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Thesis advisor
Prof. HECTOR PASTEN VASQUEZ

ASSESSMENT COMMITTEE:
Prof. RICARDO MENARES VALENCIA

Prof. FABIEN MEHDI PAZUKI

March, 2023
Santiago Chile



Acknowledgements

First of all, I would like to express my sincere gratitude to my advisor Hector Pasten. His
office was always open whenever I needed advice and guidance in solving all the problems
that arose while writing this thesis. Thanks for your guidance as a mathematician and as a
person.

I am very grateful for financial support from ANID (ex CONICYT) Doctorado Nacional
2019, 21190304.

In my whole career, I have had excellent Professors, Prof. Natalia Garcia, Prof. Ricardo
Menares, and Prof. Guillermo Mantilla-Soler. All of them have helped me and have been an
inspiration to me.

I would also like to thank my friends and classmates: Matias Alvarado, Nicolas Arevalo,
Jaime Gomez, David Jaramillo, Patricio Perez, and Danilo Polo who gave me support in
many opportunities when I wanted to put aside mathematics for personal problems.

I must express my profound gratitude to my mother, my brother, and Teresa Jimenez for
providing me with unfailing support and continuous encouragement throughout my years of
study and through the process of creating this thesis. This accomplishment would not have
been possible without them.

Finally, I heartily thank the assessment committee for carefully reading this thesis and
for several useful comments on an earlier version of it. Thank you.

1



Abstract

Our results are divided into two main parts, both related to a conjecture by Watkins. In 2002,
Watkins conjectured that the rank of an elliptic curve defined over Q is at most the 2-adic
valuation of its modular degree.

The first part is related to presenting some approaches to Watkins’s conjecture in its
original version. We prove this conjecture for semistable elliptic curves having exactly one
rational point of order 2, provided that they have an odd number of primes of non-split
multiplicative reduction or no primes of split multiplicative reduction. In addition, we
show that this conjecture is satisfied when E is any quadratic twist of an elliptic curve with
non-trivial rational 2-torsion and prime power conductor, in particular, for the congruent
number elliptic curves.

In the second part, we consider the analogous problem over function fields of positive
characteristic, and we prove it in several cases. More precisely, every modular semistable
elliptic curve over Fq(T ) after extending constant scalars and every quadratic twist of a
modular elliptic curve over Fq(T ) by a polynomial with sufficiently many prime factors
satisfy this version of Watkins’s conjecture. Additionally, we prove the analogue of Watkins’s
conjecture for a well-known family of elliptic curves with unbounded rank due to Ulmer.

In addition, we include a final appendix describing joint work with Hector Pasten [16]
on a generalization of the Chabauty-Coleman bound for surfaces. While this is not directly
related to the core of the thesis, it is a report on work that was performed during my time as
a Ph.D. student.
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Chapter 1

Introduction

1.1 Introduction to Watkins’s conjecture

Let E be an elliptic curve defined over Q. The modularity theorem [12, 85, 92] ensures
the existence of a non-constant morphism φ : X0(N)→ E defined over Q. Denote by φE
the morphism, up to sign, which has minimal degree and which sends the cusp i∞ to the
neutral point of E. The modular degree mE of E is the degree of φE . This number is linked
to important arithmetic questions such as the abc conjecture [39, 64] and congruences of
modular forms [2, 20, 94]. In 2002 Watkins conjectured:

Conjecture 1.1.1 (Watkins [91]). We have that 2r(E) divides mE , where r(E) = rankE(Q).

For instance, the elliptic curve given by the equation E : y2 = x3 − x+ 1 has Mordell-
Weil rank r(E) = 1 and modular degree mE = 6. As of today, the problem remains open.
In this thesis, we proved several cases of this conjecture and we investigated a function field
analogue.

1.2 Statement of Principal Results

The main strategy to prove that an elliptic curve E satisfies Watkins’s conjecture is to give
an upper bound RE for r(E), a lower bound ME for ν2(mE) and then show that RE ≤ME .
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1.2.1 Different approaches to Watkins’s Conjecture

Semistable elliptic curves

In joint work with Pasten [17] we prove Watkins’s conjecture for a large family of semistable
elliptic curves:

Theorem 1.2.1. Let E be a semistable elliptic curve over Q with E(Q)[2] ' Z/2Z. If the
number of primes of non-split multiplicative reduction for E is odd, or if there is no prime
of split multiplicative reduction, then Watkins’s conjecture holds for E.

The proof of this theorem has two main ingredients: Firstly, results of Dummingan and
Krishnamoorthy [31] provide suitable lower bounds for the 2-adic valuation of the modular
degree. Secondly, with Pasten we prove a descent upper bound for the rank, which is of
independent interest.

Proposition 1.2.2 (Rank bound). Let E be an elliptic curve defined over Q with E(Q)[2] 6=
(0). Let α and µ be the number of primes of additive and multiplicative reduction of E,
respectively. Then

r(E) ≤ 2α + µ− 1.

These bounds, unfortunately, do not match and a further ingredient is necessary: results
of Monsky that prove cases of the parity conjecture under a finiteness assumption on
Shafarevich-Tate groups. To get an unconditional result, part of the problem is to control
these Shafarevich-Tate groups.

Quadratic Twists

In 2021, Esparza-Lozano and Pasten in [34] proved that if E is an elliptic curve defined
over Q of conductor N (minimal conductor among all its quadratic twists) with non-trivial
rational 2-torsion, then its quadratic twist E(D) by a quadratic fundamental discriminant D
satisfies Watkins’s conjecture, whenever the number of the distinct prime divisors of D is
big enough. We specialize this process in elliptic curves with prime power conductor, and
we obtain that Watkins’s conjecture holds unconditionally for E(D) [15].

Theorem 1.2.3. Let E be an elliptic curve with non-trivial rational 2-torsion. Assume that
E is a quadratic twist of an elliptic curve with prime power conductor. Then E satisfies
Watkins’s conjecture.

To prove this Theorem, we listed the elliptic curves with prime power conductor, up to
quadratic twist, and non-trivial rational 2-torsion. Then, we obtained an upper bound for
ν2(mE) by computing the Manin constant cE and the minimal discriminant of the quadratic
twists ∆E(D) , and giving an upper bound for the 2-adic valuation of the norm of fE (the
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associated newform toE) via the Petterson inner product. The upper bound must be carefully
computed to match the lower bound given by Proposition 1.2.2.

Quartic Twists

Since the elliptic curve y2 = x3 − x has Complex Multiplication by Z[i] one can do quartic
twists on it. However, the method we use to prove Theorem 1.2.3 seems not useful for
quartic twists, since one is led to find a lower bound of the 2-adic valuation of an infinite
product. The congruence number δE of E is the largest integer such that there is a modular
form g =

∑∞
n=1 bnq

n ∈ S2(Γ0(N)) such that g and fE =
∑∞

n=1 anq
n are orthogonal with

respect to the Petersson inner product, and an ≡ bn (mod δE) for all n. It is known that
mE | δE , and it is conjectured in [2] that ν2(δE/mE) ≤ 1

2
ν2(N). In view of this conjecture,

it is useful to find an alternative method that provides a lower bound of ν2(δE) [15].

Theorem 1.2.4. Let d be an odd square-free integer and D any divisor of d. For the elliptic
curve E(D) : y2 = x3 − dD2x we have that

2

⌊
ω(d) + 1

2

⌋
+ 1 ≤ ν2(δE),

where ω(d) is the number of distinct prime divisors of d.

1.2.2 Watkins’s conjecture for elliptic curves over function fields

Let k be a finite field of characteristic p > 3, write A = k[T ] for the polynomial ring, and let
K = k(T ) be its fraction field. Let∞ denote the place ofK attached to 1/T . LetE be a non-
isotrivial (the j-invariant is not in k) elliptic curve defined overK. Under the assumption that
E has split multiplicative reduction at∞, there is an analogue to the Modularity Theorem
(cf. Theorem 2.2.13). Namely, if E is non-isotrivial, has split multiplicative reduction at∞,
and conductor ideal n, there is a non-constant map φE : X0(n) → E, where X0(n) is the
corresponding Drinfeld modular curve. Thus, from now on we say that E is modular if it is
non-isotrivial and has split multiplicative reduction at∞. Given a modular elliptic curve E
over K, we say that it satisfies Watkins’s conjecture if rank(E(K)) ≤ ν2(mE), where mE

is the minimal degree of a modular parametrization φE : X0(n)→ E.

The strategy that we will use in this section is the same as the previous section: giving an
upper bound for the Mordell-Weil-Rank, giving a lower bound for ν2(mE), and comparing
them. Nevertheless, in the case of elliptic curves over function fields of positive characteristic,
there are other kinds of bounds for rank(E(K)).

We prove a potential version of Watkins’s conjecture [14], using Atkin-Lehner invo-
lutions, for semistable elliptic curves over K (see [31] and [17] for other applications of
Atkin-Lehner involutions in the context of Watkins’s conjecture).
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Theorem 1.2.5. Let E be a modular semistable elliptic curve defined overK with conductor
nE = (n)∞. Let k′ be a finite field containing the splitting field of n over k, then Watkins’s
conjecture holds for E ′ = E ×SpecK SpecK ′, where K ′ := k′(T ).

On the other hand, it is not known whether the Mordell-Weil rank of elliptic curves over
Q is unbounded or not. Over K we know that the rank is unbounded thanks to the work of
Shafarevitch and Tate [84] in the isotrivial case, and to Ulmer [86] and Griffon [45] in the
non-isotrivial case. The next result [14] proves Watkins’s conjecture for one of the families
given by Ulmer, thus, we prove this conjecture for elliptic curves over K with arbitrarily
large rank.

Theorem 1.2.6. Let p be a prime and n be a positive integer, such that 6 | pn + 1. The
elliptic curve

E : y2 + T dxy = x3 − 1,

where d = (pn + 1)/6 defined over Fq(T ), satisfies Watkins’s conjecture.

Using the results of Papikian [67] on L(Sym2 f, 2) over function fields, when f is an
automorphic cusp forms (for a definition see Subsection 2.1.2), we can prove an analogue
[14] to the results of [34]. In the following, we write ωK(g) for the number of distinct
irreducible factors of a polynomial g in A.

Theorem 1.2.7. Let E be an elliptic curve over K with minimal conductor among its
quadratic twists. Let its conductor be n∞ = (n2

1n2)∞, where n1, n2 are square-free coprime
polynomials. Assume that E has non-trivial K-rational 2-torsion. Let g be a monic square-
free polynomial of even degree such that gcd(n1, g) = 1, and ωK(g) ≥ 2ωK(n)− ν2(mE).
Then Watkins’s conjecture holds for E(g).

The condition that g has even degree is necessary to guarantee that E(g) is modular. If
we put some conditions on E (analogue to Theorem 1.2.1), we can prove [14] that Watkins’s
conjecture holds for every quadratic twist:

Corollary 1.2.8. Assume that E is a semistable modular elliptic curve over K. Then, we
have that E(g) satisfies Watkins’s conjecture whenever ωK(g) ≥ 3. Furthermore, if every
prime dividing n has non-split multiplicative reduction and E(K)[2] ∼= Z/2Z, then E(g)

satisfies Watkins’s conjecture for every square-free polynomial g ∈ A of even degree.
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1.3 Overview of Chapters

A brief outline of the contents of each chapter is as follows.

In chapter 2, we present the preliminaries of the Drinfeld setting to state the Modularity
theorem for elliptic curves over function fields of positive characteristic. Furthermore, we
show a joint work with Hector Pasten about an upper bound of the Mordell-Weil rank for
elliptic curves over Q and we present the classification of elliptic curves with prime power
conductor given by Mulholland [63].

Chapter 3 is a compendium of some approaches to Watkins’s conjecture. This chapter
is divided into three main sections: the first one where we prove that every quadratic twist
of an elliptic curve with non-trial rational 2-torsion and prime power conductor satisfies
the conjecture of Watkins. In the second section, we give a lower bound for the 2-adic
valuation of the congruence number for quartic twists of E : y2 = x3−x. In the last section,
we present a joint work with Hector Pasten where we prove that semistable elliptic curves
satisfy Watkins’s conjecture, under some conditions in their reduction.

In chapter 4, we state and prove several cases of a potential analogue of Watkins’s
conjecture for elliptic curves over Fq(T ). This chapter is divided into two sections. The first
section is about some results for semistable elliptic curves. In particular, we prove that a
family of elliptic curves with unbound rank satisfies this conjecture. In section 2, we show
that Watkins’s conjecture holds for quadratic twists under some geometric conditions.

Finally, in appendix A, we report on joint work with Hector Pasten on generalizing the
classical method of Chabauty and Coleman from the case of curves to surfaces in abelian
varieties. We will simply state the results and describe the techniques; for detailed proofs
see [16].



Chapter 2

Preparatory Results

2.1 Drinfeld Setting

This section aims to define the associated invariants to state an analogue of Watkins’s
conjecture for function fields of positive characteristic. Let A be the polynomial ring Fq[T ],
where Fq denotes the finite field with q elements, and let K be its field of fractions. Write
K∞ for the completion of K at T−1, and let O∞ be its ring of integers. Let C∞ denote the
completion of an algebraic closure of K∞.

2.1.1 Drinfeld Modular Curves

We denote by Ω the Drinfeld upper half plane C∞ −K∞. Notice that GL(2, K∞) acts on Ω
by fractional linear transformations. In particular, so does the Hecke congruence subgroup
attached to an ideal n of A

Γ0(n) =

{(
a b
c d

)
∈ GL(2, A) : c ≡ 0 (mod n)

}
.

The compactification of the quotient space Γ0(n)\Ω by the finitely many cusps Γ0(n)\P1(K)
is the Drinfeld modular curve. We denoted it by X0(n).

