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RESUMEN  

 

En flujos turbulentos, el desgaste erosivo es causado por impactos de partículas 

desviadas del flujo nominal por la acción de las fluctuaciones turbulentas. Así, la topografía 

de la superficie durante el proceso de erosión contiene información significativa sobre la 

extensión del desgaste erosivo, como lo son la profundidad de los cráteres y el volumen de 

material removido. Esta investigación describe una determinación experimental de la 

distribución del ángulo de impacto y del ángulo de direccionalidad mediante un análisis de 

imágenes de zonas desgastadas, así como un procedimiento de análisis inverso para la 

determinación de la velocidad de impacto de partículas mediante información de 

perfilometría 3D y modelación. 

Se utiliza la configuración slurry pot para producir daños por desgaste en una pieza 

de cobre al exponerse al flujo de microesferas de vidrio de baja concentración. La 

degradación se evalúa mediante la pérdida de peso, y los datos topográficos para el análisis 

de la imagen se obtienen mediante perfilometría 3D. El modelado se lleva a cabo a través de 

dos modelos empíricos (Oka y Huang) y un modelo teórico (Cheng). 

Los resultados revelan que la mayor parte de la energía cinética es transferida por la 

componente tangencial de la velocidad de impacto dado por bajos ángulos de impacto, 

independientemente del tamaño de partícula. Las condiciones de impacto de partículas no 

distribuyen normal y se establece estadísticamente un ángulo de impacto máximo para la 

configuración slurry pot. Además, la velocidad calculada puede diferir mucho según el 

modelo utilizado, donde los modelos Huang y Cheng están más cercanos a las condiciones 

de flujo nominal que el modelo Oka. Finalmente, se explora el grado de correlación 

monotónica entre las variables experimentales para marcas erosivas individuales. 

 

 

 

Palabras Claves: Erosión, Ángulo de impacto, Velocidad de impacto, Flujo turbulento, 

Análisis de imágenes, Análisis inverso. 
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ABSTRACT  

 

In turbulent flows, erosive wear is given by particle impacts deviated from nominal 

flow by turbulent fluctuations. Thus, surface topography after slurry erosion contains 

meaningful information concerning the extent of erosive wear, such as indentation depth and 

wear volume. This research describes an experimental determination of particle impact angle 

and impact direction distributions from collective wear scar features by image analysis, as 

well as a procedure of inverse analysis for the determination of particle impact velocity from 

collective erosive features by means of further modeling. 

Slurry pot is used to produce wear damage on copper in exposure to highly turbulent 

dilute slurry flow of glass beads. Degradation is evaluated by weight loss, and topography 

data for the image analysis is acquired by non-contact 3D profilometry. Modeling is carried 

out through two empirical models (Oka and Huang) and one theoretical model (Cheng). 

The results reveal that most of the kinetic energy is transferred by the tangential 

component of the impact velocity at shallow impact angles, regardless the particle size. 

Particle impact conditions do not distribute Gaussian and a statistical cut-off angle is 

established. Additionally, the back-calculated velocity may greatly differ depending on the 

model used, where Huang and Cheng models are closer to the nominal flow conditions than 

the Oka model. Finally, the degree of monotonic correlation between experimental variables 

for individual erosive features is explored.  

 

 

 

 

 

 

 

Keywords: Slurry erosion, Impact angle, Impact velocity, Turbulent flow, Slurry pot, 

Image Analysis, Inverse analysis. 
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1. INTRODUCTION 

Slurry erosion is the process of the degradation of a material by wear caused by 

the impact of incoming particles from the carrier gas or liquid phase. In many industries, 

this process may include complex phenomenon due to the electrochemical interaction of 

the carrier fluid with the target surface, leading to an erosion-corrosion synergy found in 

a wide variety of sectors: marine, oil and gas, nuclear, high temperature, power generation, 

mining, manufacturing, and process industry (Burson-Thomas & Wood, 2017; Javaheri, 

Porter, & Kuokkala, 2018; Kuruvila, Kumaran, Khan, & Uthayakumar, 2018). In the past 

decade, the effort of the researchers has been mainly focused on testing and protection of 

materials, highlighting particularly modeling for the development and validation of 

models for predicting wear rate. These models have become very useful for improving the 

design of gas- and hydro-components through computational fluid simulations (Burson-

Thomas & Wood, 2017; Messa & Malavasi, 2017). 

In the case of particles carried by a liquid phase, it has been well established by 

numerous experiments that the extent of wear by slurry erosion depends on the properties 

of the impacting particles (size, shape, density, and hardness), carrier liquid (particle 

concentration, viscosity, temperature, and density), and target material (microstructure, 

ductility, and hardness) (Burson-Thomas & Wood, 2017; Javaheri et al., 2018; Kuruvila 

et al., 2018). However, the particle impact characteristics given by the flow such as impact 

velocity (or kinetic energy) and impact angle are the most prominent parameters correlated 

with the wear rate (Kuruvila et al., 2018). This is particularly challenging to describe in 

highly turbulent flows, where the modification of the particle trajectories and velocities 

due to turbulent fluctuations, coherent turbulent structures, and eddy currents may 

determine the overall wear not only by each particle’s motion but also their statistics (Ma 

et al., 2015). 

As it was reported by Wang et al. (Huakun Wang et al., 2019), to date, more than 

200 erosion models have been proposed (Parsi et al., 2014; S. M Hsu, 1997). From these 

models, only a few are considered practically important, amongst which the DNV (D.N. 

Veritas, 2011), E/CRC (Zhang, Reuterfors, McLaury, Shirazi, & Rybicki, 2007), Finnie 
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(Finnie, 1960b), Huang (Huang, Chiovelli, Minev, Luo, & Nandakumar, 2008), and Oka 

(Oka, Okamura, & Yoshida, 2005; Oka & Yoshida, 2005) erosion equations are the most 

widely used owing to their numerous experimental validation, especially for common steel 

grades (Javaheri et al., 2018; Messa & Malavasi, 2017; Njobuenwu & Fairweather, 2012). 

In addition to the empirical or semi-empirical formulations, from the theoretical point of 

view, there has been progress in the development of analytical and phenomenological 

erosion models for single impacts for elastic-plastic materials with strain hardening, even 

considering frictional effects (Brake, 2015; I. A. Lyashenko, 2019; Iakov A. Lyashenko, 

Willert, & Popov, 2018; Hui Wang, Yin, Hao, Chen, & Yu, 2020; Willert, 2019). 

Observation of the worn surface morphology and topography produced during 

exposure to solid particle erosion is known to be indicative of the damage mechanism 

(cutting, ploughing, abrasion, etc.) associated with the particle impact conditions (Javaheri 

et al., 2018; Shitole, Gawande, Desale, & Nandre, 2015). In previous studies, the 

experimental characterization of the particle impact angle after exposure has been 

addressed only to illustrate a single wear scar depth profile from a cluster of erosive 

features (Alam & Farhat, 2018; Andrews, Giourntas, Galloway, & Pearson, 2014; Frosell, 

Fripp, & Gutmark, 2015; Nguyen et al., 2019, 2014), i.e. it has been explored for an 

individual feature rather than collective, lacking the statistical perspective. Only recently, 

a collective and statistical point of view was proposed to study the evolution of the impact 

direction (directionality) distribution in connection with increasing velocity, but no 

information was given about the impact angle distribution (Molina, Aguirre, & Walczak, 

2019). Thus, to our best knowledge, the issue of the deconvolution of particle impact 

direction and impact angle distributions from collective erosive features after exposure to 

turbulent slurry flow has not been addressed systematically in the literature. 

On the other hand, the experimental characterization of local impact diameter, 

indentation depth or wear volume have been addressed, however, from these variables 

have been few attempts to acquire statistical data of the slurry flow conditions that caused 

the material degradation with no prior knowledge of the erosive flow set-up (Hector Mc 

I. Clark, 1991; Hutchings, 1981; Ma et al., 2015). Hence, to our best knowledge, the issue 

of the inverse analysis of the particle impact velocity statistics from single to collective 
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erosive features after exposure to turbulent slurry flow has not been addressed 

systematically in the literature. 

In this context, the first aim of this work is to quantify the impact angle and impact 

direction distributions of wear scars in highly turbulent flow at different particle sizes by 

the means of image processing and analysis in order to elaborate on the relationship 

between impact conditions and particle kinetic energy. In this research, a copper target is 

exposed to dilute slurry erosion by means of a slurry pot system using glass bead particles 

of various sizes covering the range of reportedly inducing erosive damage (H. Mc I. Clark 

& Hartwich, 2001a; H. McI Clark, 2002; Hadavi, Moreno, & Papini, 2016; Lynn, Wong, 

& Clark, 1991; Telfer, Stack, & Jana, 2012; Thakare, Wharton, Wood, & Menger, 2012; 

Tressia, Penagos, & Sinatora, 2017). The worn surfaces are analysed by non-contact 3D 

profilometry and processed by image analysis techniques for interpretation. 

The second focus of the current work is to determine the statistical particle impact 

velocities in a worn surface by observing the topography of wear scars produced in highly 

turbulent slurry flow. The inverse analysis procedure consists of the digitalisation of 

topography and further modeling of localised deformation. Particle erosion models are 

back solved to deconvolute the particle impact velocity of each wear scar. This 

methodology was applied to two well-known empirical models: Oka and Huang, 

commonly used in the engineering practice (Huang et al., 2008; Oka et al., 2005; Oka & 

Yoshida, 2005). In addition, a theoretical elastic-plastic model proposed by Cheng et al.  

(Cheng, Zhang, Wei, Mi, & Dou, 2019) was used, which provided the comparison 

between empirical equations with recent theoretical models. Finally, the effectiveness and 

limitations of the inverse analysis methodology are discussed. 
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2. LITERATURE REVIEW 

The following literature review has been limited to erosion only, although there are  

other wear mechanisms that  can be observed jointly as the product of slurry erosion 

phenomenon, such as corrosion and/or cavitation (Grobler & Mostert, 1990; Madsen, 

1988). 

 

2.1. Slurry erosion 

2.1.1. Fundamentals of erosion mechanisms 

Solid particle erosion is the process of material removal that occurs when discrete 

solid particles strike a surface, this generates the progressive loss of material, which can 

be removed by plastic deformation and/or brittle fracture, depending on the material being 

eroded away and on the operating conditions (Rohatgi, Tabandeh-Khorshid, Omrani, 

Lovell, & Menezes, 2013). In particular, if the incoming particles are carried by a liquid 

phase, this process is called slurry erosion (Javaheri et al., 2018). 

