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1 Introduction

1.1 Historical context and definitions

The study of heights of points in arithmetic varieties plays an important role in questions of arith-
metic geometry. It is related to interesting problems where there have been a lot of development in
the past 30 years. For instance, it plays a central role in the proof of finiteness results on integral and
rational points on curves an Abelian varieties like the theorems of Siegel, Mordell-Weil and Faltings
(see for instance [4]). It is also very useful in transcendence theory and it is an essential tool in
Diophantine Geometry (see [13]). Given a height h in a variety X over Q it has been of special
interest to understand the threshold where the points with bounded height begin to be Zariski dense.

Let X be an algebraic variety over Q. For a function f : X(Q)→ R, the essential minimum µess(f),
is defined by

µess(f) = inf{θ ∈ R : {α ∈ X(Q)/f(α) ≤ θ} is Zariski dense} .

When f is a height function, µess(f) plays a role in the phenomenon of equidistribution of small
points (e.g see [7], [20], and [21]). However, it is notoriously difficult to compute this quantity in
general situations.

The exact value of the essential minimum is well known when X is related to a group variety en-
dowed with a height that behaves well with respect to the group structure and contains sufficiently
many torsion points. In fact, we have that the height associated to such group variety is zero at
any torsion point (see [23], section 6). Therefore the essential minimum of that height is zero. More
generally, in 2015 J. Burgos Gil, P. Philippon and M. Sombra computed the exact value of the
essential minimum for toric varieties endowed with toric heights (see [8] Theorem A and Theorem
B for more details).

For concreteness, we proceed to review the case of the Zhang-Zagier height, which is related to the
line x+ y = 1. In this work we treat the non-toric situations.

To recall the definition of the Zhang-Zagier height, given α ∈ Q, we will consider a number field K
containing α which is a Galois extension of degree d. For any valuation v we denote the local degree
dv = [Kv : Qv], where Kv and Qv are the completions of K and Q with respect to v. We denote
MK the set of all places of K normalized in such a way that they satisfy the product formula, this
means that for each arquimedean place v we consider |x|v = |x|dv/d and for each non-arquimedean
place w we consider |x|w = p−dw/d, where p is the unique prime such that |p|w < 1. The Weil height
h : Q→ R, is given by

h(α) =
1

[K : Q]

∑
ν∈MK

log+ |α|ν .

It is well known that h(α) is independent of the field containing α (e.g see [4] Lemma 1.5.2). Also,
h(ζ) = 0 for all roots of unity ζ. Hence, we have that µess(h) = 0.

The Zhang-Zagier height hZ : Q → R is defined by hZ(α) := h(α) + h(1 − α). Let X ⊂ C2, a
proper subvariety defined over Q. Then, we can define the height hX : X(Q) → R, by hX(x, y) =
h(x) + h(y).

Let T ⊂ C2 be a subvariety, we have that T is a torsion subvariety if and only if there are n,m ∈
Z \ {0} and ζ a root of unity, such that

T = {(x, y) : xnym = ζ}.

We state a particular case of a Theorem of S.-W. Zhang.

4



Theorem.([23]): Let X ⊂ C2 defined over Q be a proper subvariety. Then, µess(hX) = 0 if and
only if X contains a torsion subvariety.

From this theorem we can conclude that µess(hZ) > 0. The question now, is how to compute the
essential minimum of heights like hZ . However, the answer remains unknown. Despite of this, there
have been several attempts to approach this number. In 1993 Zagier proved the following theorem

Theorem.([22]): For all α ∈ Q such that α /∈
{

0, 1, eiπ/3, e−iπ/3
}

, we have

hZ(α) ≥ 1

2
log

(
1 +
√

5

2

)
≈ 0.2406059....

With equality if and only if α or 1− α is a primitive 10th root of unity

This theorem tells us that µess(hZ) ≥ 0.240606. In 2001 Doche improved this result and proved the
following theorem

Theorem.([10], [9]): Let α be an algebraic number different from the roots of (z2 − z)(z2 − z +
1)φ10(z)φ10(1− z). Then

h(α) ≥ 0.2482474.

Furthemore, the smallest limit point of V = {h(α) : α ∈ Q} is less than 0.25443678

Note that the smallest limit point of V is greater or equal than µess(hZ). In fact, we have that

µess(hZ) = inf{θ ∈ R : {α ∈ Q/hZ(α) ≤ θ} is infinite }.

Therefore, if x is a limit point of V, there exists a sequence of algebraic numbers {αn}n∈N, such
that hZ(αn) → x. Therefore, for each ε > 0, there exists n0 ∈ N, such that if n > n0, then
|hZ(αn)−x| < ε. Then, we have that hZ(αn) < x+ε for all n > n0, we conclude that µess(hZ) ≤ x+ε,
since ε is arbitrary, we have that µess(hZ) ≤ x. We conclude that µess(hZ) is less than or equal to
the smallest limit point of V

In 2018 V. Flammang improved the lower bound.

Theorem.([12]): If α is an algebraic integer different from the roots of (z2 − z)(z2 − z +
1)φ10(z)φ10(1− z), then

h(α) ≥ 0.248744.

These results show that 0.248744 ≤ µess(hZ) ≤ 0.25443678. In 2021 F. Ballaÿ proved that the es-
sential minimum is equal to another quantity called the asymptotic minimal slope (see [2] definition
5.2), however there is no an effectively computable method yet to obtain the exact value of this
number.

1.2 Methods and main Results

In this work we consider heights attached to families of lines and obtain upper and lower bounds
for the essential minimum of these functions. Also we determine, in some cases, explicit intervals
where the image of the height function is dense. Our main tool to find upper bounds and inter-
vals of density, is a refinement of the classical Fekete-Szegö theorem due to Burgos Gil, Philippon,
Rivera-Letelier and Sombra ([7]). To obtain lower bounds we adapt the techniques used in [6] by J.
Burgos Gil, J. Rivera-Letelier and R. Menares to this specific case.
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We consider the case in which X is a non-vertical line. Let a, b ∈ Q, a 6= 0, we consider the subvari-
ety X = La,b = {(x, y) ∈ C2 : y = ax+ b}, and we denote ha,b = hLa,b . Note that the Zhang-Zagier
height, corresponds to the variety L−1,1, and hZ = h−1,1. The reason why we study this case first
is because we apply a slightly different method which make the results and computations simpler.