2.1.2 Automorphic Cusp Forms and Hecke Operators

We define an analogue of the cuspidal Hecke newforms over C. Another way to understand
Ω is the Bruhat-Tits tree T of PGL(2, K∞), whose oriented edges, denoted by E(T ), are
in correspondence with the cosets of GL(2, K∞)/K×∞ · J (see Section 4.2 [43]), where

J =

{(
a b
c d

)
∈ GL(2,O∞) : c ≡ 0 (mod T−1)

}
.

10
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This correspondence gives an action of GL(2, K∞) on the real-valued functions on the
oriented edges of T by left-multiplying the argument. Let H !(Γ0(n),R) be the finite-
dimensional R-space of real-valued, alternating (f(e) + f(e) = 0 for all oriented edge e,
where e is the edge in reverse direction of e), harmonic (

∑
f(e) = 0 for all vertex v, where

the sum runs over all oriented edges with origin v), and Γ0(n)-invariant functions on the
oriented edges of T having finite support modulo Γ0(n). A function f ∈ H !(Γ0(n),R) is
called automorphic cusp forms of level n (of Jacquet–Langlands–Drinfeld type).

The space H !(Γ0(n),R) is equipped with a Petersson scalar product defined by∫
E(Γ0(n)\T )

f(e) · g(e)dµ(e),

where E(Γ0(n) \T ) denotes the oriented edges of the quotient of T via the action of Γ0(N),
and µ(e) is the Haar measure on the discrete set E(Γ0(n) \ T ) given by

q − 1

2#StabΓ0(n)(e)
,

where StabΓ0(n)(e) is the stabilizer of e ∈ E(T ) (see Section 4.8 Gekeler op. cit.).

For each divisor d = (d) of n, let id be the map

id : (H !(Γ0(n/d),R))2 −→ H !(Γ0(n),R),

given by

id(f, g)(e) = f(e) + g

((
d 0
0 1

)
· e
)
,

for every oriented edge e. The subspace of oldforms at level n is

Hold
! (Γ0(n),R) =

∑
p|n

ip((H !(Γ0(n/p),R))2),

where the sum runs over the prime divisors of n. The orthogonal complement of the oldforms
with respect to the Petersson-norm is denoted by Hnew

! (Γ0(n),R).

One also can define a Hecke operator Tm for any nonzero ideal m. For example, when m
is relatively prime to n is defined by

Tmf(e) =
∑

f

((
a b
0 d

)
· e
)
,

where the sum runs over a, b, d ∈ A such that a, d are monic, m = (ad), and deg(b) <
deg(d), see Section 4.9 Gekeler op. cit. for a general definition. Finally, a newform is a nor-
malized (with respect to the Petersson-norm) automorphic cusp forms f in Hnew

! (Γ0(n),R)
and an eigenform for all Hecke operators.
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Atkin-Lehner involutions

For any ideal m = (m), such that m | n = (n) and m and n/m are relatively prime ideals,
there is an Atkin-Lehner involution Wm. This involution acts on H !(Γ0(n),R) as follows

Wmf(e) = f

((
ma b
nc md

)
· e
)
,

where a, b, c, d ∈ A and m2ab − nbc = γm for some γ ∈ k×. We denote by W(n) the
2-elementary abelian group of all Atkin-Lehner involutions. Let f be a primitive newform;
since f is primitive, it is determined by its eigenvalues up to sign. By Lemma 11 from [4]
the Hecke operators commute with the Atkin-Lehner involutions, hence W (n)

p f and f have
the same Hecke eigenvalues. By Lemma 1.2, from [74], Hnew

! (Γ0(n),R) is stable under the
Atkin-Lehner involutions and, consequently, we have that Wpf = ±f .

2.2 Elliptic curves

This section is divided into three main parts. In the first one, we will show a general theory
that is constructed over elliptic curves over global fields. In the second part, we will treat
the special case of elliptic curves defined over Q, as well as in the last subsection we will
study the case of elliptic curves over Fq(T ). In the latter case, we will denote the conductor
of E by nE and the finite part of nE is denoted by n0.

2.2.1 Generalities of elliptic curves over Global fields

In this section, K denotes Q or Fq(T ), and A denotes Z or Fq[T ], respectively. We let E be
an elliptic curve defined over K. Assume that E has an affine model:

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6. (2.1)

where ai ∈ K. For this cubic equation, define the usual Weierstrass invariants:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6, (2.2)
∆ = −b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6,

jE = c3
4∆−1.

Let us recall that ∆ 6= 0, since our elliptic curve is nonsingular.
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L-functions

We define the set IK as follows: (i) when K = Q, IK = {n ∈ Z : n ≥ 1}, or (b) when
K = Fq(T ), IK is the set of effective divisors on P1

K .

There is an attached L-function to an elliptic curve with conductor nE , which has an
Euler product expansion

L(E, s) =
∑
n∈IK

an
|n|s

=
∏
p

(
1− αp

|p|s

)−1(
1− βp
|p|s

)−1

,

where αp, βp are defined as follows:

(1) if E has good reduction at p, we have that αp + βp = ap := |p| + 1 −#E(Fp) and
αpβp = |p|,

(2) if E has multiplicative reduction at p, we have that αp = 0 and βp = ±1 (depending
on whether the reduction is split or is non-split), and finally

(3) if E has additive reduction at p, then αp and βp are both zero.

Remark 2.2.1. Due to results of Grothendieck [46] and Deligne [27], when K = Fq(T ),
we have that L(E, s) = L(fE, s), where fE is the newform attached to E (see Remark
2.2.14 for a definition of fE), and L(E, s) is a polynomial in the variable q−s of degree
deg(nE)− 4, where nE is the conductor of E.

Example 2.2.2. Let E be the elliptic curve over F3(T ) given by the equation

E/F3(T ) : Y 2 = X3 + (T 4 + 2T 2)X + (T 3 + 2T ),

which has discriminant ∆E = 2T 12 + T 6 6= 0 and conductor nE = (T )6(T + 1)3(T + 2)3.
In this case, we have

L(E, s) = 6561 · 3−8s − 729 · 3−6s − 9 · 3−2s + 1.

Over the newform fE we define the L-function attached to its symmetric square
L(Sym2 fE, s) with the following local factors:

Lp(Sym2 fE, s) =


1, if p has add. red.(

1− 1
|p|s

)−1

, if p has mult. red.(
1− α2

p

|p|s

)−1 (
1− αpαp

|p|s

)−1 (
1− αp

2

|p|s

)−1

otherwise.

Remark 2.2.3. ForK = Fq(T ), whenE is semistable (Proposition 5.4 from [67])L(Sym2 fE, s)
is a polynomial in the variable q−s of degree 2 deg(n0)− 4, where n0 is the finite part of the
conductor of E.
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Example 2.2.4. Let E be the elliptic curve over F3(T ) given by the equation

E/F3(T ) : Y 2 = X3 + T 2X2 +X,

which has discriminant ∆ = T 4 − 1 6= 0 and conductor nE = (T 2 + 1)(T + 1)(T − 1)∞.
In this case, we have

L(Sym2 fE, s) = 729 · 3−4s + 6 · 3−2s + 1.

Selmer groups

One of the effective methods to compute the Mordell-Weil rank is the 2-descent method. To
define this method we must introduce the Selmer and Shafarevich-Tate groups.

Before starting, let us fix some notation. We denote by GK the absolute Galois group
Gal(Ksep/K). Denote by MK the set of places of K. For each place ν ∈ MK we fix
an extension of ν to Ksep, which allows us to fix an embedding Ksep ⊂ Ksep

ν and a
decomposition group Gν ⊂ GK .

Let E and E ′ be elliptic curves defined over K connected by an isogeny θ : E → E ′

defined over K. There exists an exact sequence of of GK-modules

0 // E[θ] // E θ // E ′ // 0 ,

where E[θ] denotes the kernel of φ. Taking local and global Galois cohomology (see Section
X.4 in [78]) one can obtain

0 //E ′(K)/θ(E(K)) δ //

��

H1(GK , E[θ]) //

��

H1(GK , E)[θ]

��

//0

0 //
∏

ν E
′(Kν)/θ(E(Kν))

δ //
∏

ν H
1(Gν , E[θ]) //

∏
ν H

1(Gν , E)[θ] //0.

Now, we can define the Selmer and Shafarevich-Tate groups.

Definition 2.2.5. Let θ : E → E ′ be an isogeny. The θ-Selmer group of E is the subgroup
of H1(GK , E[θ]) defined by

Selθ(E) = ker

{
H1(GK , E[θ])→

∏
ν∈MK

H1(Gν , E)

}
.

The Shafarevich-Tate group of E is the subgroup of H1(GK , E) defined by

X(E) = ker

{
H1(GK , E)→

∏
ν∈MK

H1(Gν , E)

}
.

Using these two groups in the particular case that φ is a 2-isogeny, one can obtain an
upper bound for dimF2 E(K)/2E(K), which immediately gives an upper bound for the
Mordell-Weil rank.
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Bounds for 2-isogeny Selmer groups

For an elliptic curve E over K with a 2-isogeny θ : E → E ′ defined over K and dual
isogeny θ′ : E ′ → E, we let s(E, θ) = dimF2 Selθ(E) and s′(E, θ) = s(E ′, θ′). Here,
Selθ(E) is the 2-isogeny Selmer group. From Section 3.6 of [79], for K = Q and Chapter 4
of [72] for K = Fq(T ) one deduces

rankE(K) + 2 ≤ s(E, θ) + s′(E, θ). (2.3)

Let ω(n) be the number of different prime factors of n over A. The following result is
Lemma 2.1 in [3], keeping track of the contribution of the place v = 2 (in the case K = Q)
in the relevant Selmer groups.

Lemma 2.2.6. Let E be an elliptic curve over K admitting a Weierstrass equation

y2 = x3 + ax2 + bx, with a, b ∈ A.

Let θ : E → E ′ be the map obtained by taking the quotient by the 2-torsion point (0, 0). We
have

s(E, θ) + s′(E, θ) ≤ ω(b) + ω(a2 − 4b) + κ, (2.4)

where κ = 1 when K = Q, or κ = 2 when K = Fq(T ).

Furthermore, in the case K = Q, let us define the affine curves

C(1) : 2W 2 = 4U4 − 4aU2 + (a2 − 4b)

C(2) : 2W 2 = 4U4 + 2aU2 + b.

Suppose that a is even and C(1)(Q2) = ∅, or that b is even and C(2)(Q2) = ∅. Then

s(E, θ) + s′(E, θ) ≤ ω(b) + ω(a2 − 4b). (2.5)

The last assertion is not explicitly made in the statement of Lemma 2.1 [3], but it follows
from its proof, by noticing that C(1) and C(2) are affine open sets of the homogeneous
spaces C2 and C ′2 in the notation of loc. cit. Basically, the last assertion says that if the
appropriate homogeneous spaces have no Q2-points, then we get an additional constraint on
the corresponding Selmer groups. See also Section X.4 in [78].
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2.2.2 Elliptic Curves defined over Q

Bounds for the Mordell-Weil Rank

The following Theorem is a joint work with Hector Pasten [17].

Theorem 2.2.7. Let E be an elliptic curve over Q admitting a 2-isogeny θ : E → E ′ over
Q. Let α and µ be the number of places of additive and multiplicative reduction of E,
respectively. Then s(E, θ) + s′(E, θ) ≤ 2α+µ+ 1. In particular, rankE(Q) ≤ 2α+µ−1.

Proof. Consider a minimal Weierstrass equation for E over Z of the form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (2.6)

with ∆ 6= 0. The change of variables X = z/4, Y = y/8− a1z/8− a3/2 transforms (2.6)
into

y2 = z3 + b2z
2 + 8b4z + 16b6 (2.7)

where
b2 = 4a2 + a2

1, b4 = 2a4 + a1a3, b6 = 4a6 + a2
3.

Let γ ∈ Q be a root of the previous cubic which comes from the rational 2-torsion point in
ker(θ). Then, γ ∈ Z and the change of variables z = x+ γ turns (2.7) into

y2 = x3 + Ax2 +Bx (2.8)

where
A = 3γ + b2 and B = 3γ2 + 2b2γ + 8b4. (2.9)

Let ∆E be the discriminant of the minimal model (2.6) and let ∆ be the discriminant
of the model (2.7). We note that (2.8) has the same discriminant ∆. Then ∆ = 212∆E by
the standard transformation formulas and ∆ = 16B2(A2 − 4B) by (2.8). In particular, the
models (2.7) and (2.8) are minimal at each p > 2. This implies that for p > 2 we have that
p divides neither, one, or both of B and A2 − 4B if and only if E has good, multiplicative,
or additive reduction at p respectively. Hence, the following bounds hold when E has bad
reduction at p = 2:

• If E has additive reduction at p = 2 then ω(B) + ω(A2 − 4B) ≤ µ+ 2α.

• If E has multiplicative reduction at p = 2, then b2 is odd (cf. Notation (3.1) Ch. 3 and
Remark (7.2) Ch. 5 in [49]). Thus, by (2.9) we see that A and B have opposite parity.
This gives ω(B) + ω(A2 − 4B) = µ+ 2α.
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On the other hand, when E has good reduction at p = 2, a1 or a3 in (2.6) is odd, for
otherwise, one directly checks that (X, Y ) = (a4, a4 + a2a4 + a4 + a6) is a singular point.
By considerations on Newton polygons as in Section 2 of [75], the fact that the cubic in
(2.7) is reducible (γ is a root) shows that a1 is odd; for otherwise, a1 is even and a3 is odd,
given that the Newton polygon of the right-hand side of (2.7) is the segment joining (0, 4)
and (3, 0) which has no other integer points and Dumas’s irreducibility criterion (cf. the
Corollary in p.55 of [69]) would give that the right-hand side of (2.7) is irreducible.

