
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

BITCOIN PRICE PREDICTION TROUGH

STIMULUS ANALYSIS: ON THE

FOOTPRINTS OF TWITTER’S

CRYPTO-INFLUENCERS

GERMÁN ALFREDO CHEUQUE CERDA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JUAN REUTTER

Santiago de Chile, June 2021

© 2021, GERMÁN CHEUQUE CERDA

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

BITCOIN PRICE PREDICTION TROUGH

STIMULUS ANALYSIS: ON THE

FOOTPRINTS OF TWITTER’S

CRYPTO-INFLUENCERS

GERMÁN ALFREDO CHEUQUE CERDA

Members of the Committee:

JUAN REUTTER

DENIS PARRA

FELIPE BRAVO

CHRISTIAN OBERLI

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, June 2021

© 2021, GERMÁN CHEUQUE CERDA

iii

To the people who have faced the

worst of these tough times.

iv

ACKNOWLEDGEMENTS

I am deeply grateful for all those who have helped me get to this moment.

Juan Reutter de la Maza, for many great conversations, our discussions were always

enriching in many ways, for your support with the decisions made and your help in the

presented opportunities for sharing our work. For being committed to your students as

well as the well-being of everyone at the DCC.

Denis Parra, for promoting research and sharing it with colleagues and the community.

For generating spaces for conversation and being a participant, sharing your knowledge

with others beyond the academy. For the joy, you share in your work.

All at the DCC, for making it a welcoming place to work.

Every teacher who has bequeathed me their love for science, as well as the ones that

have taught me about the responsibility behind the knowledge which must be aware of its

applications and their consequences as well as the goals pursued by their financiers.

Alonso Medina, being with you has given me great learning and has filled me with

love as I have never known before. Having you as my support strengthens me. For every

moment of joy by your side, soaking me up by your wisdom.

My parents, for being people full of love and dedication to their loved ones and the

things they like. The kindness, the appreciation of our cultural roots, and the affection for

what we do are some values I recognize from both of you in me.

My brothers César and Marcos, for reminding me what is important. Life is fragile

but also resilient, we have each other.

Marisol Ramı́rez, for your care and concern for the good living of everyone, by creat-

ing community and trust among all individuals. For inspiring changes in my relationship

with the environment.

v

Nayareth, Andrés, Elena, Bárbara, Ignacio, Nicolás, Seba and all my friends. Sharing

time with you is just fun and a good reminder that happiness can be in simple things.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . ix

ABSTRACT . xii

RESUMEN . xiv

1. Introduction . 1

1.1. The reasons behind Bitcoin’s success . 1

1.2. The Bitcoin price volatility problem . 3

1.3. Objectives and research approach . 4

2. On the prediction of Monetary Goods . 7

2.1. Materials: samples and range of prediction 7

2.2. Predicting the next data point. 10

2.3. Problems studied in this work. 12

3. Next-day price prediction and price simulation by using price data itself 16

3.1. Creating a prediction model: Architecture behind predictions 16

3.2. The relevance on scaling correctly . 18

3.3. Price Simulation using per-day scaling . 21

4. Opinion as a quantifiable measure . 24

4.1. Extracting Twitter opinion data . 24

4.2. Characterizing opinion from influential users. 25

4.3. Fine-tuning language models for stance detection: ULMFIT & BERT . . . 28

4.3.1. ULMFiT: a recipe for correctly fine-tune your model. 29

4.3.2. BERT: a novel attention-based architecture, easy to adapt to contexts and

tasks. 33

4.4. A labeling session . 36

vii

4.5. Results on Tweet Classification task . 38

5. Incorporating opinion to the price prediction task 46

5.1. How to feed the stance information? . 46

5.2. Analyzing Twitter’s opinions polarity from BERT. 47

5.3. Statistics measures for stance analysis . 50

6. Predicting price using opinion as a External Stimulus 53

6.1. Some preliminary results in introducing opinion as an external stimulus. . 53

6.2. Results in prediction using stance stimulus 56

6.3. Thoughts in Bitcoin’s price prediction task 64

7. Conclusions . 66

APPENDIX A. Instructions for the Labeling sessions 70

APPENDIX B. Model design and hyper-parameters tuning for XGBoost 72

APPENDIX C. Nomenclature of the variables used on XGBoost examples 74

REFERENCES . 75

viii

LIST OF FIGURES

2.1 Bitcoin price time series. 8

2.2 Comparison between price and moving average with a windows size of 288

measures, equivalent to 1 day of observations with a frequency of 5 minutes. 9

2.3 Network predictions after training. The black line represents the moving average

measure introduced in the last subsection, the yellow line the predicted value on

the training part of the data, and the orange line the prediction on the test set.

The part with the red line is zoomed-in and explained in Figure 2.4. 12

2.4 Simulation of Bitcoin Price. As the red curve shows, once we start feeding the

network’s own prediction as data, we immediately lose generality and prediction

power, and we get quickly stuck in an average value. 13

2.5 Time lagged cross Pearson correlation between Bitcoin’s price and the number

of messages retrieved from influential users in Twitter talking about Bitcoin. The

second series is temporally lagged in time after and before the price variations.

The numbers on the x-axis represent the number of steps in which the second

series is moved, each step represents a difference of 5 minutes. The vertical

lines mark the zero-time lag (the black one) and values in which the correlation

reaches the max and min value (red ones). 15

3.1 The architecture of our model is essentially a composition of multiple LSTM

layers and a last feed forward layer to generate the output. 17

3.2 Next-day price prediction when all data is scaled as in Section 2. The curve is

markedly displaced to an average value, not being able to recover the shape of

the prediction curve and being flattened on all its extension 19

3.3 Next-day price prediction when data is particularly scaled in a per-day basis.

Results are much more well placed than the ones obtained with a general scaling

function. 20

ix

3.4 Price Simulation with per-day scaling. Test data is depicted on the yellow line

while simulation is on the red line. 22

3.5 Zoom of the model’s performance while simulating price. This model now

manages to predict a decrease in price, but the prediction is still too coarse. . . 22

4.1 Slanted triangular learning rate policy for fine-tuning ULMFIT. 32

4.2 BERT architecture, as discussed in [Devlin et al., 2019] 34

4.3 Transformer base architecture: Encoder. 34

4.4 Confusion Matrices (CM) over the reserved 50 examples for testing under each

of the different algorithms considered. 44

5.1 Stance score distribution about positive and negative appreciation on Bitcoin as

retrieved from BERT algorithm. 47

5.2 Stance distribution of tweet polarity. Neutral messages are included for completeness. 48

5.3 Pearson correlation coefficient between Bitcoin’s price and the stance signals

(From right to left: Positive, negative and neutral stances), across a movable

retarding window between series. The level of correlation can be though as an

naive hint of causality. 49

5.4 Pearson correlation coefficient between Bitcoin’s price and the overall stance in

Twitter media about Bitcoin across the time. 50

5.5 Statistic features . 51

6.1 Prediction of the model when is trained with sentiment data by using SentiWordNet.

The predictions for the next-day price are on the same level as the model trained

without twitter data. 54

6.2 Zoom to final predictions. We note a fall over the seventh day that is recovered

by the prediction. 54

6.3 Evolution of sentiment movement retrieved from using SentiWordNet for

interpreting opinion data, during prediction dates. 56

x

6.4 Results in prediction for train set using LSTM’s based network. 58

6.5 Results in prediction for the test set using Bitcoin LSTM. 59

6.6 Results in one-day price prediction using stance measures for training a XGBoost

model. 60

6.7 Results in prediction using XGBoost model for test set. 60

6.8 Shapley value’s graphs from the XGBoost models trained for price prediction. 61

6.9 Top: Bitcoin price evolution for the studied timespan. Bottom: Moving average

of the overall stance that influential Twitter users have on Bitcoin 63

6.10 Price simulation task handled by the XGboost model trained with overall stance

measures. 64

xi

ABSTRACT

The Bitcoin protocol and its underlying cryptocurrency have started to shape the way

we view digital currency and opened up a large list of new and interesting challenges.

Amongst them, we focus on the question of how is the price of digital currencies affected,

which is a natural question, especially when considering the price roller-coaster we wit-

nessed for bitcoin in 2017-2018. We work under the hypothesis that price is affected by

the web footprint of influential people, we refer to them as crypto-influencers.

In this research, we provide models based on machine learning (neural networks and

random decision trees) to predict the price of bitcoin. We compare what these models learn

from recent price history versus what they can learn when they are fed additionally with

encoded textual information obtained from influential users as opinions. According to our

results, we show that humans have an average performance at interpreting Bitcoin referred

opinions of 75%. For this reason and to increase our possibilities, we have explored seven

models trained for encoding this kind of information, including two of the most recent

models on inductive transfer learning techniques: ULMFIT and BERT.

We show preliminary evidence that Twitter data should help predict the price of bit-

coin by being able to support the decision process at the task of predicting the price of

Bitcoin one day in the future. We managed to make our models go from projecting the

current price into the future as the only and best prediction to making more realistic ones

that we can only attribute to the introduction of an external price stimulus retrieved from

the feature selection process. To challenge our models, we explored the price simulation

task. Our results are not conclusive in this regard, since we have models that show a dif-

ferent level of performance in a different time span in the future. However, these results

do not show awareness of changes to more than a week from the simulation started.

Our best model generates predictions supported by the opinion of these influential

users, but it is a prediction with an acceptable error up to a maximum future window of

xii

only one day. Recent evidence shows that Bitcoin’s high variability behavior is happening

again. By February 2021, Bitcoin reached a new all-time high of almost $57000 USD,

which is evidence of how volatile is the behavior of this crypto asset.

Keywords: Bitcoin, Recurrent Neural Networks, XGBoost, Twitter, Influential

Users Identification, Sentiment Analysis, Price Prediction, Price

simulation, Stance Detection, Inductive Transfer Learning, ULM-

FIT, BERT.

xiii

RESUMEN

El lanzamiento del protocolo de Bitcoin y su subyacente cripto moneda, han comen-

zado a dar forma a la manera en que vemos las monedas digitales, abriendo una gran lista

de nuevos e interesantes desafı́os. Entre ellos, nos centramos en el objetivo de investigar

cómo se ve afectado el precio de las monedas digitales. Lo cual por cierto, es una pregunta

natural, especialmente cuando consideramos la montaña rusa de precios que presenciamos

para Bitcoin entre 2017 y 2018. En esta investigación trabajaremos bajo la hipótesis de

que el precio se ve afectado por la huella digital de personas influyentes. Nos referiremos

a ellos como criptoinfluencers.

En esta investigación proporcionamos modelos basados en aprendizaje automático

(redes neuronales y árboles aleatorios de decisión) para predecir el precio del bitcoin.

Comparamos lo que sucede cuando estos modelos se alimentan solo con el historial de

precios reciente versus lo que sucede cuando se alimenta adicionalmente con información

textual codificada obtenida desde estos usuarios influyentes a partir de sus opiniones. De

acuerdo a nuestros resultados, mostramos que los humanos tienen un desempeño promedio

al interpretar opiniones referentes a Bitcoin de un 75%. Por esta razón y para aumentar

nuestras posibilidades, hemos explorado siete modelos entrenados para codificar este tipo

de información, incluyendo dos de los modelos más recientes en técnicas de transferencia

inductiva del aprendizajes: ULMFit y BERT.

Mostramos evidencia preliminar de que los datos de Twitter deberı́an ayudar a pre-

decir el precio de bitcoin al ser capaz de respaldar el proceso de decisión en la tarea de

predecir el precio de Bitcoin un dı́a en el futuro. Logramos hacer que nuestros modelos

pasaran de proyectar el precio actual hacia el futuro como la única y mejor predicción, a

hacer unas más realistas, cosa que solo podemos atribuir a la introducción de un estı́mulo

externo al precio y al proceso de selección de variables. Para desafiar nuestros modelos,

exploramos la tarea de simulación de precios. Nuestros resultados no fueron concluyentes

en este aspecto, ya que tenemos modelos que muestran diferentes niveles de rendimiento

xiv

en diferentes lapsos de tiempo hacia el futuro. Sin embargo, estos resultados en general

no muestran consciencia a cambios de precio más allá de una semana de iniciada la simu-

lación.

Nuestro mejor modelo genera predicciones siendo respaldado por la opinión de estos

usuarios influyentes, pero es una predicción con un error aceptable hasta una ventana

futura máxima de solo un dı́a. La evidencia reciente muestra que el comportamiento de

alta variabilidad de Bitcoin está sucediendo nuevamente. Para febrero de 2021, Bitcoin

alcanzó un nuevo máximo histórico de casi 57000 USD, lo que es evidencia de cuán volátil

es el comportamiento de este cripto-activo.

Palabras Claves: Bitcoin, Redes Neuronales Recurrentes, XGBoost, Twitter, Identifi-

cación de Usuarios Influyentes, Análisis de Sentimiento, Detección

de Posturas, Predicción de Precios, Simulación de Precios, Trans-

ferencia Inductiva de Aprendizaje, ULMFIT, BERT.

xv

1. INTRODUCTION

It was 2008 when Bitcoin’s white paper appeared to the world for the first time. Since

then, the well-called cryptocurrency has been involved in more than one news, sparking

an interest that at times left no one indifferent, whether for its mysterious and unknown

author Satoshi Nakamoto, who signed the paper or by the way Bitcoin’s price has behaved

through these last years, becoming a valuable asset nowadays.

In this research, we aim to analyze a specific aspect of this currency: its price evolution

and the high volatility exhibited so far, which has surprised the leading financial experts

since it is not clear what this variability depends on. In this research, we propose to

support some prediction models with the information obtained from textual information

about what influential personalities think on Twitter about the Bitcoin market.

1.1. The reasons behind Bitcoin’s success

Some of the reasons behind this successful scenario are partially explained by the

smart way ’they’1 solved some historical troubles in creating a safe and anonymous way

of transacting through digital cash. The release of the Bitcoin’s Protocol [Nakamoto,

2009] unleashed bitcoin as the world’s first decentralized cryptocurrency that works quite

well in terms of cash. Numerous previous attempts such as hash cash, digicash, or bit-gold

were unsuccessful solutions in developing the same idea.

Historically, there have existed two systems in which people have exchange goods and

services that also solve the problem of coordination2: cash and credit. Through the last

decades, credit has found apogee to the eaves of banks that offer this service remotely, as

well as online debit payment systems, that are intrinsically associated with an intermediary

architecture such as PayPal or Web Pay, which while may not have further implications in

1Some people say that the original Satoshi Nakamoto, the name of the user who released the paper, was not
a man or woman but an organization or a group.
2This refer to the characteristic of money (in the form of cash or credit) of being useful for trading anything,
making any exchange to occur in ”easily” coordinated agreements, which is a missing feature in barter, for
example.