Slurry erosion is a complex, time-dependent phenomenon that has been was 

systematically investigated for the first time in the 1960s (Bitter, 1963; Finnie, 1960a). 

Since then erosion has been assumed to occur due to two main mechanisms, referred to as 

“cutting” and “deformation”, which are terms not related to their usual meaning in 

metallurgy (Finnie, 1960a). The “cutting” mechanism is associated with low impact 

angles with enough kinetic energy to cut the material by the erodent like a knife or cause 

by ploughing the formation of ripples and lips that can be further chipped away from the 

surface after subsequent impact or flow momentum transfer (Uzi & Levy, 2018), as it is 

shown in Fig. 1. 
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Figure 1. Schematic illustration of a) ploughing and b) cutting erosion mechanism. 

Adapted from (Javaheri et al., 2018). 

 

On the other hand, the “deformation” mechanism is associated with high impact 

angles with enough kinetic energy to cause plastic deformation or subsurface crack 

formation leading to fracture in the eroding surface (Hector McI. Clark & Wong, 1995). 

Both mechanisms are illustrated in Fig. 2 for ductile and brittle target materials. 

 

 

 

Figure 2. Schematic representation of erosion caused by deformation mechanism at 

normal impact and cutting mechanism at oblique impact in a) ductile and b) brittle materials (Y. 

F. Wang & Yang, 2008). 
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According to Uzi & Levy (2018), the initial kinetic energy before particle impact 

is the sum of the particle’s translational and rotational energies. During the impact, energy 

is absorbed by the particle or eroding surface, which leads to lower kinetic energy when 

the particle bounces off the wall due to energy loss. Then, the energy conservation 

equation before and after the impact reads (Eq. 1): 

 

𝐸𝑘,𝑖 + 𝐸𝜔,𝑖 = 𝐸𝑘,𝑅 + 𝐸𝜔,𝑅 + 𝐸𝑝 + 𝐸𝑤 +𝑊      (1) 

 

where Ek and Eω are the translational and rotational kinetic energy, respectively; i and R 

subscripts denote the initial and rebound states, respectively; Ep and Ew are the energies 

absorbed by the particles or eroding surface, respectively. In particular, W is the energy 

dissipation by stress waves. 

Based on experimental results, both the stress waves (Hutchings, 1979) and the 

difference of the rotational kinetic energy (Hutchings, 1976; Walley & Field, 1987) have 

been found to be much smaller than the initial energy, and therefore, both terms are 

considered negligible. The energy absorbed by the eroding surface is divided into the 

aforementioned two mechanisms: cutting (EC) and deformation (ED), which are assumed 

to be controlled by the kinetic energy associated with the tangential and normal 

components of the velocity, respectively. The energy absorbed by the particle cause plastic 

deformation of the particle, crack developments, and fracture (Uzi & Levy, 2018), 

although to simplify the erosion modeling, it is assumed a rigid particle. Then, considering 

the above assumptions, the simplified energy exchange can be rewritten as Eqs. 2 and 3: 

 

∆𝐸𝑘,𝑡 = 𝐸𝐶         (2) 

∆𝐸𝑘,𝑛 = 𝐸𝐷         (3) 

 

It has to be remarked that these mechanisms operate simultaneously at any angle 

that differs from a perpendicular collision (ED pure case), although, depending on the 

impact conditions and material properties, one may predominate (Javaheri et al., 2018). 

In the case of low impact angles, cutting and ploughing may differ from the abrasion 
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phenomenon at least in two aspects: collision contact time is much shorter in erosion than 

abrasion (Shitole et al., 2015), and abrasion damages the surface due to the passage of 

particles over the surface but without impingement; nevertheless, these mechanical wear 

processes display many similarities (Truscott, 1972). 

 

2.1.2. Fundamentals of erosion mechanisms 

Javaheri et al. (2018) summarize the principal parameters contributing to slurry 

erosion by classifying them into four groups: slurry characteristics, target material 

properties, solid particle properties, and impingement condition; as schematically 

shown in Fig. 3. These are discussed below. 

 

 

 

Figure 3. Fishbone of important parameters influencing slurry erosion (Javaheri et al., 2018) 
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a) Slurry characteristics 

In less viscous carrier fluids, such as water, higher particle concentration in the 

slurry leads to a higher erosion rate due to the increasing number of particles striking 

the target material (Gandhi, Singh, & Seshadri, 1999; Tsai, Humphrey, Cornet, & 

Levy, 1981), and settlement of particles which produces a sliding bed, as it has been 

observed in slurry pipelines, especially for particles with higher density (Mansouri, 

Shirazi, & McLaury, 2014). 

 

b) Target material properties 

Among the many material properties affecting surface degradation: 

microstructure and average mechanical properties are distinguished. 

Microstructures consist of different phases with differing physical and 

mechanical characteristics, which could lead to localized damage, as pointed out by 

many researchers (Al-Bukhaiti, Ahmed, Badran, & Emara, 2007; Alam, Aminul Islam, 

& Farhat, 2015; Islam, Alam, Farhat, Mohamed, & Alfantazi, 2015; Okonkwo, 

Mohamed, & Ahmed, 2015). For example, in the case of ductile ferritic-pearlitic steel 

microstructures, it has been found that the pearlite phase is more effective in resisting 

ploughing, cutting and deformation than ferrite; even more, the damage could also 

depend on the orientation of the cementite lamellae relative to the impact directionality 

(Alam et al., 2015; Islam et al., 2015). 

On the other hand, while it is generally believed that increasing hardness 

reduces the erosion (Oka, Matsumura, & Kawabata, 1993; Oka et al., 2005), as it is 

shown in Fig. 4, others suggest that other mechanical properties should also be 

considered (Hussainova, Kubarsepp, & Pirso, 2001; Oka & Yoshida, 2005; Sheldon, 

1977) due to contradictory results in studies related to hardness (Levy, 1981; O’Flynn, 

Bingley, Bradley, & Burnett, 2001). For instance, toughness and yield stress are 

considered as relevant as hardness in the study of erosion, since the loss of ductility 
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(hardening) may increase the erosion rate through a brittle mechanism (Naim & 

Bahadur, 1986; Sheldon, 1977). 

 

 

 

Figure 4. Volume loss and average near-surface hardness data for steel plate and steel pipe 

materials (H. M. Clark & Llewellyn, 2001). 

 

c) Solid particle properties 

Among the many solid particle properties affecting the surface degradation are 

shape, size, and hardness (Abouel-Kasem, 2011; H. Mc I. Clark & Hartwich, 2001b; 

Liebhard & Levy, 1991; Walker & Hambe, 2015; Yabuki, Matsuwaki, & Matsumura, 

1999). 

Particle shape is customarily classified as one of the two main categories: 

angular and rounded, in which the former causes more damage than the latter (Levy & 

Chik, 1983). This factor has been quantified by means of circularity, which is unity 

for a perfect circle and zero for an infinite elongated polygon. In Table 1 and Fig. 5 

are presented some of the frequently used erodents in industry. 
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Table 1. Properties of frequently used erodent particles (Javaheri et al., 2018). 

 

Erodent particles Hardness (HV, GPa) Density (g/cm3) Shape 

Alumina (Al2O3) 1.8 3.94 Angular 

Silicon Carbide (SiC) 2.5 3.22 Angular 

Quartz (SiO2) 0.75 2.65 Fairly rounded 

Glass Beads 0.6 2.6 Spherical 

Tungsten Carbide 2.2 15.7 Irregular 

Diamond 8 3.5 Blocky 

 

 

Figure 5. SEM images of a) alumina, b) silicon carbide, c) quartz, d) glass beads, e) steel 

round grit, f) tungsten carbide, g) diamond, and cross-section SEM images of h) chromite, i) 

concentrate, j) matte, k) ore, and l) tailings. Retrieved from Javaheri et al. (2018). 
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Regarding the particle size effect, if the particle size increases at a constant 

velocity, the particles acquire more kinetic energy, causing greater damage at the 

impact (Parsi et al., 2014; Sinha, Dewangan, & Sharma, 2017). In addition, with an 

increase in the ratio of the erodent particle hardness to the target material hardness, the 

total erosion increases until a threshold value after which this relationship has little 

effect (Levy & Chik, 1983). 

 

d) Impingement condition 

In order to cause damage by an impacting particle, the impact velocity should 

be above a threshold below which no plastic deformation is produced, i.e., the collision 

should not be a purely elastic one (Yabuki et al., 1999). However, this factor it is not 

only related to the transfer of kinetic energy but to the contact stress at the impact as 

well (Y. F. Wang & Yang, 2008). 

On the other hand, both ductile and brittle material have a characteristic impact 

angle curve, which is mostly due to the shift in the wear mechanism discussed in 

Section 2.2.1. Figure 6 shows typical examples of impact angle dependence. 

 

 

Figure 6. Variation of erosion rate with impact angle for brittle and ductile materials 

(Nandre & Desale, 2018) 
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2.2. Erosion modelling 

From the models considered practically important, both DNV and E/CRC have not 

determined the experimental coefficients of their models for copper as target material. In 

Finnie’s model, the cutting and deformation energy factors are not constant for varying 

impact angles and should be measured (Biswas, Williams, & Jones, 2018). In contrast, 

Huang and Oka models have validated their models for copper. Furthermore, both have 

used sandblast type erosion rig to develop their experimental coefficients, i.e., the results 

came from collective and successive particle impacts, which is relevant because both are 

in practice used for calculation of single impact wear in CFD simulations (Messa & 

Malavasi, 2017). 

From the theoretical point of view, the phenomenological models with explicit 

physical significance are complex to deal with. However, recently a theoretical 

formulation derived by Cheng et al (Cheng et al., 2019) showed good agreement to 

experimental results without involving too many physical coefficients. 

Hence, in this work, three models are studied: Huang, Oka, and Cheng. Each of 

these models is described in the following subsections. 