Before proceeding, we introduce some notations. Let a, b ∈ Q, we write Ka the Galois closure
of Q(a)/Q and Ka,b the Galois closure of the field generated by a and b over Q. We also write
G(a) =Gal(Ka/Q), G(a, b) =Gal(Ka,b/Q), deg(a) = [Q(a) : Q] and Gal(a) = {σ(a) : σ ∈ G(a)}.

Let σ ∈ G(a, b), we define, Ψσ
a,b : R→ R, ϕ : R→ R, ∆ : Q×Q→ R and Ωa,b : R→ R , given by

Ψσ
a,b(t) =

1

2π

∫ 2π

0

log+

∣∣∣∣eiθ +
σ(b)

σ(a)
+ t

∣∣∣∣ dθ, (1)

ϕ(t) =
1

2π

∫ 2π

0

log+ |eiθ + t|dθ, (2)

∆(a, b) =
∑
p

prime

∑
σ∈G(a,b)

log+ max(|σ(a)|p, |σ(b)|p) +
∑

σ∈G(a,b)

log+ |σ(a)|, (3)

Ωa,b(t) = ∆(a, b) + ϕ(t) +
∑

σ∈G(a,b)

Ψσ
a,b(t). (4)

Now, we can state the following theorem

Theorem A: Let a, b ∈ Q and t ∈ R. Then,

µess(ha,b) ≤ Ωa,b(t)

Furthermore, assume that one of the following properties holds

i) There exists σ0 ∈ G(a, b), such that, ||σ0(a)| − |σ0(b)|| > 1.

ii) There exists σ0 ∈ G(a, b), such that, ||σ0(a)| − |σ0(b)|| < 1 and |σ0(a)|+ |σ0(b)| < 1.

iii) The minimum value of ha,b is only achieved in a finite set of algebraic numbers.

Then, there exists an effectively computable number K(a, b) > 0, such that

µess(ha,b) ≥ K(a, b)

(See section 4, definition 4.1.2 for the definition of K(a, b)).

We can compare the lower bound in Theorem A results with the results in [18] by W. Schmidt and
the results in [3] by F. Beukers and D. Zagier which where generalized by C. Samuels in [17]. These
works use a similar method. For instance, if we take a = 1 and b = 4, then our lower bound is
better than the one given by W. Schmidt or F. Beukers and D. Zagier, in our case the lower bound
is K(1, 4) = log(3) and in the other cases is 1/52 and 0.090087 respectively. However, our method
fails for a = 0.5 and b = 1, and the lower bounds given by M. Schmidt or F. Beukers and D. Zagier
are positive. In the case of the Zhang-Zagier height, our lower bound is the same given by Zagier
in [22]

In order to construct intervals where the image of ha,b is dense, we need to restrict the values of a
and b to Q, also we need some definitions. Let a, b ∈ Q, a 6= 0. If b 6= 0, we can write a = a1/a2,
b = b1/b2 and (a1, a2) = 1, (b1, b2) = 1. We define Sa,b = {p prime : p|a2 ∨ p|b2}. If b = 0, then
Sa,0 = Sa = {p : p|a2}. We also write s = |Sa,b|, then S = {pi : 1 ≤ i ≤ s}. Using this notation, we
can define the function Γa,b : Rs+1 → R
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Γa,b(x, r1, r2, ..., rs) =

s∑
i=1

log+ |ri|+ log+ max(|a|piri, |b|pi)

+
1

2π

∫ 2π

0

log+

∣∣∣∣ eiθ

r1r2...rs
+ x

∣∣∣∣+ log+

∣∣∣∣ aeiθ

r1r2...rs
+ b+ x

∣∣∣∣ dθ.
Theorem B: Let a, b ∈ Q. Then, for each x, r1, r2, ..., rs ∈ R, the image of ha,b is dense in the
interval [Γa,b(x, r1, r2, ..., rs),∞), in particular

µess(ha,b) ≤ Γa,b(x, r1, r2, ..., rs).

The following corollary is a direct consequence of Theorem A and Theorem B by setting t = −1/2

Corollary C: Let hZ be the Zhang-Zagier height. Then, the image of hZ is dense in the interval
[0.31944909,∞). In particular

µess(hZ) ≤ 0.31944909.

This is also a direct consequence of Theorem 1 in [15].

In 2003, P. Dresden proved that the image of hZ is dense in the interval [0.39678,∞) (see [11]),
our result is slightly better, however it is not clear that our intervals of density are better in all cases.

Note that Corollary C does not improve the upper bound given by C. Doche, however it gives
intervals where the image of hZ is dense. The same way, Theorem B does not improve the upper
bound given in Theorem A, however, it does give intervals of density for a, b ∈ Q.

For instance, if we take a = 1 and b = 2, we find that K(1, 2) = log(
√

3) and Ω1,2(0) ≤ 0.6461599

(see Theorem 2.9 and Corollary 3.9). Therefore, Theorem B gives us that, log(
√

3) = 0.5493061... ≤
µess(h1,2) ≤ 0.6461599 and the image of h1,2, is dense in the interval [0.6461599,∞]. We can com-
pare this result with the one given in [23] by Zhang, we can see that our bounds are slightly better,
the lower bound and upper bound given by Zhang are 0.50146 and 0.680367 respectively. However
the result given by Zhang is more general and can be used in cases where our lower bound fails,
also the intervals of density can not be found by the method given by Zhang. In general, it is not
clear when our lower bounds and upper bounds are better than the ones given by Zhang, if we take
for instance a = 0.1 and b = 1.01, we have that both bounds are worse, our lower bound is zero
because our method fails and our upper bound is greater than 1, meanwhile the lower bound given
by Zhang is positive and the upper bound is lower that 1 .

Let v ∈ MQ, we denote by Qv the completion of Q at v. Let Qv, the algebraic closure of Qv, and

let Cv denote the completion of Qv. It is well known that Cv is algebraically closed, we also define
Dv(a, r) = {z ∈ Cv : |z − a|v ≤ r}, sometimes we will write Dv(0, 1) = Ov.