1

privacy, make lose simplicity for the user by interacting indirectly with the seller. Thus,

there was no such equivalent for cash for a long.

Two main advantages have cash systems over the other ones [Narayanan et al.,

2016], [Levy, 2001]. The first is anonymity and the second that cash can enable offline

transactions. While it is real that Bitcoin does not quite ensure totally both properties, it

comes close enough to be useful as cash. The first solution to ensures anonymity came

from cryptography, the idea is generating some mathematical problem to encrypt the user

information making transaction not traceable. The second property is accomplished par-

tially by solving the ”double spending” problem3, with the idea of secure timestamping,

by recording a ledger of transactions, which was first discussed in 1991 by Haber and

Stornetta.

In the original paper, Satoshi detailed the methods of using a peer-to-peer network

to generate what was described as a system for electronic transactions without relying on

trust. So, Nakamoto’s contribution was more than the Bitcoin itself, but the development

of a whole decentralized system that ensures trust but without relying on a central authority

or even in the trust of each of their participants. Indeed, blockchain technology, a ledger

in which all Bitcoin transactions are securely recorded by using cryptography hashes and

digital signatures, is where Bitcoin’s wealth resides.

The way how a currency is likely to acquire real value is being scarce by design. In

fact, this is the reason why gold or diamonds have been used as a backing for money. In the

digital realm, one way to achieve scarcity is to design the system so that minting money

requires solving a computational problem (or “puzzle”) that takes a while to crack, then

as more people become interested in using it, more valuable in money equivalent Bitcoin

becomes4.

3This problem refers to the possibility of using digital cash multiple times while the system is offline and
the information cannot be corroborated.
4Because there are no so many bitcoins to acquire. The protocol ensures the creation of 21 million bitcoins
in total, today approximately 18 million from them are already in circulation.

2

While it took to Bitcoin some time to gain traction, in the last few years a huge number

of alternate cryptocurrencies have appeared, and they have become popular to the point

that almost every financial agent has at least considered investing in them. At the time

of writing, the price of one single bitcoin has stabilized around 9100 USD, after an all-

time high of almost 20000 USD just four years ago. But while this price bubble is now

understood to have burst –at least partially–, some other concerns about the condition of

the bitcoin market are still not well understood.

1.2. The Bitcoin price volatility problem

One of the most recurrent questions about the bitcoin market has to do with its volatil-

ity: what factors influence the variation in bitcoin price? There has been some research

that links bitcoin price with Google searches [Matta et al., 2015], which is remarkable

because other comparable assets such as gold are known to have very little correlation

with this indicator. However, in conversation with people in the cryptocurrency market,

we have suggested another indicator: tweets and posts from a number of international

influencers.

As a monetary good, Bitcoin is not free from speculation, which reinforces our the-

ory about the influence of users, specifically what they are sharing and commenting with

everyone else in the media, because there are not only opinions but events happening in

real-world shared as news, that also influences the markets. Some recent examples of these

kinds of situation could be this [Browne, 2019], the cited article refers to the suspicious

and distant look of the past U.S. president to the launch of a new cryptocurrency (linked

to Facebook) in 2019, surprisingly a day later an important fall in the value price of the

Bitcoin was registered. Similarly in this other article [Bambrough, 2020], the journal-

ist discusses how Bitcoin price fell down, after the tension of Iranian relations with the

United States. There are also some experiences at supporting prediction models by using

sentiment information from Twitter posts ([Gabrovšek et al., 2017,Pagolu et al., 2016]).

3

1.3. Objectives and research approach

The goal of this research is to validate the hypothesis that the price of bitcoin is af-

fected by the web footprint of popular actors in the international crypto market. Pre-

liminary research has told us that the amount of digital material does not appear to be

correlated with bitcoin price, so we cannot settle for a simple answer like in [Matta et al.,

2015]. But we can do more: what if supportive messages affect the price in a positive way,

and disagreement messages in a negative way? This idea gives us a clear map of what

needs to be done: First, gather tweets from the most influential users in the cryptocur-

rency world. Next, analyze what stance (supporting, disagreement, or neither) each user

takes with respect to each message they communicate and then analyze through predictive

models if this data actually does affect bitcoin’s price.

Influential users can be selected in a greedy way, starting from some well-known

population of popular users. But how can we show that this data affects the price? We can

proceed as in [Zhang et al., 2018b] and [Zhang et al., 2018a], and compare the prediction

capabilities of some model that uses only the information of bitcoin’s price in the past with

the same model that incorporates this time the external information in some way into the

time series.

The price prediction problem is not new, there are numerous studies that address it

from the most diverse approximations, using Random matrix theory analysis over stock

market prices [Utsugi et al., 2004] or through feeding neural networks [Wanjawa, 2016,

Jia, 2016] and studying it against volatility [Petneházi and Gáll, 2018], also there is an

experience in such aspect by using a Bayesian approach [Ning and Shephard, 2017].

The simplest one seems to be to generate a regression from the observed points of the

series to try to forecast their variations in the future. While a lot of algorithms have been

developed for these purposes, the emerge of sophisticated Machine Learning techniques,

such as Neural Networks and boosted randomized decision trees, motivate us to explore

these models.

4

A pending question is: How can we extract the meaning of the messages and their

relation to the Bitcoin behavior?

Natural Language Processing (NLP) is known the field that combines linguistics,

computer science, and empirical knowledge retrieved from artificial intelligence with the

objective of developing comprehension within the interactions between computers and hu-

man language. The task studied by this area ranges from the most diverse classification

tasks, question answering, information retrieval as most web browsers do, summariza-

tion, information extraction or machine translation to sentiment analysis, spam filter in

our emails or the well-known applications in our smartphones like the auto-predictor and

auto-corrector when we write a message.

The simplest way to try out our objective is to treat it like a classification problem

to some label’s representation of stance of the messages retrieved from social media ref-

ereeing Bitcoin. While, to our knowledge, there exist some previous work in analyzing

stance toward a target [Mohammad et al., 2017], there is no exist known algorithm that

generates similar classification for Bitcoin specifically, so, we are strongly interested in

some recent applications of inductive transfer learning techniques, which are very popular

in the area of computer vision but recently developed for NLP’s concerns. The inductive

transfer learning consists exactly in not training a model from scratch, but benefits from

already obtained knowledge of language models previously trained in huge amounts of

data to, through a fine-tuning process make our model aware of the idiosyncrasy of the

new data and adapting their outputs to the desired task, in this case, to generate a good

stance classification of these messages. Inductive transfer learning is very promising in

understanding how language comprehension is learned by those models. The main reason

for considering transfer techniques is because we do not see this task as trivial. Indeed,

we do not want to know the sentiment that messages state, which generally correlates with

the election of used words. In this way, the task that we are seeking is more complex.

Also, the scarcity of labeled data for this purpose is difficult to deal with, making it virtu-

ally impossible to train a learning model from scratch, something that transfers algorithms

5

as [Howard and Ruder, 2018] and [Devlin et al., 2019] promise to face using previous

learning.

The main contributions of this work are two. First, the application of NLP state-

of-the-art algorithms and their adaption to the stance detection problem, as well as the

creation of well-located labeled examples for training these stance algorithms. On the

other hand, we contribute with a novel receipt for studying the price prediction problem,

introducing external stimulus as indicatives of the outgoing influence of some user in

media, we show promising evidence about the usefulness of this information.

Organization. In this work we show promising preliminary results, showing that

incorporating Twitter data can lead to better forecasting models. However, our predictive

power is limited to just a couple of days in the future. We think there is still room for

improvements, as there are many different ways to follow our general map, and we have

only studied a small number of them. This research is presented as follows: in Section 2

we deepen our objectives; present the data we are working with and explain the type of

prediction we will focus on in the rest of this research. Section 3 contains the architecture

of our model, discusses the need for an appropriate scaling, and presents the results of the

realistic problem of predicting price one day in the future, with their new complications

on more distant predictions in time. Section 4 introduces the opinion information obtained

from Twitter, we refer to our experience at a labeling session, in which we obtained the

data used at fine-tune process. Section 5 presents our discussion about how to include the

retrieved information so far, we describe the feature selection process made for including

stance. The final results of prediction and simulating price with the embedded data are

presented in section 6. We present promising results in predicting price one day in the

future but also some limitations. We conclude this research in section 7 with our main

ideas and discoveries as well as the challenges to be explored in future work.

6

2. ON THE PREDICTION OF MONETARY GOODS

Predicting the price of monetary goods is a problem that has been thoroughly studied

for several decades and from a series of different areas. As such, it is almost impossible to

give a full overview of all the different versions of these problems, or the techniques used

to solve them. In the case of Bitcoin, the data presented in section 2.1 is highly variable,

so a particularly challenging problem to deal with. However, we do have one important

aspect to discuss: the problem of predicting the immediate price of monetary goods that

are subject to a high volume of transactions can be dealt with (up to a very reasonable

error) with standard machine learning techniques. For the case of Bitcoin, in Section 2.2

we provide a neural network that can effectively predict the price of bitcoin in the next 5

minutes, and we test it to show that the error is indeed quite small. But then, if one can

predict the price, why is not everyone arbitraging the market? The problem is that, if one

wants to arbitrage bitcoin prices by taking advantage of a model that predicts the price in

the next 5 minutes, one would need a prediction that is essentially perfect. For this reason,

we focus instead on other problems which cannot be directly dealt with with standard

techniques. One problem is predicting the price of Bitcoin after 24 hours of reading the

last input, and the other problem has to do with training a model that can properly simulate

bitcoin prices for a long period of time. We define these in more detail in Section 2.3

2.1. Materials: samples and range of prediction

We draw Bitcoin price data from bitcoincharts.com and focus on the interval

between July 1st, 2018, and January 21st, 2019. The data contains information about the

opening and closing prices of Bitcoin in intervals of 5 minutes, giving a total of 83560

samples. To avoid complications between these two measures (open and close values),

we decided to work with the average price of each instant. This price evolution over the

referred dates is presented in Figure 2.1. It is important to mention that some of the points

(less than 30) of the original data were missing, in such case we repeat the last observation

7

completing the number of registries. In all our models we use the first 67160 data points

as training data 1, and use the remaining to test our predictions.

FIGURE 2.1. Bitcoin price time series.

As everyone in the industry knows, the price of Bitcoin is still far from reaching a

stable behavior. And while the high frequency of registries is definitely good news for

learning models in predicting its price, it also carries a curse: a large number of variations

can be very difficult to learn, and occasional points with high variability would tend to

be magnified by the necessary scaling that we must perform on our data, which can also

generate that some local variations can be underestimated in relation with the higher ones.

This means that predictors may either choose to focus on these high variability changes,

and therefore loosing constant small changes, or focus on small changes and treating big

raises or drops as outliers. Among the many possible solutions to this, we bet for a simple

and well-known measure in market behavior studies. To solve this noisy effect without los-

ing our high-frequency chart, we introduce the well-known quantity called moving mean

or moving average measure, defined at equation 2.1
1We always train with a random 10% of the sample reserved for cross-validation.

8

MM = 1

N

N�
i=1

pi (2.1)

where pi is the current price at date i and N indicates the number of samples that are con-

sidered on that average. The idea behind this measure is to work with a constant window

of size N and consecutively move their bounds to get a continuous measure of how the

price varies on average, creating smoothness in the micro and preserving variability in the

macro.

Figure 2.2 shows us how moving average captures the variability of the price with

a smoother approximation than the one presented in figure 2.1. We remark that moving

average is one of the most used metrics in stock exchange markets, to the point that its

inclusion is considered folklore.

FIGURE 2.2. Comparison between price and moving average with a windows
size of 288 measures, equivalent to 1 day of observations with a frequency of 5
minutes.

9

2.2. Predicting the next data point.

If we want to predict the evolution of a series, the first idea that comes to mind is

that this value should depend in some way on the incoming history of recent variations.

If all we want is to predict the next data point in the series, we can obtain reasonable

predictions by using state-of-the-art neural networks. Many studies have addressed the

problem of forecasting by using LSTMs in the most diverse fields. Some studies have

worked on e-commerce [Bandara et al., 2019], others have made the same by analyzing

the weather-based in history [Karevan and Suykens, 2018], even studying the human

blood pressure as a continuous sequence of measures [Girkar et al., 2018]. Other studies

have made important advances in popular computer tasks, such as question Answering

[Nguyen et al., 2018], [Jung et al., 2018] or speech recognition [K et al., 2019] and

even in the development of autonomous vehicles [Wehbe et al., 2018], all with the use of

LSTM.

An LSTM is a special kind of Neural Network that stands for Long-Short Term Mem-

ory and is one of the most popular applications of recurrent neural networks. This kind of

net is characterized by benefiting themselves from sequential data, just like for example, a

time series, a sequence of words forming a message, paragraph, or even a sequence of the

different events that a person activates by interacting with a sensor, a web page and so on.

Within the recurrent networks, we can find the RNNs, GRUs, and finally the LSTMs. The

novelty of these last ones from the original RNNs is found in the definition of their neu-

rons, which are specially designed to solve the vanishing gradient problem [Hochreiter,

1998], better than the other models, this is accomplished by the introduction of several

gates that update and control the cell states, the knowledge encoded in these state vec-

tors captures long-term dependencies and relations in the sequential data, preventing to be

forgotten while new data is seen [Hochreiter and Schmidhuber, 1997].

We chose to build a Recurrent Neural Network based on LSTM. Our network consists

of three layers, each one of 30 neurons, except for the first one, with 288 neurons equal

to the number of registries used as the previous history to feed our network. To each

10

layer follows a respective dropout regularization, the final two layers are fully connected

to retrieve a single value for prediction. Further details about the configuration and design

decisions can be found in Section 3, where we focus on a more complex problem. The

network is fed, as told, with a moving window of N = 288 data points, i.e., one full day

of observations. On the other hand, the outputs are selected to predict the price of the next

data point in the sequence. The predictor optimizer is trained to minimize both the root

mean square (RMSE) and the mean absolute error (MAE).

As we briefly comment in the last section, we also scale the values that feed our net-

work, as it is known to accelerate the learning process of machine learning algorithms (as

commented in [Li et al., 2017]). Since we just need to scale the scalar value of a predic-

tion, we use a simple MinMax function, applied over the total number of observations.

This function is defined in equation 2.2.

Xscaled = Xoriginal ⇥Xmin

Xmax ⇥Xmin
(2.2)

where Xmin and Xmax are the minimum and maximum value of the range scale, respec-

tively. Clearly, this function maps the original values to the range [0,1]. With these con-

siderations, we proceed to train our model.