Hence, when E has good reduction at p = 2 we have that b2 ≡ 1 mod 4. Thus, (2.9)
implies that A and B have opposite parity, which gives ω(B) + ω(A2 − 4B) = µ+ 2α+ 1.

In order to conclude, let us apply Lemma 2.2.6 to (2.8). The only remaining point is to
show that in the case of good reduction at p = 2 the additional requirement on the curves
C(i) is satisfied. For this, from now on we assume good reduction at p = 2; in particular,
b2 ≡ 1 mod 4.

Note that γ is odd or divisible by 4, for otherwise, we could write γ = 2δ with δ odd,
then (2.7) would imply 0 = 2δ3 + b2δ

2 + 4b4δ + 4b6 which is impossible as b2 is odd.

If γ is odd, then A is even and B is odd. Since v2(B2(A2 − 4B)) = v2(28∆E) = 8 we
deduce

A ≡ 2 mod 4, B ≡ 1 mod 8 and A2 − 4B ≡ 0 mod 256. (2.10)

If 4|γ then (2.9) shows that A is odd and B even. Hence, 2v2(B) = v2(B2(A2 − 4B)) = 8.
Furthermore, we recall that b2 ≡ 1 mod 4 and A = 3γ + b2. Hence

A ≡ 1 mod 4 and v2(B) = 4. (2.11)

Let us now analyze the Q2-points of the curves C(1) and C(2).

First, if A is odd and B is even (i.e. 4|γ), let us show that C(2)(Q2) is empty. For the
sake of contradiction, assume that C(2)(Q2) 6= ∅. That implies that there are u,w ∈ Q2 such
that

2w2 = 4u4 + 2Au2 + 16k, (2.12)

where B = 16k with k odd (cf. (2.11)). Notice that v2(4u4) = 4v2(u) + 2, v2(2Au2) =
2v2(u)+1 and v2(16k) = 4. In particular, all of these valuations are different. Consequently,
we have that

2v2(w) + 1 = v2(2w2) = min{4v2(u) + 2, 2v2(u) + 1, 4}.

Since 2v2(w)+1 is odd, we get 2v2(w)+1 = 2v2(u)+1. That shows not only that v2(w) =
v2(u), but also that 2v2(u) + 1 < min{4v2(u) + 2, 4}, which implies that v2(u) ∈ {0, 1}.
Then:

• If v2(w) = v2(u) = 0, since 1 is the only invertible square modulo 8, from (2.12) we
get 2A ≡ 2w2 − 4u4 ≡ 6 mod 8Z2, which is not possible by (2.11).
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• If v2(w) = v2(u) = 1, then there exist s, t ∈ Z×2 such that w = 2s and u = 2t. Then
equation (2.12) yields s2 = 8t4 + At2 + 2k. Since k is odd and A ≡ 1 mod 4, we
deduce 1 ≡ 1 + 2 mod 4Z2; a contradiction.

Finally, if A is even and B is odd (i.e. γ is odd), we have to show that C(1)(Q2) is
empty. The standard equation for E ′ is Y 2 = X3 − 2AX2 + (A2 − 4B)X which, upon
the substitution X = 4x, Y = 8y, becomes y2 = x3 − Ax2/2 + (A2 − 4B)x/16. Since
E ′ has good reduction at p = 2 (it is isogenous to E) by (2.10) we see that the same
analysis of the case 4|γ for E applies to the last equation for E ′. This shows that the curve
C ′(2) : 2W 2 = 4U4 − AU2 + (A2 − 4B)/16 (which is the analogue of C(2) for E ′) has no
Q2-points. The change of variables W = w/4, U = u/2 transforms the equation for C ′(2)

into the equation for C(1), hence C(1)(Q2) = ∅.

Now, let us recall that the quadratic twist of an elliptic curve E by a non-zero integer
d, denoted by E(D), is defined as an elliptic curve which is isomorphic to E over Q(

√
D)

but not over Q. We assume that D is a fundamental quadratic twist. By Proposition 4.3.2
in [22], we know that the Weierstrass equation for E(D) is:

y2+a1xy+a3y = x3+

(
a2d+ a2

1

d− 1

2

)
x2+

(
a4d

2 + a1a3
d2 − 1

2

)
x+

(
a6d

3 + a2
3

d3 − 1

4

)
.

Corollary 2.2.8. Let E be an elliptic curve with non-trivial rational 2-torsion and prime
power conductor N = pα and let E(D) its quadratic twist by D. Then, we have

rank(E(D)(Q)) ≤ 2ω(D) + 1− 2νp(D).

Even sharper, if E is the elliptic curve given by the equation y2 = x3 − x (32.a3 in the
LMFDB label), we have

rank(E(D)(Q)) ≤ ω(2D) + ω(D)− 1.

Proof. We know that E(D)[2] ∼= E[2] as Galois modules, then E(D) also has non-trivial
rational 2-torsion. Consequently, we can apply Theorem 2.2.7. Notice that the bad primes
of E(D) are the ones that divide D and also the prime p, therefore, we have:

rank(E(D)(Q)) ≤ 2ω(pD)− 1 ≤ 2(ω(D) + (1− νp(D)))− 1

= 2ω(D) + 1− 2νp(D).

For E : y2 = x3 − x its quadratic twist by D is E(D) : y2 = x3 −D2x. Equations (2.3) and
(2.4) imply

rank(E(Q)) ≤ ω(4D2) + ω(−D2)− 1 (2.13)
≤ ω(2D) + ω(D)− 1,

which ends the proof.

Remark 2.2.9. Note that we can also apply the inequality (2.13) to y2 = x3 − dx for any
integer d and, again, we obtain that rank(E(Q)) ≤ ω(2d) + ω(d)− 1.
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Modular degree of quadratic twists

Lemma 3.1 in [34] gives an equation that relates the modular degree of an elliptic curve E
with the one of the quadratic twist E(D) by D. We denote by N and N (D) the conductors of
E and E(D), respectively. Before showing this equation, we have to define some invariants
which appear on it.

Petersson Norm: Let S2(Γ0(N)) be the space of weight 2 cuspidal holomorphic modular
forms; over this space, we have an inner product that allows us to define the following norm.

Definition 2.2.10. The Petersson norm of f ∈ S2(Γ0(N)) is defined by

‖f‖N =

(∫
Γ0(N)\h

|f(z)|2dx ∧ dy
)1/2

, z = x+ iy and y > 0.

Observation 2.2.11. Although this definition depends on the level N , we know that if
N |M and f ∈ S2(Γ0(N)), then f ∈ S2(Γ0(M)) and ‖f‖2

M = [Γ0(N) : Γ0(M)]‖f‖2
N .

Manin Constant: Let E be an elliptic curve defined over Q of conductor N and let ωE be
its Néron differential. We have that φ∗EωE is a regular differential on X0(N), which implies
the following formula:

φ∗EωE = 2πicEfE(z)dz

where cE is a rational number (due to Proposition 2 from [33] cE is an integer) uniquely
defined up to sign and fE denotes the Hecke newform attached to E. We called cE the
Manin constant.

Now, we can show the mentioned equation given by Lemma 3.1 in loc. cit.

mE(D)

c2
E(D)

=
mE

c2
E

×
‖fE(D)‖2

N(D)

‖fE‖2
N

∣∣∣∣∆E(D)

∆E

∣∣∣∣1/6 , (2.14)

where ∆E denotes the global minimal discriminant of E. Equation (2.14) implies the
following Lemma:

Lemma 2.2.12. Let E be an elliptic curve and E(D) its quadratic twist by D. Then

ν2(mE(D)) ≥ ν2

(
mE

c2
E

)
+ ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
+

1

6
ν2

(
∆E(D)

∆E

)
. (2.15)
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Elliptic curves with rational 2-torsion and prime power conductor

The aim of Section 3.1 is to prove that every quadratic twist of an elliptic curve with prime
power conductor satisfies Watkins’s conjecture. In this direction, we have to classify all the
elliptic curves defined over Q with nontrivial 2-torsion and conductor a power of a prime.
For this classification, we take into account that [a1, a2, a3, a4, a6] denotes the elliptic curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ∆ 6= 0. We begin with the elliptic curves with prime conductor. Setzer [75] proved
that for p 6= 17 there exists an elliptic curve with prime conductor p and non-trivial rational
2-torsion if and only if p = u2 + 64 for some integer u, in which case there are two
nonisomorphic elliptic curves with conductor p. The minimal models of these elliptic curves
are

LMFDB label Weierstrass coefficients ∆
p.a1 [1, (u− 1)/4, 0,−1, 0] p
p.a2 [1, (u− 1)/4, 0, 4, u] −p2

Table 2.1: Elliptic curves with prime conductor p > 17 and rational 2-torsion

A 2-isogeny connects these two elliptic curves. Moreover, the work of Mestre & Oesterlé
[61] implies that the curve p.a2 is X0(p)-optimal (an elliptic curve E is called X0(N)-
optimal if it has the minimal modular degree mE in its isogeny class). For p = 17, Setzer
loc. cit. shows that there are four nonisomorphic elliptic curves

LMFDB label Weierstrass coefficients mE cE ∆
17.a1 [1,−1, 1,−91,−310] 4 2 17
17.a2 [1,−1, 1,−6,−4] 2 2 172

17.a3 [1,−1, 1,−1,−14] 1 1 −174

17.a4 [1,−1, 1,−1, 0] 4 4 17

Table 2.2: Elliptic curves with conductor 17

On the other hand, Mulholland [63] proved that for p > 3 the elliptic curves with nontrivial
2-torsion and conductor p2 are the quadratic twist of the elliptic curves in Tables 2.1 and 2.2
by p, together with the ones with conductor 49 listed below
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LMFDB label Weierstrass coefficients mE cE ∆
49.a1 [1,−1, 0,−1822, 30393] 14 1 79

49.a2 [1,−1, 0,−107, 552] 7 1 79

49.a3 [1,−1, 0,−37,−78] 2 1 73

49.a4 [1,−1, 0,−2,−1] 1 1 72

Table 2.3: Elliptic curves with conductor 49

Using the database [57], we can classify the elliptic curves with non-trivial rational 2-torsion
and conductor a power of 2 or 3. We noticed that there are no elliptic curves with non-
trivial rational 2-torsion of conductor 3m for any integer m, thus we only list the ones with
conductor 2m with m ∈ {5, 6, 7, 8}.

The following table shows the elliptic curves with conductor 25

LMFDB label Weierstrass coefficients mE cE ∆
32.a1 [0, 0, 0,−11,−14] 4 2 29

32.a2 [0, 0, 0,−11, 14] 4 2 29

32.a3 [0, 0, 0,−1, 0] 2 2 26

32.a4 [0, 0, 0, 4, 0] 1 1 −212

Table 2.4: Elliptic curves with conductor 32

Meanwhile, the elliptic curves of conductor 26 are the quadratic twists of the previous ones
by 2. Finally, the elliptic curves with conductor 27 are listed in the following table

LMFDB label Weierstrass coefficients mE cE ∆
128.a1 [0, 1, 0,−9, 7] 8 1 213

128.a2 [0, 1, 0, 1, 1] 4 1 −28

128.b1 [0, 1, 0,−2,−2] 16 2 27

128.b2 [0, 1, 0, 3,−5] 8 1 −214

128.c1 [0,−1, 0,−9,−7] 8 1 213

128.c2 [0,−1, 0, 1,−1] 4 1 −28

128.d1 [0,−1, 0,−2, 2] 16 2 27

128.d2 [0,−1, 0, 3, 5] 8 1 −214

Table 2.5: Elliptic curves with conductor 128

and again the elliptic curves of conductor 28 are their quadratic twists by 2.
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2.2.3 Elliptic Curves defined over Fq(T )

We say that an elliptic curve E defined over Fq(T ) is non-isotrivial when jE /∈ Fq. Since
we assume that char(k) > 3 the conductor of E is cubefree. Denote it by nE and its finite
part by n. In particular, nE = n · ∞i, where i ∈ {0, 1, 2}.

When E has split multiplicative reduction at ∞, due to Drinfeld’s reciprocity law
(Proposition 10.3 [29]) and the fact that E is automorphic (Theorem 9.8 in [27]), there is an
analogue of the modularity Theorem over Q (see Section 8 of [43] for a detailed proof):

Theorem 2.2.13 (Modularity Theorem). Let E be an elliptic curve over K of conductor
nE = n0 · ∞ having split multiplicative reduction at ∞. Then, there is a non-constant
morphism X0(n0)→ E defined over K.

Remark 2.2.14. This Theorem gives a bijection between primitive newforms f (i.e., f is a
newform such that f /∈ nHnew

! (Γ0(n0),Z) for n > 1) with integer eigenvalues and isogeny
classes of modular elliptic curves over K with conductor n0 · ∞. Furthermore, if E is a
modular elliptic curve and fE is its attached primitive newform, fE is an eigenform of every
Atkin-Lehner involution.

Upper Bounds for the Rank of the Mordell-Weil Group

The following is a geometric bound for the Mordell-Weil rank due to Tate [83]:

rank(E(K)) ≤ ords=1 L(E, s) ≤ deg(nE)− 4, (2.16)

the last inequality comes from Remark 2.2.1. See [87] for detailed proof.

Example 2.2.15. Let E be the elliptic curve defined over F31(T ) given by the equation

E/F31(T ) : Y 2 = X3 + (6T + 1)X2 + (3T + 6)X,

with discriminant ∆E = 7T 4 + 28T 3 + 2T 2 + 20T + 20. Since L(E, s) = −961 · 31−2s + 1,
we have

rank(E(K)) ≤ ords=1(−31 · 31−s + 1) = 1.