 

2.2.1. Oka model 

The Oka model has been a widely used erosion model for wear prediction (Messa, 

Mandelli, & Malavasi, 2019; Pereira, de Souza, & de Moro Martins, 2014; Zheng et al., 

2019). The wear volume equation (mm3/impact) is written as: 

 

𝐸𝑉 = 𝑚𝑝𝐸𝑅         (4) 

𝐸𝑅 = 𝐾(𝑎𝐻𝑤)
𝑘1𝑏 (

‖𝑉‖

𝑉′
)
𝑘2
(
𝑑𝑝

𝐷′
)
𝑘3
𝑓(𝛼)     (5) 

𝑓(𝛼) = sin𝑛1(𝛼) [1 + 𝐻𝑤(1 − sin(𝛼))
𝑛2]      (6) 

 

 where mp is the particle mass, Hw is the hardness of the target material, ||V|| is the 

particle speed, dp is the particle size, and α is the impact angle. K, k1, k2, k3, n1, n2 are 
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empirical constants that are related to the properties of both particles and target. V’ and D’ 

are a reference particle velocity particle size. a and b characterize the load relaxation ratio 

of the target material, usually taken to be unity in the lack of experiments.  

 

2.2.2. Huang model 

The Huang model incorporates the removal of material due to both deformation 

damage and cutting, following the work done by Finnie and Bitter. The simplified wear 

volume equation (mm3/impact) is written as: 

 

𝐸𝑉 = 𝐶𝑚𝑝𝜌𝑝
0.15(‖𝑉‖ sin(𝛼))2.3 + 𝐷𝑚𝑝

1.1875𝑑𝑝
−0.0625‖𝑉‖2.375 cos2(𝛼) sin0.375(𝛼) (7) 

 

where ρp is the particle density, and mp, ||V||, α, dp have the same meanings as in 

Eqs. (1-3).  

 

2.2.3. Cheng model 

The Cheng model is derived from elastic-plastic assumptions in the Hertzian 

contact between the erodent and target material. It develops independent equations for the 

calculation of the indentation depth and wear scar length. The simplified indentation depth 

equation (m/impact) is written as: 

 

𝑚𝑝

2
𝑉⊥

2 = (
1

2
𝑌𝑤𝜋𝑟𝑝) ℎ

2 + (0.17 ∙
𝑌𝑤

3𝜋2𝑟𝑝
2

𝐸𝑒𝑓𝑓
2 ) ℎ    (8) 

 

where V⊥ is the normal velocity component, Yw is the yield strength of the target 

material, rp is the particle radius, h is the indentation depth, and Eeff is the effective 

Young’s modulus. The particle speed can be retrieved from the trigonometric definition: 

 

‖𝑉‖ =
𝑉⊥

sin(𝛼)
         (9) 
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2.3. Image processing 

In this section, it is not reviewed the use of characterization techniques such as 

Scanning Electron Microscopy (SEM) or Interferometry used in the context of erosion 

wear, because although both techniques are widely employed in the literature (Abd-

Elrhman, Abouel-Kasem, Ahmed, & Emara, 2014; Islam & Farhat, 2014; Kosa & 

Göksenli, 2015; Nguyen et al., 2014; Shitole et al., 2015), usually they are not further 

treated with an image processing technique. 

In the slurry flow studies, there are few attempts to use image processing 

techniques to acquire further information from the worn surfaces. For instance, to our best 

knowledge, the issue of distribution of directionality of erosion wear scars has not been 

addressed systematically in the literature, except for a manual indication of erosion tracks 

(Ranjbar, Ghasemi, & Abedini, 2015) and divergence of particle impacts (Abd-Elrahman, 

Abouel-Kasem, Ahmed, & Emara, 2014). Our exploratory study (Molina et al., 2019) 

followed the hypothesis that directionality of erosive scars contains indirect information 

on the orientation of particle impact and the directionality can be assessed in a holistic 

manner, i.e., all scars analyzed at once, by means of image processing based on Fourier 

transformation. The main premise was that worn surfaces can be interpreted as a two-

dimensional function in the spatial domain, containing both periodic and irregular 

elements, as well as noise and background. Difficulty in visual inspection of such features 

in erosive damage increases with damage accumulation because the above-named image 

components are commonly embedded and entangled with one another.  

In particular, Fast Fourier transform (FFT) translates the image form the spatial 

domain into a two-dimensional complex function in the frequency domain, enabling 

differentiation of original features by their spatial frequencies (Wood, 1990; Xu, 1996). 

The square of the function’s magnitude, i.e. its power spectrum, is displayed against 

frequency to visualize the contribution of each frequency to the FFT and, in case of 2D 

images, allows identifying preferential directionality of patterns if any were present in the 

spatial domain. Applicability of FFT for observing and analyzing information not easily 

extracted in the spatial domain has been shown effective for a variety of applications such 

as assessing woven fabric structures (Xu, 1996), collagen architecture (Osman et al., 
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2013), alignment of electrospun fibers (C. Ayres et al., 2006; C. E. Ayres et al., 2007, 

2008; Shang, Yang, Cheng, Frank Walboomers, & Jansen, 2010) or alignment of 

nanotubes in a membrane (Omar et al., 2015). Thus, as of the date the use of FFT image 

analysis has been first reported by us in the context of erosive wear. 

For example, from this work is concluded that the technique of FFT employed to 

SEM generated images of wear scars is applicable for meaningful identification of 

symmetries in the wear scar patterns. For increasing nominal flow velocity in the system 

of rotating cylinder, i.e., rotation frequency, evolution of directionality in the wear scars 

pattern was identified (Fig. 7), which is indicative of the condition of turbulence. 

 

 

 

Figure 7. Image analysis for SEM micrographs obtained for different flow velocities: FFT – fast 

Fourier transform, FFT-ZT – contrast adjusted visualization of selected FFT zone (red 

rectangle), HIST – histogram of wear scar orientation (δ) as determined by image analysis of 

FFT-ZT (Molina et al., 2019) 
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Finally, a special mention should be done to the image processing work related to 

the erodent, as it was reviewed by Raadnui (2005) and shown in Table 2. Recently, some 

advancements in wear debris identification (Cao, Zhang, Wang, Wang, & Peng, 2019), 

especially using neural networks (S. Wang, Wu, Shao, & Peng, 2019) have shown a new 

direction in the community to use these tools. 

 

Table 2. Particle shape and size descriptors relevant for wear (Raadnui, 2005). 
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3. THESIS PROPOSAL 

 

3.1 Hypothesis 

The leading hypothesis of the proposed research is that in erosion by slurry flow, 

the distribution of particle impact characteristics (impact angle, impact direction, and 

impact velocity) can be quantified by means of image processing of wear scars from a 

ductile material exposed to a highly turbulent flow. In particular, it hypothesized that 

the information obtained from worn surfaces analysed by non-contact 3D profilometry 

allows identifying the particles’ impact conditions without prior information. 

 

3.2 General objective 

The general objective of this research is to quantify the correlation between the 

particle size and the impact characteristics (impact angle, impact direction, and impact 

velocity) established in the exposure of copper to dilute slurry erosion as determined 

in a slurry pot system, with a particular interest in the statistical behavior of the 

turbulent flow. 

 

3.3 Specific objectives 

The following specific objectives reflected in the methodology are to be pursued: 

I. Implement an experimental design and procedure to generate wear scars in 

a copper target material mounted in a slurry pot system. 

II. Quantify the impact characteristics (impact angle and impact direction) by 

means of image processing of the 3D topography of the worn surface. 
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III. Estimate the impact velocity by means of an inverse analysis of erosion 

models and topography data. 

IV. Determine the correlation of the impact characteristics, particle size, and 

wear rate associated to the collective features of the worn surface. 
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4. EXPERIMENTAL 

 

4.1 Sample preparation 

The material for the study was Electrolytic Tough Pitch Copper C11000 (Cu-ETP) 

hardened by cold working (H04 ASTM) and of a chemical composition determined by 

glow discharge emission spectrometry bulk analysis (Spectruma, GDA 750 h): Zn 

0.001%, Si 0.001%, Fe 0.001%, and Cu balance (all values in wt.%). The measured 

properties of Cu-ETP are reported in Table 3: 

 

Table 3. Physical and mechanical properties of Cu-ETP used in this study. 

 

Density (g/cm3) 8.9 

Rockwell hardness (F) 85 

Vickers hardness (GPa) 0.99 

Yield strength (MPa) 275 

Young’s modulus (GPa) 94 

Poisson ratio 0.33 

 

Cylinders of 15 mm in diameter and 10 mm in height were prepared by machining 

a Cu-ETP bar. The machining parameters were those recommended by ASTM (see 

Supplementary Material, Table S1). The curved surface of the cylinder was polished by 

means of four steps described in Table 4. The final surface roughness (Sa) was about 0.05 

± 0.02 µm. 

 

  



20 

  

Table 4. Details of the processes used for surface finish prior exposure. 

 

Process Abrasive/Physical agent Tool Parameters 

Uniform polishing 
SiC paper 

(600 down to 3000 grit) 

Lathe turning 

machine 
2000 RPM 

Final polishing 
PCD suspension 

(3 and 1 µm) 

Lathe turning 

machine 
300 RPM 

Final polishing 
Silica colloidal suspension 

(0.04 µm) 

Lathe turning 

machine 
300 RPM 

Electropolishing 
Phosphoric acid (H3PO4) 

15 M 

Cu-ETP as 

cathode 
1.6 V, 5 min. 

 

Finally, the samples were rinsed and sonicated in acetone, dried by blowing hot air 

and stored in a desiccator for use in the experiment. The weight of each sample was 

measured using an analytical balance (Sartorius BP221S) with a precision of 0.1 mg. 

 

4.2 Erodent preparation 

The erodent used in this study were glass beads of measured properties reported in  

Table 5: 

 

Table 5. Physical and mechanical properties of the glass beads. 

 
Density (g/cm3) 2.5 

Vickers hardness (GPa) 6.2 ± 0.5 

Young’s modulus (GPa) a 72.2 

Possion ratio a 0.168 

Circularity b 0.82 

a Retrieved from (Pabst & Gregorová, 2013). 
b Circularity was obtained from ~200 particles through analysis of SEM images employing ImageJ (Rueden 

et al., 2017). 
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In order to study the effect of particle size, the erodent was sieved in five mesh 

ranges, giving a selected particle size distribution reported in Table 6. The smallest particle 

size was chosen so that the wear scar imprint might be well characterized by the lateral 

resolution of the profilometer (Section 2.5.1). It should be kept in mind that, in the 

remaining text, the particle size (dp) refers to the midrange value. 

 

Table 6. Particle size ranges used in this study. 

 

Mesh US Particle size range (µm) Midrange particle size (µm) 

20-25 707-841 774 

25-30 595-707 651 

30-35 500-595 548 

35-40 400-500 450 

50-60 260-297 276 

 

The shape of the particles as observed under a scanning electron microscope 

(SEM) is shown in Figure 8. 