Figure 2.3 shows the quality of this simple regression. As we see, our model is able

to predict the price of the next point with great accuracy, both in training (yellow line)

and testing (orange line) phases, achieving a score of 9.91 of RMSE in the training set

on average, and 10.87 of RMSE in the testing set, after recovering the scale. While the

predictive power of this simple network seems to be great, the main problems come when

we try out to simulate the price evolution over time, starting after the test set validation

(red line in figure 2.3).

11

FIGURE 2.3. Network predictions after training. The black line represents the
moving average measure introduced in the last subsection, the yellow line the
predicted value on the training part of the data, and the orange line the prediction
on the test set. The part with the red line is zoomed-in and explained in Figure 2.4.

2.3. Problems studied in this work.

As we have seen, the idea of predicting the next point of a time series is a simple task

for a neural network, even for a simple one as presented in section 3. Yellow and orange

lines show great fit with respect to the original moving averaged series and thus, we prefer

to focus on two more difficult problems.

The first problem we study is to predict the price of bitcoin in the next day in the

future (that is, to predict the price after 288 data points). This objective comes as a natural

extension of the regression problem we have just defined, and it is both, realistic and

useful. To achieve this, we just have to redefine the output ”labels” for the regression task.

In the following section (3) of this work, we will refer to this objective as the next-day

price prediction problem.

12

The second problem we study has more to do with our intention of using external data

to predict prices. The motivation comes from Figure 2.3. If we see the orange line, every

orange point takes as input the moving window of the latest 288 real data points. But what

would happen if we start feeding the network with its own predicted prices? How well can

we simulate the moving curves of bitcoin prices? We refer to this problem as the Price

Simulation problem.

To understand how changeling can the price simulation task be, we present in figure

2.4 a closer view of the last part of figure 2.3.

FIGURE 2.4. Simulation of Bitcoin Price. As the red curve shows, once we start
feeding the network’s own prediction as data, we immediately lose generality and
prediction power, and we get quickly stuck in an average value.

As we said, the orange line represents the predictions made over our test set, which

is well behaved when we feed our network with the recent history of variations. On the

other hand, the red line represents the price simulation which is generated from the same

model described in the previous section but now has been fed with already predicted data.

The performance in this task is poorer than our previous results and clearly, these results

13

follow strongly some instantaneous momentum at the start of the simulation. Clearly, one

expects that this price simulation cannot be carried away with price data only, probably

the last resulting series will continue growing without awareness of changes of the real

price as high-raises and low-drops are probably related to external phenomena.

Selecting which information, is appropriate to generate prediction is not evident, as a

relatively new valuable asset in the market is not obvious which dependencies are the im-

portant ones. A previous study from 2012 [Mehmet Levent, 2018] studied the existence

of dependencies between Bitcoin’s prices with respect to the price of different valuable

assets as gold, tangible currencies, and some market indicators. The authors worked over

a causality test frame, where variations overtime series are made through the analysis of

series decomposition, specifically, they separate the original series in a summation of pos-

itive and negative ”shocks”. Under this definition, any value at any time can be calculated

as a cumulative function of these variations. The results of these tests revealed that the

null hypothesis (not the existence of correlations between these ”shock series”) cannot be

rejected with the available data, in most of the cases they do not find evidence of strong

dependencies except for one market indicator: S&P 500 Index. Although the statistic test

is good enough to rule out independence, the dependency’s direction is not as expected,

the authors discovered an inverse relation, where Bitcoin’s price variations appear to have

an influence on the investor’s decision over the S&P 500 Index’s market value. They are

very clear when say they cannot settle evidence of positive causality over Bitcoin’s price

variations under the studied variables, revealing a changeling task and a necessary turn in

the direction of analysis carried out.

While recent literature has not been to establish a strong relationship with the vari-

ations of other valuable assets in different investment markets, the results presented in

[Matta et al., 2015] are promising in discovering some relation that links bitcoin’s price

with Google searches. The relation found is quite surprising because there has not been

such currency in existence that showed this behavior before. The correlation of virtual

currencies with virtual indicators seems a sensible thing to consider and an interesting

field of study. Although is not clear what indicators should be considered in our analysis,

14

we explore deep in this work the hypothesis that the bitcoin’s price is affected by the web

footprint of popular actors in the international crypto market.

Preliminary exploration of the data told us that the amount of digital material, i.e., the

number of messages retrieved from the influential users in Twitter media over time, does

not appear to be strongly correlated with bitcoin’s price. A fast check through Pearson

correlation calculation reveals a slightly negative correlation by a coefficient of -0.243,

the significance test of the null hypothesis for this statistical measure is 2.1%, so is clear

that there is an inverse relationship that we cannot reject, but that is not what we want to

find. Figure 2.5 analyzes the time-lagged cross-correlation between both series.

FIGURE 2.5. Time lagged cross Pearson correlation between Bitcoin’s price and
the number of messages retrieved from influential users in Twitter talking about
Bitcoin. The second series is temporally lagged in time after and before the price
variations. The numbers on the x-axis represent the number of steps in which the
second series is moved, each step represents a difference of 5 minutes. The vertical
lines mark the zero-time lag (the black one) and values in which the correlation
reaches the max and min value (red ones).

From this figure it is seen that by lagging the number of messages to the future,

the previously detected inverse correlation starts to grow in the module in time, which

should be interpreted as ”variations in Bitcoin price have a consequence in the number

of comments that people in media do”, or more specifically, ”if Bitcoin decrease/increase

in price, people turn to talk more/less about it in time”. So again, as well as conclusions

from [Mehmet Levent, 2018], we are able to set an inverse causality relation between

the number of influential users’ comments in media and Bitcoin. If we want to continue

exploring our hypothesis, we must introduce a new kind of analysis. This is where Natural

Language Processing (NLP) comes in handy, as is discussed in section 4.

15

3. NEXT-DAY PRICE PREDICTION AND PRICE SIMULATION BY USING

PRICE DATA ITSELF

In this section, it is introduced the model design, created for studying both: the next-

day price prediction task and the price simulation problem. We recall that this architecture

is the same as the one used to generate the curves presented in the previous chapter. Again,

we are still training our model with just price data alone but, unlike the last section, we

will deepen in a more realistic and useful prediction task. More specifically, we want to

answer the following two questions: First, can we get the same good results for the next-

day price as we got when predicting the next data point in the price history? The second

question has to do with price simulation. As we have mentioned, in this setting we do not

expect good results on the simulation, but the question remains: how far we can push this

simulation using only price data?

3.1. Creating a prediction model: Architecture behind predictions

Let us briefly describe the architecture of our network. As told, we are experimenting

with Deep Neural Networks. Since our data are time series, choosing recurrent networks

(RNN) makes sense in order to take advantage of the recent history of variations to predict

a single value in the future. Among the different RNNs, we are specifically working with

LSTMs networks, which are well known for their ability to exploit temporal connections

and solving the gradient vanishing problem. Figure 3.1 depicts the main components of

our model.

The introduced architecture consists of 2 LSTM recurrent layers, each consisting of

128 neurons. We drew these numbers as design hyper-parameters from our preliminary

testing and through grid search iterations. After some time, we discover that such depth

and hidden units were good enough for our purposes. The input layer receives the 288 data

points representing a complete day of observations, then an embedding function trans-

forms the sequence in just 24-time steps observation but now including some statistical

information as the min, max, median, and mean of the price along the hour of data. Then,

16

FIGURE 3.1. The architecture of our model is essentially a composition of multi-
ple LSTM layers and a last feed forward layer to generate the output.

all this information is fed as sequential data. The output is then retrieved to be fed to a

linear layer.

Following good practices, we initialized the first layer with random biases and weights.

To avoid overfitting, every LSTM layer is followed by a Dropout regularization; the first

layer has the biggest dropout probability and it decreases with each subsequent layer. Two

fully connected layers are added, at last, to obtain in first place new latent factors of the

variables, and second to generate a unique output so in every stage our neural network can

be trained for prediction. When an output value is obtained then is compared with the tar-

get value which corresponds. The loss function is set as the quadratic difference between

each value also known as the RMSE metric, thus can be then minimized through back-

propagation. In every training step, we feed our network with a batch of 288 examples to

ensure system generalization.

The introduction of Dropout in each layer has a double purpose. The first as men-

tioned is to achieve generalization so when the model receives new data, it is more robust

and less likely to reproduce the same predictions like the ones done at the training set.

The second reason comes from an important result described in [Gal and Ghahramani,

17

2016]. In the referred work the authors claim they had ”develop a new theoretical frame-

work, casting dropout training in deep neural networks as approximate Bayesian inference

in deep Gaussian processes”. The results are very impressive as well as we can now have

a framework in which we can quantify our model’s uncertainty through the use of dropout.

That is, in each realization, we work with a slightly different network that is affected by

a different noise (caused by the dropout itself), so we could now quantify how robust is

our model to this noise. The authors showed that training a network over the dropout

objective, in effect, minimizes the Kullback–Leibler divergence between an approximate

distribution and the posterior of a deep Gaussian process similarly as Bayesian’s methods

do, which are mathematically designed to do.

To test our model design, we are comparing the score of the RMSE error of an XG-

Boost model, trained for predicting the next day’s price.

3.2. The relevance on scaling correctly

From the previously introduced model, we proceed just as in Section 2 and start train-

ing our network for the new task of predicting price one day next in the future. To do

so, we scale the whole data with the MinMax scaling function as described before and

then fed the embedded data to the network with measures of 288 registries at each training

batch instance. Instantly we can see in figure 3.2 how now our predictions are surpris-

ingly worse. The yellow line, representing our prediction over training data, is stuck in

a constant value, which is close to the mean of the series over the considered time span.

Moreover, this value is projected in the test set as the unique possible value learned by the

model. In short, the trained model is practically useless.

The reason for this setback is that the prices of 1 day in the future have a much higher

variation than the ones that could be seen in consecutive data points. Our scaling function

just projected our values to the range [0,1] but preserves the proportion in the differences,

this means that the network could not properly distinguish these changes. In this point

18

FIGURE 3.2. Next-day price prediction when all data is scaled as in Section 2.
The curve is markedly displaced to an average value, not being able to recover the
shape of the prediction curve and being flattened on all its extension

we have to emphasize that the main reason for applying a scaling function over the ob-

served data is to optimize the gradient descent process during the training phase, it is a

well-known practice that scaling data generate a faster push to reach a local minimum. In

this sense, the issue is the following: If we scale all data points first, then most probably all

data points of a 24 hours window would be mapped to very similar values. This would not

be an issue for predicting values in the same range, but when forced to predict values for

the next day, which are mapped to other ranges by the scaling, the network was no longer

working how it should. It is probably that in this case, the variations in a window of 24

hours are infeasible to learn, so the network progressively understands that predicting a

central value as the mean, is a good way of reducing loss.

To solve the referred problem, we use instead of a scaling function that scales every

24 hours window separately, i.e., each observation of 288 points that feed our network is

scaled with a particular MinMax scale function. Of course, there is a new problem with

19

this solution: if the prices in a day vary in an (a, b) interval and the price in the next day

is outside this interval, what should we expect the network to predict? To cope with this

problem we alter the MinMax bounds so that the lowest point (xmin) fed into the network

does not get mapped to value 0 but to its equivalent value in scale as a distance from the

new lower bound in dataset 0.8 ◊Xmin and likewise for the higher point 1.20 ◊Xmax, in

this way we are trusting in the naive assumption that the values we want to predict reside

in a new range (0.8 ◊Xmin, 1.20 ◊Xmax) and while these weights are learned to cover a

high range of variations, there is a considerable number of extreme values that our model

will have to treat as outliers. These design decisions are mainly supported by our results.

Figure 3.3 shows the performance of our model after these modifications.

FIGURE 3.3. Next-day price prediction when data is particularly scaled in a per-
day basis. Results are much more well placed than the ones obtained with a general
scaling function.

As we see, the performance of the model is recovered with no modifications needed

at the architecture design but only at the scaling phase, this reveals the importance of data

engineering even when we rely on self-trainable systems as neural networks. We must em-

phasize that although the selected solution is naive, it is also simple and more importantly

20

good enough for the network’s learning. There are of course more sophisticated ways of

improving the same results: For example, one can consider more complex networks, as

in [Zhou et al., 2018] where the authors develop a generative adversarial network to create

a prediction model in two parts, one called Generator, who is also called as an ’adversary’

that generate samples from a real-time series and tries to compete with a Discriminator

who determinates if the samples are real or were generated by the adversary. The two

training phases create a robust model that is able to discriminate a precise range in which

the possible values move and adjust their predictions to it. Another possible solution for

this problem could be considering other scaling functions among the several defined ones

or perhaps creating a simile to the technique introduced in [Zhong et al., 2019]. In this

study, authors use attention in the training process so that the network is aware of some

important relations for the prediction task, a possibility would be to use this idea to relieve

the scale-boundaries learning to the network itself. However, since the goal of this study is

to later combine these models with Twitter data, we choose to move onto the next problem

and work with the introduced daily scale, as performs good enough.

3.3. Price Simulation using per-day scaling

Since we have seen that per-day scaling gives us a better-trained model for the next-

day problem, it also makes sense to update our price-simulation network so that the train-

ing is likewise done with this other scaling. Results are presented in Figures 3.4 and 3.5.

Again, the first image presents the results as in 3.3 with an extra red line for the price

simulation task, complementary the second image shows a closer view to last results.

21

FIGURE 3.4. Price Simulation with per-day scaling. Test data is depicted on the
yellow line while simulation is on the red line.

FIGURE 3.5. Zoom of the model’s performance while simulating price. This
model now manages to predict a decrease in price, but the prediction is still too
coarse.

22

The new scaling gives our model the ability to identify slight trends over price data (

red line in Figure 3.5), however, we are still not able to detect the subsequent rise in price

by the end of the test period (data left out of the training and validation process): at this

point, the model has detected that prices tend to drop over time, and, unless we provide

another form of external stimulus to the model, it will never have enough information to

change its decision direction. Our hypothesis is that Twitter data may well be the external

stimulus that we are looking for, and that “good” or “bad” tweets will give the network

enough information to change the trend of what it is predicting. At this point, some natural

question emerges: ¿How to recognize who is influential in Twitter media? ¿How use to

define what is a good or bad tweet? ¿Which is the best way to use this information in

making our network aware of changes in price? This is the focus of the next section

where we settle down a framework in which we size up the exactitude of the introduced

hypothesis.

23

4. OPINION AS A QUANTIFIABLE MEASURE

The idea that the price of assets is affected by certain influential spokespersons is

not new and has already been studied when analyzing prices of other types of assets (see

e.g., [Zhang et al., 2018b, Zhang et al., 2018a]). Our belief that Twitter’s data is a good

external source that should help in predicting Bitcoin data comes from gathering opinions

of people working in the crypto market itself [Rada, 2018b].

