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A mi profesor guı́a Álvaro, por todo el apoyo durante lo meses más difı́ciles, donde

la motivación a veces se perdı́a y especialmente por haberme motivado desde mi primera

investigación de pregrado, a seguir investigando ahora en el Magister. Al equipo de OCM

2019 con quienes tuve el gran agrado de compartir oficina por medio semestre.

A mis amigos que hice en la universidad y que me han acompañado en este bello
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ABSTRACT

Motivated by the challenge of power generation through renewable resources and the

imminent massive adoption of electric cars in homes, this paper proposes an online op-

timization scheme based on Reinforced Learning for decisions associated with two dis-

tributed energy resources at homes: a solar panel with a battery and an electric car capable

of delivering energy to the home. The model states are represented by the energy in both

the battery and the car and other exogenous factors such as the home’s energy consump-

tion, temperature, and humidity. As there is an infinite space of states, discretization is

performed on the energy stored in the battery and the car. The model is approximated

by Value Function Approximation, using a Neural Network as an approximation, which

serves as a regression function. The neural network is trained with state-action vectors

and expected values of the future cost of the actions taken. Two experiments are carried

out to test the model’s effectiveness: an adjustment of the hyperparameters of the neural

network in search of the model that best approximates the data; and a simulation of de-

cisions in a home with real data. The results obtained from making day-to-day decisions

are compared with three simpler policies designed based on the data’s nature. The de-

signed model obtains an average 13% of cost advantage over a year as compared to the

benchmark policies.

Keywords: machine learning, reinforcement learning, energy, consumption forecasting,

neural networks, value function approximation, VFA
ix



RESUMEN

Ante los desafı́os que conllevan tanto la implementación de generación de energı́a

mediante recursos renovables, como el inminente aumento de los autos eléctricos en los

hogares en el corto plazo, se propone un modelo de optimización mediante un esquema

de Aprendizaje Reforzado para la decisión de acciones que tomar sobre dos recursos en-

ergéticos distribuı́dos: un panel solar con baterı́a y un auto eléctrico con capacidad de

entregar energı́a al hogar. Los estados del modelo son representados por la energı́a tanto

en la baterı́a como en el auto, y otros factores exógenos como el consumo energético del

momento del hogar, temperatura y humedad. Al existir un espacio infinito de estados, se

realiza una discretización sobre los estados de baterı́a de ambos artefactos. El modelo es

aproximado mediante Aproximación de Función de Valor, utilizando como aproximador

una Red Neuronal, que sirve como función de regresión. La red neuronal es entrenada con

vectores de estado-acción (X) y valores esperados del costo futuro de la acción tomada

(Y ). Se realizan dos experimentos para probar la efectividad del modelo: un ajuste de

los hiperparámetros de la red neuronal, en busca del modelo que mejor logre aproximar

los datos; y una simulación de decisiones en un hogar con datos reales otorgados por

Pecan Street. Se comparan los resultados obtenidos de tomar decisiones dı́a a dı́a con tres

polı́ticas diseñadas a partir de la naturaleza de los datos. El modelo diseñado obtiene un

13% de ventaja por sobre la mejor polı́tica diseñada, en el promedio anual.

Keywords: machine learning, reinforcement learning, energy, consumption forecasting,

neural networks, value function approximation, VFA
x
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1. INTRODUCTION

Climate change is one of the most important challenges of the modern world. The

increase of carbon dioxide concentration in the atmosphere has been an alert for most

countries to move from carbon-intensive generation to renewable energy sources. For

example, the Chilean government has recently announced that by 2040, the generation

side of the Chilean electric power system will have completely removed coal units. In fact,

Chile has already been transforming the electrical generation to a cleaner one, achieving

by 2018 that 45.5% of the electrical generation in Chile came from renewable sources. On

this line, it is expected by 2030 that 80% of electrical generation will come from renewable

sources (de Chile, 2018; Simsek et al., 2020). Considering this, it is also expected that

renewable energy sources will also be used in households, complementing the traditional

energy supply from large and far-away generators. For example, in Chile, from 2020,

there is a support grant for solar panel acquisition for domestic houses to help families

reduce their energy cost at home and increase the sustainability of the power supply (Chile,

2020). This will generate new challenges in managing these resources. Variable renewable

energy generates uncertainty about the electric generation, which depends on exogenous

conditions such as solar radiation, temperature, and humidity. On the other hand, electric

power requirements increase due to electric cars’ incorporation and their need to quickly

charge significant amounts of energy. There is a high amount of energy needed for a car

to be driven and last for enough travel time.

Further, battery technologies are improving fast, becoming cheaper and lasting longer

(Rahman, Oni, Gemechu, & Kumar, 2020). This makes them more accessible to store

energy in houses, especially when it comes from renewable sources.

The generation uncertainty of variable renewable energy, added to the increasing num-

ber of electric cars and many other high-powered devices, will considerably increase elec-

tric consumption and the power required for connecting many high-powered devices at the

same time. One of the city’s challenges is to distribute the electrical resources intelligently.
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This is done by controlling and scheduling the electrical loads efficiently, improving the

system’s behavior on the demand side.

The scientific community has not fully studied how to manage distributed energy re-

sources, dealing with energy consumption uncertainty to make a more efficient use of

energy inside homes. However, various previous works provide an important basis for

our proposed work. First, some authors have studied reinforcement learning and other

machine learning techniques in demand response contexts. In (R. Lu & Hong, 2019) a

reinforcement learning scheme is proposed, with a neural network approach for predicting

future prices and energy demands. In particular, the model proposed calculates the opti-

mal incentive rate for a house to respond in a demand response incentive-based scheme. A

multi-agent approach of reinforcement learning is proposed in (Kazmi, Suykens, Balint,

& Driesen, 2019), but it focuses on control of thermostatically controlled and not energy

storage or home appliances usage. (Zhang, Li, Sun, & O’Neill, 2016) use a mix between

classic optimization and machine learning for learning home heating, ventilation, and air

conditioning behaviors, so the model can control them to test how it fits in a demand

response environment.

