1

381

382 sigma thomson = 0.66524∗10∗∗(−24) # thomson c r o s s s e c t i o n cmˆ2

383

384 c = 2.99792458∗10∗∗10 # speed o f l i g h t cm/ s

385

386

387 # In [ ] :

388

389

390 de f n(T, h2Ob ) : # re tu rns cmˆ−3 eq 2 . 3 . 2 9 Weinberg ' s book

391

392 #return km to Mpc∗∗2∗ f r a c ∗3∗100∗∗2∗h2Ob/(8∗np . p i ∗G∗m p )∗ (T/T g )∗∗3

393

394 re turn 4.218∗10∗∗(−7)∗h2Ob∗T∗∗3

395 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
396

397 de f alpha (T) : # re tu rn s en cmˆ3 sˆ−1 eq . 2 . 3 . 3 1 Weinberg ' s book

398

399 re turn 1.4377∗10∗∗(−10)∗T∗∗(−0.6166)/(1+5.085∗10∗∗(−3)∗T∗∗0 .5300)

400

401 #return 2.84∗10∗∗(−11)∗T∗∗(−1/2)
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402

403 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
404

405 de f beta (T) : # re tu rn s cmˆ−3 Kˆ3/2 ∗ alpha eq 2 . 3 . 3 2 Weinberg ' s book

406

407 re turn 2 .4147∗10∗∗ (15) ∗T∗∗(3/2)∗np . exp(−39474/T)∗ alpha (T)

408

409 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
410

411 de f S(T, h2Ob ) : # eq 2 . 3 . 8 Weinberg ' s book

412

413 re turn 1.747∗10∗∗(−22)∗np . exp (157894/T)∗T∗∗(3/2)∗h2Ob

414

415 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
416

417 de f model (X,T, h2Ob ,C) : # eq 2 . 3 . 2 7 Weinberg ' s book

418

419 # X i s the f r a c t i o n o f H i o n i z e d

420 # T i s the temperature

421

422 Y = Y don T (T,C)

423

424 Coef = 1 + beta (T)/( Gamma 2s + ( 8∗np . p i ∗H DG(Y,C) ) \
425 /( Lambda alpha∗∗3∗n(T, h2Ob)∗(1−X) ) )

426

427 N = alpha (T)∗n(T, h2Ob)/(T∗H DG(Y,C) )

428

429 dXdt = N∗Coef ∗∗(−1)∗(X∗∗2−(1−X)/S(T, h2Ob ) )

430

431 re turn dXdt

432

433 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
434

435 de f equ i l i b r ium (X,T, h2Ob ) :

436

437 re turn X∗(1+S(T, h2Ob)∗X)−1

438

439 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
440

441 de f X so lve r (T, h2Ob ) :

442

443 value=r o o t s c a l a r ( equ i l ib r ium , bracket = [ 0 . 9 , 3 ] , \
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444 method=” brentq ” , args=(T, h2Ob) , r t o l =0.01)

445

446 i f va lue . root > 1 :

447

448 re turn 0.9999999

449

450 e l s e :

451

452 re turn f l o a t ( va lue . root )

453

454 X so lve r = np . v e c t o r i z e ( X so lve r )

455

456 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
457

458 temp = np . l i n s p a c e (6000 ,1000 ,100)

459

460 de f solve ode DG ( params ) :

461

462 C, h2Ob = params [ 0 ] , params [ 1 ]

463

464 X0 = X so lve r (6000 ,h2Ob)

465

466 i f h2Ob < 0 :

467

468 re turn np . f u l l ( [ l en ( temp ) ] , np . nan )

469

470 e l s e :

471

472 re turn ode int ( model , X0 , temp , args=(h2Ob ,C) , r t o l =0.0000001)

473

474

475 # In [ ] :

476

477

478 paraml i s t=l i s t ( product ( array C , array h2Ob ) )

479

480 r e s u l t s l i n = P a r a l l e l ( n j obs = 4) \
481 ( de layed ( solve ode DG ) ( e ) f o r e in tqdm notebook ( paraml i s t ) )

482

483

484 # In [ ] :

485
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486

487 k = 0

488

489 with open ( ” sol ode DG . csv ” , ”w” ) as F1 :

490

491 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

492

493 f o r i in tqdm notebook ( product ( range ( l en ( array C ) ) \
494 , range ( l en ( array h2Ob ) ) ) , t o t a l=l en ( array C )∗ l en ( array h2Ob ) ) :

495

496 w r i t e r . writerow ( r e s u l t s l i n [ k ] . reshape (100 ) )

497

498 k += 1

499

500

501 # In [ ] :

502

503

504 with open ( ” sol ode DG . csv ” , ” r ” ) as F1 :

505

506 l i n e s 1 = F1 . r e a d l i n e s ( )

507

508

509 # In [ ] :

510

511 k = 0

512

513 ar r eg l o so l ode DG = [ ]

514

515 f o r i in tqdm notebook ( l i n e s 1 ) :

516

517 temp = np . f r omst r ing ( i , dtype=f l o a t , sep= ' ' )

518 ar r eg l o so l ode DG . append ( temp )

519

520 # In [ ] :

521

522

523 de f c a l c v i s f u n (C, h2Ob , array X DG ) :

524

525 i f h2Ob < 0 :

526

527 re turn np . f u l l ( [ 9 8 ] , np . nan ) , np . f u l l ( [ 9 8 ] , np . nan )
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528

529 e l s e :

530

531 temp = np . l i n s p a c e (6000 ,1000 ,100)

532

533 temp = np . reshape ( temp , 1 0 0 )

534

535 temp = temp . t o l i s t ( ) + [800 , 600 , 400 , 200 , 0 ]

536

537 array X DG = np . reshape ( array X DG ,1 0 0 )

538

539 array X DG = array X DG . t o l i s t ( ) + [ 0 , 0 , 0 , 0 , 0 ]

540

541 X funcion = i n t e r p o l a t e . in te rp1d ( temp , array X DG , kind= ' quadrat i c ' )

542

543 de f integrand (T) :

544

545 Y = Y don T (T,C)

546

547 re turn c∗ sigma thomson∗ X funcion (T)∗n(T, h2Ob)/(T∗H DG(Y,C) )

548

549 in tegrand = np . v e c t o r i z e ( integrand )

550

551 de f func t i on ( i n t e g r a l ) :

552

553 i f i n t e g r a l > 12 :

554

555 re turn 1

556

557 e l s e :

558

559 re turn 1 − np . exp(− i n t e g r a l )

560

561 f unc t i on = np . v e c t o r i z e ( func t i on )

562

563 A1=np . l i n s p a c e (1000 ,1999 ,50)

564

565 A2= np . l i n s p a c e (2000 ,4000 ,300)

566

567 A3= np . l i n s p a c e (4001 ,6000 ,100)

568

569 T array 0 = np . concatenate ( (A1 , A2 , A3) )
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570

571 i n t e g r a l = cumtrapz ( integrand ( T array 0 ) , T array 0 )

572

573 i n t e g r a l = np . i n s e r t ( i n t e g r a l , 0 , 0 , a x i s =0)

574

575 O = i n t e r p o l a t e . in te rp1d ( T array 0 , func t i on ( i n t e g r a l ) , kind= ' quadrat i c ' )

576

577 de f dOdT(T) :

578

579 re turn f l o a t ( d e r i v a t i v e (O, x0 = T, dx = 1e−6))

580

581 dOdT = np . v e c t o r i z e (dOdT)

582

583 B1=np . l i n s p a c e (1000 ,2000 ,7)

584

585 B2= np . l i n s p a c e (2001 ,4000 ,86)

586

587 B3= np . l i n s p a c e (4001 ,6000 ,7)

588

589 T array = np . concatenate ( ( B1 , B2 , B3 ) )

590

591 re turn T array [ 1 : 9 9 ] , dOdT( T array [ 1 : 9 9 ] )

592

593

594 # In [ ] :

595

596

597 de f cuadra t i ca (x , a0 , b0 , c0 ) :

598

599 re turn a0∗x∗∗2+b0∗x+c0

600

601

602 # In [ ] :

603

604

605 s igma array = np . f u l l ( ( l en ( array C ) , l en ( array h2Ob ) ) , np . nan )

606

607

608 # In [ ] :

609

610

611 de f s i gma f ( i ) :
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612

613 C = array C [ i n t ( i [ 0 ] ) ]

614 h2Ob = array h2Ob [ i n t ( i [ 1 ] ) ]

615 f i l a = i n t ( i [ 0 ] ) ∗ l en ( array h2Ob)+ i n t ( i [ 1 ] )

616

617 # f i l a i s the index a s s o c i a t e d with i [ 0 ] , i [ 1 ] , i [ 2 ] .