4.1. Extracting Twitter opinion data

There is a large body of work on how to compute the most central nodes in a social

network, and to the best of our knowledge, there is no agreement on a single method that

fits all uses. Moreover, most well-known centrality measures (PageRank, betweenness

centrality, degree centrality, etc.) require full access to the network to be computed, which

is not feasible in the case of Twitter. Instead, we use the following algorithm as an approx-

imation for computing users with higher page rank that are related to cryptocurrencies.

This algorithm is inspired by [Rada, 2018a]:

(i) We start with a seed of 10 users that are known to be influential.

(ii) In each iteration, we create a list of users corresponding to all the people fol-

lowed by the users in the seed.

(iii) We order the list with the most followed users first, take the 10 most followed

that are not already in the seed, and adding them to the seed.

We selected a total of 135 influential users after 10 iterations of the algorithm. Then,

we extract all tweets by these users between July 2018 and January 2019, but only store

those tweets referring to one of the following terms: bitcoin, btc or cryptocurrency as

well as their grammatical variations. This method gave us a total of 9146 tweets, which

represent an average of 43.5 tweets per day across the seven months considered. Note that

we could have obtained more tweets by simply enlarging our list of crypto influencers.

However, there is a danger in doing this: with more users in our list, the tweets made by

24

the real influential people would be diluted by tweets from regular people, which we do

not trust to affect the price in the same way.

In this study, we decided to not include retweets, because a lot of this information

could correspond to advertising or propaganda and we are more interested in the diversity

of the speech to be analyzed against price.

While this data represents a good material for use in a prediction model, is not obvious

how to represent this information, as an opinion can be qualified in many ways. Within

them, the simplest way appears to characterize opinions as incentives of Bitcoin’s price

behavior, the next section will discuss this extensively. A big problem to deal with is that

gathered data is raw and not labeled at all.

4.2. Characterizing opinion from influential users.

When we thought about what is information, we would like an extract from an opinion

and more specifically in our case, from a tweet; we realized this is not obvious to achieve.

The general idea is to extract the sense of an opinion referring to Bitcoin, however, the

objectives we pursue are even more ambitious and require specific analysis. More than

getting an idea about Bitcoin, we want to recognize if the information expressed by tweets

is going to act as incentives or not, but precisely for the behavior of the price itself and the

Bitcoin’s market. At this point, is important to comprehend that this information is very

specific, so is not easy to accomplish with any algorithm of the area as we will see.

Among the many NLP’s applications, there are two that match in somehow our ideas

of getting a valuation starting from an idea or opinion. Both Sentiment analysis, as well

as Stance detection, represent applications of Natural Language in developing compre-

hension through the introduction of polar measures, but with the deep difference between

them [Krejzl et al., 2017]. The first one, Sentiment analysis, is a fruitful area of NLP ap-

plications that consists of the classification of text according to the mood that emerges from

itself, in short, is a measure of positiveness and negativeness about something. According

to this, we can argue that the sentiment measure is strongly related to words used in the

25

message’s construction. Concepts as happiness, support, negation, anger, and so on, tell us

immediately information about the sentiment that people have about something. Neverthe-

less, there are as many algorithms as ways to compute this measure of sentiment. Some

algorithms ([PappuRajan and Victor, 2014], [El Alaoui et al., 2018], [Baccianella

et al., 2010]) generate a score based justly on the occurrence and co-occurrence of words

in a pre-designed dictionary of positive/negative ones. Other algorithms generate training

of more sophisticated classification algorithms, where sometimes the classification rules

are learned directly from data [Mohammad et al., 2013]. Experimental results are varied

but they suggest that is a naive assumption that isolated words by themselves can repre-

sent the sense of the speech. The fact is that semantics relations of language are difficult to

represent and learn, but also are important to completely understand what has been said.

So, an ideal approximation must be aware of these throwbacks.

While sentiment approximation and their algorithms seem interesting, unfortunately,

we cannot use standard sentiment analysis tools and expect that they would be useful to

Bitcoin’s world and our purposes. For instance, some texts regarding Bitcoin found in our

data set say

I. Banks in India are now saying that they will now close costumer’s accounts if they deal

in cryptocurrencies

II. For this reason, governments worldwide are having a tough time adjusting to the reality

of a world with #Bitcoin: They are losing their tight grip on #Money, which historically,

has been in their full control. No longer! Money can now truly belong to the people.

#FreedomOfMoney

Box 1. Tweets about Bitcoin, examples.

As can be read from the first example, terrible news for Bitcoin’s market is announced,

however, the chosen language is very neutral. By its side, the second one is supporting Bit-

coin as an alternative to the traditional transaction method dominated by cash and credit,

both classically linked to banks and governments; the language used in this case is a more

26

negative one, expressions like tough time, losing and no longer are evidencing some infor-

mation with clear purposes: to criticize banks and governments as well as their relations

with money’s markets. This second tweet is one of the typical examples where a polar

measure based on sentiment is not in tune with the meaning we want to keep: determining

a sense of support or disagreement regarding Bitcoin’s market behavior. Those terms are

in some way closer to a stance concept than the circumstantial sentiment that an opin-

ion gives. The posture detection task is about determining whether, who gives an opinion,

adopts a position (a.k.a. stance) of supporting, agreeing, defending, or simply liking some-

thing, which agrees to detect positive stimulus when the opinion comes from influential

users. In similar terms, the negative stimulus, so an indication that price should be decreas-

ing, must be detected from opinions from influential users that do not see optimistically

or disagreeing with Bitcoin’s market behavior. Of course, a good classifier should also

understand the scenario in which the opinion does not express a stance or is not even clear,

in which case should be classified as neutral. This encourages us to consider stance as the

embedding unit to carry out our study.

Most of the state-of-the-art solutions for stance prediction are usually task-specific

classifiers based on neural networks and as is well known, their success relies on the huge

number of labeled examples that the algorithm has access to. In our scenario, this does

not seem reachable. First, because there are no public datasets available for this task. But

more importantly, the labeling of tweets by humans would come at a considerable cost,

since this task must be done by people knowledgeable both with economics and with the

bitcoin ecosystem. So, using large training datasets is outside the scope of this work.

Despite this unfortunate scenario, some recent results could be very useful for us. In the

papers [Howard and Ruder, 2018], [Devlin et al., 2019], [Radford et al., 2019] (2017-

2018) authors introduce novel techniques that refer about the possibility of fine-tuning

language models for a specific task with even just 100 labeled examples to train [Howard

and Ruder, 2018]. This idea seems very interesting because the language models usually

found in the literature are always trained in a huge corpus of data, so have learned a huge

number of rules and language relations that can be beneficial in re-using for another task.

27

This particular scenario of lacking data and new results in fine-tuning models suggest

a novel methodology for building our task-specific classifier. First, as we will discover,

the fine-tuning process will still need some labeled-by-experts examples, to adapt to their

knowledge for new tasks and contexts; so, in the beginning, we have to develop the biggest

as possible training dataset using experts knowledgeable in the problem. Then, the next

step should be fine-tuning some of the state-of-the-art NLP models for our task-specific

purposes by using transferring learning techniques. Finally, by getting stance detection

results for our list of messages from influential users, we could easily use them as new

inputs of the price prediction model. To this end, the next sections present how we carry

out this methodology. In section 4.3 we discuss two of the most recent results in transfer

learning’s area to be applied in the most diverse NLP tasks. Section 4.4 introduces our

experience in creating the mentioned Bitcoin-stance-labeled Database for our specific fine-

tune purposes. Finally, in section 4.5 we discuss our results in diverse models, tasks, and

algorithms.

4.3. Fine-tuning language models for stance detection: ULMFIT & BERT

The models that assign probabilities to sequences of words are called language mod-

els. The simplest model to assign these probabilities to sentences and sequences of words

is the n-gram. Today there are much more complex characterizations that are the result of

analyzing a large corpus of documents.

The idea of fine-tuning learning models (a.k.a. inductive transfer learning) comes

from the area of Computational Vision (a.k.a. CV). In these investigations, authors trained

convolutional neural networks for image recognition and discovered differences within

the information learned by different layers. The first one learned more general informa-

tion about images than the final ones. Indeed, when they visualized the activation of the

neurons over the first layers, they saw shapes, colors, and shadows; as well that none of

them by itself solely could represent any of the known data. So, these authors had an idea:

keep the first trained layers and replace the last ones that are mandated to make the classi-

fication. The results were that after just a few numbers of extra training epochs to make the

28

network adapted to its new task, they were able to recover their accuracy in classification

in a completely different task.

Nowadays, fine-tuning is widely used and very popular for image recognition. How-

ever, despite this was introduced for the first time in 2011 ([Tian et al., 2011]) this

application did not see the light in NLP until 2018-2019, where many ideas ([Howard

and Ruder, 2018], [Devlin et al., 2019], [Radford et al., 2019]) came out with promis-

ing results. Until that moment, most of the state-of-the-art results in NLP were models

trained from scratch, and the inductive transfer learning was relegated to the generation

of pre-trained word embeddings [Almeida and Xexéo, 2019], in which case the transfer

techniques only target the first model’s layer, still requiring task-specific modifications and

training from scratch. The impossibility of not being able to use fine-tuning directly was

because most of these applications do not share the same model architectures used in CV,

and also that semantics and syntax are not as simple structures for language as shapes and

shadows are for images. Particularly, Twitter data is a very interesting use case for transfer

learning, mainly because the typical language syntax seen in Tweets is quite different from

that used to train typical language models.

For purposes of this work, we will focus our discussion on two fine-tuning proposals:

ULMFiT and BERT.

4.3.1. ULMFiT: a recipe for correctly fine-tune your model.

ULMFiT was presented for the first time in [Howard and Ruder, 2018], where the

authors define the acronym that stands for Universal Language Model Fine-tuning. In this

publication authors more than introducing embeddings, introduce a standard process to

effectively fine-tune any language model, for the many desired tasks.

The fine-tuning process for a novel classification task is based on a 3-stage methodol-

ogy.

29

1. General-domain Language Model pre-training: When we talk about a language

model, we refer to any learning model used for the simplest task in NLP: language mod-

eling. The concept of simple must be understood in the sense that any source of text

works for these purposes, however, this task could be very complex. An example of lan-

guage modeling is training a model to recognize the following more probable word in a

sequence. The idea behind this is training any model for a task as general as possible to

capture many facets of the language that can be relevant for downstream tasks, such as

long-term dependencies [Linzen et al., 2016], hierarchical relations [Gulordava et al.,

2018], and sentiment [Radford et al., 2017]. These relations are learned by our model at

their neuron’s weights in what we call a general-domain language model. In the paper, the

authors tested ULMFiT with a pre-trained model generated using an AWD-LSTM model

such as the introduced in [Merity et al., 2017] which consist of very simple architecture,

but has demonstrated to be good behaved for the language modeling task. This architec-

ture consists of a 3-deep layer recurrent neural network based in LSTM and trained over

28,595 pre-processed Wikipedia articles, totaling 103 million words. What comes next,

it’s about adapting those weights to a novel language’s context (Twitter media) and task

(Stance classification).

2. Target task Language Model fine-tuning: The second step is telling the model

that the new corpus comes from a different distribution of words and a specific context,

things we called the idiosyncrasy of the data. To accomplish this, the authors introduce

some interesting techniques to update the language model without suffering from forget-

ting the already learned parameters. The main two are:

⇤ Discriminative Fine-tuning: From the ULMFiT paper: ”As different layers capture

different types of information [Yosinski et al., 2014], they should be fine-tuned to dif-

ferent extents” and this is done in ULMFiT after extensive empirical testing and imple-

mentation updates in discovering specific hyper-parameters. In this sense, rather than

change each layer manually, they adapt a multiplier that influences the learning rate for

30

each of them, so the weight modification rate is not equal for each layer. The value

found was 2.6 and the varying for this is of the form,

�l = �l�1
2.6

(4.1)

where �l is the learning rate of the l-th layer of the model language. This modification

traduces in changes to the SGD [Poggio et al., 2011] update rule, where the learning

rates are involved as follow,

⇥lt = ⇥lt�1 ⇥ �l ⌅ ⇧�lJ(⇥) (4.2)

where the ⇥lt are the weights of the l ⇥ th layer at the t ⇥ th epoch and ⇧�lJ(⇥) is the

currently gradient calculated by backpropagation.

⇤ 1-cycle learning rate policy: In the fine-tuning stage, a 1-cycle learning rate policy is

also applied, idea that comes originally from this paper [Smith, 2018].

This step is now about varying � across different epochs, so this will be �t on each

epoch. The version of the policy used by ULMFiT it is a modification of the cyclical

learning rate policy, which has been around in the academic community for a long time.

The novel here is that their 1-cycle policy allows a large initial learning rate (LRmax =
10�2, for example), decreasing it by several orders of magnitude just at the last epoch

steps. The reason for this policy is adapting the model parameters to quickly converge

to a suitable region of the task-specific parameter space at the beginning of training,

then just refine its parameters in the last epoch steps. We will call as slanted triangular

learning rate to this policy. The learning rate’s schedule exhibited by ULMFiT is shown

in figure 4.1

According to the authors, this specific policy seems to provide greater final accuracy.

3. Target task classifier fine-tuning: Once we save the updated weights from the

language model fine-tuning step, we can fine-tune the classifier (which is the final layer of

31

FIGURE 4.1. Slanted triangular learning rate policy for fine-tuning ULMFIT.

the learning model), this is accomplished by using the techniques described above and the

introduction of two new ones to perform task-specific class prediction.

⇤ Gradual unfreezing: This refers to a new policy in the way the network is trained.

Rather than training all the layers at once during classification, the first layers are

”frozen” and just the last one is fine-tuned first, in the next epoch, the two last layers

(the last followed by the next layer before it) will be trained and the remaining ones will

be continuing to be ”frozen”, and so on during the following epochs. This avoids the

phenomenon known as catastrophic forgetting which is something that happens when

the network changes its weights too aggressively to achieve good classification scores,

not relying on the pre-learning phase.

⇤ Concatenated pooling: Because an input text can consist of hundreds or thousands of

words, information might get lost if we only consider the last hidden state of the neural

network. Hence, the hidden state at the last time step, hT is concatenated with both the

max-pooled (the max activation scores within the states) and mean-pooled (an average

activation score from all states) representation of the hidden states over as many time

steps as can fit in GPU memory.

hC = [hT ,maxpool(H),meanpool(H)] (4.3)

32

Where H is the vector of all hidden states.

The coupling of these parts and all of their components allowed the authors to reach

state-of-the-art results for different tasks and data with just 100 labeled examples for the

classifier fine-tuned, after applying a language modeling fine-tuning with 50,000 unlabeled

examples. In this work, we will use the same language model as the one used in the

original job.

4.3.2. BERT: a novel attention-based architecture, easy to adapt to contexts and

tasks.