Since the element (15, 30) has infinite order, we obtain that rank(E(K)) = 1.

On the other hand, if the elliptic curve E has a non-trivial K-rational 2-torsion, we can
give an upper bound for its Mordell-Weil rank in terms of ωK(n0), the number of distinct
primes that divide n0 in A.

First of all, notice that the change of variables X = z/4, Y = y/8 − a1z/8 − a3/2
transforms

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6. (2.17)
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into
y2 = z3 + b2z

2 + 8b4z + 16b6. (2.18)

Let γ ∈ K be a root of the previous cubic, attached to a non-trivial K-rational 2-torsion
point. Then γ ∈ A and the change of variables z = x+ γ turns (2.7) into

y2 = x3 + ax2 + bx, (2.19)

where
a = 3γ + b2 and b = 3γ2 + 2b2γ + 8b4.

Let ∆E be the discriminant of the minimal model (2.17) and let ∆ be the discriminant of
(2.19). Notice that ∆ = 212∆E by the standard transformation formulas. Thus, (2.19) is a
minimal model of E and then Lemma 2.2.6 implies:

Proposition 2.2.16. Let E be an elliptic curve with non-trivial K-rational 2-torsion and
Weierstrass minimal model y2 = x3 + ax2 + bx, then:

rank(E(K)) ≤ ωK(a2 − 4b) + ωK(b).

Consequently, if α (resp. µ) is the number of finite primes of additive (resp. multiplicative)
bad reduction of E/K, then:

rank(E(K)) ≤ µ+ 2α.

Example 2.2.17. Let E be the elliptic curve defined over F31(T ) given by the equation

E/F31(T ) : Y 2 = X3 + (T 4 + 1)X2 + 6X,

with discriminant ∆E = 18T 8 + 5T 4 + 20 6= 0. Its conductor is nE = (T 4 + 11T 2 +
15)(T 4 + 20T 2 + 15) · ∞. Proposition 2.2.16 gives the inequality rank(E(F31(T ))) ≤ 2,
while deg(nE)− 4 = 5. Thus, in this case, the bound in Proposition 2.2.16 is sharper than
inequality 2.16.

Modular Degree

Let E be a modular elliptic curve defined over K. Let X0(n) be the Drinfeld modular curve
parametrizing φE : X0(n)→ E where φE is non-trivial and of minimal possible degree. The
modular degree mE is the degree of φE . The following Lemma relates the 2-adic valuations
of mE and L(Sym2 f, 2).

Lemma 2.2.18. Let E be a modular elliptic curve defined over K. Then we have that

ν2(mE) = ν2(L(Sym2 f, 2))− ν2(val∞(jE)).
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Proof. Main Theorem in [67] states that

mE =
qdeg nE

−val∞(jE)
L(Sym2 f, 2), (2.20)

where q = #k. In loc. cit., E is assumed to be semistable to have that L(Sym2 f, 2) =
L(Sym2E, 2). However, for our purposes, this is not necessary and (2.20) is a consequence
of equations (18) and (26) in loc. cit. which do not need the semistability of E. By taking
2-adic valuations we obtain

ν2(mE) = ν2(qdeg nE−2) + ν2(L(Sym2 f, 2))− ν2(val∞(jE)),

which yields the desired result.

Example 2.2.19. Consider the elliptic curve defined over F3(T ) by the equation

E : Y 2 = X3 + T 2X2 +X,

with discriminant ∆ = T 4− 1 6= 0. We have that jE = T 12/(T 4− 1), and as a consequence
val∞(jE) = 8. More precisely,

L(Sym2 f, s) = 729 · 3−4s + 6 · 3−2s + 1,

then L(Sym2 f, 2) = 32/27, so ν2(mE) = 5− 3 = 2.



Chapter 3

Different approaches to Watkins’s
conjecture

3.1 Watkins’s conjecture for quadratic twists of elliptic
curves with prime power conductor

3.1.1 Lower bounds for some 2-adic valuations

Theorem 2.2.7 gives an upper bound for the rank of an elliptic curve with non-trivial 2-
torsion. To give a lower bound for the modular degree we will use Lemma 2.2.12, hence, this
section aims to give lower bounds for the 2-adic valuation of the invariants in this Lemma.

Minimal discriminant

This subsection aims to find a lower bound for

ν2

((
∆E(D)

∆E

)1/6
)

=
1

6
ν2

(
∆E(D)

∆E

)
, (3.1)

where E has prime power conductor and ∆E denotes the minimal discriminant of E.

Definition 3.1.1. Let p be a prime. The p-adic signature of an elliptic curve E is the triple
(νp(c4(E)), νp(c6(E)), νp(∆E)), where c4, c6 are the usual Weierstrass invariants (2.2).

Pal [66] classifies the valuation (3.1) in terms of the 2-adic signature of E. To begin with,
we compute the 2-adic signature of an elliptic curve with odd discriminant and non-trivial
rational 2-torsion.

25
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Lemma 3.1.2. Let E be an elliptic curve with non-trivial rational 2-torsion and odd
discriminant. Then, the 2-adic signature of E is (0, 0, 0).

Proof. Assume that the minimal model of E is of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Since E has good reduction at 2, then either a1 or a3 must be odd. Furthermore, due to the
fact that E[2] 6= (0), there exists x0 ∈ Q such that

x3
0 + b2x

2
0 + 8b4x0 + 16b6 = 0, (3.2)

where b2, b4, and b6 are the usual Weierstrass invariants (2.2). We notice that a1 is odd,
otherwise, ν2(b2) = ν2(a2

1 + 4a2) ≥ 2, ν2(b4) = ν2(a1a3 + 2a4) ≥ 1 and a3 must be odd,
hence, b6 = a2

3 + 4a6 is odd too. Consequently, the Newton polygon (as it is noticed in
Section 2 of [75]) attached to (3.2) is a line with slope −4/3, so, by Dumas’s irreducibility
criterion (cf. the Corollary in p.55 of [69]) this polynomial has no rational solutions, which is
a contradiction. Hence, b2 is odd and, therefore, c4 = b2

2−24b4 and c6 = −b3
2+36b2b4−216b6

are odd too.

Proposition 2.4 in [66] classifies the minimal discriminant of a quadratic twist of an
elliptic curve E from the 2-adic signature of E. Let us define D∗ = D when 2 - D, and
D∗ = D/4 when 2 | D. Lemma 3.1.2 and Proposition 2.4.2 loc. cit. for elliptic curves with
2-adic signature (0, 0, 0) imply the following result:

Corollary 3.1.3. Let E be an elliptic curve with non-trivial rational 2-torsion and odd
discriminant. Then we have

1

6
ν2

(
∆E(D)

∆E

)
=


0 if D∗ ≡ 1(mod 4)

2 if D∗ ≡ −1(mod 4)

3 if 2 | D∗.

Now, let us list the 2-adic valuation of the elliptic curves with conductor 25 and 27.
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LMFDB label (c4(E), c6(E)) 2-adic signature
32.a1 (528, 12096) (4, 6, 9)
32.a2 (528,−12096) (4, 6, 9)
32.a3 (48, 0) (4,∞, 6)
32.a4 (−192, 0) (6,∞, 12)
128.a1 (448,−8704) (6, 9, 13)
128.a2 (−32,−640) (5, 7, 8)
128.b1 (112, 1088) (4, 6, 7)
128.b2 (−128, 5120) (7, 10, 14)
128.c1 (448, 3392) (6, 6, 13)
128.c2 (−32, 1088) (5, 6, 8)
128.d1 (112,−2368) (4, 6, 7)
128.d2 (−128,−3520) (7, 6, 14)

Table 3.1: 2-adic signature

Again, applying Proposition 2.4.2 in loc. cit., we have the following Lemma

Lemma 3.1.4. Let E be an elliptic curve with conductor 25 or 27. Then we have

1

6
ν2

(
∆E(D)

∆E

)
≥ −ν2(D).

Petersson norms

Now we want to relate the 2-adic valuation of the Petersson norms of fE(D) and fE . Let us
define D∗ = D when 2 - D, and D∗ = D/4 when 2 | D

Proposition 3.1.5. Let E be an elliptic curve with non-trivial rational 2-torsion and min-
imal conductor N among all its quadratic twists and let D be a quadratic fundamental
discriminant.

(I) Assume that N is a power of an odd prime and, if N = p2, we only consider D such
that p - D. Then, we have

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ 3ω(D).

(II) Furthermore, if E is 17.a4 in Table 2.2 we have

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ 4ω(D).
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(III) If N is 25 or 27 we have

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ 3ω(D)− 2ν2(D∗).

(IV) Furthermore, if E is 32.a3 in Table 2.4 we have

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ 4ω(D)− 3ν2(D∗).

Proof. Before starting, let us fix some notation. For a prime number q we define V (q) =
(q − 1)(q + 1 − aq)(q + 1 + aq) and U(q) = (q − 1)(q + 1), where aq is the q-th Fourier
coefficient of fE . Finally, we define U2 = 2(3− a2)(3 + a2).

Assume that N is a power of an odd prime p. Since p | D only if N = p, then according
to the notation of Delaunay in [25], D1 = p. Thus, Theorem 1 in loc. cit. tells us:

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ νp(D)ν2(U(p)) + ν2(D∗)ν2(U2) +

∑
q|D
q 6=2,p

ν2(V (q)).

In view of the fact that E(Q)[2] reduces injectively into E(Fq) for q /∈ {2, p}, we have that
q+1 ≡ aq(E) (mod 2), in particular, ν2(V (q)) ≥ 3. Furthermore, the LMFDB database [57]
tells us that 2 | 3− a2, 3 + a2 for elliptic curves with conductor 17 or 49 and an inspection
of the reduction modulo 2 of p.a1 and p.a2 for p > 17 shows that 2 | #E(F2), which shows
that ν2(U2) ≥ 3. Finally, it is clear that ν2(U(p)) ≥ 3, then

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ 3(νp(D) + ν2(D∗) +

∑
q|D
q 6=2,p

1) ≥ 3ω(D),

which proves (I).

To prove (II), we notice that #E(Q)[4] = 4 and, due to the fact that E(Q)[4] reduces
injectively into E(Fq) for q /∈ {2, p}, we have that q + 1 ≡ aq(E) (mod 4), in particular,
ν2(V (q)) ≥ 4. We also know from the LMFDB database [57] that a2 = −1, then ν2(U2) = 4
and ν2(U(17)) = 5. Putting all together we obtain

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ 4(νp(D) + ν2(D∗) +

∑
q|D
q 6=2,p

1) ≥ 4ω(D).

For (III), we note that for N equal to 25 or 27 Theorem 1 in loc. cit. says that

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
= ν2(D∗) +

∑
q|D
q 6=2

ν2(V (q)).
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As we saw before ν2(V (q)) ≥ 3 for q 6= 2, then

ν2

(‖fE(D)‖2
N(D)

‖fE‖2
N

)
≥ ν2(D) + 3(ω(D)− ν2(D∗)) = 3ω(D)− 2ν2(D∗).

Finally, to prove (IV), we only need to notice that for the curve 32.a3 its 2-torsion is rational,
then ν2(V (q)) ≥ 4 for q 6= 2, which ends the proof.

Remark 3.1.6. Notice that if D is prime and D ≡ 1 (mod 4) and relatively prime to
N we can improve the bounds given in (I) and (II), since ν2(V (D)) is higher. In this
cases, we have that ν2(‖fE(D)‖2

N(D)/‖fE‖2
N) ≥ 4 if N is a power of an odd prime, and

ν2(‖fE(D)‖2
N(D)/‖fE‖2

N) ≥ 5 if E is 17.a4.

Manin constant

Now, we compute cE of the elliptic curves E in Table 2.1.

Proposition 3.1.7. LetE be an elliptic curveX0(N)-optimal with odd square-free conductor
N and let E ′ be an elliptic curve connected with E by a 2 isogeny θ : E → E ′. Then, we
have that cE = 1 and cE′ ∈ {1, 2}.

Proof. By Corollary 4.2 in [60], cE must be a power of 2 and Theorem A in [1] says that if
p | cE then p | N , which implies that cE = 1. Now, let E and E ′ be the Néron models of E
and E ′ and let ω, ω′ be their respective Néron differentials. Since θ and θ∨ define morphisms
θ∗ : H0(E ′,Ω1

E ′/Z) → H0(E ,Ω1
E/Z) and (θ∨)∗ : H0(E ,Ω1

E/Z) → H0(E ′,Ω1
E ′/Z), then there

are a, b ∈ Z such that θ∗ω′ = aω and (θ∨)∗ω = bω′. Due to the optimality of φE we have
that φE′ = θ ◦ φE , which implies that

φ∗E′ω
′ = φ∗Eθ

∗ω′ = aφ∗Eω = 2πiafE(z)dz,

hence, cE′ = a. On the other hand, we have that a | 2 since

abω = θ∗(θ∨)∗ω = [2]∗ω = 2ω,

which ends the proof.

Corollary 3.1.8. Let E be an elliptic curve with non-trivial rational 2-torsion and prime
conductor p > 17. Then ν2(mE/c

2
E) ≥ −1.

Proof. We denote by Ep,1 and Ep,2 to p.a1 and p.a2 in Table 2.1, respectively. As we
discussed before, there is a 2-isogeny θ between these two curves and the work of [61]
shows that Ep,2 is X0(p)-optimal. Because of Proposition 3.1.7 cEp,1 ∈ {1, 2} and cEp,2 = 1,
in particular, ν2(mEp,2/c

2
Ep,2

) ≥ 0. Since φEp,1 = θ ◦ φEp,2 , we have that mEp,1 = 2mEp,2 ,
therefore ν2(mEp,1) ≥ 1 and consequently

ν2(mEp,1/c
2
Ep,1

) ≥ ν2(mEp,1)− 2 ≥ −1,

which gives the desired result.
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3.1.2 Quadratic twists of elliptic curves with prime power conductor

Before proving Theorem 1.2.3, we need the following Definition and Proposition.