Now, let q ∈ Q(t), q(t) = q1(t)/q2(t), we write q1(t) = ant
n + ...+ a1t+ a0 and q2(t) = bmt

m + ...+
b1t+ b0. Let q, r ∈ Q(t) , we consider Xq,r = {(q(t), r(t)) ∈ C2 : t ∈ C} and write hXq,r = hq,r. Let
σ ∈ G(a1, ..., an, b1, ...., bm) =: G(q), we call qσ(t) = σ(an)tn + ...+ σ(a1)t+ σ(a0). We also denote
Kq, the Galois closure of the field generated by a1, ..., an, b1, ...., bm over Q. Now, we can define a

function Ψσ
q : R→ R and two functions ∆ : Q[t]→ R and Ωq,r : R→ R, given by

Ψσ
q (t) =

1

2π

∫ 2π

0

log+ |qσ(eiθ + t)|dθ. (5)

∆(q) =
∑
p

prime

∑
σ∈G(q)

log+ max(|σ(a1)|p, ..., |σ(an)|p). (6)
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Ωq,r(t) = ∆(q) + ∆(r) +
∑

σ∈G(q)

Ψσ
q (t) +

∑
σ∈G(r)

Ψσ
r (t). (7)

Now, we can state the following theorem analogous to Theorem B

Theorem D: Let q, r ∈ Q(t) and t ∈ R. Then,

µess(hq,r) ≤ Ωq,r (t)

Furthermore, assume that q(t) = t, r(t) = atn+c, where n ∈ N, a, c ∈ Q and there exists σ0 ∈ G(a, c)
such that |σ0(c)| − |σ0(a)| > 1. Then, there exists an effectively computable number K(q, r) > 0,
such that.

µess(hq,r) ≥ K(q, r).

(See section 6, Definition 6.2.2, for the definition of K(q, r)).

Finally, let q, r ∈ Q[t], q(t) = ant
n + ... + a0 and r(t) = bmt

m... + b0, we consider Sq = {p prime :
p|a0∨p|a1∨...∨p|an} = {p1, p2, ..., psq}, Sr = {p prime : p|b0∨p|b1∨...∨p|bm} = {psq+1, psq+2, ..., psq+sr}
and Q+ = {c ∈ Q : c > 0}. Then, we define Γq,r : R× (Q+)sq+sr → R, given by

Γq,r(x, r1, r2, ..., rsq+sr ) =

sq∑
i=1

log+ max
|z|pi≤ri

|q(z)|pi +

sq+sr∑
i=sq+1

log+ max
|z|pi≤ri

|r(z)|pi

+
1

2π

∫ 2π

0

log+

∣∣∣∣q( eiθ

r1r2...rsq+sr
+ x

)∣∣∣∣+ log+

∣∣∣∣r( eiθ

r1r2...rsq+sr
+ x

)∣∣∣∣ dθ.
Theorem E: Let q, r ∈ Q[t]. Then, for each x, r1, r2, ..., rsq+sr ∈ R, the image of hq,r is dense in
the interval [Γa,b(x, r1, r2, ..., rsq+sr ),∞), in particular

µess(hq,r) ≤ Γq,r(x, r1, r2, ..., rsq+sr ).

We will start in section 2 by giving a brief introduction to Berkovich spaces and capacity theory.
Secondly in section 3 we will begin to study lines by determining upper bounds for the essential
minimum. Then, in section 4 we will continue the case of lines, compute lower bounds and prove
Theorem A using the methods outlined in [6]. In section 5 we will determine intervals of density
for the image of ha,b for a, b ∈ Q and prove Theorem B. Finally in section 6 we will compute upper

bounds, lower bounds and intervals of density for the essential minimum of hq,r, where q, r ∈ Q[t]
and prove Theorem D and Theorem E.
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2 Capacity theory

2.1 Classical Capacity theory

In this section we will give a brief review about the classical Capacity theory, all the definitions and
notations have been taken from [16].

Let D ⊂ Rn, n ∈ N equipped with the induced topology, and let C0
c (D,R) the space of all continuous

functions with compact support over D. A Radon measure over D is a continuous linear functional
in C0

c (D,R). If µ is a Radon measure over D and f ∈ C0
c (D,R) is a continuous function with

compact support, we use the functional notation µ(f) as well as the integral notation

µ(f) =

∫
D

fdµ =

∫
D

f(x)dµ(x).

A positive measure is a Radon measure µ such that for all f ∈ C0
c (D,R) with f(z) ≥ 0, ∀z ∈ D, we

have µ(f) ≥ 0.

If D is a compact set and µ is a Radon measure, we define the mass of µ by

µ(D) =

∫
D

1dµ(z)

Let D be a compact set, a probability measure in D is a positive Radon measure µ such that
µ(D) = 1. The set of all probability measures in D is denoted by M(D).

Now, let E ⊂ C a compact set, we define the energy integral of µ by IE :M(D)→ R, given by

IE(ν) =

∫ ∫
E×E

log
1

|z − t|
dµ(z)dµ(t)

The Robin constant of a compact set E ⊂ C is defined by

VE = inf
µ∈M(E)

I(µ)

Finally, we define the capacity of E by

Cap(E) = e−VE

It is well known that the value of VE is achieved at a measure µ ∈ M(E). Furthermore, if
Cap(E) > 0, then this measure is unique and it is denoted by µE , we call this the equilibrium
measure of E.

2.2 The Berkovich unit disk

Now, we will give a brief review about the Berkovich unit disc, all the definitions and notations have
been taken from [1]. Let v ∈ MQ be a nonarchimedean place. We define Av = Cv〈t〉, the ring of
all power series with coefficients in Cv, converging on Dv(0, 1). That is, Av is the ring of all power
series f(t) =

∑∞
i=0 ait

i ∈ K[[t]], such that limi→∞ |ai|v = 0. Equipped with the Gauss norm ||.||v
defined by ||f ||v = maxi(|ai|v), Av becomes a Banach algebra over Cv

Definition 2.1 : A multiplicative seminorm (m.s) on Av is a function [.]x : Av → R≥0 such that
[0]x = 0, [1]x = 1, [fg]x = [f ]x[g]x and [f +g]x ≤ [f ]x+[g]x, for all f, g ∈ Av. It is a norm provided
that [f ]x = 0 if and only if f = 0

A m.s [.]x is called bounded if there is a constant Cx such that [f ]x ≤ Cx||f ||v, for all f ∈ Av
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Definition 2.2 : The Berkovich unit disk Dv(0, 1) is the set of all bounded m.s on Av

We will write x ∈ Dv(0, 1) instead of [.]x. We denote ζGauss = ||.||v, the Gauss’s norm. Note that
ζGauss ∈ D(0, 1), furthermore, for all x ∈ Dv(0, 1) and all f ∈ Av, [f ]x ≤ [f ]ζGauss

.

The topology on Dv(0, 1) is taken to be the Gelfand topology, it is the weakest topology such that
for all f ∈ Av and α ∈ R, the sets

U(f, α) = {x ∈ Dv(0, 1) : [f ]x < α}

V (f, α) = {x ∈ Dv(0, 1) : [f ]x > α}

are open. This topology makes Dv(0, 1) into a compact Hausdorff space. For each Ev ⊂ Dv(0, 1), we
call Ev, the closure of Ev under this topology. The space Dv(0, 1) is connected and path-connected.