There is also work on Reinforcement Learning with deep learning for deciding on

multiple home appliances (R. Lu, Hong, & Yu, 2019). The difference is that deep learn-

ing is employed for energy price forecasting and not for the Reinforcement Learning (Q-

Learning in this case) function approximation, which is the case of our present work.

More reinforcement learning methods can also be seen in the review paper (Vázquez-

Canteli & Nagy, 2019) and references therein. This review describes different reinforce-

ment learning approaches to manage thermal loads, energy loads, and batteries, with dif-

ferent types of approximations such as Q-Learning.

Also, previous work from Google’s DeepMind team employed machine learning tech-

niques that resulted in a 40% reduction in energy consumption from cooling data centers

(Gao, 2014). Further, Google’s recent publication on how they are moving toward 24x7
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carbon-free energy in every data center of the world specifically provides another piece

of great inspiration for our proposed work, as the implementation is also based on re-

inforcement learning using deep learning as support for consumption forecasts (Google,

2018).

Further, robust optimization for power system operations was presented in (Mena, Es-

cobar, Lorca, Negrete-Pincetic, & Olivares, 2019), where new optimization and stochastic

modeling tools were developed to allow smarter real-time decision-making schemes for

power systems with a massive integration of wind and solar power, supporting the hypoth-

esis on how exogenous factors affect energy consumption prediction. One configuration

of an energy community is introduced in (X. Lu et al., 2020) where they present a robust

optimization model for demand response that also includes the concept of electric vehicles

participating in the grid (also known as vehicle-to-grid, or V2G, schemes).

The vehicle to grid problem is also treated in this paper, and it also has been widely

studied, aiming to minimize costs for the electrical vehicle users. Nevertheless, in recent

studies, references (He, Venkatesh, & Guan, 2012; Di Giorgio, Liberati, & Pietrabissa,

2013) do not use real-time information or focus only on the vehicle-to-grid decisions with-

out taking decisions in other electrical artifacts.

Moreover, information available these days opens a world for solving difficult prob-

lems. This line (Ning & You, 2019) shows how data, deep learning, and other data-

driven mathematical programming frameworks are growing fast to deal with uncertainty

on stochastic problems. Problems also related to vehicle-to-grid prediction are developed

(Ebrahimi & Rastegar, 2020). The authors propose a clustering method from electric

vehicle charging behaviors by selecting a subset of the electric vehicles as representa-

tives. Then they estimate a total load of a charging station based on the representative

charging profiles. The research does not apply any learning methods for predictions. In-

stead, they apply data mining. On the other hand (Avendano, Ruyssinck, Vandekerckhove,
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Van Hoecke, & Deschrijver, 2018) applies different data-driven machine learning meth-

ods, being one of them a reinforcement learning scheme with neural networks as an ap-

proximation. The paper shows that machine learning algorithms for control can be as good

as rule-based policies, but the machine learning-supported methods are more scalable and

require less knowledge.

Real-world data from the same data provider as our work (Pecan Street) was used to

solve a similar problem in (Chung, Maharjan, Zhang, & Eliassen, 2020). They apply game

theory to solve a collaborative framework where houses work together to minimize elec-

tricity dynamic prices, as they are affected by the house consumption behaviors. However,

the article does not include any control over renewable energy sources or electric cars and

house batteries as it schedules home appliance usage.

As mentioned above, real data is used in this research. The source, Pecan Street, con-

tributes to academic research by making data publicly available for this purpose. The

data from this entity has been widely studied in different ways, many of them with ma-

chine learning applications. Reference (Afzalan & Jazizadeh, 2020) proposes a method

for inference of time-of-use on flexible loads, specifically an electric car. The method is

proposed for getting a more detailed cause of some specific energy use patterns. A similar

problem is approached but with a different method in (Wang, Du, Ye, & Zhao, 2020), They

present a deep generative model for the same purpose of electric vehicle charging profiles.

The importance of solar generation data recording or quantification is raised in (Brown,

Abate, & Rogers, 2020). For that purpose they propose a method for quantifying solar

energy generation in censored smart sensors, in which there is no detail of solar energy

generation records, contributing in generating more available data related to renewable

sources. Also, reference (Henri & Lu, 2019) comparing four classic machine learning

methods (neural network, support vector machine, logistic regression, and random forest)

to predict and control photovoltaic panels and energy storage. They use 1-min interval data

records concluding that machine learning can improve results over mode-based controllers

and reduce computing efforts by training models on the cloud.
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In (Mocanu et al., 2018) an on-line optimization using deep reinforcement learning

and deep policy gradient is applied for making energy usage more efficient. In this partic-

ular case, results showed that deep policy gradient worked better for the data they used.

Some of the methods, such as hyperparameter tuning (network configuration study) and

approximation of the reinforcement learning scheme, are also applied in our work.

Motivated by the high potential of managing renewable energy sources and the avail-

ability of good quality data records of energy consumption, the present work proposes an

online optimization model and applies machine learning regression to study the capability

to use historical data to predict and optimize the use of electrical energy sources. The

model is based on a reinforcement learning scheme, approximated using a Value Function

Approximation (VFA). To deal with the data’s nonlinearity, a Neural Network model is

used to work as a regression function in the VFA scheme. The model is developed in

the Python programming language, supported by the Python packages Pandas for reading

historical data and Scikit-learn for machine learning.

1.1. Research questions and hypotheses

As energy consumption data is becoming more exploited (Avendano et al., 2018;

Ebrahimi & Rastegar, 2020; Afzalan & Jazizadeh, 2020; Brown et al., 2020) by re-

searchers, many methods have been tested. Energy consumption behavior has always

been variable, but sometimes consumption data has patterns that are potentially discov-

erable with the help of algorithms. That made us elaborate out first research question as

follows.

RQ1. Can energy consumption data in a household be generalized in order to approx-

imate future consumption?

Literature shows that data-driven solutions(Vázquez-Canteli & Nagy, 2019; Kazmi et

al., 2019; Liu et al., 2020; R. Lu et al., 2019) are feasible methods for dealing with energy

optimization. Therefore we pose an hypothesis and a research question
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H1: A data-driven reinforcement learning model can be approximated using neural

networks, in order to optimize energy consumption and storage.