Contrary to ULMFiT who relies on a set of instructions and some empirically dis-

covered hyper-parameters to fine-tune a given (any) language model; BERT, which stands

for Bidirectional Encoder Representations from Transformers, is a language model itself.

BERT was designed to learn deep bidirectional representations from unlabeled text, this

means that in every moment, BERT computes weights by reading text forward and back-

ward. Those representations have demonstrated learning properly many language particu-

larities. As a result, the BERT model can be fine-tuned by adding just one output layer to

create state-of-the-art models for a wide range of tasks, without substantial task-specific

architecture modifications.

From an architectural point of view, BERT is a trained Transformer Encoder, but

formed by many copies stacked as a block, more or less simply, BERT’s architecture is

presented in 4.2. The term Transformer refers to the self-attention system developed by

Ashish Vaswani et. al in the paper [Vaswani et al., 2017]

Figure 4.2 shows how the model takes the words as input (usually represented by some

embedding) and after passes through 12 Transformer’s Encoders layers, BERT generates

representations learned in the process. While the architecture seems very simple, there is

a lot of mathematics happening there. To understand this totally, we have to see t what a

Transformer Encoder is, this is shown in figure 4.3.

33

FIGURE 4.2. BERT architecture, as discussed in [Devlin et al., 2019]

FIGURE 4.3. Transformer base architecture: Encoder.

Every Encoder is formed by two layers, the first one calculates self-attention scores

while the second one is formed by just a feed-forward network. Because the last layer is a

quite known architecture, our discussion will be centered on understanding the attention’s

concept. To this end, let’s analyze again the first example presented in Box 1,

34

Banks in India are now saying that they will now close costumer’s accounts if they deal in

cryptocurrencies

in this tweet two subjects are involved: Banks in India and costumers, nevertheless

the word they is used indiscriminately for them; an attentive mechanism is expected to

recognize this type of differences and associate each they with their respective entity. In

BERT this is done in a very smart way, in simple words, if you are reading the first they

from the last example, you would expect a high score resulting from an attention metric

with words Banks and probably India, the solution created in BERT introduces useful self-

learned abstractions to calculate these scores. Thus, for each word a Query vector (⌃q), a

Key vector (⌃k), and a Value vector (⌃v) will be created, then computed attention between

two words (i, j) will be a score between their query qi and key kj vectors,

z = SoftMax(qi ⌅ kj⌥
dk

)vi (4.4)

where z is the output shown in figure 4.2, the term
⌥
dk is the square root of the

dimension of the key vectors, which along with the SoftMax function lead to having more

stable gradients by normalizing the score. Finally, the intuition behind the value vector is

to assign a relevance score to maintain intact values of the word/s we want to focus on and

drown out irrelevant words. The final step is, to sum up, the weighted value vectors. The

novel in BERT is that these representations are calculated by the model itself through the

whole process.

The unique representations created by BERT are so powerful that carry on a lot of

information, so the fine-tuning process concentrates uniquely on modifying/adding the

last classifier layer to the task-specific purposes.

While BERT’s seems to be more promising in their results (by achieving the best

performance in at least 8 of the most used NLP’s test datasets) authors are cautious in

mentioning that fine-tuning is unstable on small datasets, being the smallest used by them

35

formed from 2,500 labeled examples. This number while is not unreachable is way more

expensive to achieve than the number needed for ULMFiT

4.4. A labeling session

Mining opinions from the internet is not a difficult task. Media like Twitter are huge

sources of information where people share their thoughts for free. However, there are two

important limitations, the first is related to the maximum number of tweets that can be

retrieved from the media in a single query. Twitter’s API service allows consulting up to

3,200 tweets back-in-time on the user timeline, starting from the date at the moment of

the consulting and of course, the number reduces when you keep filtering over topics of

interest. The second throwback comes from the rawness of data, which is hardly labeled

for specific purposes like the one we are looking for.

Generating labeled data is expensive in most cases, you always have to be willing to

invest in manual classification made by humans. Because of this, web pages for crowd-

sourcing and surveys have found recently a niche of success. However, these services

are uncommonly carried out by experts’ annotators in the topic. Our task is especially

critical because, as commented, the pursued task is easily misunderstood when sentiment

is considered instead of stance regarding price, in the same line, one can expect that a

minimal knowledge in cryptocurrencies markets, as well as economics, may be needed to

ensure complete comprehension of what influential user is saying about Bitcoin markets.

For those reasons, before using a web crowdsourcing service, we adopted the decision

of recreating a labeling session with undergraduate students from the Computer Science

Department at Pontificia Universidad Católica de Chile. These people were especially

interested in the world of cryptocurrencies when we interviewed and selected them, on

the other hand, their formation at the Engineering School reinforce our confidence in their

knowledge about economics and computing, things that added to their English skills turn

them into ideal experts for the labeling task around the Bitcoin topic.

36

Our objectives for this session were modest, because we considered labeling as a job,

paying to the students for their responses when our resources were limited. So, in this

way, we wanted to generate a database made from at least, the minimum number of la-

beled examples to fine-tune a pre-trained language model. As we remember, this number

was 100 for ULMFiT and more than 10 times this number for BERT. As the last one was

too ambitious, we decided to at least obtain labels for 200 examples, drawing them ran-

domly from all messages extracted from influential users.

The session was planned as follow:

⇤ We decide to work with six students doing the same job, to reduce random error and

also giving more relevance and trust to the classification.

⇤ The 200 examples were divided into two sessions. In each one, every student had

to put labels on 100 tweets. The idea was to prevent bad answers due to fatigue or

mechanization of the task.

⇤ The students were part of a little class about differences between concepts of Sentiment

and Stances with real examples.

⇤ They worked each day with a document containing the 100 tweets and were asked

to classify them according to 4 labels: SUPPORT, AGAINST, NONE and I DO NOT

KNOW/ I AM NOT SURE. The tweets answered with the last label were not considered

in the following stages.

⇤ To verify the attention and comprehension about what each tweet talked about, the

students were asked also to identify the target subject of the opinion, the variable that

was also used for control.

⇤ No time limit was given to students to deliver their answers.

⇤ An instructive was given to students to resume all this information, which is included

in the Appendix A.

37

Any topic-specific session, like the one we created with these students, will still need

a review of the agreement levels of the participants in their choices. To this end, we

compared their answers. We starting using the control variable, the one we called the

target subject of an opinion. This variable is about recognizing who the opinion is about.

Specifically, we asked the students to choose one of these categories: the opinion goes to

Bitcoin or somebody related with the market, the opinion goes to somebody or something

that is not related to Bitcoin; the tweet does not express an opinion but is telling a fact

(usually informing news).

By identifying the target subject, we can control the reading comprehension of the

students as this is a more general task, so it’s easier to find agreements. Answers with high

disagreement in the target subject were considered as controversial (more than one answer

with at least two votes for each one), so taken out from the final database. This means that

people did not understand what the messages were telling, so this is an important filter for

what is coming next. The second cleaning step consists of eliminating tweets in which the

deviation score of the stance classification answers was too high, for our purposes more

than two opposite labels were considered as disagreement.

After cleaning, we were left with a database of 150 labeled examples, more than

enough for our purpose of using ULMFiT. We will also test how BERT behaves with this

data anyway. An important conclusion of this little session is again that this task is not

easy to accomplish: at least 1 of 4 tweets were controversial; so, we must recognize that

algorithms will also face this difficulty.

4.5. Results on Tweet Classification task

The last part of this chapter is dedicated to summarizing our results at the stance re-

garding Bitcoin’s price classification task. From the last chapter, we obtained 150 labeled

examples, from which 100 must be reserved for training the task-specific classifier in the

case of ULMFiT and BERT. Nevertheless, there exist a considerable number of pre-trained

38

algorithms for general sentiment/stance detection ([Baccianella et al., 2010], [Moham-

mad et al., 2013], [Bindal and Chatterjee, 2016]). As well as most algorithms in the

area, they have been trained for general contexts and tasks by analyzing huge amounts

of documents, so will not be a surprise that such algorithms will not perform that well

over our specific task-driven data. While the knowledge learned by those models does not

apply to our purposes, testing them should be informed about how difficult is to target our

problem.

Following our beliefs, we state that differences in contexts, idiosyncrasy, and task pur-

poses, will be decisive for the algorithm’s performances, some of which have enormous

differences at these initial conditions. To check this out, we are testing some of them in

the stance regarding Bitcoin’s price task. First, we will briefly review some differences

in these initial conditions. Sentiment140 is an algorithm that was trained to exactly match

the idiosyncrasy of Twitter, i.e., was trained for comprehending the informal language of

the media and for being adapted to the max fixed length of these messages, which origi-

nally was 140 (hence its name); however, this model was not trained for Bitcoin specifi-

cally, neither for stance detection but detecting the general sentiment expressed. Similarly,

Tweetment is another known algorithm that was also trained for Twitter-like data, recog-

nizing up to three sentiment labels. The case of SentiWordNet is very special, this one was

developed as an opinion mining application capable of classifying sentiment expressed in

the text within a continuous range [-1, 1], for instance, an opinion analyzed by this algo-

rithm can retrieve a score of 0.3, meaning ”somehow positive”, this is achieved starting

from a pre-trained dictionary that synthesizes n-grams relations, which were previously

scored in positiveness, negativeness and objectiveness [Baccianella et al., 2010], again

this algorithm was trained at general corpus and not even for Twitter’s context. However,

this one has been applied in a variety of NLP’s tasks, such as language representation [Ke

et al., 2020] and their applications like strategies for Curriculum Learning [Rao et al.,

2020].

The last algorithm will be used as a baseline, which is one not even created for detect-

ing sentiment but that can be easily adapted for any classification task by training it for a

39

few epochs, this is XG-Boost, a randomized decision trees-based algorithm, by using this

we can explore from a general perspective the data we are using.

In the following results, we assume for most of the cases the same text pre-processing

strategy, which is close to the well-known practices in the area. This includes:

⇤ Change all text to lower case (Not used for ULMFIT and BERT).

⇤ Tokenization: separate every tweet into tokens (words, symbols)

⇤ Removing stop words, usually connectors, that repeat many times across the corpus and

do not provide specific information (Not used for ULMFIT and BERT).

⇤ Lemmatization: change similar words to their linguistic root, only when words mean

the same.

All these pre-processing can be achieved with language packages as nltk in Python.

The major differences at the pre-processing phase are found for the ULMFiT and BERT

algorithms. ULMFiT does not consider the steps of converting to lowercase or remov-

ing information from the base text, such as stop words, their authors argue that these

simplifications could result in a tremendous loss of information for these models, which

are capable to generate more complex language understanding. Instead of the mentioned

steps, in the case of BERT, some tokens are included at the starting/ending of paragraphs,

as well as one special token for masking unknown words, so that minimal information is

lost and only additional information is aggregated. Meanwhile, ULMFIT uses tokeniza-

tion based on subwords. They are a special way of language representation that strikes a

balance by using a mixture of character and word tokens. Indeed, they have shown two

improvements from prior tokenization rules:

⇤ Sub words more easily represent inflections, including common prefixes and suffixes,

and are thus well-suited for morphologically rich languages.

⇤ Sub word tokenization is a good fit for open-vocabulary problems and eliminates out-

of-vocabulary tokens.

40

The discussed algorithms will be compared to get the one with the best performance

for using it in the next chapter. Our results are summarized in table 4.1. We remark that

the first three algorithms are pre-trained for the contexts and tasks previously referred to,

so is not possible to extrapolate a train’s accuracy result, so just XG-Boost, ULMFiT, and

BERT will have informed training scores. In every case, we used 100 labeled examples

for training classifiers, while always the same remaining 50 messages were reserved for

testing them. The case of ULMFiT is special, as we saw in section 4.3 its second fine-

tuning step is about adapting the language model to the idiosyncrasy of data, for which

even unlabeled data is useful. This freedom allows us to try two different sources of

data. The first one, a database created from general tweets about random topics that were

discussed at a specific that moment in the media, which would allow, in theory, a good

comprehension of the writing manner at the Twitter ambiance. The second one is tweeting

regarding the specific Bitcoin topic but retrieved from any user in the media tweeting at

the moment of consulting. We discovered abysmal differences at this election.

41

TABLE 4.1. Summary of model’s performances. SA stands for Sentiment analy-
sis while SD for Stance detection. Sub-index w stands for the weighted metric’s
version.

Algorithm’s Task Context where Train Testw Testw Test F1

Name was trained Recall Precision Recall Score

Sentiment140 SA General - 0.58 0.46 0.44

twitter data

Tweetment SA General - 0.41 0.4 0.38

twitter data

SentiWordNet SA Wiki corpus - 0.48 0.48 0.47

XGBoost SD 100 labeled 1 0.41 0.42 0.38

Bitcoin tweets

BERT SD 100 labeled 0.87 0.72 0.63 0.67

Bitcoin tweets

ULMFiT SD LM with General 0.55 0.46 0.46 0.46

twitter data

ULMFiT SD LM with specific 0.71 0.63 0.62 0.62

Bitcoin’s tweets

As shown in table 4.1, the algorithm’s task specification has a dramatic effect on

the algorithm’s performance. All sentiment analysis ones performed worse than random.

Here is clear that these algorithms have learned classification rules that are not useful

for our purposes, mainly because they were thought for different ends, even though the

training data coincide in context with one of our data comes (Twitter media). SentiWord-

Net reaches the best performance among sentiment’s algorithms, achieving an F1-score

of 0.47, outperforming ULMFiT fine-tuned from general Twitter’s data. However, the

result is tricky. As we remember, SentiWordNet retrieves a continuous value, so to ac-

complish comparisons with discrete classification algorithms we changed their scores to

labels, which bounds were set for maximizing the classification score. So, the result is

42

not a surprise and it is only useful for demonstrating that even in this configuration, senti-

ment analysis is not a suitable task for our purposes, as results for the remaining sentiment

analysis algorithms demonstrate, by not outperforming SentiWordNet. Our baseline, XG-

Booost, was outperformed by all other algorithms, including the sentiment ones, the result

in the training set demonstrates that this algorithm adjusts its classification rules to clas-

sify correctly every example in this set, so is clear that over-fits easily influencing the test

results directly. By using XGBoost we realized once again that the task is not easy to

accomplish.

All stance classification algorithms outperform the sentiment analysis F1 scores, be-

ing proof of the potential of these inductive transfer learning algorithms. ULMFiT’s per-

formance depends highly on the quality of the fine-tuning process. The adaptation to the

task-specific idiosyncrasy, by analyzing documents related to the context, is essential in

achieving state-of-the-art results in this algorithm. Here we reached a new train speci-

fication level, where even for similar set-in language structure, the topic they discuss is

determinant for the performance of the classifier in the desired task. Both, BERT and

ULMFiT fine-tuned over specific Bitcoin data, reach similar performances in terms of F1

scores, even when BERT achieve better results in learning the train set, in this case, differ-

ences in the training stage, do not turn into significantly better performances for the test

F1 score of the models, so it remains interesting to try out both, at the predicting model.