 

 

 

Figure 8. A representative shape of glass beads (50-60 mesh, dp of 276 µm) observed under 

SEM. For other mesh sizes see Figure 28 in Appendix B. 
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4.3 Experimental rig 

Experiments were carried out using a slurry pot. Figure 9 shows the configuration 

of the experimental system, consisting of a motor controlled by a frequency modulator 

connected to a rotating shaft, to which one cylindrical sample (Section 2.1) is mounted in 

the lower part and exposed to a tangential flow of slurry. The shaft is immersed in the 

slurry container made of acrylic (∅ 70 mm) that is filled with a total volume of 300 mL. 

Four baffles are mounted at 90° to avoid sedimentation at the bottom. The concentricity 

of the shaft and sample is ensured by a cylindrical pivot bearing at the bottom of the slurry 

container, which efficiently reduces vibration. The rig does not allow for direct control of 

the angle at which the particles hit the surface, which is determined by the conditions of 

the flow.  

 

 

 

Figure 9. Overview of the experimental set-up. For better visibility of the test samples, 

the pot is filled with water instead of slurry. 
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4.4 Experimental procedure 

The experiments were performed using distilled water (5.7 pH, 25±1 °C). The 

number of particles for every particle size range was kept constant at about 12,500 

particles by adjusting the slurry concentration depending on the particle size range at the 

given total volume of 300 mL, summarized in Table 7. The slurry was not intervened 

during exposure. 

 

Table 7. Slurry concentration for different particle sizes. 

 

Particle size (µm) Mass per test (g) 
Solid weight fraction 

(wt.%) 

Solid volume 

fraction (vol.%) 

774 7.500 2.463 1.000 

651 4.463 1.487 0.595 

548 2.655 0.880 0.354 

450 1.474 0.490 0.197 

276 0.338 0.112 0.045 

 

The concentration of glass beads was very low (<1 vol.%) to neglect particle-

particle interaction (Humphrey, 1990) and to ensure a surface with the first imprints of the 

impact features. In each exposure run, the sample was mounted in the same position to 

assure its reproducible condition with respect to the height of the slurry. The frequency of 

rotation was fixed for the different exposure runs to produce the desired value of 10 m/s 

linear speed at the tangential surface of the test cylinder. However, this nominal linear 

velocity is not necessarily acquired by each particle because of the turbulence. The 

Reynolds numbers estimated after Grossmann et al. (Grossmann, Lohse, & Sun, 2016) at 

the gap and the shaft are about 274,000 and 75,000, respectively. In addition, the high 

value of the Taylor number characteristic of the set-up and materials, about 1.78∙1012, 

ensures that the formation of stable coherent structures, such as Taylor rolls, are not 

promoted in the test rig.  
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On the other hand, according to Israel and Rosner (Israel & Rosner, 1983), in a 

turbulent flow, the conventional Stokes number overestimates the tendency of particles to 

deviate from the nominal flow direction because the drag force is underestimated. Thus, 

a generalized Stokes number would be more appropriate.  

Table 8 summarizes the theoretical kinetic energy acquired per particle and the 

generalized Stokes number estimated by assuming that the nominal flow velocity was 

acquired by each particle. 

 

Table 8. Theoretical kinetic energy of erodent flow and generalized Stokes number evaluated for 

nominal linear speed of 10 m/s. 

 

Particle size (µm) Kinetic energy (µJ/particle) Stokes number 

774 30.35 4.31 

651 18.06 3.40 

548 10.77 2.68 

450 5.96 2.03 

276 1.38 1.02 

 

Each exposure had a duration of 60 min, which was selected to generate measurable 

weight loss without particle attrition and to avoid overlapping particle imprints on the 

copper target. Nitrogen purging was not needed since no presence of corrosion was 

found in a preliminary test run without the erodent particles (see Figure 29, Appendix 

C). In order to ensure reproducible test conditions for each exposure, a new sample 

and freshly prepared slurry were used. Each experimental run was repeated producing 

three replicate samples for weight loss measurement and further analysis. Immediately 

after each exposure, the sample was rinsed and sonicated, first in distilled water and 

then in acetone, dried by blowing hot air and then weighed to determine the weight 

loss. 
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4.5 Surface analysis method 

Each worn surface was subject to analysis by digital image acquisition, followed 

by processing and finally analysis. 

 

4.5.1 Digital image acquisition 

The topography of the worn surfaces was analysed on the curved surface of the 

samples by a non-contact 3D profilometry technique (Taylor CCI Lite, Taylor Hobson 

Ltd, Leicester, England). Coherence Correlation Interferometry is an algorithm used to 

find the coherence peak and phase position of an interference pattern so that the 3D profile 

may be acquired with high precision. The surface data were recorded with a resolution of 

1024 × 1024 pixels with a field of view of 825 × 825 µm and a real space resolution of 

0.825 µm, and stored in a SURF file format which facilitates software processing prior to 

the generation of a more convenient display format. 

In addition, the morphology of the wear scars was analysed using the secondary 

electrons (SE) signal of the scanning electron microscope technique (SEM, Hitachi SU-

70, Hitachi High-Tech Co, Japan). The SE was used to detect topographic contrast 

between areas with different depths. The images were recorded with a resolution of 1280 

× 960 pixels, 256 dpi, 8-bit grayscale, and stored in a JPG file format. 

 

4.5.2 Digital image processing 

Each 3D profile was handled by the software TalyMap Platinum v. 6.2.7487 

(Taylor Hobson Ltd, Leicester, England). First, the surface was levelled by subtraction of 

a surface found by the least square method. Second, the curved surface shape was removed 

by a polynomial of the sixth order. Third, non-measured points (<0.05% of data) were 

filled considering a smooth shape calculated from neighbouring points. Finally, the 3D 

profile was exported in a grayscale JPG file format, recording the z-scale values. 
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Each exported image was handled using open-source language programming 

software – Python 3.7.4 with Numpy, Matplotlib, CV2, and Skimage libraries. First, the 

local contrast of the image was enhanced by an adjust sigmoid function (Braun, 1999). 

Second, canny edge detection with a standard deviation of a Gaussian filter of about 3 was 

used to find the pixels within an area of high local gradients (Niu, Yang, Wang, & Chen, 

2011). Third, dilation with a kernel of 3 × 3 was used to connect close points 

(“Morphological Image Analysis: Principles and Applications,” 2000). Fourth, an 

algorithm to find contours proposed by Suzuki was implemented (Suzuki & be, 1985), 

getting the region of interest (ROI) boxed, i.e. identified wear scars. To avoid the detection 

of very small objects (debris, local plastic deformation, scratches), a threshold of 

minimum wear scar size of 9 × 9 pixels was implemented. Finally, every ROI was 

exported to a folder for further analysis. The sequence is summarized in Figure 10. The 

benefit of using this method is the automatic detection of wear scars which reduces the 

time of selection. 

 

 

 

Figure 10. Schematic sequence of the image processing procedure to select data of individual 

scars from the collective profilometry data. 
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4.5.3 Digital image analysis 

The impact direction (δ) and impact angle (α) were determined considering a 

moving system of spherical coordinates on the curved target surface (hereafter referred to 

as global coordinates), as is depicted in Figure 11. The experimental impact direction (δ) 

was described as the wear scar orientation (ellipse’s major axis) on the target surface, 

which is the projection of the velocity vector YZ on the Y direction. The experimental 

impact angle (α) was described as the slope of impingement along the impact direction in 

the wear scar depth profile, which is the projection of the velocity vector XYZ on the YZ 

plane. 

 

 

 

 

Figure 11. Geometrical description of global coordinates of inclination (θ) and azimuth (φ) 

angles, and the local coordinates of the direction of impact (δ) and impact angle (α). 

 

Each exported ROI image was handled using Python with the previously described 

libraries. First, the centroid and the eigenvectors of the ROI were computed, so that the 

impact direction (δ) was calculated as the deviation of the direction of the principal axis 
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from the Y direction. Then, the depth profile was extracted along the impact direction, so 

that the impact angle (α) was calculated from the right slope (impingement direction) 

(Hao, Dong, Du, Li, & Dou, 2019) regardless of particle or crater size. The indentation 

depth (h) was calculated as the distance between the minimum point and the average 

maximum point of the depth profile. A schematic description of the aforementioned 

definitions is summarized in Figure 12. 

 

 

 

Figure 12. Example of experimental determination of impact angle (α) along the impact 

direction (δ) for a single particle impact. 

 

The volume wear (EV) was calculated integrating numerically the volume of the 

wear scar by the trapezoidal rule, i.e., each slice area along the impact direction is 

multiplied by the lateral sample resolution of 0.8 µm. The out of plane plastic deformation, 

such as ploughing, cutting, or debris in the ROI is subtracted. In Figure 13 it is shown a 

representative example of a 3D profilometry wear scar. 
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Figure 13. 3D profilometry example of a wear scar produced after erosive exposure. 

Finally, by gathering the data of each exported wear scar, a distribution was 

generated for each measured variable (α, h, EV). The distribution is displayed in the format 

of a raincloud plot, which is an approach of data visualization providing maximal 

statistical information while preserving inference at a glance feature (Allen, Poggiali, 

Whitaker, Marshall, & Kievit, 2019). The raincloud plot is interpreted as follows:  

– The “cloud” is a non-parametric probability density function (kernel density 

estimate), also known as half-violin-plot, which is helpful for researchers that are 

used to interpreting histograms. 

– The “umbrella” is the standard visualization of central tendency and quartiles 

below the cloud, also known as the boxplot (Chambers, Cleveland, Kleiner, & 

Tukey, 2018). The interquartile range (IQR) box represents the middle 50% of the 

data, i.e., the body of the data. 

– The “rain” is raw jittered data points below the cloud, also known as strip-plot. 

Outliers, observations that lie at an unusual distance from the central values of the 

data, are visualized as individual points after the fences or whiskers using the 

Tukey definition (Chambers et al., 2018).  

For every particle size range, the boxplot in this work has been built from 300 wear 

scars from an equivalent region of 2.475 mm × 2.475 mm. Additionally, if there is any 

calculation that lies at an unusual distance from the central values of the data (up to 

2% of the data in the data set), the observation is inspected and/or removed to assure 

the absence of meaningless outliers through the Generalized Extreme Studentized 

Deviate (Generalized ESD) test methodology (Rosner, 1983). 