RQ2. Do neural network hyperparameters have an impact on the performance of the

value function approximation?

Further questions are also asked in order to understand better how the predicting model

will work and also how data behaves over time.

As the years present different seasons, each of them having very different solar energy

and consumption profiles, two more questions are stated.

RQ3. Will the model work good despite of the epoch of the year?

RQ4. Will there be any difference between hours of the day?

1.2. Research contribution and structure

The research’s main objective is the development and implementation of a flexible

energy storage optimization model for managing solar and electric vehicle batteries in any

building situation. In particular, the model has the ability to learn from data and generalize

it for predicting future scenarios with good results in high solar energy generation. As a

summary, this thesis:

• Proposes a reinforcement learning scheme for predicting the best battery energy

usage policies.

• Applies neural networks for approximating the value function of the reinforce-

ment learning model.

• Presents a case study with hyper-parameter tuning for improving neural network

performance under the proposed policy and compares the model against other

energy usage policies designed to take advantage of the nature of the test data.
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The rest of the document is organized as follows. Chapter 2 gives a brief explanation

of the methods applied in the proposed model. Chapter 3 states the problem definition and

model, defining stages, states, costs, and actions and its nomenclature. Chapter 4 compares

the model’s configurations, tests the final model against three policies, and discusses the

results. Finally, chapter 5 provides concluding remarks.
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2. BACKGROUND

2.1. Dynamic Programming and Reinforcement Learning

Dynamic programming is a methodology for solving problems that are not static, that

means they depend on stages and probabilities. Reinforcement learning is an Artificial In-

telligence algorithm proposed for solving dynamic programming problems. An agent (the

decision-maker) takes decisions based on its interaction with the environment, learning

from data.

RL can be formalized as an MDP (Markov Decision Process) (Kim & Lim, 2018).

States represent the current status of the environment and therefore imply the possible

actions to be taken. Each action generates a reward (or cost) depending on the current

state, defined by a cost function. The action taken will also define the transition to the next

stage, which is also affected, in some cases, by a probability transition function.

In some cases, reinforcement learning schemes can be complicated to solve or take too

much time. As the complexity depends on the number of states, actions, and stages, if any

Figure 2.1. Reinforcement learning scheme
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of them are too big, the problem becomes too big to be solved in a reasonable time with

current computing power. This problem is called the curse of dimensionality.

2.1.1. Value Function Approximation

There are various methods to solve problems with a huge space of states, actions, or

stages. One of them is called Value Function Approximation, which consists of estimating

the long-term reward/cost of a given state (Sammut & Webb, 2017). To make that possi-

ble, the model uses a regression function trained with historical data to make the model

converge to a good estimation.

The Value Function of a pair of state/action is commonly represented as follows.

V (s) = min
a

r(s, a) + V (s(a))

Where r represents the reward or cost of the current state, given an action choice and

how it affects the environment, then the optimal value of a state s and taking action a is

given by the sum of the reward of the current state and the best value of the function for

the available space of actions, and the new state given by the chosen action.

For a large space of state and actions, this can be hard to be calculated, so an estimation

should be done. In this work, the approximation is made by training a Value Function

Approximator, establishing a limit for recursion, and using historical data for calculating

these values.

2.1.2. Neural Networks in Reinforcement Learning schemes

Neural networks aim to simulate real human brains. They are composed of neurons

that are interconnected, simulating neural synapses. Neural networks have layers of neu-

rons of different sizes, where the neurons of a layer are usually connected to the neurons

of the next layer. When every neuron of a layer is connected to all of the next layer’s
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neurons, they are called fully connected layers. Neurons receive input and give an out-

put. Each connection between a neuron and another has a weight that will be trained and

fitted until theƒ neural network makes the best prediction of regression or classification.

The input of the first layer (input layer) is defined by the model (e.g., temperature, energy

levels, other neural network outputs, etc.). In contrast, each neuron’s input of the next

layers is the sum of the output of all neurons of the layer before times the weight of each

connection.

Neural network training consists of giving training sample inputs to the neural net-

work, looking for the model to adjust to all training sample outputs as closely as possible.

These models can be used for regression or classification. As our work is based on re-

gression, then for training, the neural network on each iteration calculates an output cost

that is compared to the expected cost, based on a simulation. A loss function is applied

to measure the loss of that iteration. For regression problems, common loss functions are

the Mean Squared Error or the Absolute Mean Error. The magnitude of the loss will de-

termine, among other parameters, how the neural network will adjust. For recalculating

the parameters (weights) of the neural network, the backpropagation algorithm is applied

(Hecht-Nielsen, 1992a; Werbos, 1990). More iterations of calculating loss with training

samples are made until any convergence criteria.

Neural networks are widely studied and applied in many fields being energy one of

them (Liu et al., 2020; Chung et al., 2020). Recent studies have focused on how deep

learning can contribute to Reinforcement Learning topics, being one of the best examples

of the Deep Q-Learning algorithm in (Mnih et al., 2015).
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3. METHODOLOGY

3.1. Problem definition

The study’s problem consists of a domestic household with smart sensors that measure

the real-time energy consumption of the different home appliances and stores the data for

further analysis. This house also has a photovoltaic panel for capturing solar energy, a

house battery for solar energy storage, and an electric vehicle. In this case, it is supposed

that the electric vehicle can give some of its energy to the house, which means serving as

a battery, so the house can use its energy to reduce grid consumption, therefore reducing

the money spent. Both solar energy, car charge consumption, and car discharge energy are

also recorded with smart sensors. Houses like these also have flexible loads that can be

controlled to minimize energy consumption from the grid and take advantage of renewable

sources’ energy storage.

With the current state of the art of monitoring electrical loads and also the capability

of controlling some electrical devices, houses will soon have their own energy sources,

more electric vehicles will also be able to give energy to the home, and energy will need

to be used in a more smart way. The following model looks for controlling this kind of

scenario.

3.2. Model

The scenario we approached is one in which there is a home with smart sensors com-

bined with Internet-of-Things technology, capable of controlling how to use the distributed

energy resources. In this context, we propose an online optimization model for deciding

how to use distributed energy resources in a smart home context efficiently.