618 # This order matchs with the output ' s product

619

620 array X DG = arreg lo so l ode DG [ f i l a ]

621

622 i f np . i snan (np . sum( array X DG ) ) :

623

624 re turn np . nan

625

626 e l s e :

627

628 eje T , eje dOdT = c a l c v i s f u n (C, h2Ob , array X DG )

629

630 peak=np . where (np . nanmax( eje dOdT ) == eje dOdT ) [ 0 ]

631

632 near x = eje T [ i n t ( peak )−2: i n t ( peak )+3]

633 near y = eje dOdT [ i n t ( peak )−2: i n t ( peak )+3]

634

635 popt , pcov = c u r v e f i t ( cuadrat ica , near x , near y )

636

637 value = −popt [ 1 ] / ( 2 ∗ popt [ 0 ] )

638

639 re turn f l o a t (1/( np . s q r t (2∗np . p i )∗ cuadra t i ca ( value ,∗ popt ) ) )

640

641

642 # In [ ] :

643

644

645 f o r p in tqdm notebook ( product ( range ( l en ( array C ) ) \
646 , range ( l en ( array h2Ob ) ) ) , t o t a l=len ( array C )∗ l en ( array h2Ob ) ) :

647

648 i = l i s t ( [ p [ 0 ] , p [ 1 ] ] )

649

650 s igma array [ p [ 0 ] ] [ p [ 1 ] ] = s igma f ( i )

651

652

653
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654 # In [ ] :

655

656

657 k = 0

658

659 with open ( ” sigma . csv ” , ”w” ) as F1 :

660

661 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

662

663 f o r i in tqdm notebook ( product ( range ( l en ( array C ) ) \
664 , range ( l en ( array h2Ob ) ) ) , t o t a l=l en ( array C )∗ l en ( array h2Ob ) ) :

665

666 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , s igma array [ i [ 0 ] ] [ i [ 1 ] ] ] )

667

668 k += 1

669

670

671 # In [ ] :

672

673 # l i n e s 2 [ f i l a ] i s equ iva l en t to , f o r example : s igma array [ 1 0 0 , 3 4 , 2 3 ]

674

675 with open ( ” sigma . csv ” , ” r ” ) as F2 :

676

677 l i n e s 2 = F2 . r e a d l i n e s ( )

678

679

680 # In [ ] :

681

682 k = 0

683

684 # f o r example : a r r eg l o s i gma [ i n t (100)∗ l en ( array C )∗ l en ( array ht2Ob ) . . .

685 # +i n t (34)∗ l en ( array ht2Ob)+ i n t ( 2 3 ) ] == sigma array [ 1 0 0 ] [ 3 4 ] [ 2 3 ]

686

687 a r r eg l o s i gma = [ ]

688

689 f o r i in tqdm notebook ( l i n e s 2 ) :

690 temp = np . f r omst r ing ( i , dtype=f l o a t , sep= ' ' ) [ 2 ]

691 a r r eg l o s i gma . append ( temp )

692

693 # ## SILK

694

695 # In [ ] :
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696

697

698 c = 299792458 # m/ s

699 sigma thomson = 6.652458∗10∗∗(−29) #mˆ2

700 m to mpc = 3.24078∗10∗∗(−23)

701

702 de f s i lk damping2 ( z ,C, h2Ob , temp , array X DG ) :

703

704 X frac=i n t e r p o l a t e . in te rp1d ( temp , array X DG )

705

706 de f R(Y) :

707

708 re turn 3∗h2Ob/(4∗h2Og)∗Y DG(Y,C, L f i t )

709

710 de f f a c t o r (Y) :

711

712 re turn f l o a t ( dt dY (Y,C) \
713 /(Y DG(Y,C, L f i t )∗∗2∗(1+R(Y)))∗(16/15+R(Y)∗∗2/(1+R(Y) ) ) )

714

715 de f n e l e c t r o n (Y) : # 1/mˆ3

716

717 T=T don Y (Y,C)

718

719 i f T>5999:

720

721 re turn 1∗n(T, h2Ob)∗10∗∗6

722

723 e l s e :

724

725 re turn f l o a t ( X frac (T) )∗ n(T, h2Ob)∗10∗∗6

726

727 de f tgamma(Y) : # s

728

729 re turn f l o a t (1/( sigma thomson∗c∗ n e l e c t r o n (Y) ) )

730

731 de f integrand (Y) :

732

733 re turn tgamma(Y)∗ f a c t o r (Y)

734

735 in tegrand = np . v e c t o r i z e ( integrand )

736

737 YDG = 1/(1+z )
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738

739 va l = c ∗∗2∗YDG∗∗2/6∗ \
740 quadrature ( integrand , 0 , f l o a t ( Y so lve ( z ,C, L f i t ) ) , \
741 r t o l =10∗∗(−4) , maxiter =100) [0 ]∗ m to mpc∗∗2

742

743 # e r r o r i s approx 0.014% with r t o l = E−5

744

745 re turn va l

746

747

748 # ## Landau

749

750 # In [ ] :

751

752

753 de f d landau2 ( z ,C, h2Ob , sigma T ) : # Landau Damping in Mpcˆ2

754

755 Y = Y solve ( z ,C, L f i t )

756

757 R = 3∗ f l o a t (h2Ob)/(4∗h2Og)∗Y DG(Y,C, L f i t )

758

759 T = T don z ( z )

760

761 s igma t = sigma T /(T∗H DG(Y,C) )

762 # i t comes from sigmat /dt = sigmaT/dT dt/dT = YDG∗dYDG/dT∗dt/dYDG/YDG

763

764 re turn f l o a t ( c ∗∗2∗ s igma t ∗∗2/(6∗(1+R))∗ m to mpc ∗∗2)

765

766

767 # In [ ] :

768

769

770 de f l D ( z ,C, d D ) :

771

772 Y=f l o a t ( Y so lve ( z ,C, L f i t ) )

773

774 dA = da DG(Y,C)/1000

775

776 re turn dA/d D

777

778

779 # ## Damping t o t a l
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780

781 # In [ ] :

782

783

784 Damping Total = [ ]

785 array lD = np . f u l l ( ( l en ( a r ray z ) , l en ( array C ) , l en ( array h2Ob ) ) , np . nan )

786 array D = np . f u l l ( ( l en ( a r ray z ) , l en ( array C ) , l en ( array h2Ob ) ) , np . nan )

787

788 temp = np . l i n s p a c e (6000 ,1000 ,100)

789

790 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
791 , range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
792 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

793

794 z = ar ray z [ i [ 0 ] ]

795 C = array C [ i [ 1 ] ]

796 h2Ob = array h2Ob [ i [ 2 ] ]

797

798 f i l a = i n t ( i [ 1 ] ) ∗ l en ( array h2Ob)+ i n t ( i [ 2 ] )

799

800 array X DG = arreg lo so l ode DG [ f i l a ]

801 sigma T = ar r eg l o s i gma [ f i l a ]

802

803 S i l k 2 = s i lk damping2 ( z ,C, h2Ob , temp , array X DG )

804 Landau 2 = d landau2 ( z ,C, h2Ob , sigma T )

805

806 array D [ i [ 0 ] , i [ 1 ] , i [ 2 ] ] = np . s q r t ( S i l k 2+Landau 2 )