 

4.6 Global coordinates and kinetic energy 

The novelty of the experimental determination of the local coordinates (particle 

impact direction and impact angle) is that the global coordinates can be retrieved, i.e. 

approximately the initial conditions that promoted the wear scar imprint on the curved 
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surface. The velocity vector is described under spherical coordinates on the curved target 

surface by Eqs. 10-12: 

 

𝑉𝑋 = ‖𝑉𝑋𝑌𝑍‖ sin(𝜃) cos(𝜑),       (10) 

𝑉𝑌 = ‖𝑉𝑋𝑌𝑍‖ sin(𝜃) sin(𝜑),       (11) 

𝑉𝑍 = ‖𝑉𝑋𝑌𝑍‖ cos(𝜃).        (12) 

 

Then, using the properties of the dot product, the theoretical impact direction () 

and impact angle () are determined by Eqs. 13 and 14: 

 

cos(𝛿) =
𝑉𝑌𝑍∙𝑉𝑌

‖𝑉𝑌𝑍‖‖𝑉𝑌‖
=

sin(𝜃) sin(𝜑)

√sin2(𝜃) sin2(𝜑)+cos2(𝜃)
     (13) 

cos(𝛼) =
𝑉𝑋𝑌𝑍∙𝑉𝑌𝑍

‖𝑉𝑋𝑌𝑍‖‖𝑉𝑌𝑍‖
= √sin2(𝜃) sin2(𝜑) + cos2(𝜃)    (14) 

 

The non-linear system of Eqs. 13 and 14 could be analytically solved if α ∈ [0°, 

90°] and δ ∈ [-90°, 90°], determining the inclination angle (Eq. 15) and azimuth angle (Eq. 

16): 

 

𝜃 =

{
 

 𝑎𝑟𝑐𝑡𝑎𝑛 (√
1

cos2(𝛼) sin2(𝛿)
− 1) , 𝛿 ≥ 0

𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 (√
1

cos2(𝛼) sin2(𝛿)
− 1) , 𝛿 < 0

    (15) 

𝜑 = 𝑎𝑟𝑐𝑠𝑖𝑛 (√
cos2(𝛼) cos2(𝛿)

1−cos2(𝛼) sin2(𝛿)
).      (16) 

 

Finally, the particle kinetic energy of impingement 𝐸𝑘 can be separated into two 

components associated with normal and tangential velocities, respectively, according to 

Eq. 17: 
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𝐸𝑘 = 𝐸𝑘⊥ + 𝐸𝑘∥ =
𝑚𝑝𝑉𝑋

2

2
+ (

𝑚𝑝𝑉𝑌
2

2
+
𝑚𝑝𝑉𝑍

2

2
) =

𝑚𝑝‖𝑉𝑋𝑌𝑍‖
2

2
.   (17) 

 

Because the values of velocity are not known without further modelling, only the 

percentage of kinetic energy associated with tangential of normal velocity components 

can be determined.  These normalized normal and normalized tangential kinetic energies 

of impingement can be defined by Eqs. 18 and 19, respectively: 

 

𝐸̂𝑘⊥ =
𝐸𝑘⊥
𝐸𝑘

= (
𝑉𝑋

‖𝑉𝑋𝑌𝑍‖
)
2

= sin2(𝛼),      (18) 

𝐸̂𝑘∥ =
𝐸𝑘∥

𝐸𝑘
= (

𝑉𝑌

‖𝑉𝑋𝑌𝑍‖
)
2

+ (
𝑉𝑍

‖𝑉𝑋𝑌𝑍‖
)
2

= cos2(𝛼).    (19) 

 

4.7 Erosion models 

In this section are described the models’ parameters used for the back-calculated 

velocity procedure. 

 

4.7.1 Oka model 

The suggested constants and exponents in the predictive equation (Eq. 4) for 

copper and glass bead particles couple were adopted (Oka & Yoshida, 2005), namely 

K = 27, k1 = -0.16, k2 = 2.1, k3 = 0.19, n1 = 2.8∙Hw
0.41, n2 = 2.6∙Hw

-1.46, V’ = 100 m/s, 

and D’ = 200 µm. 
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4.7.2 Huang model 

In the lack of data for glass bead particles, the suggested constants for copper 

and silicon carbide (SiC) particles couple were adopted (Huang et al., 2008) in the 

predictive equation (Eq. 7), namely C = 5.5∙10-4 and D = 8.7∙10-2. 

 

4.7.3 Cheng model 

Cu-ETP properties listed in Table 3 are used in Eq. 9. 

 

4.7.4 Solving method procedure 

Given the experimental wear conditions, such as wear volume (Oka, Huang),  

indentation depth (Cheng), and impact angle, each non-linear equation is solved for the 

impact velocity through Brent’s method (Brent, 1974). Then, in order to focus more on 

the characteristics and trend of the body of the data (IQR), meaningless velocity outliers 

were removed using the Tukey definition (Chambers et al., 2018) rather than Generalized 

ESD test methodology. 
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5. RESULTS 

 

5.1 Individual and collective features 

An example of an individual feature of the surface morphology after the exposure 

is shown in Figure 14. The shape of the wear scar is elongated with observable lips formed 

along the longitudinal edges. This morphology is characteristic of the damage mechanism 

referred to as ploughing, which is typically found for shallow impact angles. Furthermore, 

zooming out of the previous wear scar reveals that the collective features of the impact 

angles describe random imprints of shallow impingement angles. In this region, the wear 

scars have a preferential orientation with low deviation from the nominal flow. 

 

   

 

Figure 14. Representative SEM micrographs of: a) individual and b) collective features of wear 

scars produced by particles of dp of 276 µm.  
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5.2 Local coordinates – Impact direction 

The distribution of impact direction determined for each particle size is displayed 

in Figure 15. It is observed that the particle size has no significant effect on the impact 

direction with respect to location. The overall location of the data set is centred on 0°, i.e. 

aligned with the tangential flow direction given by the shaft rotation. Furthermore, as the 

particle size increases, the overall spread (whiskers) weakly decreases; however, this 

variation between the categories does not display a global tendency because the smallest 

particle size (276 µm) displays a larger IQR and overall spread than the largest particle 

size (774 µm). 

 

 

 

Figure 15. Summary of impact direction distribution determined for each particle size. 
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Visually, the position of the median in the IQR box and its distance to the whiskers 

shows that the data set is reasonably symmetric, as seen in the probability density plot. In 

addition, regardless of the particle size, the outliers show that the particles can reach 

impact directions at angles as close as ±90°, although they are not the tendency. No impact 

direction gap between the data was found. 

 

5.3 Local coordinates – Impact angle 

The distribution of impact angle determined for each particle size is displayed in 

Figure 16. The particle size is found not to have a significant effect on the impact angle 

with respect to its variation. Each data set is centred at around 7°, i.e. most of the data is 

associated with shallow impact angles. As the particle size increases, the IQR (50% of the 

data) and the overall spread (whiskers) do not vary significantly. If the outliers identified 

by the Tukey definition are not considered, a cut-off impact angle can be established at 

~18-19° which represents the maximum particle impact angle observed in the 

experimental set-up as indicated by the upper whiskers in Fig. 16. 
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Figure 16. Summary of impact angle distributions determined for each particle size. 

Visually, the position of the median in the IQR box and its distance to the whiskers 

(considering the outliers) shows that the data set is slightly skewed in the positive direction 

(higher angles), as seen in the probability density plot. In addition, regardless of the 

particle size, the outliers show that the particles can reach impact angles at least at 30°, 

although there is no clear tendency. The impact angle gaps found between the data indicate 

that high impact angles are unusual in this experimental rig. 

 

5.4 Global coordinates – Inclination and azimuth angle 

Given the experimental impact direction and impact angle, the previous data could 

be shown from the point of view of the global coordinates. The inclination angle (θ) and 

azimuth angle (φ) distribution for each particle size range are displayed in Figure 17. 

 

a) b) 
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Figure 17. Summary of a) inclination angle (θ) and b) azimuth angle (φ) distributions 

determined for each particle size. 

As shown in Figure 15, the distribution of impact direction spans data between 

±90°; thus, a similar behaviour might be expected to be observed for the inclination angle 

(Figure 17a). Therefore, the analysis is virtually the same as for the case of impact angle 

distribution for a given location. Furthermore, in this case, the location of the data set is 

centred around 90°, i.e. most of the data is centred at a region close to the tangential flow 

direction given by the shaft rotation. 

As shown in Figure 16, most of the impact angles are shallow; thus, a similar 

tendency can be expected for the azimuth angle (Figure 17b). The analysis is then virtually 

the same as for the impact angle distribution for a given location. In this case, the location 

of the data set is centred around 82°, i.e. most of the data is centred at a region close to the 

tangential flow direction given by the shaft rotation. If the outliers are not considered, a 

cut-off azimuth angle can be established at ~71° as indicated by the lower whiskers in Fig. 

17b. The non-linear system of equations (Eqs. 13 and 14) indicates that azimuthal angles 
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as low as 45° (and even less) might be present; however, the azimuth angle gaps found 

between the data indicate that low azimuth angles are unusual in this experimental rig. 

 

5.5 Normalized kinetic energy 

The normalized normal kinetic energy distribution for each particle size is 

displayed in Figure 18. Since the two components of the normalized energy sum to 100%, 

the tangential component is not displayed. 

 

 

 

 

Figure 18. Summary of the normalized normal component of kinetic energy distribution 

determined for each particle size. 
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As it was shown in Figure 16, most of the impact angles are shallow; thus, a similar 

behaviour for the normalized normal kinetic energy can also be expected. It can be seen 

from a small-angle approximation point of view from the Eq. 18: 

 

sin(𝛼) ≈ 𝛼 → 𝐸̂⊥ = sin
2(𝛼) ≈ 𝛼2      (11) 

 

Therefore, the analysis is virtually the same as the impact angle distribution for the 

given location. Furthermore, the normal energy, which causes the indentation depth 

imprint and material loss, is centred on 2% of the total impact kinetic energy. If the outliers 

are not considered, it could be seen that the normal energy could reach up to 20% (and 

even more); however, the gaps found between the data indicate that these cases are unusual 

for the experimental rig. 

 

5.6 Wear rate by weight loss 

The erosion wear rate determined by weight loss for different particle size ranges 

is displayed in Figure 19. 