The model consists of a reinforcement learning scheme, using Value Function Approx-

imation to calculate the cost of each pair of state and action chosen. The value function is
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Figure 3.1. Scenario representation

approximated using historical data with a Neural Network model. The function approxi-

mation represents the future cost of energy usage, given a current state, and choosing one

of the available actions.

The model can schedule the electricity usage from both the battery and the car by

considering exogenous factors, such as weather conditions (temperature and humidity)

and consumption history. The regression model will predict how much the action taken

will cost in the future, so it optimizes over the actions space, looking for the minimum

cost impact among all decisions.

3.3. Stages

The stages of the problem represent each period of time, hourly. The stages start from

1 and end at T , where T is the number of hours of the horizon of training or prediction.
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t 2 {1, 2, 3, ...T}

3.4. Parameters

Some parameters are used for giving context to the model. Energy cost, storage capac-

ity in both car and battery, electrical consumption per kilometer, among others, are some

of the parameters that can vary depending on the characteristics of the hardware used, such

as batteries and electric cars. The parameters used in the model are listed as follows.

• C : Energy cost (constant) from grid ($/kWh).

• D: Car energy price, when charging car outside the home ($/kWh).

• E: Energy price (constant) for selling to the grid ($/kWh).

• �: Value of unsatisfied energy demand ($/kWh).

• M : House battery maximum storage capacity (kWh)

• N : Car battery maximum storage capacity (kWh)

• Whc : House battery maximum charge power (kW)

• Whd : House battery maximum discharge power (kW)

• Wc : Car battery maximum charge power (kW)

• Wd : Car battery maximum discharge power (kW)

• Wa : Maximum power from the grid (kW)

•  : Car average distance driven in an hour (km)

•  : Car average energy consumption by km (kWh/km)

The parameters listed above are grouped in four groups: costs of electricity (C, D, �),

energy storage capacity (M , N ), power (Whc, Whd, W c, W d) and average measurements

for cars (,  ).

The value of D is the price of charging the car using an external charger, commonly

on gas stations or public electric vehicle chargers on parking spots. The cost of unsatisfied
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energy demand means that for any state if there is energy demand greater than Wa, that is

the maximum power for a stage. The cost of that state will be increased by the unsatisfied

demand penalty �.

Finally, two parameters represent the average usage of an electric vehicle. The first

one is  , which is the average kilometers driven by a car daily, based yearly. The second

one, , represents the average energy consumption per kilometer by a car. Both are used

together to estimate the consumption by a car when it is not at home, assuming a uniform

distribution of the daily consumption to achieve the yearly average consumption.

3.5. States

• eNC
t : energy consumption on stage t

• eAC
t : air conditioning usage on stage t

• Tt : outside temperature on stage t

• Ht : relative humidity on stage t

• ⇢t : PV energy generated on stage t

• �t : car is connected or not on stage t

• ⌫t : car’s battery energy on stage t

• µt : house’s battery energy on stage t

• ht : hour of the day, at stage t

As said in section 2, the state represents the system’s current condition at any given

stage. Those conditions define the transition to the next stage and the cost for the current

stage.

Energy used on period t, separated into two: total nonflexible consumption and the

energy consumption (ect) of an air conditioning unit (eat ). Exogenous factors are also used

for the model. These are temperature (Tt) and relative humidity (HT ), both measured

outside the home.
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⇢t stands for the photovoltaic energy captured by the solar panel on stage t. Finally,

two state variables represent the stored energy status in both the car (⌫t) and the house (µt).

�t, on the other hand, states if the car is available at the house, that means this vehicle is

connected to the house charger so that the house can use its energy or the battery charged.

3.6. Actions

• bt: action over house battery

• ct: action over car battery

There is a set of possible actions xt(s) = {bt, ct}, each one for the house battery and

the car battery respectively.

For each stage, the house battery energy (b decision) has three kinds of decisions:

charging with the current state solar energy, using energy for the house, or selling some

energy to the grid. These decisions depend on the state of the energy level of the battery.

On the other hand, car battery energy is managed similarly, but the charging depends

on the electric vehicle charger’s power capacity. In summary, the car actions are charge,

discharge (give energy to the house, and do nothing (idle connected car or car discon-

nected).

Unlike (Kim & Lim, 2018), the actions space is bigger, having more than one level of

charging or discharging magnitudes. Nevertheless, when looking at more combinations

of states, the problem becomes more complex, and one should make approximations. In

(Vázquez-Canteli & Nagy, 2019), most of the solutions use Q-Learning or offline simula-

tions. Our proposed method also differs as it employs a custom Value Function Approxi-

mation, using Neural Networks instead of Q-Learning.
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3.7. Cost functions

As said in section 5.3, the state variable �t represents if the car is at home or not.

For simplicity, every time the car is not at home (�t = 0), it is assumed that the energy

spent equals the average distance driven by a car per hour () times the average energy

consumption per kilometer ( ). This expression is described as qct , in which q is the cost

function, c means it is the cost of the car, and t is the stage.

For the following equations, � represents that the car is connected or not to the power

outlet, represented as a binary variable (1 for connected, 0 otherwise). Equation 3.1 repre-

sents the transition of state for variable ⌫, which depends on whether the car is connected

or not. If it is, then nothing happens as 1-� will be 0. If it is not, then the next state’s

energy of the car will be as described. For simplicity, it is assumed that the driver will

make sure that it charges enough energy to the car to come back home at 0 energy.

Finally, equation 3.2 shows that at every stage that the energy consumption for charg-

ing the car outside the home is greater than the car energy, there is a cost produced equiv-

alent to the cost of charging the car outside, times the over demand of energy.

⌫t+1 =

8
>>><

>>>:

⌫t � (1� �t) if ⌫t �  

0 ioc

(3.1)

qcet (st) =

8
>>><

>>>:

D(�t � ⌫t) if ⌫t < (1� �t) 

0 ioc

(3.2)

Equations 3.3 to 3.8 show the state’s energy consumption, specifically the ones related

to the car and home battery, based on the state decisions. In equation 3.3, ecart represents

the energy used to charge the car battery. With that info, the total energy demand from
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home is the sum of the charger’s energy to the car plus the energy demand for noncontrol-

lable usage and air conditioning, as shown in equation 3.4.