807

808 array lD [ i [ 0 ] , i [ 1 ] , i [ 2 ] ] = l D ( z ,C, array D [ i [ 0 ] , i [ 1 ] , i [ 2 ] ] )

809

810

811

812

813 # In [ ] :

814

815

816 k = 0

817

818 with open ( ” array D . csv ” , ”w” ) as F1 :

819

820 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

821
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822 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
823 , range ( l en ( array C ) ) \
824 , range ( l en ( array h2Ob ) ) ) , t o t a l=l en ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

825

826 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , i [ 2 ] , array D [ i [ 0 ] ] [ i [ 1 ] ] [ i [ 2 ] ] ] )

827

828 k += 1

829

830

831 # In [ ] :

832

833

834 k = 0

835

836 with open ( ”lD . csv ” , ”w” ) as F1 :

837

838 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

839

840 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) , \
841 range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
842 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

843

844 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , i [ 2 ] , a r ray lD [ i [ 0 ] ] [ i [ 1 ] ] [ i [ 2 ] ] ] )

845

846 k += 1

847

848

849 # In [ ] :

850

851

852 # f o r example : f i l a =

853 # i n t (100)∗ l en ( array C )∗ l en ( array ht2Omegab )

854 # +i n t (34)∗ l en ( array ht2Omegab)+ i n t (23)

855 # i s equ iva l en t to l i n e s 2 [ f i l a ] −−−> s igma array [ 1 0 0 , 3 4 , 2 3 ]

856

857 with open ( ”lD . csv ” , ” r ” ) as F1 :

858

859 l i n e s 3 = F1 . r e a d l i n e s ( )

860

861

862 # In [ ] :

863
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864 k = 0

865

866 a r r e g l o l D = [ ]

867

868 f o r i in tqdm notebook ( l i n e s 3 ) :

869 temp = np . f r omst r ing ( i , dtype=f l o a t , sep= ' ' ) [ 3 ]

870 a r r e g l o l D . append ( temp )

871

872

873 # ## PARAMETRO $$R L$$
874

875 # In [ ] :

876

877

878 array RL = np . f u l l ( ( l en ( a r ray z ) , l en ( array C ) , l en ( array h2Ob ) ) , np . nan )

879

880 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
881 , range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
882 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

883

884 z = ar ray z [ i [ 0 ] ]

885 C = array C [ i [ 1 ] ]

886 h2Ob = array h2Ob [ i [ 2 ] ]

887

888 Y = Y solve ( z ,C, L f i t )

889

890 array RL [ i [ 0 ] , i [ 1 ] , i [ 2 ] ] = 3∗ f l o a t (h2Ob)/(4∗h2Og)∗Y DG(Y,C, L f i t )

891

892

893 # In [ ] :

894

895

896 k = 0

897

898 with open ( ”RL. csv ” , ”w” ) as F1 :

899

900 w r i t e r = csv . w r i t e r (F1 , d e l i m i t e r= ' ' , l i n e t e r m i n a t o r= ' \n ' )

901

902 f o r i in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
903 , range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
904 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

905
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906 w r i t e r . writerow ( [ i [ 0 ] , i [ 1 ] , i [ 2 ] , array RL [ i [ 0 ] ] [ i [ 1 ] ] [ i [ 2 ] ] ] )

907

908 k += 1

909

910

911 # ## $Z { l s }$
912

913 # In [ ] :

914

915

916 # Some cons tant s :

917

918 T g = 2.725 # T CMB in K

919

920 G = 6.67430∗10∗∗(−11) ∗100∗∗3 # Grav i t a t i ona l constant cmˆ3 kgˆ−1 sˆ−2

921

922 m p = 1.6726219∗10∗∗(−27) # Proton mass kg

923

924 Lambda alpha = 1215.682∗10∗∗(−8) # cm

925

926 f r a c = 0 .76 # H f r a c t i o n ( vs He)

927

928 Gamma 2s = 8.22458 # sˆ−1

929

930 sigma thomson = 0.66524∗10∗∗(−24) # thomson c r o s s s e c t i o n cmˆ2

931

932 c = 2.99792458∗10∗∗10 # speed o f l i g h t cm/ s

933

934

935 # In [ ] :

936

937

938 de f n(T, h2Ob ) : # re tu rns cmˆ−3 eq 2 . 3 . 2 9 Weinberg ' s book

939

940 #return km to Mpc∗∗2∗ f r a c ∗3∗100∗∗2∗h2Ob/(8∗np . p i ∗G∗m p )∗ (T/T g )∗∗3

941

942 re turn 4.218∗10∗∗(−7)∗h2Ob∗T∗∗3

943 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
944

945 de f alpha (T) : # re tu rn s en cmˆ3 sˆ−1 eq . 2 . 3 . 3 1 Weinberg ' s book

946

947 re turn 1.4377∗10∗∗(−10)∗T∗∗(−0.6166)/(1+5.085∗10∗∗(−3)∗T∗∗0 .5300)
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948

949 #return 2.84∗10∗∗(−11)∗T∗∗(−1/2)

950

951 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
952

953 de f beta (T) : # re tu rn s cmˆ−3 Kˆ3/2 ∗ alpha eq 2 . 3 . 3 2 Weinberg ' s book

954

955 re turn 2 .4147∗10∗∗ (15) ∗T∗∗(3/2)∗np . exp(−39474/T)∗ alpha (T)

956

957 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
958

959 de f S(T, h2Ob ) : # eq 2 . 3 . 8 Weinberg ' s book

960

961 re turn 1.747∗10∗∗(−22)∗np . exp (157894/T)∗T∗∗(3/2)∗h2Ob

962

963 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
964

965 de f model (X,T, h2Ob ,C) : # eq 2 . 3 . 2 7 Weinberg ' s book

966

967 # X i s the f r a c t i o n o f H i o n i z e d

968 # T i s the temperature

969

970 Y = Y don T (T,C)

971

972 Coef = 1 + beta (T)/( Gamma 2s + ( 8∗np . p i ∗H DG(Y,C) ) \
973 /( Lambda alpha∗∗3∗n(T, h2Ob)∗(1−X) ) )

974

975 N = alpha (T)∗n(T, h2Ob)/(T∗H DG(Y,C) )

976

977 dXdt = N∗Coef ∗∗(−1)∗(X∗∗2−(1−X)/S(T, h2Ob ) )

978

979 re turn dXdt

980

981 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
982

983 de f equ i l i b r ium (X,T, h2Ob ) :

984

985 re turn X∗(1+S(T, h2Ob)∗X)−1

986

987 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
988

989 de f X so lve r (T, h2Ob ) :



Ph.D Thesis Marco San Mart́ın Hormazábal 147

990

991 value=r o o t s c a l a r ( equ i l ib r ium , bracket = [ 0 . 9 , 3 ] , method=” brentq ” , \
992 args=(T, h2Ob) , r t o l =0.01)

993

994 i f va lue . root > 1 :

995

996 re turn 0.9999999

997

998 e l s e :

999

1000 re turn f l o a t ( va lue . root )

1001

1002 X so lve r = np . v e c t o r i z e ( X so lve r )

1003

1004 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1005

1006 temp = np . l i n s p a c e (6000 ,1000 ,100)

1007

1008 de f solve ode DG (C, h2Ob ) :

1009

1010 X0 = X so lve r (6000 ,h2Ob)

1011

1012 i f h2Ob < 0 :

1013

1014 re turn np . f u l l ( [ l en ( temp ) ] , np . nan )

1015

1016 e l s e :

1017

1018 re turn ode int ( model , X0 , temp , args=(h2Ob ,C) , r t o l =0.0000001)

1019

1020

1021 # In [ ] :

1022

1023

1024 # we chose $C$ and $hˆ2 \Omega {b ,0}ˆ{DG}$ from the MCMC r e s u l t s

1025

1026 X sol = solve ode DG (0.00045577097697686473 ,0 .026379909222130012)

1027

1028

1029 # In [ ] :