Definition 3.1.9. Let E be an elliptic curve defined over Q and fE =
∑∞

i=1 bnq
n ∈

S2(Γ0(N)) be its Hecke newform. The congruence number δE of E is the largest inte-
ger such that there is a modular form g =

∑∞
i=1 bnq

n ∈ S2(Γ0(N)), with bn ∈ Z, such that
g and fE are orthogonal with respect to the Petersson inner product and an ≡ bn (mod δE)
for all n.

Remark 3.1.10. There are some relations between the modular degree and the congruent
number, the most relevant is mE | δE , whenever E is X0(N)-optimal [20].

Proposition 3.1.11. Watkins’s conjecture holds for every elliptic curve E of prime power
conductor and non-trivial rational 2-torsion.

Proof. Watkins’s conjecture is known for elliptic curves of conductor N < 10000, in
particular, this includes all the elliptic curves with conductor a power of 2. Then, we assume
that the conductor is odd. By Corollary 2.2.8, rank(E(Q)) ≤ 1, so, it is enough to prove
that if mE is odd, rank(E(Q)) = 0. Theorem 2.2 in [2] says that if a prime p divides the
ratio δE/mE , then p2 | N , consequently, δE is odd. Finally, Theorem 1.1 in [52, 53] implies
that rank(E(Q)) = 0.

Proof of Theorem 1.2.3. Note that the quadratic twists of E(D) are E itself, or quadratic
twists of E. Because of Proposition 3.1.11 it is enough to prove the Theorem for elliptic
curves with conductor 25, 26, 17, 49 and p of the form u2 + 64 for some integer u.

When E has conductor N = 49, E(7) has conductor N (7) = 49 and non-trivial rational
2-torsion. Notice that if 7 - D′, E(7D′) = (E(7))(D′), so, we can assume that 7 - D and then
we can use Proposition 3.1.5.(I) freely.

To begin with, we assume that N is odd and E is different to 17.a4. By Corollary
3.1.8 and Section 2.2.2, we have that ν2(mE/c

2
E) ≥ −1. Applying Corollary 3.1.3 and

Proposition 3.1.5.(I) to Lemma 2.2.12, (2.15) turns into

ν2(mE(D)) ≥ −1 + 3ω(D).

In the case of 17.a4, we have that ν2(mE/c
2
E) = −2 and therefore applying Proposition

3.1.5.(II) and Corollary 3.1.3 to Lemma 2.2.12 we obtain

ν2(mE(D)) ≥ −2 + 4ω(D).

Meanwhile, Lemma 2.2.8 implies that rank(E(Q)) ≤ 2ω(D) + 1, hence in both cases
Watkins’s conjecture holds for ω(D) ≥ 2.
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Now, assume D is a prime number. Proposition 3.1.11 proves the case D | N . Given
Lemma 2.2.8, we only have to prove that ν2(mE(D)) ≥ 3, then Remark 3.1.6 proves
the case D ≡ 1 (mod 4). For D = 2 or D ≡ −1 (mod 4), Corollary 3.1.3 implies that
(1/6)ν2 (∆E(D)/∆E) ≥ 2, then forE different that 17.a4 we have ν2(mE(D)) ≥ −1+3+2 =
4 and when E is 17.a4 we obtain ν2(mE(D)) ≥ −2 + 4 + 2 = 4.

Now, suppose that E has conductor 25 or 27, and different to 32.a3, in which case
ν2(mE/c

2
E) ≥ 0. As a consequence, Proposition 3.1.5.(III) and Lemma 3.1.4 applied to

Lemma 2.2.12 imply
ν2(mE(D)) ≥ 3ω(D)− 3ν2(D∗),

and Lemma 2.2.8 says that rank(E(Q)) ≤ 2ω(D) + 1− 2ν2(D) and, therefore, Watkins’s
conjecture holds for ω(D) ≥ 1 + ν2(D∗). Thus, the only missing case is D = 2, which is
covered by Proposition 3.1.11.

Finally, for E equal to 32.a3 we have that ν2(mE/c
2
E) = −1. In this situation, Lemma

2.2.8 tells us that
rank(E(Q)) ≤ 2ω(D)− ν2(D∗).

On the other hand, applying again Proposition 3.1.5.(IV) and Lemma 3.1.4 to Lemma 2.2.12
we obtain

ν2(mE(D)) ≥ −1 + 4ω(D)− 4ν2(D∗),

and we notice that the inequality 2ω(D)− ν2(D∗) ≤ −1 + 4ω(D)− 4ν2(D∗) is equivalent
to

ω(D) ≥ 1 + 3ν2(D∗)

2
.

Then, the only missing case is D∗ = 2, which again is covered by Proposition 3.1.11.

Example 3.1.12. Theorem 1.2.3 gives a different approach to prove that Watkins’s conjecture
holds for elliptic curves with bad additive reduction at 2, non-trivial rational 2-torsion, and
at most two odd primes of bad reduction.

(a) Consider the elliptic curve E : y2 = x3 − x. Watkins’s conjecture holds for its
quadratic twists E(p) : y2 = x3 − p2x and E(pq) : y2 = x3 − (pq)2x.

(b) Let E be the elliptic curve y2 + xy = x3 − x2 − x, then the quadratic twists E(−4) :
y2 = x3 − 19x+ 18 and E(−8) : y2 = x3 − 76x+ 144 satisfy Watkins’s conjecture.

Finally, Theorem 1.2.3 has the following consequence:

Corollary 3.1.13. Watkins’s conjecture holds for all congruent curvesE(D) : y2 = x3−D2x.
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3.2 Congruence Number of y2 = x3 − dx

The main objective of this section is to prove the Theorem 1.2.4

Theorem 2.8 from [93] shows that the elliptic curves of the form y2 = x3 −Dx have
even congruence number, whenever ω(D) ≥ 1. The goal of this section is to give a lower
bound for ν2(δE). First of all, let p1, . . . , pm be a list of distinct odd primes and define
d = p1 · · · pm. Let D be a divisor of d. Now, consider the elliptic curves E : y2 = x3 − dx
and E(D) : y2 = x3−dD2x. Finally, denote by f and f (D) their associated Hecke newforms.
Since E(D) is a quadratic twist by D of E, then we have that

aq(f
(D)) =

(
D

q

)
aq(f),

for every prime number q. Before proving Theorem 1.2.4 we need the following two
Lemmas.

Lemma 3.2.1. Let n be a positive integer relatively prime to d and qα1
1 · · · qαs

s its prime
factorization. Then an(f (D)) = γn(D)an(f), where

γn(D) =

(
D

q1

)α1

· · ·
(
D

qs

)αs

.

Proof. Since γnm(D) = γn(D)γm(D), it is enough to show this assertion for powers of
primes. We prove it by induction (taking into account a1(f) = 1 and aq(f) =

(
d
p

)
aq(g))

as follows

aqn+1(f (D)) = aq(f
(D))aqn(f (D))− paqn−1(f (D)) (3.3)

=

(
D

q

)
aq(f)

(
D

q

)n
aqn(f)− p

(
D

q

)n−1

aqn−1(f)

=

(
D

q

)n+1

aqn+1(f),

which gives the desired result.

Lemma 3.2.2. Let m be an odd integer and q be a prime such that q - d. If
(
d
q

)
= 1 then

aqm(f) ≡ 0 (mod 2) and if
(
d
q

)
= −1 then aqm(f) ≡ 0 (mod 4).

Proof. We know that E is a quartic twist of E1 : y2 = x3 − x by d. By section 3.2 [24] if
E1 corresponds to the automorphic form χ ⊕ χ (where χ is a Grossencharacter), then E
corresponds to the automorphic form χψ ⊕ χψ, where ψ =

( ·
d

)
4
.
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First of all, if q ≡ 3 (mod 4) we have aq(E) = 0 since the image is antidiagonal. By
induction on (3.3) we obtain that aqm(E) = 0 for m an odd integer.

Finally, assume that q ≡ 1 (mod 4). We have that if
(
d
q

)
= 1 then aq(f) = ±aq(g),

where g is the Hecke eigenform attached to E1, thus, aq(f) ≡ 0 (mod 2). On the other hand,

if
(
d
q

)
= −1 then (aq(f)/2)2 + (aq(g)/2)2 = p, so, aq(f) ≡ 0 (mod 4). By induction on

(3.3), we get the desired result.

Proof of Theorem 1.2.4. We define n1 = p
νp1 (n)
1 · · · pνpm (n)

m and n2 = n/n1. Notice that
(n2, d) = 1. By Table I in [48] N = N (D) for every divisor D of d, then it is enough to
prove that

an(
∑
D|d

(−1)ω(D)f (D)) ≡ 0 (mod 2m+ε),

where ε = 1 if m is even and ε = 2 if m is odd. Assume n2 = qα1
1 · · · qαs

s , then by Lemma
3.2.1 we have that an2(f

(D)) = γn2(D)an2(f). We claim that

an(
∑
D|d

(−1)ω(D)f (D)) =

{
2man(f) if γn2(p) = −1 for all p | d
0 otherwise.

Before proving the claim, notice that if p | d, we have that ap(f) = ap(f
(D)) = 0, hence

an1(f) = an1(f
(D)) for every divisor D of d, as a consequence

an(
∑
D|d

f (D)) = an1(f)an2(
∑
D|d

f (D)).

To begin with, assume that for some p | d, γn2(p) = −1. Since γn(DD′) = γn(D)γn(D′),
we obtain

an(
∑
D|d

f (D)) = an1(f)
∑
D|d
p-D

(−1)ω(D)an2(f
(D)) + an1(f)

∑
D|d
p|D

(−1)ω(D)−1an2(f
(D/p))

= 2an1(f)
∑

D|(d/p)

an2(f
(D)). (3.4)

Without loss of generality, assume that t is an integer such that t ≤ m and for i ≤ t we have
γn2(pi) = −1 , and for i > t we have γn2(pi) = 1. Denote by d1 = p1 · · · pt, then applying
equation (3.4) recursively, if t < m we have that

an(
∑
D|d

f (D)) = 2tan1(f)
∑

D|(d/d1)

an2(f
(D)) = 2tan(f)

∑
D|(d/d1)

(−1)ω(D) = 0,

meanwhile if t = m, we obtain that an(
∑

D|d f
(D)) = 2man(f).
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Finally, if γn2(p) = −1 for all p | d, we have that γqi(p)
αi = −1 for some 1 ≤ i ≤ s,

in particular, αi is odd, then because of Lemma 3.2.2 we obtain that an(f) is even. Even
better, if ω(d) is odd, γn2(d) = −1, then there exists 1 ≤ i ≤ s, such that γqi(d)αi = −1.

Therefore, αi is odd and
(
d
qi

)
= γqi(d) = −1, applying Lemma 3.2.2 we obtain that

4 | an(f), so
an(
∑
D|d

(−1)ω(D)f (D)) ≡ 0 (mod 2m+ε),

which proves the desired result.

Theorem 1.2.4 allows us to prove that for some elliptic curves rank(E(Q)) ≤ ν2(δE),
which goes in the direction of Watkins’s conjecture since mE | δE as we said before.

Corollary 3.2.3. Let p be an odd prime. Then, for E an elliptic curve y2 = x3 − px or
y2 = x3 − p3x, we have that rank(E(Q)) < ν2(δE).

Proof. By Remark 2.2.9, rank(E(Q)) ≤ 2 whenE is equal to y2 = x3−px or y2 = x3−p3x
for p a prime number. On the other hand, Theorem 1.2.4 says that 3 ≤ ν2(δE) in both cases,
as a consequence, rank(E(Q)) < ν2(δE).

3.3 Watkins’s conjecture for elliptic curves with non-split
multiplicative reduction

This section is in joint work with Hector Pasten [17]. In this section we let E be a semistable
elliptic curve over Q; so, N is square-free and µ = ω(N). Let f ∈ S2(Γ0(N)) be its
associated newform. Let Sel2(E) be the 2-Selmer group of E.

Lemma 3.3.1. Assume E(Q)[2] ' Z/2Z. Then we have rankE(Q) ≤ µ− 1. If equality
holds, then X(E)[2] = (0).

Proof. By Theorem 2.2.7 we have rankE(Q) ≤ µ − 1. Now, assume that rankE(Q) =
µ− 1. Then, dimF2 E(Q)/2E(Q) ≤ µ. By the exact sequence

(0)→ E(Q)/2E(Q)→ Sel2(E)→X(E)[2]→ (0),

it suffices to prove dimF2 Sel2(E) ≤ µ. Let θ : E → E ′ be the 2-isogeny with kernel
E(Q)[2] and let θ′ : E ′ → E be its dual. Consider the exact sequence from Lemma 6.1
of [73]:

(0)→ E ′(Q)[θ′]/θ(E(Q)[2])→ Selθ(E)→ Sel2(E)→ Selθ′(E
′).

The assumptionE(Q)[2] ' Z/2Z gives that θ(E(Q)[2]) = (0) and that 2 divides #E ′(Q)[θ′].
From this we deduce dimF2 Sel2(E) ≤ s(E, θ) + s′(E, θ)− 1. We conclude by Theorem
2.2.7.
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For each d|N there is the Atkin-Lehner involution Wd on X0(N). They form a group
W ' (Z/2Z)µ. For every d|N we have Wd(f) = ±f . Let wd(f) ∈ {−1, 1} be defined by
Wd(f) = wd(f) · f . These eigenvalues satisfy

∏
p|N wp(f) = wN(f) = −ε(f), where ε(f)

is the sign of the functional equation of L(f, s). In [4] it is shown that −wp(f) = ap(f), the
p-th Fourier coefficient of f . Thus:

wp(f) =

{
1 if E has non-split multiplicative reduction at p,
−1 if E has split multiplicative reduction at p.