Depending on the battery decisions, there will be energy from the battery to the house,

as shown in equation 3.5, represented as ebut and from battery sold to the grid, equal to

ebst on equation 3.6. The model permits different magnitudes of power to be sold or used

on the battery. For that purpose, the variables wr
s 2 (0, 1) and wr

u 2 (0, 1) stand for the

fraction of power that will be sold or used respectively. The car can also give some of its

battery energy to the house, representing its value as ecut on equation 3.7.

Finally, an expression for the unsatisfied energy demand is expressed as eust on equa-

tion 3.8, generated when the house’s power added to the battery energy used for satisfying

energy consumption is not enough. This energy is used later to calculate the penalization

for unsatisfied energy demand.

ecct = c1t min(Wc, N � ⌫t) + c2t min(Wc/4, N � ⌫t) (3.3)

eTotal
t = eNC

t + eAC
t + ecart (3.4)

ebut =
nuX

r=1

brt min(eTotal
t , µt,Wdw

r
u) (3.5)

ebst =
nsX

r=1

b4t min(µt,Wdw
r
s) (3.6)

ecut = max(min((eTotal
t � ebut ), ⌫t,Wc), 0)) (3.7)

eust = max(eTotal
t � ebut � ecut �Wh, 0)v (3.8)

With the equations above, the cost function is defined as follows.
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qt(st, bt, ct) = min(eTotal
t � ebut � ecut ,Wa)C

+qcet (st) + eust �� Eebst

(3.9)

3.8. Transition functions

Three variables are affected by the actions taken for a given state: the house battery

and the car battery. Other exogenous factors, such as temperature, PV generations, are

given by historical data.

The transition of the car energy when the car is not at home was described in section

4.7. The transitions for both car and home battery are described below.

⌫t+1 = min([⌫t � ebut � ebst + ⇢tb0t,M ]) (3.10)

µt+1 = max([µT + ecct � ecut � (1� �t) , 0]) (3.11)

3.9. Bellman’s equations

Bellman equations are presented from 3.12 to 3.14. They represent the initial states

and actions for any recursion of the model. The value function takes the value of 0 on the

last stage of recursion, that is when the end condition is met. Finally, on 3.14 it is shown

that the decisions are made post cost calculation, and the decisions will affect the future

and that the model looks for minimizing the cost of the decisions.

x0 = (b0, c0) (3.12)

VT (⇤) = 0 (3.13)

V ⇤
t (st, bt, ct) = qt(st, bt, ct) + min

x
(Vt+1(st+1(bt, ct), bt+1, ct+1)) (3.14)
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3.10. Value function approximation

The Value Function Approximation method (VFA) consists of approximating a state’s

value for a single set of chosen actions. The approximator is trained with existing data by

using different regression methods until convergence.

In the proposed model, we use a machine learning model called Neural Network. As

mentioned before, the neural network consists of layers of neurons (perceptrons) that per-

form optimizations over its parameters using the training data and loss functions, in this

case, the Mean Squared Error with an algorithm called backpropagation (Hecht-Nielsen,

1992b). In this particular case, the Neural Network is used as a regression method, as it

approximates the value function of the Reinforcement Learning scheme. The model will

simulate a function f(x) : X ! Y that receives a vector composed of the state and action

variables of size |S| + |A| and outputs a scalar of size 1 that represents the cost of the

future decisions by choosing the actions for the given state. The Neural Network is fitted

with historical data to adjust its parameters to make a good estimation of the future.
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4. COMPUTATIONAL EXPERIMENTS

The following experiments were modeled using Python 3 programming language,

the library sci-kit-learn for the neural network models using the Multi-Layer Perceptron

model, and Pandas for reading the CSV data.

All the experiments were run using, Google Colaboratory platform, with a single

shared core, with two threads virtual machine with Intel(R) Xeon(R) CPU @ 2.30GHz

and 12 GB of RAM, running over Linux.

4.1. Case of study

The data used for the experimental section belongs to Pecan Street Inc. Dataport,

which was public for academic purposes by 2019. The data contains information about

noncontrollable energy consumption, HVAC energy consumption, electric vehicle charger

power, and weather conditions such as temperature and humidity. All this information is

provided in intervals of one hour.

The dataset contains data from many houses for the United States of America, mainly

from Texas and California. The experimental scenario chosen belongs to a household in

San Diego, California, USA. The total amount of rows of data is 518.400, as it contains

360 days of 24 hours each. Only five days of the year did not have complete data. They

had repeated hours or lost data (temperature, energy usage, among others). We removed

all those days with incomplete or missing information from the dataset for cleaner infor-

mation.

For the parameters presented in section 5, some assumptions are taken for simplicity

and feasibility of solving the problem. First, the energy cost C from the network is set

with a flat rate equal to the average price in Santiago, Chile, which is 105 CLP, which

equals approximately 0,15 USD per kWh. Secondly, as seen in (Virta, 2019), the average

distance driven by a car in a day is 46 km. Also, the average energy used per kilometer
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Table 4.1. Instance values

C $105
D $280
M 10 kWh
N 15 kWh
W hc 5 kW
W hd 5 kW
W c 4 kW
W d 1 kW
W a 10 kW
� 630
 2,5 km
 0,2 kWh/km

driven is about 0,2 kWh. Given that information and based on the training data, the average

kilometers driven by a car, counting only hours when the car is not present at the house,

is 2.5km. Therefore, every time the car is not parked in the house, the battery uses 2, 5 ⇥

0, 2 = 0, 5 KWh. In (Copec, n.d.), it is shown that the price of KWh in a fast charger is

around 230 Chilean peso, which equals 0,3 USD approximately. The model assumes that

the car cannot be out-of-gas, so, rationally, the car owner will charge the car with enough

energy to come back to the house with 0 energy. Therefore the car will come back home

with 0 energy. Still, the car owner pays for the overused energy (when the energy used in

an hour block is greater than the energy stored in the car battery) with a price of 230, as

a penalty for the model of making the car go outside home without enough energy. The

cost penalty for every kWh of unsatisfied demand is defined as 630, which is 6 times the

current cost.