1030

1031
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1032 f i g , ax1 = p l t . subp lo t s ( f i g s i z e =(9 , 6 ) )

1033

1034 ax2 = ax1 . twiny ( )

1035

1036 X = temp

1037

1038 Y = X sol

1039

1040 ax1 . p l o t (X,Y)

1041 ax1 . s e t x l a b e l ( r ”$T$ (K) ” )

1042 ax1 . s e t y l a b e l ( r ”X” )

1043

1044

1045 n e w t i c k l o c a t i o n s = np . l i n s p a c e (1000 ,6000 ,6)

1046

1047 de f t i c k f u n c t i o n (X) :

1048 V = z don T (X)

1049

1050 re turn [ ”%d” % z f o r z in V]

1051

1052 ax2 . s e t x l i m ( ax1 . ge t x l im ( ) )

1053 ax2 . s e t x t i c k s ( n e w t i c k l o c a t i o n s )

1054 ax2 . s e t x t i c k l a b e l s ( t i c k f u n c t i o n ( n e w t i c k l o c a t i o n s ) )

1055 ax2 . s e t x l a b e l ( r ” Redsh i f t $z$” )

1056 f i g . s a v e f i g ( ' X de T . pdf ' )

1057 p l t . show ( )

1058

1059

1060 # In [ ] :

1061

1062

1063 de f c a l c v i s f u n (C, h2Ob , array X DG ) :

1064

1065 i f h2Ob < 0 :

1066

1067 re turn np . f u l l ( [ 9 8 ] , np . nan ) , np . f u l l ( [ 9 8 ] , np . nan )

1068

1069 e l s e :

1070

1071 temp = np . l i n s p a c e (6000 ,1000 ,100)

1072

1073 temp = np . reshape ( temp , 1 0 0 )



Ph.D Thesis Marco San Mart́ın Hormazábal 149

1074

1075 temp = temp . t o l i s t ( ) + [800 , 600 , 400 , 200 , 0 ]

1076

1077 array X DG = np . reshape ( array X DG ,1 0 0 )

1078

1079 array X DG = array X DG . t o l i s t ( ) + [ 0 , 0 , 0 , 0 , 0 ]

1080

1081 X funcion = i n t e r p o l a t e . in te rp1d ( temp , array X DG , kind= ' quadrat i c ' )

1082

1083 de f integrand (T) :

1084

1085 Y = Y don T (T,C)

1086

1087 re turn c∗ sigma thomson∗ X funcion (T)∗n( T, h2Ob )/(T∗H DG(Y,C) )

1088

1089 in tegrand = np . v e c t o r i z e ( integrand )

1090

1091 de f func t i on ( i n t e g r a l ) :

1092

1093 i f i n t e g r a l > 12 :

1094

1095 re turn 1

1096

1097 e l s e :

1098

1099 re turn 1 − np . exp(− i n t e g r a l )

1100

1101 f unc t i on = np . v e c t o r i z e ( func t i on )

1102

1103 A1=np . l i n s p a c e (1000 ,1999 ,50)

1104

1105 A2= np . l i n s p a c e (2000 ,4000 ,300)

1106

1107 A3= np . l i n s p a c e (4001 ,6000 ,100)

1108

1109 T array 0 = np . concatenate ( (A1 , A2 , A3) )

1110

1111 i n t e g r a l = cumtrapz ( integrand ( T array 0 ) , T array 0 )

1112

1113 i n t e g r a l = np . i n s e r t ( i n t e g r a l , 0 , 0 , a x i s =0)

1114

1115 O = i n t e r p o l a t e . in te rp1d ( T array 0 , func t i on ( i n t e g r a l ) , kind= ' quadrat i c ' )



Ph.D Thesis Marco San Mart́ın Hormazábal 150

1116

1117 de f dOdT(T) :

1118

1119 re turn f l o a t ( d e r i v a t i v e (O, x0 = T, dx = 1e−6))

1120

1121 dOdT = np . v e c t o r i z e (dOdT)

1122

1123 B1=np . l i n s p a c e (1000 ,2000 ,7)

1124

1125 B2= np . l i n s p a c e (2001 ,4000 ,86)

1126

1127 B3= np . l i n s p a c e (4001 ,6000 ,7)

1128

1129 T array = np . concatenate ( ( B1 , B2 , B3 ) )

1130

1131 re turn T array [ 1 : 9 9 ] , dOdT( T array [ 1 : 9 9 ] )

1132

1133

1134 # In [ ] :

1135

1136

1137 X,Y = c a l c v i s f u n (0 .00045577097697686473 ,0 .026379909222130012 , X so l )

1138

1139

1140 # In [ ] :

1141

1142

1143 de f norma l d i s t (x , sigma ,mu) :

1144

1145 re turn 1/( sigma∗np . s q r t (2∗np . p i ) )∗ np . exp(−(x−mu)∗∗2/(2∗ sigma ∗∗2))

1146

1147 norma l d i s t = np . v e c t o r i z e ( norma l d i s t )

1148

1149

1150 # In [ ] :

1151

1152

1153 mu = X[ np . where (np . max(Y)== Y ) [ 0 ] [ 0 ] ] # T peak

1154 sigma = 1/(np . max(Y)∗np . s q r t (2∗np . p i ) ) # T sigma

1155

1156

1157 # In [ ] :
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1158

1159

1160 f i g , ax1 = p l t . subp lo t s ( f i g s i z e =(9 , 6 ) )

1161

1162 ax2 = ax1 . twiny ( )

1163

1164 ax1 . p l o t (X,Y, l a b e l = 'DG v i s i b i l i t y func t i on ' )

1165 ax1 . p l o t (X, norma l d i s t (X, sigma ,mu) , \
1166 l a b e l = ' Normal d i s t r i b u t i o n : T = 2942 K and $\ sigma T$ = 244 K ' )

1167 ax1 . s e t x l a b e l ( r ”$T$ (K) ” )

1168

1169 n e w t i c k l o c a t i o n s = np . l i n s p a c e (1000 ,6000 ,6)

1170

1171 de f t i c k f u n c t i o n (X) :

1172

1173 V = z don T (X)

1174

1175 re turn [ ”%d” % z f o r z in V]

1176

1177 ax2 . s e t x l i m ( ax1 . ge t x l im ( ) )

1178 ax2 . s e t x t i c k s ( n e w t i c k l o c a t i o n s )

1179 ax2 . s e t x t i c k l a b e l s ( t i c k f u n c t i o n ( n e w t i c k l o c a t i o n s ) )

1180 ax2 . s e t x l a b e l ( r ” Redsh i f t $z$” )

1181

1182 ax1 . l egend ( )

1183

1184 f i g . s a v e f i g ( ' Vis fun . pdf ' )

1185 p l t . show ( )

1186

1187

1188 # In [ ] :

1189

1190

1191 pr in t ( ” Redsh i f t o f the peak p o s i t i o n : ” , z don T (X[ np . where (np . max(Y)== Y ) [ 0 ] [ 0 ] ] ) )

1192

1193

1194 # In [ ] :

1195

1196

1197 pr in t ( ”Temperature o f the peak p o s i t i o n : ” ,X[ np . where (np . max(Y)== Y ) [ 0 ] [ 0 ] ] )

1198

1199
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1200 # In [ ] :

1201

1202

1203 pr in t ( ”Peak maximum : ” ,Y[ np . where (np . max(Y) == Y ) [ 0 ] [ 0 ] ] )

1204

1205

1206 # In [ ] :

1207

1208

1209 pr in t ( ”Temperature standard dev i a t i on : ” , sigma )

1210

1211

1212 # In [ ] :

Listing F.1: The code to generates the tables



Appendix G

Adaptative Metropolis MCMC - Code

The code read the tables generated in F to run the adaptative Metropolis MCMC algorithm.