Let a ∈ Dv(0, 1), we can define the evaluation seminorm

[f ]a = |f(a)|v

It is clear that [f ]a is a m.s, so we can identify elements in a ∈ Dv(0, 1) with elements in Dv(0, 1)
through the map I : Dv(0, 1) → Dv(0, 1), I(a) = [f ]a. Also, for each subdisc Dv(a, r) ⊂ Dv(0, 1),
we have the supremum norm

[f ]Dv(a,r) = sup
z∈Dv(a,r)

|f(z)|v.

Since |.|v is a non-archimedean absolute value, then this norm is multiplicative. More generally, for
any decreasing sequence of discs x = {Dv(ai, ri)}i≥1, one can consider the limit seminorm

[f ]x = lim
i→∞

[f ]Dv(ai,ri)

Every x ∈ Dv(0, 1) can be realized in this form (See [1] Theorem 1.2). Moreover, we have the
Berkovich classification theorem, which says that every x ∈ Dv(0, 1) is one of the following types

Type I : x = [.]a a ∈ Dv(0, 1) (classical points)

Type II : x = [.]Dv(a,r) a ∈ Dv(0, 1) and r ∈ |C∗v| the value group of Cv (rational points)

Type III : x = [.]Dv(a,r) a ∈ Dv(0, 1) and r /∈ |C∗v| (irrational points)

Type IV : x is a point corresponding to the sequence {Dv(ai, ri)}i≥1 with empty intersection (nec-
essarily lim ri > 0).

Points of type I and points of type II are dense in Dv(0, 1) (See [1] Lemma 1.7 and Lemma 1.8).

Let x, y ∈ Dv(0, 1), we say that x � y if [f ]x ≤ [f ]y for all f ∈ Cv〈t〉. We have that (Dv(0, 1),�)
is a partially ordered set and ζGauss is the unique maximal point with respect this partial order.
Let Dv(ai, ri) and Dv(a

′
i, r
′
i) be two strictly decreasing sequences of discs corresponding to x and

y, respectively. Then x � y if and only if for each natural number k there exist m,n > k such that
Dv(am, rm) ⊆ Dv(a

′
n, r
′
n).

Let (T,≤) be a partially ordered set satisfying the following two axioms:

(P1) T has a unique maximal element ζ called the root of T.

(P2) For each x ∈ T , the set Sx = {z ∈ T : z ≥ x} is totally ordered.
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We say that T is a parametrized rooted tree if there is a function α : T → R≥0, such that:

(P4) α(ζ) = 0.

(P2) α is order-reversing, in the sense that x ≤ y implies α(x) ≥ α(y).

(P2) The restriction of α to any full totally ordered subset of T gives a bijection onto a real interval.

Let diam : Dv(0, 1)→ R≥0 be the function defined in the following way, if x ∈ Dv(0, 1) corresponds
to a sequence of nested discs {Dv(ai, ri)} and r = limi→∞ ri, then diam(x) = r. It can be proved
that (Dv(0, 1),�) provided with the function α : Dv(0, 1)→ R≥0 given by α(x) = 1− diam(x), is a
parametrized rooted tree. Moreover, let x, y ∈ Dv(0, 1), we can define x ∨ y to be the unique point
belonging to

Sx ∩ α−1
(

sup
z∈Sy∩Sx

α(z)

)

We have that x � x ∨ y, y � x ∨ y, and that if z ∈ Dv(0, 1) is any point with x � z and y � z,
then x ∨ y � z. We call x ∨ y the least upper bound of x and y. Now we can define the metric
d : Dv(0, 1)→ R

d(x, y) = 2diam(x ∨ y)− diam(x)− diam(y)

2.3 Capacity on the Berkovich unit disc

The metric d defied in the previous section makes Dv(0, 1) into a metric space such that for any two
points x, y ∈ Dv(0, 1) there is a unique arc [x, y] = {z ∈ Dv(0, 1) : x � z � x ∨ y} ∪ {z ∈ Dv(0, 1) :
y � z � x ∨ y} in Dv(0, 1) joining x to y, and this arc is a geodesic segment. We also have that
Dv(0, 1) is uniquely path-connected. Let x, y ∈ Dv(0, 1), we define the function δ : Dv(0, 1)2 → R≥0
given by

δ(x, y) = diam(x ∨ y).

If x corresponds to a sequence of nested discs {Dv(ai, ri)} and y {Dv(bi, si)}, then

δ(x, y) = lim
n→∞

max(ri, si, |ai − bi|).

Given a probability measure ν with support contained in Ev ⊂ Dv(0, 1), define the energy integral

IEv (ν) =

∫ ∫
Ev×Ev

− log δ(x, y)dν(x)dν(y).

let ν vary over probability measures with support contained in E, and define the Robin constant

V (Ev) = inf
ν
IEv (ν)

Finally, we define the capacity of E

Cap(Ev) = e−V (Ev)

It is well known that Cap(Dv(0, 1)) = 1 and it is achieved when ν = δζGauss
, this is, the linear

functional such that for every polynomial f , we have ν(f)(ζGauss) = sup
|z|p≤1

|f(z)|p.

All previous results are extensible to any disc Dv(a, r), with a, b ∈ R, the results are analogous.
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3 Upper Bounds

3.1 Main tools

Our purpose is to give a good upper bound for the essential minimum of each element in the family
of heights {ha,b}a,b∈Q. Since the case a = 0 is trivial, we will assume henceforth a 6= 0.

Let p be a prime and let |.|p be the standard p−adic value on Qp. It is well known that |.|p
can be uniquely extended to Qp. We fix an embedding ι0 : Q → Qp, and for α ∈ Q, we define
|α|p = |ι0(α)|p. Before proceeding, we need the following lemmas.

Lemma 3.1.1: Let α ∈ Q, and K number field containing α, which is a Galois extension. Then

h(α) =
1

[K : Q]

∑
p

prime

∑
σ∈Gal(K/Q)

log+ |σ(α)|p +
∑

σ∈Gal(K/Q)

log+ |σ(α)|∞

 .