4.2. Data preprocessing

The data used had to be cleaned, as it had more information than needed and missing

data. As the dataset contains columns for many electrical appliances, but in this case,

none of them were recorded separately except for the car electrical usage and air con-

ditioning, we used only the aggregated electrical consumption air conditioning records.
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Then, processed data consists of hourly electrical noncontrollable usage, air conditioning

usage, solar energy captured by the photovoltaic panel, the car’s energy from the charger,

temperature, and humidity. As the proposed model decides whether or not to charge the

electric vehicle, the energy from the dataset shows how much energy the real car used in

each hour. It is then used to define the status of connected or disconnected to the house of

the vehicle. Every time the energy is greater than zero, the car is connected to the house.

Therefore, for simplicity, the car is at the house every time that it is connected and outside

the house when it is not.

As for the vectors used as the model input, they are composed of 41 components, of

which 8 of them are float numbers for every state except the hour of the day. The nature

of each variable of the state is described as follows.

(i) X0 = eNC
t 2 R+

(ii) X1 = eAC
t 2 R+

(iii) X2 = Tt 2 R+

(iv) X3 = Ht 2 [0, 100]

(v) X4 = ⇢t 2 R+

(vi) X5 = �t 2 {0, 1}

(vii) X6 = ⌫t 2 [0, N ]

(viii) X7 = µt 2 [0,M ]

The next 24 components stand for every hour of the day, from 0 to 23, in a binary

representation. Among these 24 numbers, only one at a time can and must be one, while

the others remain 0.

Xn 2 {0, 1}, 8n 2 [8, 31] (4.1)

31X

8

Xn = 1 (4.2)
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The Same technique is applied for the actions. For this particular model, actions were

discretized to reduce decision space and simplify the problem. The action values are

represented as binary vectors, where just one of each can equal to 1 at the time. Then the

actions b and c are described as the following:

bt = (b1t, b2t, b3t, b4t, b5t)

ct = (c1t, c2t, c3t, c4t)

Where bnt 2 {0, 1}, 8n 2 {1, 2, 3, 4, 5} and cnt 2 {0, 1}, 8n 2 {1, 2, 3, 4}.

For each vector, the meanings of each action are described on the above lists.

For bnt:

(i) battery is charged, which means the system will store all energy captured by the

PV panel on the current stage in the battery.

(ii) battery energy is used at maximum power

(iii) battery energy is used at less power

(iv) battery energy is sold at maximum power

(v) battery energy is sold at less power

For cnt:

(i) fast charging

(ii) slow charging

(iii) use car battery

(iv) do nothing (idle connected car or the default action when the car is not at home).

Then the cost functions are simplified and described as follows.
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ebut = b2t min(eTotal
t , µt,Wd) + b3t min(eTotal

t , µt,Wd/2) (4.3)

ebst = b4t min(µt,Wd) + b5t min(µt,Wd/2) (4.4)

The next 9 components of the vector will represent this model’s actions: the first five

are for the house battery and the final four for the car battery. Each group represents the

action chosen in order from one to five. For the first five, one and only one component can

and must be one, while the others remain zero, representing the house battery’s decision.

The same occurs to the car decision on the four final vector components.

Xn 2 {0, 1}, 8n 2 [32, 36] (4.5)

36X

32

Xn = 1 (4.6)

Xn 2 {0, 1}, 8n 2 [36, 41] (4.7)

41X

36

Xn = 1 (4.8)

This technique is known as one-hot encoding and prevents the model from getting lin-

ear on categorical variables, such as the hour of the day and the actions (One hot encoding,

n.d.).

For creating the training data, real info from the dataset is used. There is an infinite

space of possible states on battery energy and car energy, which is not in the dataset, so for

making this computable, a discretization is made. This means that for every hour block of

data, which includes X0 to X5, the model generates some discrete values for the remaining

state variables.
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Figure 4.1. Neural network input and output

As this is a reinforcement learning scheme, the model goes into recursion for a defined

horizon of time to approximate the value function by only looking 12 hours ahead for this

particular case.

Dataset generation is presented in algorithms 1 and 2.

Both functions feasibleB and feasibleC return the feasible actions for the current

stage, related to the current state (car and battery energy), and prevent the model from

overcharging or using more energy than the batteries have.
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Algorithm 1: Data creation algo
1 X = [];
2 Y = [];
3 for t 0 to T do
4 if car energy > 0 then
5 ⇢ = 1
6 else
7 ⇢ = 0
8 end
9 for ⌫ 2 N+  N do

10 for µ 2 N+ M do
11 for b 2 feasibleB(t) do
12 for c 2 feasibleC(t) do
13 x = [eNC

t , eAC
t , Tt, Ht, ⇢t, �t] +OneHot(hourt) +

OneHot(⌫) +OneHot(µ) + bt + ct;
14 X.append(s);
15 y = StateRecursion(t+ 1, b, c, d = 0);
16 Y.append(y)
17 end
18 end
19 end
20 end
21 end

4.3. Model and architecture calibration

As mentioned before, to approximate the cost of a pair of state-actions, a neural net-

work is used. Neural networks can use different optimization methods for recalculating

their parameters. The scikit-learn library provides three of them: lbfgs, Stochastic Gra-

dient Descent (SGD), and Adam (Kingma & Ba, 2014). In this model, SGD, Adam, and

lbfgs are compared as lbfgs is the best on short datasets in training time and accuracy, and

SGD and Adam perform better in longer datasets. The vector of state/action and the result

of the recursion are the data used to train the neural network, so it approximates the future

cost of the current decisions.
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Algorithm 2: StateRecursion
input : t the stage and d the deepness of the recursion, bt and ct the actions for

the current stage
output: The cost y of the recursion

1 X = [];
2 for t 0 to T do
3 if d == 12 then
4 return 0
5 else
6 cost, st+1 = qt(st, bt, ct);
7 bestCost =1;
8 for b 2 feasibleB(t) do
9 for c 2 feasibleC(t) do

10 y = StateRecursion(t+ 1, b, c, d+ 1);
11 if y < bestCost then
12 bestCost = y;
13 else
14 continue
15 end
16 end
17 end
18 return bestCost;
19 end
20 end

Neural networks work well with specific structures depending on the data nature. Hy-

per Parameter Tuning consists of training different neural network configurations and test-

ing its results, so the best combination is selected as a final model. In this case, five hyper-

parameters were analyzed: batch size, neural network layer structure, initial learning rate,

epsilon (for Adam), and optimizer.