This code runs executing result = mcmccomplex(N,M), where N is the total number of

steps, and M is the whole parallel MCMC processes that the user wants to run. This function

returns this object: [zchain, Cchain, h2Obchain, nschain,Nchain], where the user can access

to every chain and step.

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3 from sc ipy . s i g n a l import s a v g o l f i l t e r

4 from sc ipy . i n t e r p o l a t e import interp1d , Regu la rGr id Inte rpo la to r

5 from tqdm import tqdm notebook

6 from i t e r t o o l s import product

7 from sc ipy . opt imize import r o o t s c a l a r , f s o l v e , c u r v e f i t

8 from sc ipy . i n t e g r a t e import odeint , cumtrapz , quad

9 from sc ipy . misc import d e r i v a t i v e

10 from sc ipy import i n t e r p o l a t e

11 import random

12 import i t e r t o o l s

13

14 de f Tk( k ) :

15

16 re turn np . l og (1+(0.124∗k )∗∗2)/ (0 . 124∗ k )∗∗2∗ \
17 np . s q r t ((1+(1.257∗k )∗∗2+(0.4452∗k )∗∗4+(0.2197∗k )∗∗6) \
18 /(1+(1.606∗k )∗∗2+(0.8568∗k )∗∗4+(0.3927∗k )∗∗6) )

19

153
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20 de f Sk ( k ) :

21

22 re turn ((1+(1.209∗k )∗∗2+(0.5116∗k)∗∗4+np . s q r t (5)∗ \
23 (0 .1657∗ k )∗∗6)/(1+(0.9459∗k )∗∗2+(0.4249∗k )∗∗4+(0.1657∗k )∗∗6))∗∗2

24

25 de f Dk( k ) :

26

27 re turn np . power ( ( ( 0 . 1 5 8 5∗ k )∗∗2+(0.9702∗k)∗∗4+ \
28 (0 .2460∗ k )∗∗6)/(1+(1.180∗ k )∗∗2+(1.540∗k )∗∗4

29 +(0.9230∗k )∗∗6+(0.4197∗k )∗∗8) , 1/4)

30

31 T0 = 2.725 #T CMB

32 R ion = 0.80209 # r e i o n i z a t i o n parameter

33

34 de f f a c t o r 1 ( beta , l , lR , ns ) :

35 re turn np . power ( ( beta ∗ l / lR ) , ns−1)

36

37 de f f a c t o r 2 ( beta , l , lH , lT , lD ,RL) :

38 re turn 1/( beta ∗∗2∗np . s q r t ( beta ∗∗2−1))∗ \
39 (3∗Tk( beta ∗ l / lT )∗RL−np . power(1+RL,−1/4)∗Sk ( beta ∗ l / lT )∗ \
40 np . exp(−beta ∗∗2∗ l ∗∗2/ lD ∗∗2)∗np . cos ( beta ∗ l / lH+Dk( beta ∗ l / lT ) ) )∗∗2

41

42 de f f a c t o r 3 ( beta , l , lH , lT , lD ,RL) :

43 re turn 3∗np . s q r t ( beta ∗∗2−1)/( beta ∗∗4∗np . power(1+RL, 3 / 2 ) )∗ \
44 np . exp(−2∗beta ∗∗2∗ l ∗∗2/ lD ∗∗2)∗ \
45 Sk ( beta ∗ l / lT )∗∗2∗np . s i n ( beta ∗ l / lH+Dk( beta ∗ l / lT ))∗∗2

46

47 de f integrand ( beta , l , lH , lT , lR , lD ,RL, ns ) :

48

49 re turn f a c t o r 1 ( beta , l , lR , ns ) \
50 ∗( f a c t o r 2 ( beta , l , lH , lT , lD ,RL)+ f a c t o r 3 ( beta , l , lH , lT , lD ,RL) )

51

52 de f i n t e g r a t i o n ( l , lH , lT , lR , lD ,RL, ns ,N) :

53

54 r e s u l t a d o i n t e g r a l = \
55 quad ( integrand , 1 , 10 , args=( l , lH , lT , lR , lD ,RL, ns ) \
56 , e p s r e l =0.001 , f u l l o u t p u t=True )

57

58 t ry :

59

60 r e s u l t a d o i n t e g r a l [ 3 ]

61
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62 re turn np . nan

63

64 except :

65

66 pass

67

68 i f np . i snan ( r e s u l t a d o i n t e g r a l [ 0 ] ) :

69

70 re turn np . nan

71

72 re turn R ion ∗4∗np . p i ∗T0∗∗2∗N∗∗2/25∗ r e s u l t a d o i n t e g r a l [ 0 ]∗1 0∗∗ ( 1 2 )

73

74 mul t ipo l e s = np . concatenate ( ( np . l i n s p a c e (40 , 180 ,6 ) , \
75 np . l i n s p a c e (190 ,248 ,5 ) , np . l i n s p a c e (256 ,380 ,5 ) \
76 , np . l i n s p a c e (381 ,950 ,20 ) , np . l i n s p a c e (1000 ,2000 ,20 ) ) )

77

78 i n t e g r a t i o n = np . v e c t o r i z e ( i n t e g r a t i o n )

79

80 # read the Planck data

81 data = np . l oadtx t ( 'COM PowerSpect CMB−TT−f u l l R 3 . 0 1 . txt ' , dtype=f l o a t )

82 l ,TT, TT min , TT max = data [ : , 0 ] , data [ : , 1 ] , data [ : , 2 ] , data [ : , 3 ]

83

84 #smooth the data with a Savitzky−Gola f i l t e r

85 T T p l a n c k f i l t e r e d = s a v g o l f i l t e r (TT, 151 ,2)

86 # window s i z e 151 , polynomial order 2

87

88 TT planck interp = interp1d ( l , T T p l a n c k f i l t e r e d )

89

90 # These po in t s w i l l be used to eva luate the e r r o r in th MCMC

91 TT planck obs = TT planck interp ( mu l t i po l e s )

92

93 with open ( ”z . csv ” , ” r ” ) as F1 :

94

95 l i n e s = F1 . r e a d l i n e s ( )

96

97 a r ray z = np . f u l l ( l en ( l i n e s ) , np . nan )

98

99 f o r i in range ( l en ( l i n e s ) ) :

100

101 a r ray z [ i ] = np . f r omst r ing ( l i n e s [ i ] , dtype=f l o a t , sep= ' ' ) [ 0 ]

102

103 with open ( ”C. csv ” , ” r ” ) as F1 :
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104

105 l i n e s = F1 . r e a d l i n e s ( )

106

107 array C = np . f u l l ( l en ( l i n e s ) , np . nan )

108

109 f o r i in range ( l en ( l i n e s ) ) :

110

111 array C [ i ] = np . f r omst r ing ( l i n e s [ i ] , dtype=f l o a t , sep= ' ' ) [ 0 ]

112

113 with open ( ”h2Ob . csv ” , ” r ” ) as F1 :

114

115 l i n e s = F1 . r e a d l i n e s ( )

116

117 array h2Ob = np . f u l l ( l en ( l i n e s ) , np . nan )

118

119 f o r i in range ( l en ( l i n e s ) ) :

120

121 array h2Ob [ i ] = np . f r omst r ing ( l i n e s [ i ] , dtype=f l o a t , sep= ' ' ) [ 0 ]

122

123 with open ( ”lH . csv ” , ” r ” ) as F1 : # depends on z ,C, array ht2Ob

124

125 l i n e s = F1 . r e a d l i n e s ( )

126

127 array lH = np . f u l l ( ( l en ( a r ray z ) \
128 , l en ( array C ) , l en ( array h2Ob ) ) , np . nan )

129

130 f o r p in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
131 , range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
132 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

133

134 f i l a = i n t (p [ 0 ] ) ∗ l en ( array C )∗ \
135 l en ( array h2Ob)+ i n t (p [ 1 ] ) ∗ l en ( array h2Ob)+ i n t (p [ 2 ] )