The rule Wd 7→ wd defines a morphism ρ : W → {−1, 1}. Let W ′ = ker(ρ). A
morphism W ′ → E(Q)[2] is constructed in Proposition 2.1 from [31] with kernel denoted
by W ′′. They prove that #W ′′ divides mE and that dimF2 W

′′ ≥ µ − dimF2(W/W
′) −

dimF2 E(Q)[2]. We get:

Lemma 3.3.2. Assume E(Q)[2] ' Z/2Z. If wp = 1 for all p|N , then v2(mE) ≥ µ− 1. On
the other hand, if wp = −1 for some p|N , then v2(mE) ≥ µ− 2.

With these lemmas at hand, we can prove Theorem 1.2.1.

Proof of Theorem 1.2.1. Let us assume that E is a semistable elliptic curve of conductor N
and modular degree mE with E(Q)[2] ' Z/2Z.

If E has no place of split multiplicative reduction, then the first part of Lemma 3.3.2
gives v2(mE) ≥ µ− 1, while Lemma 3.3.1 gives rank(E) ≤ µ− 1.

So, we may assume that E has an odd number of places of non-split multiplicative
reduction. By the second part of Lemma 3.3.2, it suffices to show that rank(E) ≤ µ− 2. If
X(E)[2] is non-trivial, then, Lemma 3.3.1 gives rank(E) ≤ µ− 2 and we are done. So, let
us assume that X(E)[2] is trivial. Then X(E)[2∞] = (0) and by results of Monsky [62]
the parity conjecture holds for E: we get ε(f) = (−1)rankE(Q).

Write N = N+N− where N+ is the product of the primes of split multiplicative
reduction for E and N− is the product for non-split multiplicative reduction. Then ω(N+)
and µ = ω(N+) + ω(N−) have opposite parity, while ε(f) and (−1)ω(N+) =

∏
p|N wp(f)

have opposite sign. This means that rank(E) and µ have the same parity. Therefore, the
bound rank(E) ≤ µ− 1 from Lemma 3.3.1 is strict and we get rank(E) ≤ µ− 2.
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Watkins’s Conjecture for Elliptic Curves
over Function Fields

4.1 Watkins’s conjecture for Semistable elliptic curves

The following Proposition gives a lower bound of ν2(mE) in terms of ωK(n).

Proposition 4.1.1. Let E be a modular elliptic curve with conductor nE = n∞. Let fE
be the primitive newform attached to E. Over this newform, we define W ′ = {W ∈
W(n) : W (fE) = fE} and κ := dimF2(W(n)/W ′) + dimF2(E(K)[2]). Then ωK(n)− κ ≤
ν2(mE).

Proof. Proposition 10.3 from [29] gives the following isomorphism

Φ: H1(X0(n)⊗Ksep
∞ ,Q`) ∼= H !(Γ0(n),Q`)⊗ sp,

where sp is the two-dimensional special `-adic representation of Gal(Ksep
∞ /K∞). Fur-

thermore, by Remark 4.13.2 [43] this isomorphism is compatible with the action of the
Atkin-Lehner involutions.

Since H1(X0(n) ⊗Ksep
∞ ,Q`) is the dual of V`(J0(n)), we have that if π : J0(n) → E

is the projection, then, π([W (D)]) = π([D]) for every divisor D of degree 0 over X0(n)
whenever W ∈ W ′ (due to the compatibility of Φ with the action of W , we have that
Φf ◦W = Φ(Wf), thus, if Wf = f we have π ◦W = Φf ◦W = Φ(Wf) = Φ(f) = π).
By Remark 2.2.14,W ′ has at most index 2 inW(n). Now, as in Proposition 2.1 in [31],
we construct a homomorphism θ :W ′ → E(K)[2]. First of all, we fix a K-rational point
x0 ∈ X0(n) (for example a cusp), then, for W ∈ W ′ we define θ(W ) = π([W (x0)− (x0)]).
Notice that θ(W ) ∈ E(K)[2], since x0 ∈ X0(n)(K) and

θ(W ) = π([W (x0)− (x0)]) = π([W (W (x0)− (x0))]) = −π([W (x0)− (x0)]) = −θ(W ).

36



37

Now, define W ′′ = ker θ. We define X = X0(n)/W ′′ and consider the quotient map
ψ : X0(n) → X which is also defined over K. The Jacobian of X is denoted by J . We
can define ι : X0(n)→ J0(n) based on x0, and ι′ : X → J based on ψ(x0), so we obtain a
commutative diagram

X0(n) ι //

ψ

��

J0(n)

ψ∗
��

X ι′ // J .

Since π([W (x0) − x0]) = 0 for W ∈ W ′′, we have that π ◦ ι(W (x)) = π ◦ ι(x) for all
x ∈ X0(n), in particular, π ◦ ι factors through X . Since the image of ι generates to J0(n) as
a group, there exists π′ : J → E such that π = π′ ◦ ψ∗, then,

[mE] = π ◦ π∨ = (π′ ◦ ψ∗) ◦ (ψ∗ ◦ π′∨) = π′ ◦ [deg(ψ)] ◦ π′∨ = [#W ′′] ◦ (π′ ◦ π′∨).

Since the degree of [i] (multiplication by i) is i · i∗ or (i∗)2 where i∗ denotes the p-free part
of i, then, #W ′′ | mE , since p 6= 2.

Example 4.1.2. Consider the elliptic curve defined over F3(T ) by the equation

E : Y 2 = X3 + T 2X2 +X.

This curve has conductor nE = (T 2 + 1)(T + 1)(T − 1)∞, and also E(F3(T )) ∼= Z/2Z.
By Proposition 5.7 from [74] we have thatW ′′ = 〈W(T−1)(T 2+1),W(T+1)(T 2+1)〉, therefore
Proposition 4.1.1 tells us that ν2(mE) ≥ ν2(#W ′′) ≥ 2. More precisely, from Example
2.2.19 we know that ν2(mE) = 2, which implies that the bound in Proposition 4.1.1 is
optimal.

Proposition 4.1.1 and Tate’s geometric bound (2.16) allow us to prove Theorem 1.2.5.

Proof of Theorem 1.2.5. Recall that E ′ = E ×SpecK SpecK ′. Since the conductor of E ′ is
also nE = (n)∞, then, by Tate’s geometric bound (2.16) rank(E ′(K ′)) ≤ deg(n)− 4. On
the other hand, we know that ωK′((n)) = deg(n) because k′ contains the splitting field of n.
Furthermore, since dimF2([W(n) :W ′]) ≤ 1, by Remark 2.2.14, we have that κ ≤ 3, then,
by Proposition 4.1.1 we have that

ν2(mE′) ≥ ωK((n))− 3 = deg(n)− 3 = deg(nE)− 4 ≥ rank(E ′(k′(T ))),

which yields the desired result.

Ulmer [86] exhibits a closed formula for the rank of a family of elliptic curves. Propo-
sition 4.1.1 together with this formula allows us to show Watkins’s conjecture for this
family.
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Proof of Theorem 1.2.6. First of all, we notice that E(Fp(T ))[2] = (0), since the polyno-
mial 4x3 + T 2dx− 4 does not have a solution over Fp(T ). Notice that E is the change of
base point of P1 given by [0 : 1] 7→ ∞ of

E ′ : y2 + xy = x3 − Tm,

where m = pn + 1. Theorem 1.5 in [86] shows that nE′ = T (1− 2433Tm), consequently,
nE = (Tm − 2433)∞. We claim that f(T ) = Tm − 2433 always has a root in Fp2 . Let
α ∈ Fp2 such that α2 = 3 and notice that if α ∈ Fp, then 223α is a root of f . If α /∈ Fp,
since 6 | pn − 1 we have that p ≡ −1(mod 3), then p ≡ 1(mod 4) by the law of quadratic
reciprocity. This implies that 223α or 223αβ is a root of f , where β2 = −1. Consequently,
there is a bijection between the prime divisors of even degree of Tm − 1 and f(T ).

By definition, Tm − 1 factors over Fp[T ] as follows:

Tm − 1 =
∏
e|m

Φe(T ),

where Φn(T ) is the nth-cyclotomic polynomial. Thus, the number of prime divisors over
Fq[T ] of f(T ) is

ωFq(T )(nE) =
∑
e|m

φ(e)

oe(q)
−

{
0 if Tm − 2433 has a solution in Fq
1 otherwise

,

where φ(e) is the cardinality of (Z/eZ)× and oe(q) is the order of q in (Z/eZ)×. On the
other hand, we know that rank(E(Fp(T ))) = rank(E ′(Fp(T ))). Theorem 1.5 in [86] states
a closed expression for rank(E ′(Fq(T )))

∑
e|m
e-6

φ(e)

oe(q)
+

{
2 if 3 | q − 1

1 otherwise
+

{
1 if 4 | q − 1

0 otherwise
.

Since there are 4 divisors of 6 we obtain∑
e|m

φ(e)

oe(q)
≥
∑
e|m
e-6

φ(e)

oe(q)
+ 4

Furthermore, if 3 | q − 1 then q is a square since p ≡ −1(mod 3); which implies that
Tm − 2433 has a solution in Fq. Hence, Proposition 4.1.1 implies that

ν2(mE) ≥ ωFq(T )(nE)− 1 =
∑
e|m

φ(e)

oe(q)
− 1 ≥

∑
e|m
e-6

φ(e)

oe(q)
+ 3 ≥ rank(E(Fq(T ))).
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Finally, if 3 - q − 1, we obtain

ν2(mE) ≥ ωFq(T )(nE)− 1 ≥
∑
e|m

φ(e)

oe(q)
− 2 ≥

∑
e|m
e-6

φ(e)

oe(q)
+ 2 ≥ rank(E(Fq(T ))),

which gives the desired result.

4.2 Watkins’s Conjecture for Quadratic Twists

Let E be a modular elliptic curve with conductor nE , since char(k) > 3 there exist square-
free coprime polynomials n1, n2 ∈ A such that nE = (n2

1n2)∞. Let g ∈ A be a monic
square-free polynomial, with (n1, g) = 1, we define the quadratic twist E(g) of E by g as
follows

E(g) : y2 = x3 + Agx2 +Bg2x.

We assume that deg(g) is even to ensure that E(g) is modular. To see that, notice that if the
change of variables x 7→ T 2nx and y 7→ T 3ny makes E a minimal T−1-integral model, then
the change x 7→ T 2(n+m)x and y 7→ T 3(n+m)y makes E(g) a minimal T−1-integral model,
where deg(g) = 2m; since g is a monic polynomial, both reductions modulo T−1 are the
same. Note that the conductor n(g)

E of E(g) is equal to nE(g2/d), where d = gcd(n2, g). The
attached Drinfeld newform to E(g) is denoted by f (g).

The following lemma gives an upper bound for the Mordell-Weil rank of E(g).

Lemma 4.2.1. With the notation above, we have that

rank(E(g)(K)) ≤ ωK(n2) + 2(ωK(n1) + ωK(g)).

Proof. First of all, we notice that E(g) has multiplicative reduction at p if p | n2/d, E(g)

has additive reduction at p if p | n1g and otherwise E(g) has good reduction at p. Then by
Proposition 2.2.16 we obtain that

rank(E(g)(K)) ≤ ωK(n2/d) + 2(ωK(n1) + ωk(g)),

since ωK(n2/d) ≥ ωK(n2) we obtain the desired result.

To find a lower bound for ν2(mE(g)) we need to relate L(Sym2 f (g), 2) and L(Sym2 f, 2),
so, we can use Lemma 2.2.18 and the fact that jE = jE(g) (since this two elliptic curves are
isomorphic in a quadratic extension of K), but before, we need the following lemma:
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Lemma 4.2.2. Let p be a prime ideal of A and let
(
·
p

)
: Fp → {−1, 0, 1} be the extended

Legendre symbol. Then

ap(E
(g)) =

(
g

p

)
ap(E).

Proof. If E(g) has additive reduction at p, we have that p | n1 or p | g, then ap(E(g)) = 0
and there is nothing to prove. On the other hand, assume that E(g) has multiplicative
reduction at p. By Lemma 2.2 in [23] E has split multiplicative reduction at p if and only
if
(
−c6(E)

p

)
= 1, as a consequence, this quantity is equal to ap(E). Furthermore, since

c6(E(g)) = g3c6(E), we have

ap(E
(g)) =

(
−c6(E(g))

p

)
=

(
−g3c6(E)

p

)
=

(
g

p

)
ap(E).

Finally, assume that p - n(g). Define M = {x ∈ Fp : x3 +Ax2 +B 6= 0}. Consequently, we
obtain

#E
(g)
p (Fp) = |p|+ 1 +

∑
x∈M

(
x3 + Agx2 +Bg2x

p

)
= |p|+ 1 +

∑
x∈M

(
g3(x3 + Ax2 +Bx)

p

)
= |p|+ 1 +

(
g

p

)∑
x∈M

(
x3 + Ax2 +Bx

p

)
= |p|+ 1−

(
g

p

)
ap(E

(g)),

by recalling the definition of ap(E) we get the desired result.