Figure 4.4 shows the classification made by different algorithms over the test set. This

figure contains six different Confusion Matrix, whose purpose is to inform directly the

quality of the classification made and the kind of understanding that algorithms have de-

veloped. Both sentiment140 and Tweetment classify mostly of Bitcoin’s referring tweets

as neutral, this result is very interesting because effectively, as we can check by reading

many examples of them, the language used for referring the Bitcoin’s market is indeed

neutral in sentiment. This result is once again a confirmation of how different the senti-

ment analysis is from the task we seek to analyze, therefore that is not possible pretending

these kinds of the algorithm to adapt well to our data. On the other hand, both SentiWord-

Net and XG-Boost, made to maximize the classification of the training set, show indeed

43

the distribution of this set as these algorithms over-fit this data, particularly, the case of

XG-Boost is dramatic as even the neutral examples are considered positive.

(A) Sentiment140. (B) Tweetment (C) SentiWordNet.

(D) XG-Boost. (E) BERT. (F) ULMFiT best.

FIGURE 4.4. Confusion Matrices (CM) over the reserved 50 examples for testing
under each of the different algorithms considered.

Finally, our best classification results are achieved by both ULMFiT and BERT. Al-

though both algorithms perform equally on average, the Confusion Matrices are more

informative of how their classification is distributed. In particular, ULMFiT has more

deviation in its classification; this algorithm is characterized by recognizing well neutral

and positive tweets with some misclassification between them, in the other hand ULMFiT

does not classify that good the negative ones, which are easily misclassified as positives.

BERT by its part has the better classification report as positives and neutral tweets have

some of the better scores, the case of negative tweets is similar but, in this case, is better

recognized but equally well and misclassified among positives. The classification errors at

negative messages alert us that if we want to use these algorithms to generate novel inputs

for the prediction model, we have to be aware of these misclassifications and weigh them

in some way. In the following section, the results for the studied task introduced in section

44

3 are shown starting from architecture as the one presented in 3.1, that now is fed with

both price and opinion information.

45

5. INCORPORATING OPINION TO THE PRICE PREDICTION TASK

While we have found a way to represent the meaning of an opinion so that it is mea-

surable and thus can be compared to any other one in the same terms, the best way of

feeding this information to the model can still be explored.

5.1. How to feed the stance information?

In the case of price, we were previously using the moving average measure over a day,

as well as other statistical features from the 288 observations. In the case of stances, as

we discussed in the last section, we only have 43.5 tweets per day across the nine months

considered in this study. While the last number is not small at all, is also almost 7 times

lower than the number of measures per day that we have for studying price, so at the time

of using this information, we will find a lot of time steps without an opinion measure.

For this reason, we propose include some statistical indicator used in studying economics

assets, we refer to the momentum, moving averages, correlation score against price. In the

case of momentum, we are going to report the sum of the opinion score over a movable

window. We expect these measures will be a good information resource about the general

appreciation of the cryptocurrency and how is changing in time.

Another important consideration is how to proceed with the different information re-

trieved from opinion. From BERT we are getting signals of positive, negative, and neutral

interactions in media referring to Bitcoin. The most direct option is, to sum up, all opin-

ions to get an overall measure of what is happening in media according to these influential

users, however, one natural throwback that comes with this is that positive, negative, and

even neutral signals have different distributions, which not only depend on what is the

overall opinion about Bitcoin on Twitter, but also of the level of participation of each user

at the actual ongoing debate, which may vary quite a bit. Indeed, figure 5.1 shows dif-

ferences between the two main stance signals: The negative tweet’s distribution is more

centered to zero than the positive distribution.

46

FIGURE 5.1. Stance score distribution about positive and negative appreciation
on Bitcoin as retrieved from BERT algorithm.

Because of this, the alternative is to consider counting positive and negative tweets

separately and characterizing each mood as a varying signal according to its own distri-

bution just as presented in figure 5.1, which leverage the mentioned difficulties but also

introduces a natural doubt ¿What should be the model interpretation when there are no

opinions? Indeed, this is a natural question when we see that negative stances are less

represented in our sample, a huge number of data points in this signal add up to a zero

score. If we use a scaling function to characterize the variability of the signal, the absence

of opinions will have an equivalent in the scale that will not be necessarily equal to 0

depending on the scale. Every possibility will be studied in the next section.

5.2. Analyzing Twitter’s opinions polarity from BERT.

The distribution previously showed is complemented by the 5-minutes stance distribu-

tion presented in figure 5.2. In the image, the positives, negatives, and neutrals messages

are counted and presented for every time step as a series.

47

FIGURE 5.2. Stance distribution of tweet polarity. Neutral messages are included
for completeness.

The first thing we conclude from figure 5.2 is that the retrieved signal is very noisy

across the entire period considered. Probably there are some temporary effects involved

as seasonality (daily for example). There exists some frequency at which Bitcoin users

left speak about it. On the other hand, the number of detected tweets associated with each

stance polarity seems to get increased while we are getting data closer to more current

dates. This increasing number of retrieved messages could be partially explained by lim-

itations in Twitter API services for recovering older messages. Indeed, when you query

for a particular user, the API will allow you to just get a maximum number of messages

starting from the date of the query. One last concern is that the number of positive opin-

ions tends to highlight in number over the other tendencies. While negative ones show a

relatively plain behavior at the daily maximum reached value and just recently showing

a major cumulative value. On the other hand, the positive ones show higher peaks along

48

with all the studied history. These properties at the data encourage us to also applying daily

scales rather than general scales, to ensure the correct awareness in daily changes. Regard-

ing using polar series over overall score series, we try a previously introduced experiment.

Similarly, to the exercise made in chapter 3, we analyze in figure 5.3 the Pearson correla-

tion coefficient between price and stance polar signals against multiple retarding windows

between both series.

FIGURE 5.3. Pearson correlation coefficient between Bitcoin’s price and the
stance signals (From right to left: Positive, negative and neutral stances), across a
movable retarding window between series. The level of correlation can be though
as an naive hint of causality.

By interpreting the coefficient as a causality indicator, we can see that the inverse

correlation gets stronger for a positive retarding factor across all stance signals, the correct

interpretation here should be that changes in positive and negative stance signals are results

from previous changes in Bitcoin’s price, which is not our purposes as we would like to

establish an opposite relation’s direction, so deeper analysis is probably recommended to

get more benefits from these stimuli. We are not able to set a similar or stronger relation

between price and number of emitted neutral messages, as they appear to be the ones more

similarly distributed along the time span studied.

Finally, we present in figure 5.4 the Pearson correlation coefficient between Bitcoin’s

price and the overall stance (negatives + positives messages) expressed in media regarding

Bitcoin at the time of price’s variations.

49

FIGURE 5.4. Pearson correlation coefficient between Bitcoin’s price and the over-
all stance in Twitter media about Bitcoin across the time.

This figure exhibits an important difference from the previous similar results shown

in figures 2.5 & 5.3. While we see that there exists a growth in the negative correlation

when we apply a positive lag to the overall stance series, we also see that exists a nega-

tive correlation decrease when we apply a negative lag to the opinion signal. This is the

first time we detect an approximation of the increase of this inverse causality correlation

at negative lags. After these discoveries, we conclude two main things, first that the in-

formation from stances is not as promising as we would like so we could be only able to

set relation in this negative causality way. The second is that however, we are especially

interested in using the overall stance signal over each one separated, but for completeness,

we will explore both ways of feeding the opinion information, and increase our chances,

we are introducing more statistical measures.

5.3. Statistics measures for stance analysis

From the results discussed previously, it is proposed to include some statistical mea-

sures, to the stance series retrieved by using BERT. To this far we are including moving

averages and feature momentum series as possible assets useful in characterizing the Bit-

coin price’s distribution.

50

(A) Moving average (up) and momentum (down)
measures on horizons of 6, 12 and 24 hours.

(B) Moving average (up) and momentum (down)
measures on horizons of 7, 15 and 20 days

FIGURE 5.5. Statistic features

In order to get an idea of which windows are the ones more useful in representing

variability but that also allows us to relax the distributive difference between different

polarities, we create boxplot figures for moving averages and momentum measures with

variable window size as presented in figure 5.5. From these figures we can drive out

many ideas, in general, the mean distribution of the moving averages of positives stances

is centered in a very specific value, we only reveal that outliers tend to be less when we

average over larger windows. This is interesting because the participation of influential

people with a positive outlook towards bitcoin at the Twitter’s debate, appears to converge

to a mean number of interactions, while negatives and neutral ones tend to be more noise

even when we extend the window size, how can be appreciated with the outliers that

disappear in figure 5.5b in the positive distribution when larger sizes are considered. This

discovery makes stronger our thoughts about considering a unique overall measure for

sentiment discussed previously, this is because, if the positive participation is more stable

than the negative one, then we can learn something about the difference of their distribution

rather than each one separated, to analyze the effect of this variable we are including it in

our models. Finally, by analyzing the momentum boxplot’s it follows that the moving

cumulative distribution grows in time, being the positive ones the ones with the biggest

51

increasing through time, again their distribution tends to regularize themselves as more

data is seen, but again the negative signal remains with more outliers at the end, in this

case, the richest information appears to be at low momentum’s windows, as differences

between the mean of the distributions are not too large and there are a good amount of

outliers that can be indicative of price’s stimulus through an increase at the cumulative

Bitcoin’s appreciation by our influential users.

We hope this feature engineering will be helpful in what follows, the prediction itself.

However, we have concerns about how much it can be improved with the available data.

52

6. PREDICTING PRICE USING OPINION AS A EXTERNAL STIMULUS

From the learning collected at the future price projection task and the treatment of the

stances retrieved from BERT, we ended up with an objective proposal for combining these

two resources of information. In this section, we are going to explore preliminary results

in using SentiWordNet as the resource of opinion information. Then, its performance will

be compared against models trained with our data treatment previously described. All our

experiments will be tested through the model introduced in section 3.1 and an XGBoost

tree model trained for prediction.

6.1. Some preliminary results in introducing opinion as an external stimulus.

In chapter 4 we experimented with 7 different models for interpreting opinions. In

table 4.1 we show our main results at the Stance Detection and Sentiment Analysis tasks.

Among them, the trained ones for ”stance detection” purposes showed the best perfor-

mance for the test data retrieved from the labeling session; however, one of the models

trained for ”Sentiment Analysis” is very interesting so it deserves a particular analysis.

We refer to the SentiWordNet project, which is unique in our literature review. As was

discussed in section 4.5, the main reason for highlighting it is because the sentiment in-

terpretation made by this algorithm is more flexible, being able to return a continuous

interpretation of the positiveness or negativeness expressed. Under this scenario, we can

get an overall measure of the general opinion regarding Bitcoin at every moment. With the

introduction of the sentiment measure, we implement a model as the one described in fig-

ure 3.1 with the difference that the input layer is fed now with 288*2 observations, where

the 2 represents an additional dimension per data point for the 1-day sentiment momentum

at any point in time. We trained this model for prediction and price simulation; its perfor-

mance is presented in figure 6.1 with a closer view to the price simulation task in figure 6.2.

53

FIGURE 6.1. Prediction of the model when is trained with sentiment data by using
SentiWordNet. The predictions for the next-day price are on the same level as the
model trained without twitter data.

FIGURE 6.2. Zoom to final predictions. We note a fall over the seventh day that
is recovered by the prediction.

54

Regarding the next-day problem, we noticed essentially the same predictive power as

the model presented in the chapter 3 when we compare them via RMSE as showed in table

6.1, the results in this metric reveal that the model gets better train performance but worse

in the test set, which is indicative of over-fitting. However, the most interesting result

comes from the performance at the price simulation problem when looking at figure 6.2

and comparing it with our previous results at figure 3.5.

TABLE 6.1. Summary of rmse scores by model at the price prediction task.

Model RMSE train RMSE test

Next day Prediction general scale 4.762 25.248

Next day Prediction daily scale 1.895 1.941

Next day prediction 1.494 2.143

SentiWord overall sentiment

While in previous results we have not seen awareness in price changes, this is the first

time that a model is able to respond to changes in price evolution as we see in the figure

6.2. There is a drop in price at 27th December 2018, with a subsequent increase in price

by the end of the predicted period and even many days after that the simulation started. By

looking at 3.5, we can only suspect that it was Twitter’s data the information that helped

shape the curve in this way this time, by introducing well-interpreted stimulus, as in this

case the overall appreciation of Twitter’s influential users.

We have included the sentiment momentum distribution retrieved from SentiWordNet

in figure 6.3. We notice some trends by the end of December, but clearly, there is not a

huge visual correlation with price. It is surprising that this data still allows us to predict

spike changes within the price simulation framework.

55

FIGURE 6.3. Evolution of sentiment movement retrieved from using SentiWord-
Net for interpreting opinion data, during prediction dates.

Despite the described improvements at the simulation task, we must notice that our

model is not still capable of noticing the initial increases in price at the start of the con-

sidered time, so there is still room for improvement. The obvious question is ¿Can our

predictions benefit from the stance-based interpretation of the opinions?

6.2. Results in prediction using stance stimulus

As mentioned in the last section, we want to test our model in predicting price by sup-

porting their decision instance stimulus obtained from the analysis of a BERT algorithm

fine-tuned for this task. To this end, we propose feeding our network with 2 resources of

information, extracting the following measures,

⇤ Price Information

– 1-day moving average at the current price. Price is embedded through a variable

function scale across each moving day.

– 5-minutes moving difference between the last price and the actual price.

56

– Growing rate of volume of transaction every 5 minutes.

– Correlation score between 1-day moving price and volume.

⇤ Stance Information

– 7-days moving average from positive, negative, and number of neutral messages.

– 6-hours moving momentum from a positive, negative, and neutral cumulative appre-

ciation for Bitcoin.

– Difference between polar signals as an overall web’s opinion at the time of prediction.

– Difference between polar signals weighted by the number of neutral messages as an

overall web’s opinion at the time of prediction.

For further discussion about how this data is called in our experiments and it is pre-

sented in some figures, you may refer to appendix C. We are using these features for

training both LSTM and XGBoost models. The results presented in table 6.2 summarize

the performance of the models as well as the two main ways used in this research for

feeding stance: the overall stance and separated polarity.

TABLE 6.2. Summary of model performances at train and test phases.