136

137 array lH [ p [ 0 ] , p [ 1 ] , p [ 2 ] ] = \
138 np . f r omst r ing ( l i n e s [ f i l a ] , dtype=f l o a t , sep= ' ' ) [ 3 ]

139

140 with open ( ” lT . csv ” , ” r ” ) as F1 : # depends on z ,C

141

142 l i n e s = F1 . r e a d l i n e s ( )

143

144 ar ray lT = np . f u l l ( ( l en ( a r ray z ) , l en ( array C ) ) , np . nan )

145
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146 f o r p in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
147 , range ( l en ( array C ) ) ) , t o t a l=len ( a r ray z )∗ l en ( array C ) ) :

148

149

150 f i l a = i n t (p [ 0 ] ) ∗ l en ( array C)+ i n t (p [ 1 ] )

151

152 ar ray lT [ p [ 0 ] , p [ 1 ] ] = \
153 np . f r omst r ing ( l i n e s [ f i l a ] , dtype=f l o a t , sep= ' ' ) [ 2 ]

154

155 with open ( ”lR . csv ” , ” r ” ) as F1 : # depends on z ,C

156

157 l i n e s = F1 . r e a d l i n e s ( )

158

159 array lR = np . f u l l ( ( l en ( a r ray z ) , l en ( array C ) ) , np . nan )

160

161 f o r p in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
162 , range ( l en ( array C ) ) ) , t o t a l=len ( a r ray z )∗ l en ( array C ) ) :

163

164 f i l a = i n t (p [ 0 ] ) ∗ l en ( array C)+ i n t (p [ 1 ] )

165

166 array lR [ p [ 0 ] , p [ 1 ] ] = \
167 np . f r omst r ing ( l i n e s [ f i l a ] , dtype=f l o a t , sep= ' ' ) [ 2 ]

168

169 with open ( ”lD . csv ” , ” r ” ) as F1 : # depends on z ,C, array ht2Ob

170

171 l i n e s = F1 . r e a d l i n e s ( )

172

173 array lD = np . f u l l ( ( l en ( a r ray z ) , l en ( array C ) \
174 , l en ( array h2Ob ) ) , np . nan )

175

176 f o r p in tqdm notebook ( product ( range ( l en ( a r ray z ) ) , \
177 range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) \
178 , t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

179

180 f i l a = i n t (p [ 0 ] ) ∗ l en ( array C )∗ l en ( array h2Ob ) \
181 +i n t (p [ 1 ] ) ∗ l en ( array h2Ob)+ i n t (p [ 2 ] )

182

183 array lD [ p [ 0 ] , p [ 1 ] , p [ 2 ] ] = \
184 np . f r omst r ing ( l i n e s [ f i l a ] , dtype=f l o a t , sep= ' ' ) [ 3 ]

185

186 with open ( ”Rl . csv ” , ” r ” ) as F1 : # depends on z ,C, array ht2Ob

187
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188 l i n e s = F1 . r e a d l i n e s ( )

189

190 array Rl = np . f u l l ( ( l en ( a r ray z ) \
191 , l en ( array C ) , l en ( array h2Ob ) ) , np . nan )

192

193 f o r p in tqdm notebook ( product ( range ( l en ( a r ray z ) ) \
194 , range ( l en ( array C ) ) , range ( l en ( array h2Ob ) ) ) , \
195 t o t a l=len ( a r ray z )∗ l en ( array C )∗ l en ( array h2Ob ) ) :

196

197 f i l a = i n t (p [ 0 ] ) ∗ l en ( array C )∗ l en ( array h2Ob ) \
198 +i n t (p [ 1 ] ) ∗ l en ( array h2Ob)+ i n t (p [ 2 ] )

199

200 array Rl [ p [ 0 ] , p [ 1 ] , p [ 2 ] ] = \
201 np . f r omst r ing ( l i n e s [ f i l a ] , dtype=f l o a t , sep= ' ' ) [ 3 ]

202

203 # we d e f i n e the i n t e r p o l a t i o n s in mu l t ip l e dimensions

204

205 i n t e r p l H = \
206 Regu la rGr id Inte rpo la to r ( ( array z , array C , array h2Ob ) , ar ray lH )

207 i n t e r p l T = Regu la rGr id Inte rpo la to r ( ( array z , array C ) , ar ray lT )

208 i n t e r p l R = Regu la rGr id Inte rpo la to r ( ( array z , array C ) , ar ray lR )

209 i n t e rp lD = \
210 Regu la rGr id Inte rpo la to r ( ( array z , array C , array h2Ob ) , array lD )

211 i n t e r p R l = \
212 Regu la rGr id Inte rpo la to r ( ( array z , array C , array h2Ob ) , ar ray Rl )

213

214 L f i t = 0.45741271

215 h f i t = 0.49638699

216 # conver s i on de Mpc to km

217 mpc to km = 3.086∗10∗∗19

218 km to mpc = 3.24078∗10∗∗(−20)

219

220 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
221

222 de f EQ(Y, z ,C, L ) :

223

224 re turn 1/(1+z ) − Y DG(Y,C, L)

225

226 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
227

228 de f F(Y,C, L ) :

229
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230 value = − L∗(Y/3)∗np . s q r t (Y+C)

231

232 re turn value

233

234 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
235

236 de f R DG(Y,C, L ) :

237

238 t ry :

239

240 value = Y∗np . s q r t ( ( 1+F(Y,C, L) )/ ( 1+3∗F(Y,C, L) ) )

241

242 except :

243

244 value = np . nan

245

246 re turn value

247

248 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
249

250 de f Y so lve ( z ,C, L ) :

251

252 outputs = f s o l v e (EQ, 0 . 3 , args=(z ,C, L) , f u l l o u t p u t=True , x t o l =0.1)

253

254 i f outputs [ 2 ] == 1 :

255

256 re turn outputs [ 0 ]

257

258 e l s e :

259

260 re turn np . nan

261

262 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
263

264 de f Y DG(Y,C, L ) :

265

266 t ry :

267

268 value = R DG(Y,C, L)/R DG(1 ,C, L)

269

270 except :

271
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272 value = np . nan

273

274 re turn value

275

276 de f dt dY (Y,C) : #l o re to rna en s

277

278 re turn 1/(100∗ h f i t ∗np . s q r t (1+C))∗Y/np . s q r t (Y+C)∗ mpc to km

279

280 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
281 de f dY DGtodY(Y,C, L ) :

282

283 re turn d e r i v a t i v e (Y DG, args = (C, L) , x0 = Y, dx = 1e−6)

284

285 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

286

287 de f H DG(Y,C) : # 1/ s

288

289 re turn dY DGtodY(Y,C, L f i t )/ ( dt dY (Y,C)∗Y DG(Y,C, L f i t ) )

290

291 #−−−−−−−−− don = depends on −−−−−−−−−−−−−−−−
292

293 de f z don T (T) :

294

295 re turn T/T g − 1

296

297 z don T = np . v e c t o r i z e ( z don T )

298

299 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
300

301 de f Y don T (T,C) :

302

303 YDG = T0/T

304

305 z = 1/YDG − 1

306

307 re turn Y so lve ( z ,C, L f i t )

308

309 # we inc lude the c a l c u l a t i o n o f the v i s i b i l i t y

310 # func t i on to obta in a b e t t e r f i t a s s o c i a t e d

311 # to z . z i s going to be cons t ra ined by the

312 # peak o f the v i s i b i l i t y func t i on .