Proof: Using [4], Corollary 1.3.5 and its proof, we have that, for each place ν ∈ MK , there exists
a σ ∈ Gal(K/Q) and a place |.|w of Q, such that |.|ν = |.|w ◦ σ, this proves the lemma. �

Now, we define the function U ba : Q→ R, given by

U ba(α) =
1

deg(α)

∑
β∈Gal(α)
σ∈G(a,b)

log+

∣∣∣∣β +
σ(b)

σ(a)

∣∣∣∣ .
Let a, b ∈ Q, a 6= 0, we recall the definition of ∆(a, b) given in section 1 (3)

∆(a, b) =
∑
p

prime

∑
σ∈G(a,b)

log+ max(|σ(a)|p, |σ(b)|p) +
∑

σ∈G(a,b)

log+ |σ(a)|.

Lemma 3.1.2: Let a, b ∈ Q and α ∈ Z, then

h(aα+ b) ≤ U ba(α) + ∆(a, b).

Proof: We consider K the Galois closure of the field generated by a, b and α. It is clear that
Ka ⊆ Ka,b ⊂ K and deg(α) ≤ [Kα : Q] ≤ [K : Q]. Then, using Lemma 3.1.1, we have that

h(aα+ b) =
1

[K : Q]

∑
p

prime

∑
σ∈Gal(K/Q)

log+ |σ(aα+ b)|p +
∑

σ∈Gal(K/Q)

log+ |σ(aα+ b)|



≤ 1

[K : Q]

∑
p

prime

∑
δ∈G(α)
σ∈G(a,b)

log+ |σ(a)δ(α) + σ(b)|p

+
1

[Kα : Q]

 ∑
δ∈G(α)
σ∈G(a,b)

log+ |σ(a)δ(α) + σ(b)|

 .

In the last inequality we have used that [Kα : Q] ≤ [K : Q] and that the number of elements
in Gal(K/Q) is less than or equal to the number of pairs (σ, δ), with σ ∈ G(α) and δ ∈ G(a, b).
Using the fact that α ∈ Z, we conclude that for every p prime, σ ∈ G(a, b) and δ ∈ G(α), we have
|σ(a)δ(α) + σ(b)|p ≤ max(|σ(a)|p, |σ(b)|p). Therefore
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h(aα+ b) ≤
∑
p

prime

∑
σ∈G(a,b)

log+ max(|σ(a)|p, |σ(b)|p) +
1

[Kα : Q]

 ∑
δ∈G(α)
σ∈G(a,b)

log+ |σ(a)|+ log+

∣∣∣∣δ(α) +
σ(b)

σ(a)

∣∣∣∣


≤ ∆(a, b) +
1

[Kα : Q]

∑
δ∈G(α)
σ∈G(a,b)

log+

∣∣∣∣δ(α) +
σ(b)

σ(a)

∣∣∣∣
= ∆(a, b) +

1

deg(α)

∑
β∈Gal(α)
σ∈G(a,b)

log+

∣∣∣∣β +
σ(b)

σ(a)

∣∣∣∣
= U ba(α) + ∆(a, b).

This concludes the proof of the lemma. �

Let z ∈ C, E ⊂ C a compact set, and r > 0, we define d(z, E) = infa∈E |z − a|, and B(E, r) = {z ∈
C : d(z, E) < r}.

Let E = {a1, a2, ..., ak} ⊂ C a finite set, we define the probability measure δ(E) : C0
c (E,R)→ R, by

δ(E)(f) =
1

k

k∑
n=1

f(an).

Now, we can set the following proposition

Proposition 3.1.3: Let E ⊂ C a compact set with Cap(E) = 1 and invariant under complex con-
jugation, then, there exists a sequence of algebraic integers {αn}n∈N, such that Gal(αn) ⊂ B

(
E, 1

n

)
,

and

δ(Gal(αn))
∗−→ µE .

Proof: Using [7], Proposition 7.4 and Proposition 7.3, with E|.|∞ = E and E|.|p = Op = {z ∈ Cp :
|z|p ≤ 1}, we conclude the proof. �

Proposition 3.1.4: Let a, b ∈ Q, and a 6= 0. Then, for each t ∈ R we have that

µess(ha,b) ≤ Ωa,b(t).

Here, Ωa,b is the function defined in (4) given by

Ωa,b(t) = ∆(a, b) + ϕ(t) +
1

2π

∑
σ∈G(a,b)

∫ 2π

0

log+

∣∣∣∣eiθ +
σ(b)

σ(a)
+ t

∣∣∣∣ dθ.
Proof: By Lemma 3.1.2, given α ∈ Z, we have that

ha,b(α) = h(α) + h(aα+ b),

≤ h(α) + U ba(α) + ∆(a, b) =: ηa,b(α).

For Proposition 3.1.3, given E ⊆ C, a compact set with Cap(E) = 1 and invariant under complex
conjugation, there exists a sequence of algebraic integers αn ∈ Z, such that Gal(αn) ⊂ B

(
E, 1

n

)
and
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h(αn) + U ba(αn) −→
n→∞

∫
E

log+ |x| dµE(x) +
∑

σ∈G(a,b)

∫
E

log+

∣∣∣∣x+
σ(b)

σ(a)

∣∣∣∣ dµE(x) =: ME .

Therefore

ha,b(αn) ≤ ηa,b(αn) −→
n→∞

∆(a, b) +ME =: JE .

We claim that JE < ∞. In fact, we have that the only possible unbounded term in the definition
could be ME . Let the functions, f : R → R, and for each σ ∈ G(a, b) the function gσ : R → R,
be defined by f(t) = log+ |t| and gσ(t) = log+ |t + σ(b)/σ(a)|. These functions are continuous and
E is a compact set, therefore, ME < ∞. Since JE < ∞, the sequence {h(αn)}n∈N is bounded, we
conclude that there is a subsequence which is convergent, we call it {βn}n∈N.

If ha,b(βn) −→
n→∞

Z, then, by definition of limit, given ε > 0 the set {βn ∈ Z : ha,b(βn) ≤ Z + ε} is

infinite, therefore for every ε > 0 we have µess(ha,b) ≤ Z + ε. Taking ε→ 0 we get µess(ha,b) ≤ Z.
Since Z ≤ JE , we conclude that µess(ha,b) ≤ JE . Given t ∈ R we use E = St = S1 + t, where

S1 = {z ∈ C : |z| = 1}. Then, µSt is the natural translation of the measure µS1 = dθ
2π . We deduce

that

µess(ha,b) ≤ JSt = Ωa,b(t).