 

 

 

Figure 19. Wear rate determined by weight loss in function of particle size. The dash-dotted line 

is a visual guide only to connect the triangle markers. The error bars in the particle size 

correspond to the mesh size. Error bars in the wear rate correspond to experimental statistics. 
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Figure 19 shows that the particle size has a significant effect on the wear rate. Since 

the nominal Reynolds number does not vary significantly from the different particle size 

ranges, it is seen a threshold minimum particle size (or kinetic energy) required to produce 

measurable weight loss (balance precision 0.1 mg) at 450 µm mean particle size. 

 

5.7 Impact conditions for modelling  

The distribution of impact angle, indentation depth, and wear volume determined 

for each particle size, neglecting meaningless outliers using the Generalized ESD test 

methodology, is displayed in Fig. 20.  

 

 

 

Figure 20. Summary of distributions for different particle sizes: (a) impact angle, (b) indentation 

depth, and (c) wear volume. Red line connects the median of each distribution. 

 

Impact angle. The results are virtually the same as Fig. 16. The particle size does 

not show a significant effect on the impact angle with respect to the variation (~5.26° IQR 

box size) and overall location (~7.08°). The location of the data set indicates that most of 
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the data is centered at shallow impact angles. Furthermore, averaging the upper whisker 

data for the particle size ranges, it may be established a cut-off impact angle at ~18°, which 

roughly represents the maximum particle impact angle observed in the experimental set-

up as it is shown in the overall spread of the data, although as the particle size increases 

the impact angle outliers decrease. Visually, the probability density plot shows that the 

data set is reasonably positive skewed. 

Indentation depth. Particle size does not show a significant effect on the 

indentation depth with respect to variation (~0.34 µm IQR box size) and overall location 

(~0.58 µm), except for 276 µm particle size, which display slightly smaller values, 0.17 

and 0.25 µm in variation and location, respectively. Besides that, as the particle size 

increases, the overall spread (see upper whiskers) slightly increases, displaying a global 

tendency of the data. Visually, the probability density plot shows that the data set is 

slightly positively skewed. 

Wear volume. Particle size shows a significant effect on the wear volume with 

respect to variation and overall location. For instance, as the particle size increases, the 

variation increases from 16 to 103 µm3 for 276 and 774 µm dp, respectively. The overall 

location of the data is centered around 83 µm3, except for 276 µm dp, which displays a 

small wear volume (16 µm3). Besides that, as the particle size increases, the overall spread 

(see upper whiskers) increases, displaying a global tendency of the data. Visually, the 

probability density plot shows that the data set is reasonably positive skewed. 

 

5.8 Impact velocity 

The distribution of impact velocity and kinetic energy determined for each particle 

size, neglecting meaningless outliers using the Tukey definition, is displayed in Figure 21. 

The erosion model has a significant effect on the inverse analysis of the impact velocity. 

While the deconvoluted impact velocity is close to the nominal shaft speed (10 m/s) for 

Huang and Cheng erosion models, in the case of Oka model it is out of range. Besides 

that, as the particle size increases, the upper whiskers of the velocity data decreases for 

every model, and the opposite with kinetic energy, displaying a global tendency of the 
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data. Visually, the probability density plots show that the data set is reasonably positive 

skewed.  

 

 

 

Figure 21. Summary of impact velocity and kinetic energy distribution for different particle 

sizes: Oka (a,b), Huang (c,d), and Cheng (e,f) erosion models. Read line connects the median of 

each distribution. 
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5.9 Wear correlation 

The correlation matrix of the experimental variables is displayed in Figure 22 using 

the Spearman's rank correlation coefficient (Schober & Schwarte, 2018), which is useful 

when the data sets to be compared do not distribute Gaussian. The correlation between the 

impact angle and wear volume is weak (0.12), and the correlation between impact angle 

and indentation depth is moderate (0.69). Statistically, the impact angle is independent of 

the particle size (0.00). Lastly, as the particle size increases the indentation depth increases 

(0.24), and jointly with the indentation depth, the wear volume increases as well (0.40, 

0.46). 

 

 

 

Figure 22. Heatmap of the Spearman correlation matrix for experimental variables. 

  



44 

  

6. DISCUSSION 

 

6.1 Impact flow conditions 

The distributions of impact direction (Figure 15) and inclination angle (Figure 17a) 

are reasonably symmetrical, which means that sedimentation and gravity do not play a 

major role in the deviation of the particle from the nominal flow direction set by the 

rotating surface. This observation is consistent with the high value of Reynolds number. 

Further, a turbulent boundary layer of the Prandtl-von Kármán log law type is expected in 

the near-wall region, as it has been observed in the context of a fluid confined in a gap 

between two rotating cylinders, i.e. Taylor-Couette flow (Grossmann et al., 2016). Then, 

particles transported tangent to the surface must penetrate this region which involves the 

transfer of momentum of either eddy flows or turbulent fluctuations. Thus, the 

misorientation of wear scars must be associated with non-tangential impacts originating 

from the turbulence raising the question of whether the transfer of momentum from 

turbulence distributes Gaussian in this experimental rig. 

Regarding the distribution of a data set, the Kolmogorov-Smirnov test (KS), which 

is more sensitive near the centre of the distribution (Karson, 1968), and the Anderson-

Darling (AD) test, which is more sensitive to the tails of the distribution (Stephens, 1974), 

are used to decide if the null hypothesis that the data set comes from a Gaussian 

distribution could be accepted or rejected.   
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Table 9 shows the results for the impact direction distribution. At the significance 

level of 5% (α = 0.05), the critical values are about 0.04 and 0.77 for the KS and AD tests, 

respectively. Since the statistics are significantly higher than the critical values, the null 

hypothesis is rejected. 
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Table 9. Statistical tests for verifying the hypothesis of Gaussian distribution. Values determined 

by Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests. 

 

Particle size (µm) KS statistic AD statistic 
Gaussian 

hypothesis 

774 0.433 6.080 Rejected 

651 0.430 11.339 Rejected 

548 0.499 16.431 Rejected 

450 0.473 13.110 Rejected 

276 0.498 5.712 Rejected 

 

Consequently, the data does not comply with a Gaussian distribution (even if 

potential outliers are neglected by the Generalized Extreme Studentized Deviate Test 

methodology). In addition to the quantitative analysis, it can be inspected visually with 

the Gaussian probability plot, previously used for the evaluation of erosive weight 

distribution (Lindgren & Perolainen, 2014), as it is shown in Fig. 23. 

 

 

 

Figure 23. Example of a) Gaussian probability quantile-quantile plot (blue: data, red: Gaussian 

slope) and b) Point histogram plot (blue: data – bin size of 5°; red: Gaussian fit) for 548 µm dp. 
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 This result of impact direction distribution not originating from a random near-

wall may imply that the turbulent fluctuations themselves may not distribute Gaussian in 

the transfer of momentum to change the direction of the particles from the nominal 

tangential direction of flow. Such an effect has been already studied by several authors 

(Jiménez, 1998; Mouri, Takaoka, Hori, & Kawashima, 2002, 2003; M. Wilczek, Daitche, 

& Friedrich, 2011; Michael Wilczek, Vlaykov, & Lalescu, 2017), and, in the context of 

turbulent Taylor-Couette flow, it has been also observed (Teng, Liu, Lu, & Khomami, 

2015). For highly turbulent wall-bounded flows, the turbulent fluctuations of the fluid 

motion behave close to a randomly distributed Gaussian noise far from the walls (bulk or 

turbulent core). In the case of a slurry pot, this is the gap between the shaft and the 

container. However, the near-wall statistics show significant deviation from Gaussian 

noise behaviour, which can be explained by the shear effects of the tangential flow. This 

interpretation is consistent with our previous finding that, as the Reynolds number 

increased, the spread of the impact direction distribution evolved from a peak distribution 

(Dirac distribution) to a symmetrical spread  (Molina et al., 2019).  

 Additionally, a large Stokes number indicates that the particle’s trajectory is 

dominated by its inertia rather than the flow of the medium. Since the Stokes number for 

the largest particle is four times higher than for the smallest one, it could be expected that 

the spread of the impact direction should be narrow for the larger particle. However, this 

is not observed, since this shift on the spread would be more evident when comparing the 

result of a particle with small Stokes number (Stk < 0.1) with the one of a large Stokes 

number (Stk > 1), which is not the case in this study. 

On the other hand, the actual impact velocities of particles on an eroding target 

may differ significantly from the free stream velocity of the suspension due to the energy 

required to displace the liquid separating an approaching particle from the target surface, 

i.e. the squeeze film, as pointed out by Clark (H. Mc I. Clark, 1992). In other words, the 

increase of the drag force in the proximity of the target surface accounts for the energy 

loss expressed during the deceleration. However, there was evidence of particle impact 

for every particle size used in this study, indicating that particles of each size possessed 

enough kinetic energy to penetrate the squeeze film.  
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It is worthy to mention that an estimation of the impact direction distribution could 

be fitted with the purpose of further modelling or mechanistic explanation. For example, 

this could be done by performing the Kolmogorov-Smirnov test for all the families of 

distributions available in the Scipy library, choosing the best fitting by comparing with 

the maximum p-value and/or the minimum sum of the squared estimate of error (SSE).  

 

6.2 Particle impact conditions 

The distribution of the impact angle (Figure 16) and azimuth angle (Figure 17b) 

indicates that the turbulent fluctuations that determine the effective impact angle come 

from the normal axis to the plane (X direction) and incoming random near-wall eddies that 

succeed penetrating the viscous layer. As the tangential flow is the dominant orientation, 

it is expected that the distribution may not be symmetrical. In this sense, the data sets 

could be fit in the same way as explained for the impact direction (Section 6.1); however, 

in this case, the family of distribution must comply with the definition of a positive domain 

(α,φ > 0). 

On the other hand, the impact angle and velocity of particles impinging a target 

surface are known to determine the mechanisms of material removal. Whereas the normal 

velocity is mostly associated with the wear scar indentation depth, and the tangential 

velocity mostly explains the shape of the wear scar, as suggested by Bitter (1963). In our 

case, the major transfer of kinetic energy is given by the tangential component (98%) 

regardless of the particle size. Therefore, the wear rate data in Figure 19 can mostly be 

explained by the tangential component of the kinetic energy. This observation may raise 

the question of whether the experimental set-ups used in slurry erosion, such as pot tester 

and jet erosion tester (the most used ones (More, Bhatt, & Menghani, 2017)) may have a 

roughly controlled and evaluated dispersion of particles’ impact direction and impact 

angle on the target surface. For example, in the case of observing that an experimental rig 

would not show a high probability of normal impacts known to induce fracture or crack 

propagation in brittle materials, these wear mechanisms could not be studied in that 
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experimental set-up. The above is our case because most of the impacts are shallow and 

the energy is transferred tangentially. 