The batch size is the number of vectors given to the model for calculating the loss

and then optimizing the network weights. The loss is calculated based on each iteration’s

result, comparing the model output on each vector with the expected result on the training

set. On each epoch, only the batch size of vectors is given for training. That means that the

model is backpropagated (parameters are readjusted based on loss of that iteration) on each

epoch several times, given by the total vectors divided by the batch size. Therefore, more
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Figure 4.2. Hourly average

or fewer times that the model is trained on each epoch will affect the model’s convergence

time.

The layers of the model explain how neurons are connected in the inner layers of the

neural network. For this experiment, the model is evaluated in two ways: the size of one

hidden layer and the number of hidden layers of the same size. We chose three configura-

tions to measure how good the model was with one hidden layer: 16, 32, and 64 neurons.

On the other hand, for the number of layers of the same size, configurations of two layers

of 16 neurons were added to the experiments, giving a total of four configurations (see

Figure 4.2).
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Table 4.2. Optimizer Grid Search

Optimizer Training Time Mean R2 score Std. R2 score
SGD 155s 0.296 0.079
lbgfs 74s 0.32 0.118

Table 4.3. Epsilon, using Adam, 0.001 chosen.

Epsilon Training Time Mean R2 score Std. R2 score
0.0001 199s 0.317 0.042
0.001 199s 0.355 0.07

0.00001 176s 0.312 0.041

Table 4.4. Learning rate, using Adam

Initial LR Training Time Mean R2 score Std. R2 score
0.01 155s 0.313 0.117

0.005 74s 0.383 0.017
0.05 74s 0.296 0.05

0.001 74s 0.434 0.046

On learning rate, as it is used only in SGD, was manually tested. Learning rate means

how much the weights of the model will change on each iteration. Results show that initial

learning rates greater than 1e � 5 make the model diverge almost instantly. Lower rates

make the model too slow for convergence. Then 1e� 5 is chosen for all tests.

For all these experiments, Grid Search (3.2. Tuning the hyper-parameters of an estima-

tor, n.d.) is used to get the best combination. There is a total of four fits (model training)

for each option (e.g., four events of training using lbfgs and four using SGD). The data

used are the first to months of the dataset, as two is the number of months used on the

rest of the experiments. The first experiment was to choose the best optimizer between

lbfgs and adam. As shown in the table 4.2, lbfgs perform better on average and in all data

partitions done by the Grid Search. For the remaining experiments, Adam is chosen as

those parameters only affect SGD-based algorithms.

In tables 4.4, 4.6, 4.3, 4.5 and 4.2, the results of the grid search are shown. As it can

be seen, the parameters chosen for the final models are the batch size of 32, a learning rate
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Table 4.5. Batch size, using Adam

Batch Size Training Time Mean R2 score Std. R2 score
16 155s 0.332 0.037
32 74s 0.374 0.06
64 74s 0.339 0.093

128 74s 0.343 0.042

Table 4.6. Hidden layer structure, using Adam

Layers Training Time Mean R2 score Std. R2 score
(16) 109s 0.34 0.051
(32) 173s 0.103 0.16
(64) 298s -0.049 0.224

(16 -> 16) 160s 0.048 0.181

of 0.00001 for SGD and 0.001 for Adam, one layer of 16 neurons for layer structure, and

an epsilon 0.001 for both Adam and SGD.

Despite the results of the optimizer, every optimization model is tested in the next

section.

4.4. Practical advantages of the proposed method.

For having knowledge about the effectiveness of the proposed model, some constant

policies were developed and tested against the reinforcement learning scheme proposed.

The following policies were made with information of the test dataset, so they are made

to take advantage of the nature of the data.

The first policy consists of charging the battery whenever it is empty; otherwise, it is

used for house consumption. The second policy selects hours of the day for charging and

discharging the car, using Policy I for the home battery. Hours of the day are chosen by

test data analysis, selecting the hours with more energy usage, but considering that the car

needs to be charged during the night to be used in the morning. The third policy is set to

charge the house battery when there are peak hours of solar energy, uses energy when it
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Table 4.7. Results comparison

Policy Yearly cost Improvement (%)
Model SGD 1,397,417 -
Model lbfgs 1,483,407 -
Model Adam 1,422,779 -

Policy I 1,630,345 16,7%
Policy II 1,542,444 10,4%
Policy III 1,405,426 0,6%

is better than charging by looking 24 hours ahead. It uses the same policy as policy II for

the car.

• Policy I: charge the battery when disconnected and use the energy when there is

energy greater than 0 kWh.

• Policy II: always charge the battery and use it when it is greater than 0. Charge

the car when energy is under threshold ⌧ = 8 when the hour is between 00:00

and 7:00 AM. Use the car energy between 21:00 and 00:00.

• Policy with future information: charge battery in peak generation hours, and

use its energy when it is better than charging, by looking 24 hours ahead in the

future. For the car, it is the same as Policy II.

This experiment consists of simulating 10 months of data in a real-time situation, in

which the model is trained with two months of data once a month for predicting the de-

cisions for the whole next month. This experiment aims to determine how the model

performs along the year while retraining once a month. Months are approximated, and

they are all composed of 30 days.

Training time takes 20 minutes, while preprocessing data takes around 6 hours for

generating simulation vectors by searching all possible states for the set of actions, with a

recursivity depth of 12 hours (blocks of time). For a real-time scenario, both preprocessing

and training have to be made as a pipeline. Value function calculation is then instantaneous

(less than a second) when the model is already trained.
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Table 4.8. Results Model against Policy II per month, months 3 to 11.

