Lack of correlation between cholinergic-induced changes in chemosensory activity and dopamine release from the cat carotid body in vitro

Rodrigo Iturriaga, Julio Alcayaga, Patricio Zapata

Abstract

We studied the effects of nicotine, acetylcholine (ACh) and dopamine (DA) on the frequency of chemosensory discharges (f_x) and catecholamine (CA) efflux in the cat carotid body superfused in vitro. CA efflux was measured by changes in CA concentration (ΔCA) determined by chronoamperometry with nafionated carbon-fiber microelectrodes inserted in the carotid body, while f_x was recorded simultaneously from the carotid (sinus) nerve. Nicotine (10–20 μg) and ACh (>100 μg) increased f_x in all carotid bodies ($n=16$), but produced a delayed ΔCA (~0.65 μM) in only half of them. Eserine potentiated ACh-evoked increases in f_x and CA effluxes. Nicotine and ACh-induced ΔCA were rapidly reduced upon repeated administration. While f_x increases evoked by low doses of nicotine or ACh were reduced or abolished by prior administration of exogenous DA (>100 μg), CA effluxes were enhanced and hastened. Thus, cholinergic-induced changes in f_x are dissociated from CA efflux.