Finally, a possible correlation between the experimental impact direction and 

impact angle, i.e. a degree to which both variables are dependent upon each other, is 

examined. This could be evaluated by means of the Spearman's rank correlation 

coefficient (Schober & Schwarte, 2018), which is useful when the data sets to be compared 

do not distribute Gaussian. The results are summarized in Table 10.  

 

Table 10. Spearman's rank correlation coefficient between impact direction and impact angle at 

different particle sizes. 

 

Particle size (µm) Correlation coefficient Interpretation 

774 0.24 Weak 

651 0.12 Weak 

548 0.09 Negligible 

450 0.15 Weak 

276 0.17 Weak 

 

The correlation coefficients in Table 10 are all positive but significantly lower than 1, 

which would be indicative of a perfect monotone correlation. Therefore, neither moderate 

nor strong correlation was found in the experiment and the two variables can be considered 

independent of each other, which are also presented visually in Figure 24. This result is 

relevant for wear studies because it means that no direct or indirect information on the 

impact angle can be retrieved from 2D images (e.g., SEM) because it only contains 

information on the impact direction distribution in the ZY plane. Consequently, 3D 

profilometry data is indispensable for acquiring detailed information about the local 

impact conditions. 

 



50 

  

 

 

Figure 24. Example of correlation between impact direction and impact angle 

determined for the particle size of 276 µm. 

 

6.3 Implications for wear analysis 

Firstly, both the angle distributions (Figure 16 and 17) and the normalized kinetic 

energy (Figure 18) reveal that most of the kinetic energy (98%) is transferred by the 

tangential component of the impact velocity at shallow impact angles (α ~8°) with a 

preferential impact direction given by the flow conditions (δ ~90°). Consequently, the 

wear data obtained by weight loss (Figure 19) correspond to specific and identified impact 

conditions and not the unknown conditions typically associated with this type of erosion 

pot. Further, the cut-off angle in the range of ~18-20° is in the typical region of the 

maximum wear rate for ductile materials (which is the case of Cu-ETP used here), which 

means that, in this slurry pot system, the wear rate is limited to a narrow region of impact 

angles that can be characterized with confidence. 

Secondly, the dominant wear mechanisms expected in this experimental rig are 

ploughing for spherical particles and cutting for angular particles (see Section 5.1). 

Considering that at the shallow impact angles, the influence of particle rotation becomes 
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relevant (Ben-Ami & Levy, 2016; Deng, Bingley, & Bradley, 2004); the effect particle’s 

back-spin and/or top-spin should be taken into account as a possible source of modified 

wear scar morphology. However, dedicated research is needed to collect the necessary 

wear scar data, which is beyond the scope of this work. 

Lastly, in our experimental set-up, the particle size dependence on the wear rate is 

about ~dp
5. The value of the exponent is higher than that reported by other authors (0.2-

4.0) (Javaheri et al., 2018). Although this range was found for other configurations of the 

erosion test, only one being a slurry pot (Desale, Gandhi, & Jain, 2011), our finding shows 

that the exponent is sensitive to the local impact conditions determined by the 

experimental rig and procedure. In particular, the wear rate is expected to be proportional 

to the kinetic energy conveyed by the particles (Bitter, 1963; Hector McI. Clark & Wong, 

1995; Finnie, 1960a; Uzi & Levy, 2018), and thus, an explicit relationship of dp
3 should 

be expected for spherical particles. Therefore, the parametric factor of ~dp
2 should be the 

exclusive addition of our particular experimental rig, because there is no imminent 

physical meaning to it more than the slurry concentration (~dp
3) or particle cross-sectional 

area (dp
2). At the current state of the art, however, it is not fully clarified how these factors 

should be considered in the wear loss account on a theoretical basis. Furthermore, the 

threshold minimum particle size below which minimal erosion is produced was found to 

be around 450 µm, but no critical particle diameter was found above which any increment 

of erosion follows. Both these critical values have been reported and discussed by several 

authors (Uzi & Levy, 2019). Once again, the particularities of local impact conditions 

determined by the experimental rig may affect the conclusions on the effect of variables 

such as particle size. 

 

6.4 Feasibility of the diagnostic tool 

The surface topography patterns associated with wear scars were quantified by 

means of image analysis of 3D profilometry data in terms of the experimental impact 

direction and impact angle. The curved shape of the samples was successfully removed 
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by the algorithm implemented in TalyMap Platinum v. 6.2.7487 avoiding typical artefacts 

(unusual peaks, valleys, elongated/constrained scars, etc.). 

The method has been shown to be robust for the identification of individual 

features (wear scars) even in the presence of highly plastic deformation (lips, ploughing) 

or debris. The material used in this study, Cu-ETP, is a soft material, for that reason, the 

first stage of the wear scar imprints is easier to be studied. However, a hard material would 

show a high degree of fracture and crack propagation in the impact zones (Y. F. Wang & 

Yang, 2008), which is a further direction of extending the characterization methodology 

presented here. Another point to consider is the slurry concentration. In the dilute slurry, 

there is a lesser probability of overlapping of the impingement features; thus, a 

concentrated slurry would shorten the time needed for steady-state and a higher degree of 

surface topography distortion would be found (Xie, Clark, & Hawthorne, 1999). For these 

reasons, an even more difficult and robust algorithm should be defined and implemented. 

Notwithstanding, it is worth mentioning that, if the standard deviation of the 

Gaussian filter (SDGF) in the canny edge detection is decreased, more features are 

available for the algorithm to be detected. These additional features may correspond to 

local lips, ploughing, or debris rather than further wear scars. This issue could be dealt 

with a built-in threshold minimum wear scar size (TMWSS), adjusting this value 

according to the dimensions of the image (or 3D profilometry data) and user requirements. 

In summary, two fine-tuning parameters could be set in the algorithm: SDGF and 

TMWSS. The effect is illustrated in Figure 25. 

 



53 

  

 

 

Figure 25. Wear scar detection of scar pattern produced by the particle size of 774 µm. White 

boxes enclose the identified wear scars. Detected features are shown in a matrix of four 

combinations of threshold parameters: SDFG (σ = 3 or 2) and TMWSS (9 × 9 or 5 × 5). 

 

Further improvements to the algorithm might consider removing detected wear 

scars that display positive depth indentation and/or negative volume, i.e. features that are 

out of the deformation plane. Also, the data of individual wear scars extracted with the 

implemented image processing might be used as an input library for alternative 

implementations of wear scar recognition using artificial intelligence, similar to that 

proposed by Peng and Wang (Peng & Wang, 2019) for the recognition of wear particles 

using a convolutional neural network (CNN) algorithm. In conclusion, there are various 
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opportunities for improving the method proposed here for extracting information on 

erosive wear.  

 

6.5 Dimensions of individual erosion wear scars 

The impact angle distributions (Figure 20a) disclose that most of the impacts are 

shallow (<25°) regardless of the particle size. It means that most of the particle kinetic 

energy shown in Figure 21 is transferred by the tangential component of the impact 

velocity depicted in a friction force, which responsible for the shape of the wear scar rather 

than its indentation depth. Consequently, the indentation depth distributions (Figure 20b) 

are expected to display very small imprints (h/dp < 0.3), facing the challenge of an 

appropriate calculation of the wear volume. For instance, for the collision of the smaller 

particle size (276 µm), the median of the height and wear volume is 0.25 µm and 16 µm3, 

respectively. Considering the glass bead as a perfect sphere, the crater size, which 

geometrically corresponds to the base of the spherical cap or dome, would be ~12 µm 

without considering the crater length that should be higher than 12 µm due to the shallow 

impact angles found. Then, being the lateral sampling resolution of 0.8 µm, in this zone, 

there are 15x15 profilometry measurements. Thus, these wear scars imprints are possible 

to acquire despite the small ratio indentation depth and particle size. 

Although the particle size has no significant effect on the location of the impact 

angle and indentation depth (except for 276 µm), the impact kinetic energy does depend 

strongly on the particle size due to its mass dependence. Additionally, as the particle size 

increases, also the chances of a bigger crater size. This would explain why the wear 

volume distribution (Figure 20c) displays a global tendency with respect to variation and 

overall spread as the particle size varies, which is not seen in the impact angle and 

indentation depth. However, the interpretation could differ according to how the data is 

displayed in wear, as it has been pointed out in the literature (Valtonen, Ojala, Haiko, & 

Kuokkala, 2019). For instance, it is common in the literature the normalization by particle 

mass of the results, which is no other thing that normalization by dp
3. In Fig. 26b it could 

be seen that 1 kg of erodent could produce the same wear damage in the range 276–450 



55 

  

and 548–651 µm, which indicates that kinetic energy would play an undefined role. In 

addition, Fig. 26a shows a nonsense scenario because the normalization is not suitable for 

the slurry pot system. Thus, the normalization could play a role, but it should be done 

carefully. 

 

 

 

Figure 26. Wear damage normalized by erodent mass: (a) Indentation depth, (b) Wear volume. 

 

6.6 Erosion models 

The inverse analysis of the impact velocity for each wear scar was done by means 

of three models: Oka, Huang, and Cheng. 

Regarding the wear variable used for the inverse analysis of the impact velocity, 

even though Huang and Cheng models rely on the measurement of the wear volume and 

indentation depth, respectively, which are very small for a single wear scar at 276 µm dp, 

small measured values did not affect the inverse analysis with meaningless results. 

However, Oka model resulted in nonsense impact velocities (Figure 20), and even though 

this model has reported the best overall predictive performance in several configurations 
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(Messa et al., 2019; Pereira et al., 2014; Zheng et al., 2019), if the purpose is to 

deconvolute the local impact velocity of a single imprint, this model fails by 

overestimating the result. This drawback may be explained by the reference speed of 100 

m/s used to set up the experimental constants, which may be too far from the nominal 

shaft speed of 10 m/s used in this experiment. 