Algorithm’s Stance Embedding RMSE Score Train RMSE Score Test

LSTM Bitcoin Separate Polarity 1.552 2.14

LSTM Bitcoin Overall Stance 1.82 2.53

XGBoost Bitcoin Separate Polarity 0.67 2.451

XGBoost Bitcoin Overall Stance 0.152 1.78

This table reveals that each model has its own data configuration where benefits more

of the knowledge retrieved; the LSTM reaches a better performance by using separated

signals for embedding opinion, instead, the XGBoost model does the same by using an

overall stance measure. This difference deserves its own analysis but we have to recognize

that each one makes different use of the same information, while the XGBoost model uses

punctual values for prediction, the LSTM model uses series (in this case 288 measures)

57

for the same task. In this way, the more data is better read by LSTM because this model

can learn by itself the latent representation that is more useful for prediction, while for

XGBoost, which creates structures like trees, it is easier to make a decision with few but

more representative information. The scores achieved by each model are unequal by a

maximum of one order of magnitude which can be an indicator of overfitting at the tree-

like models as well as the big difficulties of LSTMs of taking more advantage of this data.

In what follows we will analyze each model with the stance embedding that produces the

best model performance at table 6.2.

FIGURE 6.4. Results in prediction for train set using LSTM’s based network.

In figure 6.4 we show our results at the trained LSTM network in the case of separated

polarity for feeding stance. This figure shows at first good performance of the model at

adjusting the original price curve. However, is significantly visible that now the red curve

domains the figure. Instead, the black one which represents the real price is completely

overshadowed. To understand what is happening we have to take a closer view of this

distribution. In figure 6.5 we show the model performance over our test set, in which price

simulations have been carried out.

Some interesting insights do appear when we see the last image in detail. First of

all, that the predicted line, presented as the red one, is not as smooth as previously was

in the last chapters, now, the predictions at each point are highly variable. In this sense,

does appear that stance is influencing predictions at a very fine level but not supporting

the decision process at a general level, i.e., not being able of creating awareness for more

58

general changes in price. Effectively we also see that the red curve is very similar to the

black one but displaced some number of measures to the future.

FIGURE 6.5. Results in prediction for the test set using Bitcoin LSTM.

At this point it is clear that the network does learn that projecting the actual value as

a prediction of the price evolution, is a good approximation of what is going to happen.

While this result is not as desirable as we expect, it is also undeniable that any solution

must show a relation between last seen values and the time gap of separation between the

original series and prediction, in this way we recognize that these predictions are results

from a training process, but this model is not using the external stimulus information at

supporting the prediction decision task in the coarse changes of the series. These results

are not promising at all, because implies our model is unable to set a more relevant relation

between stance and price.

In order to confirm our predictive capacity with the data obtained, we trained an XG-

Boost model to predict the price one day in the future, for further details on the trained

task and the hyper-parameters chosen in the model design, you may ask the appendix B.

We show in figure 6.6 the results in price prediction by using the XGBoost’s models over

polar and overall stance information.

59

(A) Results in prediction for polar stance (B) Results in prediction for overall stance

FIGURE 6.6. Results in one-day price prediction using stance measures for train-
ing a XGBoost model.

At figures 6.7 there are also some close views of predictions at the test set, the times-

pan where price simulation will be handled soon.

(A) Results in prediction for polar stance (B) Results in prediction for overall stance

FIGURE 6.7. Results in prediction using XGBoost model for test set.

Instead of what was obtained the first time from LSTMs, figure 6.6 shows the model’s

better adaptation and performance at the prediction task. The models do not show a de-

terminant effect on the time gap dependence between the original series and prediction,

on the other hand, the retrieved values do not seem to be sampled randomly, the predicted

curve reproduces coarse changes in price but also that there are some local variations. This

behavior is explained by the introduction of the XGBoost model which appears to be more

efficient for the proposed data and task. Although to be fair, the XGBoost model is also

easier to parametrize through grid search. We also believe that the definition of the scale

function must play a crucial role.

The behavior of both models in terms of predictive performance is almost identical,

but the trained model with overall stance has a slightly better one. In this section, we

60

will not discuss in detail the differences between these adjustment levels, since they are

quite similar to those obtained in section 2, so the gain cannot just be at the RMSE level

achieved at this limited task, in the last paragraph we will focus on the performance and

differences of these models in the price simulation task, which seems to be a more chal-

lenging problem for us. In the meantime, we will discuss an interesting feature of these

models. The tree-based models create hierarchical decision structures that depending on

their complexity, are even possible to be graphed. This property of tree models allows us

to know the decisions that the tree is making exactly at all times and in that way, weigh the

importance that has each feature when the model makes a tree-based prediction. As usual,

we can visualize this information by plotting the Shapley values of each feature, which

is a very know measure in games theory. In figure 6.8 we show this distribution for each

XGBoost’s models.

(A) Shapley value’s graph for features used in
price prediction and polar stance measures.

(B) Shapley value’s graph for features used in
price prediction and overall stance measure.

FIGURE 6.8. Shapley value’s graphs from the XGBoost models trained for price
prediction.

There are some really interesting conclusions we can make up starting from these

figures. First of all, from figure 6.8a the feature with the higher impact is the positive

61

stance moving average over a window of 7 days. The relation is very unusual, according

to this figure while the higher is the moving average, the higher is the negative importance

that this variable has to do with prediction. That is, while people are having a greater

positive stance with respect to Bitcoin, our model detects that higher is the probability of

breaking the bubble price, so a fall. In this sense, we can settle down that this tree agrees

that every rise is followed by a fall ¿could these opinions serves as alarms of these events?

is an interesting question that is born from these results

The following important feature for prediction is the price itself, with similar behavior

as the moving average has for a positive opinion. Then appears the moving average for

the negative stance measure, the values achieved by this one has a great dispersion as

the lower values (blue points in 6.8a) appear to have a positive and negative impact on

the prediction, so this feature could be decisive in determining growth, but the relation

is widely dispersed. The other important features are moving averages measures over

smaller windows of time, with the lowest importance appears the Momentum measures

at any window, we discard this information based on the importance revealed by these

measures.

On the other hand in figure 6.8b we analyze the feature’s relevance obtained from

the model trained with overall stance data. In this case, from each of the introduced

polar measures, we create two new ones: An overall measure starting from the difference

between polar signals, and a weighted version that takes into account the number of neutral

messages. Again, the impact of price and 7-days moving average for the overall stance is

higher and the direction of the relations remains similar. Then real price and the correlation

factor between price and the volume of the transaction appears as relevant features for

prediction with some changes in their relevance although very similar to the polar stance’s

model, however, our main interest is in the fourth place which is taken by the weighted

version of the first placed moving average measure for overall stance. This calculated

feature has a positive impact when it grows and a negative one when it lowers which may

be an indicator of a great correlation. In figure 6.9, we present the evolution of these two

series.

62

FIGURE 6.9. Top: Bitcoin price evolution for the studied timespan. Bottom:
Moving average of the overall stance that influential Twitter users have on Bit-
coin

By plotting side by side both series, visually there seems to be no greater correlation in

coarse changes, however, there are some points in the very first half of the studied history

in which some peaks in moving average are happening consecutively to the ones in price.

The overall stance at the second half history is very irregular. One reason may be in the

amount of data collected for this time-span which is remarkable bigger than the one for

the older time-span, this could explain a great diversity in discussion as more messages

are collected. What is undoubted is that this method allows us to identify remarkable

outliers to the series. We did not include Momentum in this analysis from our previous

conclusions. The feature engineering process was superior to the best neural network

solution, confirming its irreplaceable importance in the analysis process.

Finally, we present in figure 6.10 our results using the proposed models for the price

simulation task, previously discussed. At first glance, it is evident that the simulation is

no longer aware of variations after the 4th day of being started. Some stimulus causes

the simulated curve to vary again around December 29, 2018, to finally converge to an

average value. The direction of the variations seems almost correct for the first 4 days.

The presented results are very similar to the ones obtained previously in figure 6.2

by using the SentiWordNet information, but this time, our awareness is more limited in

63

FIGURE 6.10. Price simulation task handled by the XGboost model trained with
overall stance measures.

time than before. However, the new model reproduces better some initial variations that

were completely lost in the previous study. The cause of these differences is not obvious.

Apparently, in the case of SentiWordNet, the model is capable of recovering strong opinion

stimuli to predict certain specific future behavior. In the recent case, it seems that the

prediction is irretrievably bent to an average value after several iterations. However, this

effect seems to be more associated with the proposed variable scale method than with the

actual behavior of the tree model.

The information revealed in these models seems promising, there are not few exam-

ples in the literature that discuss the potential to build models based on the ensemble of

other multiple models, where each one has the ability to generate relevant, accurate, and

useful predictions on different windows of time. We are not able to settle down a strong re-

lationship between price and crypto-influencers’s opinion, but at least, we found evidence

that reveals the usefulness of this data in short-time elapsed predictions. While we are

making some progress in reveal these relations, there is still a big room for improvements.

6.3. Thoughts in Bitcoin’s price prediction task

In the last sections, we have selected features and models good enough for predicting

Bitcoin’s price one day in future evolution for the studied period between June 2018 and

February 2019, however it is not clear if this consciousness is inherited to more recent

64

times. The time span studied of just nine months is quite short compared with the 3 years

that Bitcoin has remained online at the time of analyzing its price in this research. The

main reason for not extending our analysis to earlier times is because Twitter information

is not easy to obtain which is a natural throwback for the proposed methodology.

At the studied time, the price reached by Bitcoin was around 4000 USD, however,

by May 2019 this value has doubled, stabilizing at this value for most of that year and

even during the beginning of 2020 until March. From then until now the price of bitcoin

has only increased most of the time, reaching just a few weeks ago a new all-time high

of almost 57000 USD, which is more than two times higher than the last maximum value

reached in December 2017. This new maximum is also many times higher than the prices

analyzed in this research, so it is difficult to assure that the models tried here will remain

with similar levels of performance at more recent times. Indeed, it is highly unlikely that

the learning achieved with such low-price data could be used to assume that the price

would reach low-price levels up to 13 times the maximum value at the time span of the

price simulation task.

In this way, it is undeniable that Bitcoin is an asset with a one-of-a-kind behavior and

therefore, all our hypotheses that it would reach stability fell with the last registered prices.

A great concern is whether this behavior will be just a new price bubble that will bring

with it a precipitous fall, as a result of the burst. Certainly, some recently recorded prices

show a drop of almost 10000 USD in just a few days. However, these drops are not as

high as the moving averages arise in price registered since November 2020. These kinds

of behavior are difficult to predict and it is not clear what they respond to. The effects

of the pandemic and the role that virtual communities in social networks are promoting

in stock markets1 are new actors that could probably be playing a role in the described

behavior, so that new areas of research are opened to this regard.

1As discussed in https://www.nytimes.com/2021/01/27/business/gamestop-wall
-street-bets.html with the case of Reddit’s users, playing a decisive role in the valuation of
GameStop’s stocks.

65

7. CONCLUSIONS

In this research, we have made advancements towards testing out if the activity of in-

fluential personalities in the digital world does affect the price of Bitcoin. Our main results

suggest first that there is a negative causality relation between Bitcoin and Twitter number

of messages referring to Bitcoin, which means that the participation of the influential users

in Twitter media is a result of Bitcoin price variations. This causality relation is slightly

positive when we compared the price to the overall stance that influential users have about

Bitcoin. With this in mind, we did experiments for studying the capability of predicting

price using this information. We have first shown a possible architecture that goes a long

way into predicting the price when fed only with past price data: the error for predicting

the next price point was almost negligible, however, the predictions for the next-day price

were not accurate as previously were.

When fed with both price and Twitter data, the resulting model had essentially the

same predictive score as the model fitted only with price data but now allows us to make

more spaced predictions. We show that the sentiment score retrieved from SentiWordNet

is very useful in supporting this process. At the simulating price task, the results lead us to

believe that there were promising relations to be discovered between these two measures.

We tried two of the newer methods in fine-tuning language models for training a

new NLP task over Twitter’s context in order to refine the way we interpret opinions.

We observed a 75% success rate for humans in this task, indeed 1 over 4 tweets refer-

ring to Bitcoin was controversial under our definition. Using these results, we check out

the adaptability of the UMLFIT method to learn correctly the new context, while BERT

reached the best performance for interpreting the stance expressed with just 100 labeled

examples. We conclude that the fine-tune technique is a very well-suited tool to take ad-

vantage of the knowledge learned from language models trained in a large corpus of text

containing a wide variety of information. We have proved the potential of the inductive

transfer learning method.

66

The LSTM model showed difficulties at simulating the future price even with stance

data, the unique possible prediction made by the model was the actual price which was

projected to the future. On the other hand, the XGBoost model showed better performance

at predicting future prices, recovering the capacity of varying the prediction based on the

stance stimulus as was previously explored, by using the sentiment from SentiWordNet

and even exceeding its performance. However, the price simulation task was not well

behaved as we expected, the performance at this task was three times lower than the scores

achieved at predicting the next-day price. In this way, we cannot conclude that our models

have the full capacity to predict price correctly for a long time. Indeed, starting the fourth

day of our simulation, our best model is only able to predict an average value.

Most of the correlation test studied between Bitcoin’s price and all of the ways of

quantifying opinions here revealed a negative causality measure, i.e., these opinions are

results of what is happening with this cryptocurrency. Despite we found a positive impact

relation between price and moving average for overall stances, we cannot be able to set-

tle down a full correlation in the inverse. However, our main contribution is to create a

reproducible methodology that allows studying the evolution of any asset price that also

proposes a novel way to represent the opinion so that it can be used as an additional input

on another prediction task.

The roller coaster behavior we saw in 2017 repeats itself, and this time the curve

reached has us all even more expectant and excited than before, wondering when the crash

will come. However, there are other topics that should be of immediate interest. The

cost of a Bitcoin transaction is evaluated as the most expensive in terms of the amount

of energy consumed in the process. All explained by the technology behind Bitcoin’s

success: the blockchain. The reliability obtained from decentralization is thanks to iden-

tical historical copied databases distributed between all the nodes of the network. The

size of this database is currently more than 250GB. In order to add a new transaction to

the blockchain, a complex mathematical problem must be solved, which at the moment

is mostly solved randomly, which leaves the miners with no other option but to invest in

higher computing speed in their machines and use them during extended periods of time,

67

while they are competing for the Bitcoins. According to the research of the University

of Cambridge, [Rauchs et al., 2021], if Bitcoin were a country, the electricity consump-

tion of this industry would have reached 30th place among the countries that most energy

consumes. In this position, Bitcoin surpasses Finland, Switzerland, and Argentina. The

main concern about these numbers is how electricity is currently generated and obtained,

which still being mainly through coal combustion due to its low price. The still unknown

effects of climate change make us raise the alarm against this technology, as long as its

relationship with the environment does not change.