313 # to do t h i s we have to inc lude
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314 # solve ode DG and c a l c v i s f u n

315

316 T g = 2.725 # T CMB in K

317

318 G = 6.67430∗10∗∗(−11) ∗100∗∗3 # G: cmˆ3 kgˆ−1 sˆ−2

319

320 m p = 1.6726219∗10∗∗(−27) # proton mass : kg

321

322 Lambda alpha = 1215.682∗10∗∗(−8) # cm

323

324 f r a c = 0 .76

325

326 Gamma 2s = 8.22458 # sˆ−1

327

328 sigma thomson = 0.66524∗10∗∗(−24) # thomson c r o s s s e c t i o n cmˆ2

329

330 c = 2.99792458∗10∗∗10 # speed o f l i g h t cm/ s

331

332 #Black Body Spectrum T CMB

333 T0 = 2.725

334

335 de f n(T, h2Ob ) : # cmˆ−3 eq 2 . 3 . 2 9 Weinberg ' s book

336

337 #return km to Mpc∗∗2∗ f r a c ∗3∗100∗∗2∗h2Ob/(8∗np . p i ∗G∗m p )∗ (T/T g )∗∗3

338

339 re turn 4.218∗10∗∗(−7)∗h2Ob∗T∗∗3

340

341 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
342

343 de f alpha (T) : # cmˆ3 sˆ−1 eq . 2 . 3 . 3 1 Weinberg ' s book

344

345 re turn 1.4377∗10∗∗(−10)∗T∗∗(−0.6166)/(1+5.085∗10∗∗(−3)∗T∗∗0 .5300)

346

347 #return 2.84∗10∗∗(−11)∗T∗∗(−1/2)

348

349 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
350

351 de f beta (T) : # cmˆ−3 Kˆ3/2 ∗ alpha eq 2 . 3 . 3 2 Weinberg ' s book

352

353 re turn 2 .4147∗10∗∗ (15) ∗T∗∗(3/2)∗np . exp(−39474/T)∗ alpha (T)

354

355 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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356

357 de f S(T, h2Ob ) : #eq 2 . 3 . 8 Weinberg ' s book

358

359 re turn 1.747∗10∗∗(−22)∗np . exp (157894/T)∗T∗∗(3/2)∗h2Ob

360

361 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
362

363 de f model (X,T, h2Ob ,C) : # eq 2 . 3 . 2 7 Weinberg ' s book

364

365 # X i s the f r a c t i o n o f H i o n i z e d

366 # T i s the temperature

367

368 Y = Y don T (T,C)

369

370 Coef = 1 + beta (T)/( Gamma 2s + ( 8∗np . p i ∗H DG(Y,C) ) \
371 /( Lambda alpha∗∗3∗n(T, h2Ob)∗(1−X) ) )

372

373 N = alpha (T)∗n(T, h2Ob)/(T∗H DG(Y,C) )

374

375 dXdt = N∗Coef ∗∗(−1)∗(X∗∗2−(1−X)/S(T, h2Ob ) )

376

377 re turn dXdt

378

379 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
380

381 de f equ i l i b r ium (X,T, h2Ob ) :

382

383 re turn X∗(1+S(T, h2Ob)∗X)−1

384

385 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
386

387 de f X so lve r (T, h2Ob ) :

388

389 value=r o o t s c a l a r ( equ i l ib r ium , bracket = [ 0 . 9 , 3 ] , \
390 method=” brentq ” , args=(T, h2Ob) , r t o l =0.01)

391

392 i f va lue . root > 1 :

393

394 re turn 0.9999999

395

396 e l s e :

397
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398 re turn f l o a t ( va lue . root )

399

400 X so lve r = np . v e c t o r i z e ( X so lve r )

401

402 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
403

404 temp = np . l i n s p a c e (6000 ,1000 ,100)

405

406 de f solve ode DG (C, h2Ob ) :

407

408 X0 = X so lve r (6000 ,h2Ob)

409

410 i f h2Ob < 0 :

411

412 re turn np . f u l l ( [ l en ( temp ) ] , np . nan )

413

414 e l s e :

415

416 re turn ode int ( model , X0 , temp , args=(h2Ob ,C) , r t o l =0.0000001)

417

418 de f c a l c v i s f u n (C, h2Ob , array X DG ) :

419

420 i f h2Ob < 0 :

421

422 re turn np . f u l l ( [ 9 8 ] , np . nan ) , np . f u l l ( [ 9 8 ] , np . nan )

423

424 e l s e :

425

426 temp = np . l i n s p a c e (6000 ,1000 ,100)

427

428 temp = np . reshape ( temp , 1 0 0 )

429

430 temp = temp . t o l i s t ( ) + [800 , 600 , 400 , 200 , 0 ]

431

432 array X DG = np . reshape ( array X DG ,1 0 0 )

433

434 array X DG = array X DG . t o l i s t ( ) + [ 0 , 0 , 0 , 0 , 0 ]

435

436 X funcion = i n t e r p o l a t e . in te rp1d ( temp , array X DG , kind= ' quadrat i c ' )

437

438 de f integrand (T) :

439
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440 Y = Y don T (T,C)

441

442 re turn c∗ sigma thomson∗ X funcion (T)∗n( T, h2Ob )/(T∗H DG(Y,C) )

443

444 in tegrand = np . v e c t o r i z e ( integrand )

445

446 de f func t i on ( i n t e g r a l ) :

447

448 i f i n t e g r a l > 12 :

449

450 re turn 1

451

452 e l s e :

453

454 re turn 1 − np . exp(− i n t e g r a l )

455

456 f unc t i on = np . v e c t o r i z e ( func t i on )

457

458 A1=np . l i n s p a c e (1000 ,1999 ,50)

459

460 A2= np . l i n s p a c e (2000 ,4000 ,300)

461

462 A3= np . l i n s p a c e (4001 ,6000 ,100)

463

464 T array 0 = np . concatenate ( (A1 , A2 , A3) )

465

466 i n t e g r a l = cumtrapz ( integrand ( T array 0 ) , T array 0 )

467

468 i n t e g r a l = np . i n s e r t ( i n t e g r a l , 0 , 0 , a x i s =0)

469

470 O = i n t e r p o l a t e . in te rp1d ( T array 0 , func t i on ( i n t e g r a l ) , kind= ' quadrat i c ' )

471

472 de f dOdT(T) :

473

474 re turn f l o a t ( d e r i v a t i v e (O, x0 = T, dx = 1e−6))

475

476 dOdT = np . v e c t o r i z e (dOdT)

477

478 B1=np . l i n s p a c e (1000 ,2000 ,7)

479

480 B2= np . l i n s p a c e (2001 ,4000 ,86)

481
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482 B3= np . l i n s p a c e (4001 ,6000 ,7)

483

484 T array = np . concatenate ( ( B1 , B2 , B3 ) )

485

486 re turn T array [ 1 : 9 9 ] , dOdT( T array [ 1 : 9 9 ] )

487

488 ####### modi f i ed adaptat ive met ropo l i s MCMC algor i thm ############

489

490 z min , z max = np . min ( a r ray z ) , np . max( a r ray z )

491 C min , C max = np . min ( array C ) , np . max( array C )

492 h2Ob min , h2Ob max = np . min ( array h2Ob ) , np . max( array h2Ob )

493

494 # seeds

495

496 z o = 1076

497 C o = 4.67E−4

498 h2Ob o = 0.024

499 ns o = 1.02

500 N o = 1.34E−5

501

502 s igma z = 10

503 sigma C = C o/100

504 sigma h2Ob = h2Ob o/100

505 s igma ns = ns o /100

506 sigma N = N o/100

507

508 de f f ( o , n ) :

509

510 va l = np . exp ( o − n)

511

512 re turn va l

513

514 de f e r r o r ( a , s i gma d i s t ) :

515

516 n = np . square ( TT planck obs − a )

517

518 re turn np . sum(n)/ s i gma d i s t

519

520 de f cuadra t i ca (x , a0 , b0 , c0 ) :

521

522 re turn a0∗x∗∗2+b0∗x+c0

523
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524 de f z e s t i m a t i o n ( C prob , h2Ob prob ) :

525

526 X sol = solve ode DG ( C prob , h2Ob prob )

527

528 X,Y = c a l c v i s f u n ( C prob , h2Ob prob , X so l )

529

530 peak=np . where (np . nanmax(Y) == Y) [ 0 ]

531

532 near x = X[ i n t ( peak )−4: i n t ( peak )+5]