This concludes the proof of the proposition. �

Let a, b ∈ Q, a 6= 0, then

Ωa,b(t) = ∆(a, b) + ϕ(t) + ϕ(t+ b/a). (8)

We want to find a point for which Ωa,b achieves its minimum value and compute a power series for
Ωa,b at that point. Before proceeding, we will prove the following two lemmas

Lemma 3.1.5: The function ϕ satisfies the following properties

i) For each t ∈ R, ϕ(t) = ϕ(−t),

ii) for |t| ≥ 2, ϕ(t) = log |t|.

Proof: Let t ∈ R, we have

ϕ(−t) =
1

2π

∫ 2π

0

log+
∣∣eiθ − t∣∣ dθ =

1

2π

∫ 2π

0

log+
∣∣∣ei(θ+π) + t

∣∣∣ dθ
=

1

2π

∫ 3π

π

log+
∣∣eiθ + t

∣∣ dθ =
1

2π

(∫ 2π

π

log+
∣∣eiθ + t

∣∣ dθ +

∫ 3π

2π

log+
∣∣eiθ + t

∣∣ dθ)
=

1

2π

(∫ 2π

π

log+
∣∣eiθ + t

∣∣ dθ +

∫ π

0

log+
∣∣eiθ + t

∣∣ dθ)
=

1

2π

∫ 2π

0

log+
∣∣eiθ + t

∣∣ dθ = ϕ(t).

This proves (i). Now, if |t| ≥ 2, then for each θ ∈ R, |eiθ + t| > |1 − |t|| = |t| − 1 ≥ 1, hence,
log+ |eiθ + t| = log |eiθ + t|, we conclude that
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ϕ(−t) =
1

2π

∫ 2π

0

log
∣∣t− eiθ∣∣ dθ

=
1

2π
Re

(∫ 2π

0

log
(
t− eiθ

)
dθ

)
=

1

2π
Re

(∫
S1

1

iz
log (t− z) dz

)
=

1

2π
Re

(
2πi

1

i
log (t)

)
= log |t|

This proves (ii). �

Lemma 3.1.6: Let f : Q → R, γ, δ ∈ Q and γ 6= 0, define fγ,δ : Q → R by fγ,δ(α) = f(γα + δ),
then

µess(f) = µess(fγ,δ).

Proof: In fact, if µess(f) = A, then there exist a sequence {αn}n∈N ⊆ Q such that f(αn) → A.

Let βn = (αn − δ)/γ ∈ Q, then fγ,δ(βn) = f(αn) → A, therefore µess(fγ,δ) ≤ µess(f). Using the

fact that 1/γ,−δ ∈ Q∗ and the same argument, we can show the other inequality and the lemma is
proved. �

Corollary 3.1.7: Let a, b ∈ Q, then

µess(ha,b) = µess(h|a|,|b|).

Proof: We have that h−a,b(α) = h(α) + h(−aα + b) = h(−α) + h(a(−α) + b) = ha,b(−α). Using
Lemma 3.1.6 with γ = −1 and δ = 0, we conclude that µess(h−a,b) = µess(ha,b). We also note
that ha,−b(α) = h(α) + h(aα − b) = h(−α) + h(−aα + b) = h−a,b(α) = ha,b(−α). Hence, we have
µess(h−a,b) = µess(ha,−b) = µess(ha,b). Combining this two equalities we can conclude all the oth-
ers, this completes the proof of the corollary. �

3.2 Explicit upper bounds

Let c ∈ R, we define the function εc(n, t) : N× R→ C, given by

εc(n, t) =

∫ π

c

(
eiθ − eit

)n
dθ ;

Expanding the binomial and integrating, we get

εc(n, t) = (−1)n(π − c)eitn +

n−1∑
k=0

1

i(n− k)

(
n

k

)
(−1)k(eiπ(n−k)+itk − eic(n−k)+itk) .

Using this notation, we have the following proposition.

Proposition 3.2.1: Let a, b ∈ Q with a > 0 and b ≥ 0.

i) If b = 0, then

15



Ωa,0(0) = h(a).

ii) If 0 < b/a < 4, then

Ωa,b

(
− b

2a

)
= ∆(a, b) +

2

π
Re

log

(
b

2a
− ei

π+αa,b
2

)
(π − αa,b)−

∞∑
n=1

(2a)n

n
(
b− 2aei

π+αa,b
2

)n εαa,b (n, π + αa,b
2

) .

Where αa,b = arctan
(√

16a2−b2
b

)
and log is the main branch of the logarithm.

iii) If b/a ≥ 4, then

Ωa,b (0) = ∆(a, b) + log

(
b

a

)
.

Proof: If b = 0, using (8) and ϕ(0)=0, we get that Ωa,b(0) = h(a). Now, assume 0 < b/a < 4. Using
(4) and Lemma 3.1.5 (i), we have

Ωa,b

(
− b

2a

)
= ∆(a, b) + 2ϕ

(
− b

2a

)
= ∆(a, b) +

1

π

∫ 2π

0

log+

∣∣∣∣ b2a − eiθ
∣∣∣∣ dθ

Let αa,b be the argument of the complex number given by the intersection of the two circumferences

S b
2a

and S1 in the first quadrant. Then, we have that log+
∣∣ b
2a − e

iθ
∣∣ > 0 if and only if αa,b < θ <

2π − αa,b. Since the circle is symmetric we have that

Ωa,b

(
− b

2a

)
= ∆(a, b) +

1

π

∫ 2π−αa,b

αa,b

log

∣∣∣∣ b2a − eiθ
∣∣∣∣ dθ = ∆(a, b) +

2

π

∫ π

αa,b

log

∣∣∣∣ b2a − eiθ
∣∣∣∣ dθ. (9)

The intersection between the circles in the first quadrant occur when x2+y2 = 1, (x−b/a)2+y2 = 1,

x > 0 and y > 0. Solving these two equations, we obtain x = b/4a and y =
√

16a2 − b2/4a. There-

fore αa,b = arctan(x/y) = arctan
(√

16a2−b2
b

)
.

Let f : C \
[
b
2a ,+∞

)
→ C, defined by f(z) = log

(
b
2a − z

)
, where log is the main branch of the

logarithm, then the power series of f around z = ei
π+αa,b

2 , is given by

f(z) = log

(
b

2a
− ei

π+αa,b
2

)
+

∞∑
n=1

−(2a)n

n
(
b− 2aei

π+αa,b
2

)n (z − eiπ+αa,b
2

)n
.