On the other hand, Huang model coefficients have been retrieved from 

experiments which involve collective and successive particle impacts on the target 

surface, therefore, it includes mechanisms such as the removal of plastic damage in the 

surroundings of the wear scars (plastic deformation out of plane, due to ploughing or 

cutting) or shield effect by particle-particle interactions (Messa & Malavasi, 2018) that 

are not considered in a single impact model. Conversely, Cheng model is derived from a 

theoretical formulation of a single impact, which does not consider the aforementioned 

phenomena. Besides that, being Huang an empirical formulation and Cheng a theoretical 

one, both have surprisingly very similar results and trends, and they are closer to the 

nominal shaft speed than Oka model; even though Huang coefficients have been 

calculated for SiC particles and not glass beads. It should be kept in mind that this result 

holds for dilute slurry, where no particle-particle interaction is present, which is especially 

important for Cheng model. 

Regarding the range of the velocity distributions, it might be explained by the 

turbulent fluctuations in the context of a fluid confined in the gap between two rotating 

cylinders, i.e., Taylor-Couette flow. Measurements in the turbulent regime display 

fluctuations up to ~4% of the shaft speed (Grossmann, Lohse, & Sun, 2014). If this is the 

case, flow velocity close to the wall should be in the range of 9.6 – 10.4 m/s, but if the 

relative particle velocity at the moment of impact should be less than the nominal linear 

velocity, the three models are depicting values above this range. Additionally, another 

explanation of this bigger spread of the data could be related to the four baffles mounted 

at 90° and the pivot bearing at the bottom of the slurry container. However, once again, 

turbulent fluctuations up to 100%, which is seen for Huang and Cheng models (i.e. 20 

m/s) are physically unfeasible, although Cheng displays most of its data in the possible 

range in comparison to Huang. 
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Lastly, impact kinetic energy derived from Oka and Huang models show a constant 

trend (median, IQR, upper whiskers) in the range of 450–651 µm dp, which is the same 

that happens with the wear volume distributions that these models used. On the other hand, 

Cheng model displays a positive trend in this range as the particle size increases, which 

does not take place with the indentation depth distribution, being less clear the trend in 

this range, especially for 548 µm dp. Thus, it is not clear from the data if the impact energy 

in this range remained the same in the real conditions because the interpretation of its 

estimation would depend on the variable used for the inverse analysis. Nevertheless, the 

global tendency would point to positive a positive trend, having Cheng the best outcome 

on this issue. 

Thus, the above results suggest that the theoretical elastic-plastic model of Cheng 

provides a better fitting than empirical models for the deconvolution of the statistical 

impact conditions without involving experimental coefficients. Moreover, one of the 

strengths of the theoretical models is that the mechanical properties of the target material 

required as input, such as its density, yield strength, and Young’s modulus, are generally 

known. Much effort is required to deepen into the physical mechanisms of particle flow 

and impact erosion in order to increase the reliability of the models, especially the 

empirical ones. 

In the meantime, this work shows that central tendency values (median or mean) 

of the theoretical model are representative of the impact conditions, however, values far 

from the central tendency should be considered carefully if not avoided for an inverse 

analysis interpretation of an eroded sample. Moreover, combining the particle velocity 

with the impact angle (and directionality, Fig. 15), the three spatial components of the 

velocity vector could be retrieved, recreating each particle collision with the target surface 

without prior information. 

 

6.7 Wear correlation: Feasibility of the inverse analysis 

If any inverse analysis is to be done for individual wear scars, the assumptions of 

the models should be tested. Since several authors have published the dependence of wear 
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and impact angle from experiments that involved collective and successive impacts 

(Javaheri et al., 2018), it may be interesting to figure out if the correlation still holds for 

the case of individual wear scars (Fig. 14).  

First of all, according to Fig. 22, the correlation between impact angle and wear 

volume is weak, which means that these variables do not display any nonlinear monotonic 

trend as it has been reported in the literature (typically a sine, cosine, or polynomial 

correlation) (Javaheri et al., 2018). Surprisingly, the Huang model, which depends on the 

nonlinear trend assumption (sine-cosine correlation, see equation (4)), manages to get very 

good results despite the absence of an experimental trend. Nevertheless, the bigger 

correlation between impact angle and indentation depth would support the use of the 

Cheng model. 

Thus, to elaborate more on the relationship between the impact angle and wear 

volume, in Figure 27 it is shown the widespread normalization by particle mass and impact 

kinetic energy: 

 

 

 

Figure 27. Scatter plot of wear volume per: a) erodent mass and b) impact kinetic 

energy of erodent (estimated from Cheng model, Fig. 6). Linear regression only was shown to 

visually guide the correlation between the variables. 
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As it is seen in Figure 27, the correlation between impact angle and wear volume 

per unit of erodent mass is negligible (0.08), although this correlation has been reported 

as strong in previous works from collective and successive impacts (Javaheri et al., 2018). 

This difference might not be related to the impact velocity, since this relationship has been 

investigated in a wide range of velocities, 14–104 m/s, according to the data gathered by 

Uzi and Levy (2018). Moreover, some facts should be kept in mind: in this case, the 

erosion rate and impact angle are calculated for each wear scar, but in other studies, the 

erosion rate is measured as a whole, i.e., the weight loss of the sample after the test, and 

the impact angle is fixed beforehand. To the best of our knowledge, this is the first 

experimental study that addresses the individual account for the elaboration on the impact 

angle dependence, particularly at angles less than 10°. Thus, much collaborative effort is 

required to delve deeper into this. 

On the other hand, the correlation between impact angle and wear volume per 

impact kinetic energy is moderate (0.40), which indicates that this is a better indicator of 

the wear rate curve from the individual impact point of view. This result is aligned to the 

work of Bitter or Finnie (Finnie, 1960b), i.e., when the ‘deformation’ erosion is neglected 

at small angles, the ‘cutting’ erosion is described by a monotone relationship (sine-cosine) 

of the wear volume per impact energy and the impact angle. Although this correlation 

coefficient might vary if the particle size distribution is considered, the change should be 

slightly due to the narrow mesh range used in this study.  
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7. CONCLUSIONS 

The image processing procedure employed to 3D profilometry data of wear 

scars produced on copper in highly turbulent dilute slurry is concluded to be 

applicable for meaningful identification of the global flow conditions and the local 

particle impact conditions, both deduced from the worn surfaces. In particular, it 

is found that the statistical distribution of impact direction is not Gaussian, which 

is explained by the shear effects on the near-wall turbulent fluctuation. The 

distribution of impact angle is found positively skewed towards shallow 

impingements and most of the kinetic energy conveyed per particle was found 

dissipated in the tangential direction, which is associated with ploughing as the 

mechanism of material removal, with a particle size dependence of the wear rate 

of about ~dp
5. 

This preliminary work provides a potential tool for the understanding of 

the erosion damage by means of an inverse analysis of worn surfaces. The 

information about the flow regime and impact conditions can be deduced with no 

prior knowledge of the erosive flow set-up. In fact, the inverse analysis procedure 

employed to 3D profilometry data is concluded to be applicable for meaningful 

identification of central tendency values of the collective impact conditions. 

Both experimental and theoretical models can retrieve reasonable particle 

impact velocities; however, the predictions of empirical models developed for 

other set-ups may result in discrepancy, as it is the case of Oka (overestimated) 

and Huang (closer to nominal conditions). The simple theoretical elastic-plastic 

model of Cheng provided the closest results to the nominal flow conditions. Thus, 

this work provides an inverse analysis framework for the determination of the 

particle impact conditions on erosion damage. Combining experimental 

observations with modeling of individual impacts allows extracting complete 

information of the three spatial components of the velocity vector of each particle 

colliding the target surface. Notwithstanding, further work into the role of the 

experimental and theoretical models in the inverse analysis of the impact velocity 

is necessary for generalizing these findings. 



61 

  

Further, unlike the previous work in collective and successive impacts, the 

correlation between wear volume and impact angle could not have been shown in 

the statistical analysis of individual features, not even when normalizing per 

erodent mass. However, the wear volume per impact kinetic energy does show a 

non-negligible correlation with the impact angle.  

Lastly, from the discussion conducted in this research it follows that for 

drawing further conclusions on the impact conditions for individual and collective 

features, future work should be focused on robust image detection and 

complementary experiments. Moreover, computational fluid dynamics of the test 

runs can be contrasted with the data shown in this work. Likewise, numerical 

analysis of the deformation may show the energy scale and wear scar shape for 

each impact. Thus, the extended analysis is necessary to verify the robustness of 

the method to bridge the scales of local impact conditions in a turbulent flow with 

the global erosive wear. 
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APPENDIX A: SAMPLE MACHINING 

 

The parameters recommended for machining copper are shown in Table 11: 

 

Table 11. Machining parameters for Cu-ETP recommended by ASM/DKI. 

 

Operation Parameters 

Cutting tool 

HSS Carbide 

min max min Max 

 

Turning 

Cutting speed (rpm) 488 976 1952 3225 

Cutting feed (mm/rev) 2 8 2 8 

Expected chip thickness, at given cutting speed (mm) 0.63 0.10 0.80 0.10 

 

Drilling 

Cutting speed (rpm) 488 976 1952 3225 

Cutting feed (mm/rev) Drill diameter (mm) 
5 - 8 0.16 0.25 0.12 0.18 

8 - 12 0.25 0.32 0.18 0.23 

 

Reaming 
Cutting speed (rpm) 170 573 170 573 

Cutting feed (mm/rev) 0.23 0.61 0.23 0.61 
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APPENDIX B: PARTICLE MORPHOLOGY 

 

The shape and size of the erodent particles as seen under scanning electron 

microscope (SEM) are shown in Fig. 28 for the different particle size ranges. 

 

 

 

Figure 28. Representative SEM appearance of the erodent. Glass beads sieved by the mesh 

sizes: a) 20-25, b) 25-30, c) 30-35, d) 34-40, and e) 50-60. 
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APPENDIX C: CORROSION BY-PRODUCTS 

 

Figure S2 shows the surface of copper after exposure equivalent to that described 

in the experimental procedure, but without the erodent. This experiment was conducted to 

verify the presence of corrosion by products. In Figure 29a, after 1 h of exposure, there 

was no presence of uniform corrosion in the Cu-ETP surface. The white spots correspond 

to minerals present in the distilled water (calcium, magnesium) as verified by EDX. Only 

in some places were a few local oxide layers were found on the surface (example in Fig. 

29b), but it was a local trend rather than general. 

 

 

 

Figure 29. Example of SEM surface conditions after 1 h of exposure in distilled water. Nominal 

speed at the shaft surface 10 m/s. General appearance at magnification 400 (a) and example of 

local appearance at magnification 4,000 (b). 