Future Work

After the results presented in this research, we are able to settle down at least three

lines of improvements. The first one refers to the prediction model itself, without a doubt

more complex architectures can be created and from a diversity of approaches like Gener-

ative Adversarial Networks, Variational Autoencoders or through a model based on Rein-

forcement Learning, however, the latest price hikes make us question how predictable this

behavior can be by leaving everything to models. It is clear for us that a good prediction

model needs for external stimulus. Logically, the second and third line of improvement

has to do with the quality of the information that we extract as a stimulus. In this re-

gard, making improvements to the language model for interpreting opinions is suggested

as well. In third place, we could extend the definition of crypto-influencer to other plat-

forms and see, for example, if at Reddit we find more evidence of a link to the observed

behavior.

The problem of predicting Bitcoin’s price has very interesting approaches to study

that we have not yet explored, such as what is its relationship with many resources of

information. However, this work is undoubtedly challenging for the amount of big data

to be retrieved. The knowledge acquired in this sense covers various topics, so another

line of work is also proposed, our main concern is about the energetic cost of Bitcoin

transactions, or more accurately ¿can we set a growth function to the energy required to

68

create a transaction? indeed we hope this measure must be proportional to the number

of miners and the complexity of the mathematical problem to be solved at including the

transaction to the blockchain, but there are some open questions ¿Could we support this

function by market’s prices? Looks reasonable, but what if we use influencer opinions to

create virtual alarms that trigger our prediction of energy consumption? That is no that

clear anymore, but also a reasonable question to further explore NLP’s techniques.

69

APPENDIX A. INSTRUCTIONS FOR THE LABELING SESSIONS

The stance expressed about a topic is related to the sentiment that a speaker expresses

in his speech, however, they are very different. On sentiment analysis, we are usually in-

terested in know if the expressed idea is positive, negative, or neutral based on the content

of the used language. Typically, the sentiment correlates strongly with the election of the

words and language used in the speech. On the other hand, stance detection is defined

with respect to an objective topic, so can be independent of how positive or negative is

the used language. The topic even may not be mentioned directly and every topic can be

related to the opinion’s objective that we want to measure, for instance:

Topic: Abortion Legalization.

Tweet: The pregnant are more than walking incubators. They have rights too!

Stance: IN FAVOR.

Clearly in the last example if the topic were ”Pro-life Movement” the detected stance

would change to AGAINST, without modifying in any way the feeling that the text might

express.

At the shared folder, you will find a file titled ”INFLUENTIALTWEETS.CSV”. In this

labeling session, we are looking for you to identify the STANCE that every one of these

tweets expresses by themselves about the virtual cryptocurrency: BITCOIN. To achieve

this objective, firstly, you will be asked to identify who is the target subject of the Tweet

in a column called OPINION TOWARDS, which must be completed with the integers 1,

-1, 0, or 2, according to the following criteria:

⇤ If the tweet explicitly expresses an opinion about the topic, a dimension of the topic, or

a characteristic of the topic, the tweet will be classified as 1.

⇤ If the tweet does not express an opinion with respect to the topic, but has an opinion

about something or someone else related to the Bitcoin industry, the tweet will be clas-

sified with 0.

⇤ If the tweet does NOT express explicitly an opinion, the tweet will be classified with -1.

70

⇤ If you are not sure about your answer, you may complete this field with a 2.

From your first analysis, we ask you secondly to identify the STANCE that each

tweet express. For the particular case of the BITCOIN currency, we want a stance to be

classified as IN FAVOR if the tweet expresses an idea that supports its existence, use, and

the overcrowding of its network, as well as if it presents facts that support its good behavior

in the world market (for example, its acceptance as a valid currency by a bank). Similarly,

a position will be classified as AGAINST if the tweet expresses an idea of rejection of the

use of the currency, as well as if there is bad news regarding its valuation, prohibitions on

its use, etc. In the event that a tweet does not express a specific stance, you may classify it

as NONE. If you are not sure of your answer, you can complete this field with the string

IDK (I do not know).

71

APPENDIX B. MODEL DESIGN AND HYPER-PARAMETERS TUNING FOR

XGBOOST

The XGBoost model introduced in section 6 was created for the same purpose as the

Neural Networks (NNs) presented in section 3. However, the training process was slightly

different.

In the first place in the case of XGBoost, we fed it with just the recent observations for

predicting price evolution, instead, NNs are an instance of a Recurrent Neural Network so

were fed with tensors made from series over movable windows, rather than a single vector

of features. On the other hand, the pre-processing applied for data remained the same,

which includes the treatment of the scales.

In the second place, the results discussed in section 6 regarding the XGBoost predic-

tion score, were obtained by tuning hyper-parameters of an instance of a XGBREGRES-

SOR model (from the XGBoost package in python).

TABLE B.1. Parameters in which we carry out the grid search process to select
their best combination.

Parameter Description Explored Best

Values Combination

learning rate Rate in which information [1e�2, 1e�3, 1e�3
is learned by the model 1e�4, 1e�5]

max depth Maximum depth of the tree [5, 10, 30, 50] 30

min child weights Minimum sum of weights [10, 1e2, 1e2

required in a child 1e3, 1e4,]

reg alpha L1 regularization [1e�2, 1e�3, 1e�3
term on weight 1e�4, 1e�5]

reg lambda L2 regularization [1e�2, 1e�3, 1e�5
term on weight 1e�4, 1e�5]

booster The type of model to run [gbtree, gblinear] gbtree

72

To achieve this, we were carrying out a grid search over different parameter combi-

nations. In table B.1 we show the explored parameters, their values, and the combination

that maximize our model performance.

The first tuned parameter was the learning rate. This value kept very conservative on

purpose, indeed the maximum learning rate explored was 1/100 because we observed that

our model quickly starts to over-fit the task. On the other hand, parameters as regulariz-

ers and the min child weight feature, have also a role to play in the degree of over-fitting

exhibited by the model. In this sense, we see that both regularizers, which are introduced

with the objective of penalizing the loss function, remained small in their values which

could be an indicator that the model at this task is not too prone to over-fitting. The L1

regularization term is two orders of magnitude bigger than L2, so the quadratic regulariza-

tion term is less important. Indeed, it is known that L2 is not robust to outliers, as square

terms blow up the error. Indeed, we are interested in a model capable of predict with some

probability the high jumps that price exhibits.

The min child weight parameter has a different purpose, in simple, by setting this

parameter we are telling the model when to stop trying to split the decision tree, i.e., once

the sample size in a node goes below a given threshold. This value besides the max depth is

the one that shapes the structure of the tree. The first one sets a limit about when to create

a decision branch in the tree while the second one creates a threshold in the maximum

number of child branches, from the origin of the tree to their leaves. The structure found

has a max depth of 30 levels, so we can affirm that the decision tree still being very flexible

in terms of the flow and number of decisions to make before a final prediction.

Finally, we tried the two model structures available in XGBboost to try the proposed

task which we call the booster. We found that the tree-like model achieves the best perfor-

mance score in terms of the RMSE error for the prediction task. It is obvious to us now

that the relationship between the variables introduced in this research and the price is not

linear.

73

APPENDIX C. NOMENCLATURE OF THE VARIABLES USED ON XGBOOST

EXAMPLES

In figure 6.8 we show two Shapley values graphs for the features used to fed our XG-

Boost models. These features were obtained from the processes described in the previous

sections, but we are aware that the nomenclature used in these figures may not be entirely

explanatory. This is because in this appendix we deepen in their meaning.

All introduced features are instances of two main measures: the moving mean or

moving average and momentum of the STANCE signals previously obtained from BERT.

We are using the MM and M nomenclature to refer to these measures, respectively. As we

well know, these measures are defined over a certain window. We represent this amount

by the number of days considered in the calculus made for the measure, for example, 7.0

stands for 7 days, i.e., a window of 2016 data points or measures of size. On the other

hand 0.25 represents 6 hours or 72 measures, as is a quarter of a day of 288 data points.

Finally, we totally 5 STANCE measures or signals. Three of them are the original

polar NEGATIVE, POSITIVE measures and the NEUTRAL one. They are called as NEG,

POS and NEU, respectively. From them we obtain two OVERALL stance representation,

they only differ in their name by the inclusion of a W at the end. This is because the

last one is a representation of a weighted version of the original OVERALL measure as

equation C.1 shows:

overallW = overall

neutral
= positive ⇥ negative

neutral
(C.1)

74

REFERENCES

Almeida, F. and Xexéo, G. (2019). Word embeddings: A survey.

Baccianella, S., Esuli, A., and Sebastiani, F. (2010). SentiWordNet 3.0: An en-

hanced lexical resource for sentiment analysis and opinion mining. In Proceedings

of the Seventh International Conference on Language Resources and Evaluation

(LREC’10), Valletta, Malta. European Language Resources Association (ELRA).

Bambrough, B. a. F. (2020). Bitcoin crashes back as the u.s. and iran send mixed

messages.

Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., and Seaman, B.

(2019). Sales demand forecast in e-commerce using a long short-term memory neu-

ral network methodology.

Bindal, N. and Chatterjee, N. (2016). A two-step method for sentiment analysis of

tweets. In 2016 International Conference on Information Technology (ICIT), pages

218–224.

Browne, R. B. a. C. (2019). Bitcoin plunges, briefly falling below $10,000, as trump

slams crypto.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of

deep bidirectional transformers for language understanding.

El Alaoui, I., Gahi, Y., Messoussi, R., Chaabi, Y., Todoskoff, A., and Kobi, A. (2018).

A novel adaptable approach for sentiment analysis on big social data. Journal of Big

Data, 5(1):12.

Gabrovšek, P., Aleksovski, D., Mozetič, I., and Grčar, M. (2017). Twitter sentiment

around the earnings announcement events. PLOS ONE, 12(2):e0173151.

75

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning.

Girkar, U. M., Uchimido, R., wei H. Lehman, L., Szolovits, P., Celi, L., and

Weng, W.-H. (2018). Predicting blood pressure response to fluid bolus therapy using

attention-based neural networks for clinical interpretability.

Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., and Baroni, M. (2018). Col-

orless green recurrent networks dream hierarchically.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, 6:107–116.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural com-

putation, 9:1735–80.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text

classification.

Jia, H. (2016). Investigation into the effectiveness of long short term memory net-

works for stock price prediction.

Jung, H., Han, M., Kang, M., and Hwang, S. (2018). Learning what to remember:

Long-term episodic memory networks for learning from streaming data.

K, V. P., S, A., R, V., and KP, S. (2019). A deep learning approach for similar

languages, varieties and dialects.

Karevan, Z. and Suykens, J. A. K. (2018). Spatio-temporal stacked lstm for temper-

ature prediction in weather forecasting.

Ke, P., Ji, H., Liu, S., Zhu, X., and Huang, M. (2020). Sentilare: Sentiment-aware

language representation learning with linguistic knowledge.

76

Krejzl, P., Hourová, B., and Steinberger, J. (2017). Stance detection in online dis-

cussions.

Levy, S. (2001). Crypto: How the Code Rebels Beat the Government–Saving Pri-

vacy in the Digital Age. Penguin USA, USA.

Li, T., Jing, B., Ying, N., and Yu, X. (2017). Adaptive scaling.

Linzen, T., Dupoux, E., and Goldberg, Y. (2016). Assessing the ability of lstms to

learn syntax-sensitive dependencies.

Matta, M., Lunesu, M. I., and Marchesi, M. (2015). Bitcoin spread prediction using

social and web search media.

Mehmet Levent, A. E. (2018). Analysis of the relationships between bitcoin and ex-

change rate, commodities and global indexes by asymmetric causality test. Eastern

Journal of European Studies, 9:27–45.

Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and optimizing lstm

language models.

Mohammad, S. M., Kiritchenko, S., and Zhu, X. (2013). Nrc-canada: Building the

state-of-the-art in sentiment analysis of tweets.

Mohammad, S. M., Sobhani, P., and Kiritchenko, S. (2017). Stance and sentiment

in tweets. ACM Trans. Internet Technol., 17(3).

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. Cryptogra-

phy Mailing list at https://metzdowd.com.

Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bit-

coin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton

University Press, USA.

77

Nguyen, D. T., Sharma, S., Schulz, H., and Asri, L. E. (2018). From film to video:

Multi-turn question answering with multi-modal context.

Ning, S. and Shephard, N. (2017). A nonparametric bayesian approach to copula

estimation.

Pagolu, V. S., Challa, K. N. R., Panda, G., and Majhi, B. (2016). Sentiment analysis

of twitter data for predicting stock market movements.

PappuRajan, A. and Victor, S. (2014). Web sentiment analysis for scoring positive or

negative words using tweeter data. International Journal of Computer Applications,

96:33–37.

Petneházi, G. and Gáll, J. (2018). Exploring the predictability of range-based volatil-

ity estimators using rnns.

Poggio, T., Voinea, S., and Rosasco, L. (2011). Online learning, stability, and sto-

chastic gradient descent.

Rada, D. P. (2018a). Crypto-influencers algorithm.

Rada, D. P. (2018b). Personal communication.

Radford, A., Jozefowicz, R., and Sutskever, I. (2017). Learning to generate reviews

and discovering sentiment.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).

Language models are unsupervised multitask learners.

Rao, V. A., Anuranjana, K., and Mamidi, R. (2020). A sentiwordnet strategy for

curriculum learning in sentiment analysis.

Rauchs, M., Blandin, A., Dek, A., and Wu), Y. (2021). cambridge bitcoin electricity

consumption index.

78

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters:

Part 1 – learning rate, batch size, momentum, and weight decay.

Tian, X., Tao, D., and Rui, Y. (2011). Sparse transfer learning for interactive video

search reranking. CoRR, abs/1103.2756.

Utsugi, A., Ino, K., and Oshikawa, M. (2004). Random matrix theory analysis of

cross correlations in financial markets. Physical Review E, 70(2).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L., and Polosukhin, I. (2017). Attention is all you need.

Wanjawa, B. W. (2016). Predicting future shanghai stock market price using ann in

the period 21-sep-2016 to 11-oct-2016.

Wehbe, B., Arriaga, O., Krell, M. M., and Kirchner, F. (2018). Learning of multi-

context models for autonomous underwater vehicles.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are

features in deep neural networks?

Zhang, X., Li, Y., Wang, S., Fang, B., and Yu, P. S. (2018a). Enhancing stock market

prediction with extended coupled hidden markov model over multi-sourced data.

Zhang, X., Zhang, Y., Wang, S., Yao, Y., Fang, B., and Yu, P. S. (2018b). Improving

stock market prediction via heterogeneous information fusion. Knowledge-Based

Systems, 143:236–247.

Zhong, G., Lin, X., Chen, K., Li, Q., and Huang, K. (2019). Long short-term atten-

tion.

Zhou, X., Pan, Z., Hu, G., Tang, S., and Zhao, C. (2018). Stock market prediction

on high-frequency data using generative adversarial nets. Mathematical Problems

in Engineering.

79