The convergence radius of this series is

1

r
= lim
n→∞

∣∣∣∣∣∣ 2na

(n+ 1)
(
b− 2aei

π+αa,b
2

)
∣∣∣∣∣∣ =

2a∣∣∣b− 2aei
π+αa,b

2

∣∣∣ ,
r =

∣∣∣∣ b2a − eiπ+αa,b
2

∣∣∣∣ .
On the other hand, we have

∫ π

αa,b

log

∣∣∣∣ b2a − eiθ
∣∣∣∣ dθ = Re

(∫ π

αa,b

log

(
b

2a
− eiθ

)
dθ

)

= Re

∫ π

αa,b

log

(
b

2a
− ei

π+αa,b
2

)
+

∞∑
n=1

−(2a)n

n
(
b− 2aei

π+αb
2

)n (eiθ − eiπ+αa,b
2

)n
dθ

 .
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The maximum value of
∣∣∣eiθ − eiπ+αa,b

2

∣∣∣ for θ ∈ [αa,b, π] is achieved when θ = π, therefore for

θ ∈ [αa,b, π], we have ∣∣∣eiθ − eiπ+αa,b
2

∣∣∣ ≤ ∣∣∣1 + ei
π+αa,b

2

∣∣∣ .

Note that 0 < αa,b ≤ π/2, therefore π/2 < (π + αa,b)/2 ≤ 3π/4, it follows that

−
√

2

2
≤ cos

(
π + αa,b

2

)
< 0.

From this last equation, we conclude that∣∣∣eiθ − eiπ+αa,b
2

∣∣∣ ≤ ∣∣∣1 + ei
π+αa,b

2

∣∣∣ < ∣∣∣∣ b2a − eiπ+αa,b
2

∣∣∣∣ = r. (10)

Since the convergence is uniform we can exchange the integral with the series and we get obtain

Ωa,b

(
− b

2a

)
= ∆(a, b) +

2

π
Re

log

(
b

2a
− ei

π+αa,b
2

)
(π − αa,b)−

∞∑
n=1

(2a)n

n
(
b− 2aei

π+αa,b
2

)n εαa,b (n, π + αa,b
2

) .

On the other hand, if |b/a| ≥ 4, then |b/a| > 2, using (ii) from lemma 3.1.5, we conclude that,
Ωa,b(0) = ∆(a, b) + ϕ(0) + ϕ(b/a) = ∆(a, b) + log(b/a), this completes the proof of the proposition.
�

Using Proposition 3.1.4 and Proposition 3.2.1, we can prove the following theorem

Theorem 3.2.2: Let a, b ∈ Q. If b = 0, we have that

µess(ha,0) ≤ Ω|a|,0 (0) = h(a).

For |b/a| = 1, we have that

µess(ha,b) ≤ Ω|a|,|b|
(
− 1

2

)
≤ ∆(a, b) + 0.3194490869562.

For |b/a| = 2,

µess(ha,b) ≤ Ω|a|,|b| (−1) ≤ ∆(a, b) + 0.6461598436469.

For |b/a| = 3,

µess(ha,b) ≤ Ω|a|,|b|
(
− 3

2

)
≤ ∆(a, b) + 0.9909205628144.

For |b/a| ≥ 4,

µess(ha,b) ≤ Ω|a|,|b| (0) = ∆(a, b) + log

(
b

a

)
.

Proof: Using Corollary 3.1.7, we can assume that a > 0 and b ≥ 0. Assume first that, b/a = 1. Let

T1 :=
2

π
Re

log

(
1

2
− ei

π+αa,b
2

)
(π − αa,b)−

20∑
n=1

2n

n
(

1− 2ei
π+αa,b

2

)n εαa,b (n, π + αa,b
2

)
= 0.3194345111561... ≤ 0.3194345111562.
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Let R1 = Ωa,b
(
− 1

2

)
− T1 −∆(a, b). Using Proposition 3.2.1, we have that

|R1| ≤
2

π

∞∑
n=21

2n

n
∣∣∣1− 2ei

π+αa,b
2

∣∣∣n
∫ π

αa,b

∣∣∣eiθ − eiπ+αa,b
2

∣∣∣n dθ

Note that, since b/a = 1, we have αa,b = arctan(
√

15), therefore
∣∣∣1− 2ei

π+αa,b
2

∣∣∣ =
√

5 +
√

6.

Moreover, using (10), we conclude that, for each θ ∈ [αa,b, π],
∣∣∣eiθ − eiπ+αa,b

2

∣∣∣ ≤√2−
√

3
2 , therefore

|R1| ≤
2

π

∞∑
n=21

2n

n
(√

5 +
√

6
)n
√2−

√
3

2

n

(π − αa,b)

≤ 2(π − αa,b)
π

∞∑
n=21

1

n

 2√
5 +
√

6

√2−
√

3

2

n

Using the fact that, for |a| < 1,

∞∑
n=1

an

n
= − log(1− a), we obtain

|R1| ≤
2(π − αa,b)

π

− log

1−

 2√
5 +
√

6

√2−
√

3

2

− 20∑
n=1

1

n

 2√
5 +
√

6

√2−
√

3

2

n
= 0.0000145757...

≤ 0.0000145758.

Therefore, since Ωa,b(−1/2) ≥ 0, we have

Ωa,b

(
−1

2

)
=

∣∣∣∣Ωa,b(−1

2

)∣∣∣∣ = |∆(a, b) + T1 +R1|

≤ ∆(a, b) + |T1|+ |R1| = ∆(a, b) + 0.3194490869562.

Taking t = −1/2 in Proposition 3.1.4, we conclude the case |b/a| = 1. For |b/a| = 2, we only need
to expand the series given by Proposition 3.2.1 until 15 terms, then, taking t = −1 in Proposition
3.1.4, we obtain the upper bound required. For |b/a| = 3, the process is exactly the same but we
only need to expand the series until 7 terms and take t = −3/2 in Proposition 3.1.4. Finally, the
cases |b/a| ≥ 4 and b = 0 follow directly from Proposition 3.2.1 This completes the proof of the
theorem. �

3.3 The case Q[i]

Theorem 3.2.2 gives us rigorous upper bounds for specific values of |b/a|. For instance, if we take
a = 7/15, b = 250/36, then b/a > 4. Therefore

µess(ha,b) ≤ log 5 + log 9 + log 4 + log(7/15) + log(3750/252) = log(1250).
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If we take the Zhang-Zagier height hZ = h1,−1, we have |b/a| = 1, therefore, Theorem 3.8 gives us
the upper bound

µess(hZ) ≤ 0.31944909.

Other cases like |b/a| = 1/2 must be treated individually using Proposition 3.2.1

Assume now that a, b ∈ Q[i] \Q, we can prove the following theorem

Theorem 3.3.1: Let a, b ∈ Q[i] \Q, then

µess(ha,b) ≤ ∆(a, b) + ϕ

(
Re

(
b

a

))
+ 2ϕ

(
Im

(
b

a

))
.