Month Model Policy II Improvement Total Solar energy
3 279626 301717 8% 912 kWh
4 292070 314385 8% 1075 kWh
5 252910 284559 13% 1152 kWh
6 226252 266316 18% 1176 kWh
7 249648 282444 13% 1077 kWh
8 266246 296946 12% 964 kWh
9 279071 316020 13% 776 kWh

10 301049 332590 10% 611 kWh
11 327949 348842 6% 469 kWh
12 182120 192564 6% 195 kWh

Table 4.9. Results Model against complete information policy per month,
months 3 to 11.

Month Model Complete Info Improvement Total Solar energy
3 279,626 276,826 -1% 912 kWh
4 292,070 292,798 0% 1075 kWh
5 252,910 263,374 4% 1152 kWh
6 226,252 241,092 7% 1176 kWh
7 249,648 255,664 2% 1077 kWh
8 266,246 266,879 0% 964 kWh
9 279,071 283,173 1% 776 kWh

10 301,049 300,519 0% 611 kWh
11 327,949 318,911 -3% 469 kWh
12 182,120 177,853 -2% 195 kWh

It is noticeable that SGD was the best optimizer for the model in this experiment.

Unlike grid search, what matters in this experiment is making the best decisions to min-

imize costs. In contrast, on grid-search, the criteria are based on the R2 score, which

only measures how good the regression of the neural network is, according to the training

data. Answering our second research question (RQ2), neural network hyper-parameters

selection matter for a better prediction.

As seen in table 4.7, the model overcomes all policies by the percentages presented

at the table, specifically a 10,4% against the best policy, in the year overall. It also over-

comes the complete information policy of 0,6%. This policy is very close to the results of
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Table 4.10. Results Model against Policy II per hour average.

Hour Model Policy Improvement
0 281 303 7.59%
1 302 413 36.8%
2 365 453 24.2%
3 278 355 27.6%
4 192 251 31.25%
5 159 191 19.69%
6 126 157 24.22%
7 113 145 27.7%
8 117 141 20.64%
9 126 146 15.94%

10 145 158 8.91%
11 183 193 5.25%
12 206 233 12.82%
13 211 239 13.19%
14 178 209 17.24%
15 178 167 -6.18%
16 150 148 -1.63%
17 158 137 -13.24%
18 149 141 -5.55%
19 185 148 -19.62%
20 182 150 -18.04%
21 187 157 -15.97%
22 210 216 2.92%
23 243 256 5.46%

the proposed model, as this policy was created according to the data nature, knowing in

advance what was going to happen in the simulation.

It is also noticeable that the proposed model performs better in months with more

solar energy generation, showing that for question (RQ3), the season of year affects how

the model performs. This can be related to the fact that the model is trained with data from

the past two months. It can be seen that solar energy decreases considerably from month

8, so for months 11 and 12, the data used to train the model is from months with almost

double the solar energy produced in the case of the 11th month and three times on month

12. Data from past years of the same months could have improved the model performance.
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For answering RQ4, the hourly average shown in figure 4.3 shows how the model (blue

line) performs better along the day than Policy II (orange line). Nevertheless, between 15

and 21 hours, the policy overcomes the proposed model, on average. This could be related

to how these hours, the policy uses the energy from the battery whenever its energy is

greater than zero. Hence, it gets empty for the night, having only energy from the car

battery. Instead, the proposed model learns that it needs to save energy for night hours

when there is no solar generation.

In figure 4.4, the blue line represents the cost generated by the model in an example

week, while the orange line represents the Policy II costs. It can be seen that there is a

peak where Policy II cost is much more than the proposed model. That is related to a

car recharge since Policy II is forced to charge the car when its battery level is under a

threshold of energy, while the proposed model decides it according to its own training.

Our first question RQ1 was if energy consumption data in a household be generalized

in order to approximate future consumption. As the experiments show, it depends strongly

on the epoch of the year. The model is developed in a way that it takes advantage of energy

storage, nevertheless in months with less energy consumption the data of the past months

differed too much to make a good approximation. Data can be used for predicting better

the future, but probably different models will be required for different types of scenarios.

With the fast development of smart sensors with energy consumption recording, added

to cheap and powerful enough hardware like IoT controllers such as Raspberry Pi, the

proposed model can be easily implemented in residential buildings.

Although the model is better in costs than the policy in this experiment, initial costs

are not considered, such as the solar panel installation and purchase cost, microcontrollers

if they are not previously installed, the house battery, and the car charger. Therefore the

model is meant to work in an environment with the technical requirements previously

implemented.



35

Figure 4.3. Model (blue) vs Policy II (orange) hourly average cost for a full day.

Further work can include different pricing policies with variable prices varying on the

amount of energy used, the hour of the day, or the year’s seasons. Battery damage or wear

can also be a topic to include in further research and consider other costs not related to

operational energy costs.

Since the experiments are only one instance of study, we encourage new scenarios with

different configurations of the reinforcement learning scheme and techniques other than

Value Function Approximation to deal with the curse of dimensionality of this problem.
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Figure 4.4. Example 5 days of costs for Model (blue) and Policy II (or-
ange) againt the hour block of the data set (hour of the year)
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5. CONCLUSIONS

This research introduces a way of modeling a reinforcement learning scheme for opti-

mizing energy consumption in an environment with electric vehicles and renewable ener-

gies. In (Vázquez-Canteli & Nagy, 2019) it can be seen that most techniques that aim to

solve similar problems only focus on electric vehicles alone or in home appliances. Our

work goes further by proposing a way of taking advantage of energy storage, expandable

to other distributed energy resources. The availability of data records of energy consump-

tion and weather conditions opens computer and data science opportunities to contribute

to demand-side energy management topics. In this line, historical data to train models give

results that cannot be simply concluded by simple human inspection, such as how better

to manage solar energy in months of more generation. The development of computational

open-source tools makes it easier to implement good and fast solutions for energy prob-

lems, like the model proposed, without too many computational resources. That could be

an opportunity to deploy this type of solution in computer devices inside homes.
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