Proposition 4.2.3. Let E be a modular elliptic curve with conductor nE and associated
primitive newform f . Assume that E ′ is a quadratic twist of E, with conductor n′E and
associated primitive newform f ′, such that ordp(nE) ≤ ordp(n

′
E) for all p. Thus, there exist

n1, n2, d, g square-free monic polynomials with 1 = gcd(n1, g), and d = gcd(n2, g) such
that nE = (n2

1n2)∞ and n′E = nEg
2/d. Then, one has

L(Sym2 f ′, 2) = L(Sym2 f, 2)
|d|
|g|3

∏
p|d

(|p|2 − 1)
∏
p|g/d

(
(|p|+ 1)2 − ap(E)2

)
(|p| − 1).

Proof. By Lemma 4.2.2 we have that when ordp(n) = ordp(n
′) the local factors are equal,

i.e. Lp(Sym2 f ′, 2) = Lp(Sym2 f, 2). If p | d, we have that

Lp(Sym2 f ′, s) = Lp(Sym2 f, s)(1− |p|−s),
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thus, at s = 2 we obtain

Lp(Sym2 f ′, 2) = Lp(Sym2 f, 2)
1

|p|2
(|p|2 − 1).

Finally, assume that p | (g/d). The local factors are related as follows

Lp(Sym2 f ′, s) = Lp(Sym2 f, s)
(
1− α2

p|p|−s
) (

1− αp
2|p|−s

) (
1− |p|1−s

)
,

therefore at s = 2 we obtain

Lp(Sym2 f ′, 2) = Lp(Sym2 f, 2)
1

|p|3
(
(|p|+ 1)2 − ap(E)2

)
(|p| − 1),

putting all together, we achieve the desired result.

Now, we can prove Theorem 1.2.7

Proof of Theorem 1.2.7. SinceE andE(g) are isomorphic over C∞, we have that jE = jE(g) .
Thus, by Lemma 2.2.18 we obtain

ν2(mE(g)) = ν2(mE) + ν2(L(Sym2 f (g), 2))− ν2(L(Sym2 f, 2)).

On the other hand, Proposition 4.2.3 implies that

ν2

(
L(Sym2 f (g), 2)

L(Sym2 f, 2)

)
=
∑
p|d

ν2(|p|2 − 1) +
∑
p|g/d

ν2

(
((|p|+ 1)2 − ap(E)2)(|p| − 1)

)
.

We know that |p|2− 1 ≡ 0 (mod 8) and |p| − 1 ≡ 0 (mod 2). As E(K)[2] is non-trivial and
it maps injectively into Ep(Fp) for every prime p - n∞, then, |p|+ 1− ap(E) ≡ 0 (mod 2),
which implies (|p|+ 1)2 − ap(E)2 ≡ 0 (mod 4). As a consequence

ν2(L(Sym2 f (g), 2))− ν2(L(Sym2 f, 2)) ≥ 3ωK(g).

Putting all together, we achieve the result.

ν2(mE(g)) ≥ ν2(mE) + 3ωK(g). (4.1)

By Proposition 2.2.16 we know that rank(E(g)) ≤ 2(ωK(n) + ωK(g)). By our assumptions
on g we obtain that

ν2(mE) + 3ωK(g) ≥ 2(ωK(n) + ωK(g)),

consequently, rank(E(g)) ≤ ν2(mE(g)).
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Corollary 4.2.4. Assume that E is a semistable modular elliptic curve over K. Then, we
have that E(g) satisfies Watkins’s conjecture whenever ωK(g) ≥ 3. Furthermore, if every
prime dividing n has non-split multiplicative reduction and E(K)[2] ∼= Z/2Z we have that
E(g) satisfies Watkins’s conjecture for every square-free polynomial g ∈ A of even degree.

Proof. By Proposition 4.1.1 we have that ν2(mE) ≥ ωK(n)− 3. Since E is semistable, n is
square-free, consequently, Lemma 4.2.1 implies that rank(E(g)) ≤ ωK(n) + 2ωK(g). Using
equation (4.1), we have

ν2(mE(g)) ≥ ν2(mE) + 3ωK(g) ≥ ωK(n)−3 + 3ωK(g) ≥ ωK(g)−3 + rank(E(g)), (4.2)

hence, Watkins’s conjecture holds for E(g), whenever ωK(d) ≥ 3. Furthermore, if a
prime ideal p divides n and has non-split multiplicative reduction, by Theorem 3 in [4]
Wpf = f , consequently, W = W ′. Therefore, if every prime p which divides n has
non-split multiplicative reduction and E(K)[2] ∼= Z/2Z Proposition 4.1.1 implies that
ν2(mE) ≥ ωK(n)− 1. Thus, equation (4.2) turns into

ν2(mE(g)) ≥ ωK(g)− 1 + rank(E(g)),

accordingly, Watkins’s Conjecture holds for quadratic twists by every square-free polynomial
g of even degree.



Appendix A

A Chabauty-Coleman bound for surfaces:
work report

In this appendix, we describe joint work with Hector Pasten [16] on generalizing the classical
Chabauty-Coleman bound from the case of curves to the case of surfaces. While this is not
directly related to the main part of the thesis, it is a report on a relevant part of the work I
did as a Ph.D. student at PUC. We will simply state the results and describe the techniques;
a detailed exposition of the proofs can be found in [16].

We thank Fabien Pazuki for suggesting to include this section.

A.1 The Chabauty-Coleman bound

Let C be a smooth, geometrically irreducible, projective curve of genus g ≥ 2 defined over
a number field F , with Jacobian J . In the direction of Mordell’s conjecture, Chabauty [18]
proved in 1941 that if rank J(F ) ≤ g − 1, then the set C(F ) of F -rational points of C
is finite. Let us recall the main ideas for F = Q: After embedding C into J , one has
C(Q) ⊆ C(Qp) ∩ Γ where p is an auxiliary prime and Γ is the p-adic closure of J(Q)
in J(Qp). Then dim Γ ≤ rank J(Q) < g = dim J(Qp) which leads to the finiteness of
C(Qp)∩Γ because C(Qp) is not contained in a lower dimensional p-adic analytic subgroup
of J(Qp).

Coleman [21] proved in 1985 a celebrated explicit version of Chabauty’s theorem, which
we recall over Q: with the same conditions, if p > 2g is a prime of good reduction for C,
then

#C(Q) ≤ #C ′(Fp) + 2g − 2 (A.1)

where C ′ is the reduction of C modulo p. While Chabauty’s finiteness result was superseded
by Faltings’s proof of Mordell’s conjecture [35], the method of Chabauty and Coleman has
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led to a number of striking developments: explicit determination of the rational points on
suitable curves (see [59] for an introduction and references), improvements on (A.1) such
as [50, 58, 59, 81], progress towards the Caporaso–Harris–Mazur conjecture [51, 82], and
explicit versions of Kim’s non-abelian approach [54] such as [5–9, 32].

A.2 Beyond curves

Despite all these remarkable developments over the last few decades, the problem of proving
a version of (A.1) for the rational points of a higher dimensional variety X contained in an
abelian variety A has remained out of reach. Our main results provide such an extension of
(A.1) when X is a hyperbolic surface contained in an abelian variety A of dimension n ≥ 3,
both defined over a number field F , under the assumption rankA(F ) ≤ 1. Although we
work over number fields (see Sections 9 and 10 [16]), let us keep the discussion over Q in
this introduction to simplify the exposition. Our results, when applicable, will imply

#X(Q) ≤ #X ′(Fp) + 4p · c2
1(X) (A.2)

where c2
1(X) is the first Chern number of the surface X (the self-intersection of a canonical

divisor), p is a prime of good reduction satisfying some technical assumptions, and X ′ is the
reduction of X modulo p. The coefficient 4p in (A.2) is in fact a simplification of a slightly
more complicated expression that gives a better estimate. See Theorem A.3.1 and Remark
A.3.3.

We observe that Coleman’s bound (A.1) can be written as

#C(Q) ≤ #C ′(Fp) + c1(C)

where c1(C) = 2g − 2 is the first Chern number of C, i.e. the degree of a canonical divisor.
Also, we recall that hyperbolic projective curves are precisely those of genus g ≥ 2. We
hope that these remarks clarify the analogy between our results for surfaces and Coleman’s
bound for curves.

Although the shape of our bound (A.2) is analogous to (A.1), the methods of proof are
quite different. Let X be a subvariety of an abelian variety A over Q. Let Γ be the p-adic
closure of the group A(Q) in A(Qp). Then X(Q) is contained in Γ ∩X(Qp) and one tries
to bound the latter.

In the case of curves (X = C embedded in A = J) Coleman used his theory of p-adic
integration to construct p-adic analytic functions on C(Qp) that vanish on C(Qp) ∩ Γ and
then he bounded the number of zeros of the relevant one-variable p-adic power series on
residue disks.

On the other hand, when d = dimX > 1, the analogous approach using p-adic analytic
functions on X(Qp) quickly encounters difficulties. Such functions are locally given by
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power series in d variables. To get finiteness of Γ ∩X(Qp) one needs to consider at least
d different p-adic analytic functions on X(Qp) whose zero sets (usually, p-adic analytic
sets of dimension d − 1) meet properly, and then there is the problem of giving an upper
bound for the number of common zeros. So far, this approach has not succeeded in proving
a version of (A.1) other than in the case of curves.

We take a different route instead. When rankA(Q) = 1 we can give a p-adic analytic
parametrization of Γ by power series in one variable. Upon composing with suitably
chosen local equations for the surface X in A and working on residue disks, the problem
of bounding #Γ ∩X(Qp) is reduced to bounding the number of zeros of a certain power
series h(z) =

∑
j cjz

j ∈ Qp[[z]] on a disk. The key difficulty in doing so (and in the whole
approach) it so prove the existence of a small N such that |cN | ≥ 1. We achieve this by
developing a method based on overdetermined ω-integrality, which in our case is essentially
a study of overdetermined systems of differential equations in positive characteristic.

Prior to our work, the efforts on extending (A.1) to the higher dimensional setting have
focused on the special case when A = J is the Jacobian of a curve C and X = Wd is the
image in J of the d-th symmetric power of C via the addition map. Klassen [55] obtained
some partial results for the varieties Wd, later improved by Siksek [77]. Although Siksek’s
work does not give an explicit bound for #Wd(Q) such as (A.1), it gives a practical method
that in many cases computes the set of rational points of Wd. Park [68] used tropical
geometry to obtain a weak analogue of (A.1) for Wd (at least if rank J(Q) ≤ 1), but the
result turns out to be conditional on an unproved technical assumption as explained in [47].
Uniform extensions of Park’s result are studied in [88] for W2, but these are also conditional
due to the same issue discussed in [47].

A.3 Results

As usual, KX denotes a canonical divisor of a smooth projective variety X . We recall that
X is said to be of general type if KX is big. For every field F , we choose an algebraic
closure and denote it by F alg. The following Theorem is also proved over any number field;
see Theorem 9.1 in loc. cit.

Theorem A.3.1 (Main result, case over Qp). Let p be a prime. Let X be a smooth, geomet-
rically irreducible, projective surface contained in an abelian variety A of dimension n ≥ 3,
both defined over Qp and having good reduction. Let X ′ and A′ be the corresponding
reductions modulo p. Let G ≤ A(Qp) be a finitely generated group with rankG ≤ 1 and let
Γ be its p-adic closure in A(Qp). Suppose that either of the following conditions holds:

(i) We have n = 3, X is of general type, X ′ contains no elliptic curves over Falg
p , and

p > (128/9)c2
1(X)2;
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(ii) The abelian variety A′ is simple over Falg
p , p > 3c2

1(X) + 2, and there is an ample
divisor H on A such that

p >
n! · (3 deg(H2.X) + deg(H.KX))n

nn · deg(Hn)
.

Then X(Qp) ∩ Γ is finite and we have

#X(Qp) ∩ Γ ≤ #X ′(Fp) +
p− 1

p− 2
·
(
p+ 4p1/2 + 3

)
· c2

1(X). (A.3)

Remark A.3.2. By the Riemann Hypothesis for surfaces over finite fields [26] we have the
estimate |#X ′(Fp)− (p2 + 1)| ≤ b3p

3/2 + b2p+ b1p
1/2 where bj is the j-th Betti number of

X(C). In particular, one can use #X ′(Fp) ≤ p2 + b3p
3/2 + b2p+ b1p

1/2 + 1 in (A.3) to get
a more uniform bound.

Remark A.3.3. When Theorem A.3.1 applies, p ≥ 7 and (A.3) implies #X(Qp) ∩ Γ <
#X ′(Fp) + 4p · c2

1(X). Also, Remark A.3.2 shows that #X ′(Fp) is roughly of size p2, say,
for large p and fixed Betti numbers of X . In this way, #X ′(Fp) can be seen as the main
term in the upper bound (A.3).

The following two results on rational points of surfaces are deduced from Theorem A.3.1
by base change to Qp and choosing G as the group of Q-rational points of the corresponding
abelian variety. We also obtain similar results over any number field, not just Q; see Section
10.1 in loc. cit.

Theorem A.3.4. Let X be a smooth, geometrically irreducible, projective surface of general
type contained in an abelian threefold A, both defined over Q. Let p > (128/9) · c2

1(X)2

be a prime of good reduction for X and A, and let X ′ be the reduction of X modulo p. If
rankA(Q) ≤ 1 and X ′ contains no elliptic curves over Falg

p , then X(Q) is finite and

#X(Q) ≤ #X ′(Fp) +
p− 1

p− 2
·
(
p+ 4p1/2 + 3

)
· c2

1(X).