533 near y = Y[ i n t ( peak )−4: i n t ( peak )+5]

534

535 popt , pcov = c u r v e f i t ( cuadrat ica , near x , near y )

536

537 value = −popt [ 1 ] / ( 2 ∗ popt [ 0 ] )

538

539 re turn z don T ( value )

540

541 # MCMC metropo l i s

542

543 de f mcmc complex ( steps , cha ins ) :

544

545 C prob = np . random . normal ( C o , sigma C , cha ins )

546 h2Ob prob = np . random . normal ( h2Ob o , sigma h2Ob , cha ins )

547 ns prob = np . random . normal ( ns o , sigma ns , cha ins )

548 N prob = np . random . normal ( N o , sigma N , cha ins )

549

550 s i gma d i s t = 2849858

551

552 z o = z e s t i m a t i o n ( C o , h2Ob o )

553

554 z prob = np . random . normal ( z o , sigma z , cha ins )

555

556 # i n i t i a l i z a t i o n f o r every chain

557

558 e r r o r a r r a y = np . f u l l ( ( cha ins ) , np . nan )

559

560 f o r i in range ( cha ins ) :

561

562 lH prob = f l o a t ( i n t e r p l H ( [ z prob [ i ] , C prob [ i ] , h2Ob prob [ i ] ] ) )

563 lT prob = f l o a t ( i n t e r p l T ( [ z prob [ i ] , C prob [ i ] ] ) )

564 lR prob = f l o a t ( i n t e r p l R ( [ z prob [ i ] , C prob [ i ] ] ) )

565 lD prob = f l o a t ( i n t e rp lD ( [ z prob [ i ] , C prob [ i ] , h2Ob prob [ i ] ] ) )
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566 Rl prob = f l o a t ( i n t e r p R l ( [ z prob [ i ] , C prob [ i ] , h2Ob prob [ i ] ] ) )

567

568 p r e d i c t = i n t e g r a t i o n ( mul t ipo l e s , \
569 lH prob , lT prob , lR prob , lD prob , Rl prob , ns prob [ i ] , N prob [ i ] )

570

571 whi le np . i snan ( e r r o r ( pred i c t , s i gma d i s t ) ) :

572

573 C prob [ i ] = np . random . normal ( C o , sigma C )

574 h2Ob prob [ i ] = np . random . normal ( h2Ob o , sigma h2Ob )

575 ns prob [ i ] = np . random . normal ( ns o , s igma ns )

576 N prob [ i ] = np . random . normal ( N o , sigma N )

577

578 lH prob = f l o a t ( i n t e r p l H ( [ z prob [ i ] , C prob [ i ] , h2Ob prob [ i ] ] ) )

579 lT prob = f l o a t ( i n t e r p l T ( [ z prob [ i ] , C prob [ i ] ] ) )

580 lR prob = f l o a t ( i n t e r p l R ( [ z prob [ i ] , C prob [ i ] ] ) )

581 lD prob = f l o a t ( i n t e rp lD ( [ z prob [ i ] , C prob [ i ] , h2Ob prob [ i ] ] ) )

582 Rl prob = f l o a t ( i n t e r p R l ( [ z prob [ i ] , C prob [ i ] , h2Ob prob [ i ] ] ) )

583

584 p r e d i c t = i n t e g r a t i o n ( mul t ipo l e s , lH prob , \
585 lT prob , lR prob , lD prob , Rl prob , ns prob [ i ] , N prob [ i ] )

586

587 e r r o r a r r a y [ i ] = e r r o r ( pred i c t , s i gma d i s t )

588

589 z o ld , C old , h2Ob old , ns o ld , N old = \
590 z prob , C prob , h2Ob prob , ns prob , N prob

591

592 z cha in = np . f u l l ( ( s teps , cha ins ) , np . nan )

593 C chain = np . f u l l ( ( s teps , cha ins ) , np . nan )

594 h2Ob chain = np . f u l l ( ( s teps , cha ins ) , np . nan )

595 ns cha in = np . f u l l ( ( s teps , cha ins ) , np . nan )

596 N chain = np . f u l l ( ( s teps , cha ins ) , np . nan )

597

598 adapta t i v e a r ray = np . f u l l ( ( cha ins ) , 0)

599

600 f o r p in tqdm( i t e r t o o l s . product ( range ( s t ep s ) \
601 , range ( cha ins ) ) , t o t a l = s t ep s ∗ cha ins ) :

602

603 i = p [ 0 ]

604 j = p [ 1 ]

605

606 C new = f l o a t (np . random . normal ( C old [ j ] , sigma C ) )

607 h2Ob new = f l o a t (np . random . normal ( h2Ob old [ j ] , sigma h2Ob ) )
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608 ns new = f l o a t (np . random . normal ( n s o ld [ j ] , s igma ns ) )

609 N new = f l o a t (np . random . normal ( N old [ j ] , sigma N ) )

610

611 z o = z e s t i m a t i o n (C new , h2Ob new )

612 z new = f l o a t (np . random . normal ( z o , s igma z ) )

613

614 whi le z new<z min or C new<C min or h2Ob new<h2Ob min or \
615 z new>z max or C new>C max or h2Ob new>h2Ob max or N new < 0 :

616

617 C new = f l o a t (np . random . normal ( C old [ j ] , sigma C ) )

618 h2Ob new = f l o a t (np . random . normal ( h2Ob old [ j ] , sigma h2Ob ) )

619 N new = f l o a t (np . random . normal ( N old [ j ] , sigma N ) )

620

621 z o = z e s t i m a t i o n (C new , h2Ob new )

622 z new = f l o a t (np . random . normal ( z o , s igma z ) )

623 lH new = f l o a t ( i n t e r p l H ( [ z new , C new , h2Ob new ] ) )

624 lT new = f l o a t ( i n t e r p l T ( [ z new , C new ] ) )

625 lR new = f l o a t ( i n t e r p l R ( [ z new , C new ] ) )

626 lD new = f l o a t ( i n t e r p lD ( [ z new , C new , h2Ob new ] ) )

627 Rl new = f l o a t ( i n t e r p R l ( [ z new , C new , h2Ob new ] ) )

628

629 pred ic t new = i n t e g r a t i o n ( mul t ipo l e s , lH new , \
630 lT new , lR new , lD new , Rl new , ns new , N new)

631

632 error new = e r r o r ( predict new , s i gma d i s t )

633

634 i f np . i snan ( error new ) :

635

636 pr in t ( 'NAN ERROR ' )

637

638 va l = np . random . rand ( )

639

640 va l2 = f ( e r r o r a r r a y [ j ] , e r ror new )

641

642 i f va l < va l2 :

643

644 adapta t i v e a r ray [ j ] += 1

645

646 e r r o r a r r a y [ j ] = error new

647

648 z o l d [ j ] = z new

649 C old [ j ] = C new
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650 h2Ob old [ j ] = h2Ob new

651 ns o ld [ j ] = ns new

652 N old [ j ] = N new

653

654 e l s e :

655

656 adapta t i v e a r ray [ j ] −= 1

657

658 i f adapta t i v e a r ray [ j ] ≥ 7 :

659

660 s i gma d i s t = 0 .9∗ s i gma d i s t

661

662 adapta t i v e a r ray [ j ] −= 1

663

664 e l i f adapta t i v e a r ray [ j ] ≤ −7:

665

666 s i gma d i s t = 1 .1∗ s i gma d i s t

667

668 adapta t i v e a r ray [ j ] += 1

669

670 z cha in [ i ] [ j ] = z o l d [ j ]

671 C chain [ i ] [ j ] = C old [ j ]

672 h2Ob chain [ i ] [ j ] = h2Ob old [ j ]

673 ns cha in [ i ] [ j ] = ns o ld [ j ]

674 N chain [ i ] [ j ] = N old [ j ]

675

676 re turn [ z cha in , C chain , h2Ob chain , ns chain , N chain ]

Listing G.1: This code runs the adaptative Metropolis MCMC algorithm based on the tables.
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