Remark A.3.5. A compact complex manifold M is hyperbolic if every holomorphic map
f : C→M is constant. If a complex projective surface is hyperbolic, then it is of general
type. So, in Theorem A.3.4 we may require that X(C) be hyperbolic instead of requiring
general type —depending on the application, this might be easier to check. In fact, there
is no loss of generality in doing so: under the assumptions of Theorem A.3.4, the surface
X contains no elliptic curves over Qalg, hence, over C (by specialization). Furthermore,
X is not an abelian surface because it is of general type. Since X ⊆ A, a result of Green
(Theorem 1 in [44]) implies that X(C) is hyperbolic.
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Theorem A.3.6. Let X be a smooth, geometrically irreducible, projective surface contained
in an abelian variety A of dimension n ≥ 3, both defined over Q. Let H be an ample divisor
on A and let p be a prime of good reduction for X and A satisfying

p > max

{
3c2

1(X) + 2,
n! · (3 deg(H2.X) + deg(H.KX))n

nn · deg(Hn)

}
.

Let X ′ and A′ be the corresponding reductions modulo p of X and A. If rankA(Q) ≤ 1
and A′ is simple over Falg

p , then X(Q) is finite and

#X(Q) ≤ #X ′(Fp) +
p− 1

p− 2
·
(
p+ 4p1/2 + 3

)
· c2

1(X).

Remark A.3.7. Since A′ is geometrically simple, so is A. Thus, X(C) is hyperbolic by
Theorem 1 in [44] as it was in Theorem A.3.4 (see Remark A.3.5). Deep conjectures by
Bombieri and Lang predict that if V is a smooth projective variety over Q such that V (C)
is hyperbolic, then V (Q) is finite. For curves this is Faltings’s theorem since hyperbolic
projective curves are precisely those of genus g ≥ 2. When V is contained in an abelian
variety and V (C) is hyperbolic, finiteness of V (Q) was proved by Faltings [36] extending
methods of Vojta [89]. Hence, hyperbolicity of X(C) is natural in our context.

Remark A.3.8. It is expected that the rank of abelian varieties over Q of a fixed positive
dimension is 0 or 1 a positive proportion of the time each —ordering the abelian varieties,
for instance, by (Faltings or Theta) height— and this is proved for elliptic curves [10, 11].
Thus, one can expect that the rank assumption in Theorems A.3.4 and A.3.6 is often satisfied
in examples.

Remark A.3.9. For a variety X contained in an abelian variety A over Q, heuristically, one
sees that the limit of applicability of an analogue of Chabauty’s classical approach should
be dimX + dim Γ ≤ dimA where Γ is the p-adic closure of A(Q) in A(Qp). In our results
in the case dimA = 3, this limit rank condition is in fact reached.

A simple case where our results are applicable is given by the following.

Corollary A.3.10. LetA be an abelian threefold over Q with rankA(Q) ≤ 1 and End(AC) =
Z. There is a set of primes P of density 1 in the primes such that the following holds:

Let X be a smooth, geometrically irreducible, projective surface defined over Q and
contained inA, and let p ∈ P be a prime of good reduction forX with p > (128/9) ·c2

1(X)2.
Let X ′ be the reduction of X modulo p. Then

#X(Q) ≤ #X ′(Fp) +
p− 1

p− 2
·
(
p+ 4p1/2 + 3

)
· c2

1(X).

This is deduced from Theorem A.3.4 and results of Chavdarov [19] on absolutely simple
reduction of abelian varieties. Chavdarov’s results together with Theorem A.3.6 imply
analogous corollaries when dimA ≥ 3 is odd.
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Remark A.3.11. Given n ≥ 1, a general abelian variety B over C of dimension n satisfies
End(B) ' Z. In view of Remark A.3.8, abelian threefolds satisfying the conditions in
Corollary A.3.10 should be rather common. And in fact, they are easy to find; the Jacobian
of the genus 3 hyperelliptic curve y2 = x7 − x− 1 is such an example with Mordell–Weil
rank 1.

Remark A.3.12. For any abelian threefold as in Corollary A.3.10, our bounds for the number
of rational points apply to any smooth surface contained in A, e.g. by embedding A in a
projective space and intersecting with a general hyperplane (by Bertini’s theorem). This
gives plenty of examples.

For a curve C over a field, we let C(n) be its n-th symmetric power. If C is defined over
Q, the Q-rational points of C(2) are in bijection with Galois orbits of quadratic points and
unordered pairs of Q-rational points. If C is a hyperelliptic curve over Q, then we certainly
have that C(2)(Q) is infinite. As a direct application of our results, we can bound #C(2)(Q)
for non-hyperelliptic curves whose Jacobian has rank 0 or 1, under some conditions on the
reduction type at p.

Corollary A.3.13. Let C be a smooth, geometrically irreducible, projective curve over
Q of genus g ≥ 3 which is not hyperelliptic over Qalg and such that its Jacobian J has
rank J(Q) ≤ 1. Let p > (8g − 10)g be a prime of good reduction for C. Let C ′ and J ′

denote the reduction of C and J modulo p respectively. Suppose that C ′ is not hyperelliptic
over Falg

p and that J ′ is geometrically simple. Then C(2)(Q) is finite and

#C(2)(Q) ≤ #(C ′)(2)(Fp) +
p− 1

p− 2
·
(
p+ 4p1/2 + 3

)
· (4g − 9)(g − 1).

This is directly obtained from Theorem A.3.6 after some computations in intersection
theory. Regarding the hyperelliptic case, let us remark that one can get a bound for the
number of “unexpected” quadratic points by applying our results to the image of C(2) in the
Jacobian of C (this observation was pointed out to us by one of the referees.)

In a similar fashion, we will prove the following strengthening of Corollary A.3.13 for
curves of genus 3, by applying Theorem A.3.4 instead.

Corollary A.3.14. Let C be a smooth, geometrically irreducible, projective curve over Q of
genus 3 which is not hyperelliptic over Qalg and such that its Jacobian J has rank J(Q) ≤ 1.
Let p ≥ 521 be a prime of good reduction for C and denote by C ′ the reduction of C modulo
p. Suppose that C ′ is not hyperelliptic over Falg

p and that (C ′)(2) does not contain elliptic
curves over Falg

p . Then C(2)(Q) is finite and

#C(2)(Q) ≤ #(C ′)(2)(Fp) + 6 · p− 1

p− 2
·
(
p+ 4p1/2 + 3

)
< #(C ′)(2)(Fp) + 7.1 · p.
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Finally, we mention that the finiteness aspect of Theorem A.3.1 (and more generally,
Theorem 1.2.1) does not follow from Faltings’s theorem for subvarieties of abelian varieties
[36], as Γ is not a finite rank group when rankG = 1. Regarding bounds for the number of
rational points, the Diophantine approximation methods of Vojta [89] and Faltings [36, 37]
led to explicit bounds such as [70, 71] for subvarieties of abelian varieties over number
fields, outside the special set. However, as it is the case for the classical Chabauty–Coleman
method on curves compared to Diophantine approximation bounds, our p-adic approach for
surfaces leads to sharper estimates when it applies.

A.4 Sketch of the method: overdetermined ω-integrality

To simplify the notation, let us focus on the case dimA = 3 since the key features already
appear here. Furthermore, enlarging G we may assume that rankG = 1.

First we note that, at least heuristically, the Chabauty–Coleman p-adic approach has a
chance to succeed since dimX + dim Γ = 2 + 1 = dimA.

Consider the reduction map red: A(Qp) → A′(Fp) and for each x ∈ A′(Fp) let Ux =
red−1(x) ⊆ A(Qp) be the corresponding residue disk. We want to bound #Γ∩X(Qp)∩Ux
and then add these upper bounds as x varies in X ′(Fp). Let us parametrize Γ ∩ Ux by a
p-adic analytic map γ : pZp → Ux ⊆ A(Qp). If f is a local equation for X in Ux, then
#Γ ∩ X(Qp) ∩ Ux is the number of zeros of the one-variable p-adic analytic function
h = f ◦ γ on pZp. We remark that the idea of parametrizing Γ can be traced back to work of
Flynn [38] and it has been successful in computing the rational points of curves in particular
examples, although it has not previously led to general bounds such as (A.1).

Writing h(z) = c1z + c2z
2 + . . . ∈ Qp[[z]], the number of zeros can be estimated

provided that we have some information on the size of the coefficients cj . Namely, we need:

(I) a good upper bound for |cj| for all j, and

(II) some small N such that |cN | is not too small, say, |cN | ≥ 1.

To achieve (I) we perform the construction of the p-adic analytic map γ very carefully. We
develop a completely explicit theory of 1-parameter p-adic analytic subgroups and, with
some care in the choice of the local equation f , this allows us to prove the desired upper
bound. The key difficulty in the whole argument, however, is (II). We take a somewhat
indirect approach.

Consider the morphism of p-adic analytic groups Log : A(Qp) → Lie(A(Qp)) '
H0(A,Ω1

A/Qp
)∨ constructed by Coleman integration or by classical theory of p-adic Lie

groups. As rankG = 1, Log(Γ) is contained in a line of Lie(A(Qp)) which determines
a hyperplane H ⊆ H0(A,Ω1

A/Qp
). We choose ω1, ω2 ∈ H so that they reduce to inde-

pendent differentials ω′1, ω
′
2 on A′, which we restrict to differentials u1, u2 on X ′. For
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x ∈ X ′(Fp) let m(x) be the supremum of all integers m such that there is a closed immer-
sion φm : SpecFalg

p [z]/(zm+1)→ X ′ supported at x which is ω-integral for both ω = u1, u2.
Roughly speaking, ω-integrality for a differential ω means that the morphism φm solves the
differential equation determined by ω.

If u1 and u2 are independent over the function field of X ′, then the maps φm in the
definition of m(x) are jet solutions to an overdetermined system of differential equations. So,
one expects m(x) to be finite and bounded in terms of u1 and u2. This is indeed correct, but
it is far from obvious. Theorem 4.4 in loc. cit. gives such a bound in terms of the geometry
of the divisor D of the 2-form u1 ∧ u2.

Bounding m(x) turns out to be crucial, since we show in Lemma 9.16 in loc. cit. that
N ≤ m(x) + 1 with N as in (II). Together with the zero estimates and our upper bounds for
|cj| (see (I) above) we obtain the following key estimate:

#Γ ∩X(Qp) ∩ Ux ≤ 1 +m(x) · p− 1

p− 2
. (A.4)

Finally, the geometric bound for m(x) is applied to (A.4), and then added over x ∈
X ′(Fp). When x is not in the support of D = div(u1 ∧ u2) we show m(x) = 0, thus,
#Γ∩X(Qp)∩Ux ≤ 1. The contribution for x in the support of D is more complicated and
it corresponds to counting Fp-points in the support of D with suitable weights. The divisor
D can be non-reduced and highly singular, so this counting problem does not directly follow
from Weil’s estimates for points in curves over finite fields. We address this problem by
studying certain modified Zeta functions (see Section 3.5 in loc. cit.), which allows us to
conclude the argument.

We make heavy use of ω-integrality for schemes over rings or over fields of positive
characteristic. Thus, classical analytic considerations on ω-integrality are not enough, and
we need purely algebraic methods. Fortunately such a study was carried out by Garcia-
Fritz [40–42] over C in the context of her generalization of Vojta’s explicit version of
Bogomolov’s approach to quasi-hyperbolicity, see [28, 90]. These algebraic methods easily
extend to an arbitrary base.

There is a major technical difficulty which is not present in previous works around the
Chabauty–Coleman method. Namely, at various points of the argument we need to restrict
differential forms to subvarieties of abelian varieties in a way that preserves non-triviality.
For example, while ω′1 and ω′2 are independent onA′, is is not clear whether u1∧u2 is not the
zero form on X ′, and this is necessary even to define the divisor D = div(u1 ∧ u2). Part of
the difficulties are due to the fact that X does not have a particularly convenient presentation
that allows for explicit computations with differentials, unlike the case of symmetric powers
of curves. The required non-vanishing results for restriction of forms are not difficult to
obtain in characteristic zero by analytic means, but we need them in positive characteristic.
This is achieved in Section 5 in loc. cit. by means of intersection theory.
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(German) [Finiteness theorems for abelian varieties over number fields] Invent. Math.
73, no. 3, 349-366.

[36] Faltings, G. (1991). Diophantine approximation on abelian varieties. Ann. Math.,
133, 549-576.

[37] Faltings, G. (1994). The general case of S. Lang’s conjecture. Barsotti Symposium in
Algebraic Geometry (Abano Terme, 1991). Perspect. Math. 15. Academic Press. San
Diego, p. 175-182

[38] Flynn, E. (1997). A flexible method for applying Chabauty’s theorem. Compositio
Math. 105, no. 1, 79-94.

[39] Frey, G. (1989). Links between solutions ofA−B = C and elliptic curves. In Number
theory (pp. 31-62). Springer, Berlin, Heidelberg.



54

[40] Garcia-Fritz, N. (2015). Curves of low genus on surfaces and applications to Dio-
phantine problems. PhD Thesis, Queen’s University.

[41] Garcia-Fritz, N. (2018). Sequences of powers with second differences equal to two
and hyperbolicity. Trans. Am. Math. Soc. 370(5), 3441-3466.

[42] Garcia-Fritz, N. (2018). Quadratic sequences of powers and Mohanty’s conjecture.
International Journal of Number Theory 14.02, 479-507.

[43] Gekeler, E. & Reversat, A. (1996). Jacobians of Drinfeld Modular Curves J.Reine
Angew. Math. 476, 27-93.

[44] Green, M. (1978). Holomorphic Maps to Complex Tori. American Journal of Mathe-
matics, 100(3), 615-620.

[45] Griffon, R. (2018). A new family of elliptic curves with unbounded rank. Moscow
Mathematical Journal, Volume 20, Issue 2, pp. 343-374.

[46] Grothendieck, A. (1964) Formule de Lefschetz et rationalité des fonctions L, Sém.
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