Proof: Using Proposition 3.1.4, we obtain that µess(ha,b) is less or equal than

Ωa,b(t) = ∆(a, b) + ϕ(t) +
1

2π

∫ 2π

0

log+

∣∣∣∣eiθ +
b

a
+ t

∣∣∣∣+ log+

∣∣∣∣eiθ +
b

a
+ t

∣∣∣∣ dθ.
Since

∫ 2π

0

log+

∣∣∣∣eiθ +
b

a
+ t

∣∣∣∣ dθ =

∫ 2π

0

log+

∣∣∣∣e−iθ +
b

a
+ t

∣∣∣∣ dθ =

∫ 2π

0

log+

∣∣∣∣e−iθ +
b

a
+ t

∣∣∣∣ dθ
=

∫ 0

−2π
log+

∣∣∣∣eiθ +
b

a
+ t

∣∣∣∣ dθ =

∫ 2π

0

log+

∣∣∣∣eiθ +
b

a
+ t

∣∣∣∣ dθ.
We conclude that

Ωa,b(t) = ∆(a, b) + ϕ(t) + 2

(
1

2π

∫ 2π

0

log+

∣∣∣∣eiθ +
b

a
+ t

∣∣∣∣ dθ).

Now, we evaluate the function at t = −Re(b/a)

Ωa,b

(
−Re

(
b

a

))
= 2 log |a|+ ϕ

(
−Re

(
b

a

))
+ 2

(
1

2π

∫ 2π

0

log+

∣∣∣∣eiθ + iIm

(
b

a

)∣∣∣∣ dθ) .
Note that

∫ 2π

0

log+

∣∣∣∣eiθ + iIm

(
b

a

)∣∣∣∣ dθ =

∫ 2π

0

log+

∣∣∣∣ei(θ+ 3π
2 ) + Im

(
b

a

)∣∣∣∣ dθ =

∫ 2π+3π/2

3π/2

log+

∣∣∣∣eiθ + Im

(
b

a

)∣∣∣∣ dθ
=

∫ 2π

3π/2

log+

∣∣∣∣eiθ + Im

(
b

a

)∣∣∣∣ dθ +

∫ 2π+3π/2

2π

log+

∣∣∣∣eiθ + Im

(
b

a

)∣∣∣∣ dθ
=

∫ 2π

3π/2

log+

∣∣∣∣eiθ + Im

(
b

a

)∣∣∣∣ dθ +

∫ 3π/2

0

log+

∣∣∣∣eiθ + iIm

(
b

a

)∣∣∣∣ dθ = 2πϕ

(
Im

(
b

a

))
.

Finally, using Lemma 3.1.5, we conclude the theorem. �

Remark: The specific values of t used in the various applications of Proposition 3.1.4, were sug-
gested by numerical experiments.
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4 Lower Bounds

4.1 The method to obtain lower bounds

In this section we will compute lower bounds for µess(ha,b) for a, b ∈ Q and a 6= 0. We use the
method described in [6] section 2.2, [3] and [18]. For every σ ∈ G(a, b), we consider the real-valued
functions gσ, fσ, Gσ, given by

gσ(z) = log+ |z|+ log+ |σ(a)z + σ(b)|,

fσ(z) = log+ |z|+ log+

∣∣∣∣ 1

σ(a)z + σ(b)

∣∣∣∣ ,
Gσ(z) = log+ |z|+ log+

∣∣∣∣σ(a) + σ(b)z

z

∣∣∣∣ .
We have that these functions go to ∞ when |z| → ∞. Furthermore, fσ →∞ when z → −σ(b)/σ(a)
and Gσ → ∞ when z → 0, and they are continuous elsewhere, so they attain their minimum
values. We denote by min(gσ),min(fσ) and min(Gσ), the minimum value of each of these functions
respectively. Then, we define gmin =

∑
σ∈G(a,b) min(gσ), fmin =

∑
σ∈G(a,b) min(fσ) and Gmin =∑

σ∈G(a,b) min(Gσ). Finally, we define

L(a, b) =
1

[Ka,b : Q]
max{gmin, fmin, Gmin}.

Assume now that the minimum value of ha,b is achieved only at a finite non empty set of al-
gebraic numbers. Let α1, α2, ..., αk be the algebraic numbers where ha,b is equal to the mini-
mum. We consider {f1, f2, ..., fr} a set monic irreducible polynomials with rational coefficients,
such that their combined roots are {α1, α2, ..., αk}. Now, let A1, A2, ..., Ar ∈ R≥0 be such that,

A1 deg(f1)A2 deg(f2)...Ar deg(fr) < 2 and for every α ∈ Q\
⋃k
i=1 Gal(αi), and every non-archimedean

place ν in MQ, we have

log+ |α|ν + log+ |aα+ b|ν ≥
r∑
i=1

Ai log |fi(α)|ν . (11)

We call P the set of all (A1, A2, ..., Ar) ∈ Rr, such that these conditions hold. Since (0, 0, 0, ..., 0) ∈
P , we have that P 6= ∅.

Lemma 4.1.1: The set P defined before is bounded

Proof: Firstly, we have that Ai ≥ 0, therefore each Ai is bounded from below. We fix ν0 ∈ MQ
and consider α ∈ Q \

⋃k
i=1 Gal(αi), such that, log+ |aα + b|ν0 = log |aα|ν0 and for each 1 ≤ i ≤ r,

|fi(α)|ν0 = |αdeg(fi)|ν0 ≥ 1. Therefore, from (11) we have log |aα2|ν0 ≥
∑r
i=1Ai log |αdeg(fi)|ν0 ≥

At log |αdeg(ft)|ν0 = log |αdeg(ft)At |ν0 , for each t ∈ {1, 2, ..., r}. For |α|ν0 large enough, this equality
holds only if At ≤ 2/deg(ft). This completes the proof of the lemma. �

Now, for each σ ∈ G(a, b) we define the real valued function gA1,...,Ar,σ by

gA1,...,Ar,σ(z) = log+ |z|+ log+ |σ(a)z + σ(b)| −
r∑
i=1

Ai log |fi(z)|.

Since Ai ≥ 0 for each i ∈ {1, 2, ..., r}, and A1 deg(f1)A2 deg(f2)...Ar deg(fr) < 2, we have that

gA1,...,Ak,σ → ∞ when |z| → ∞ or z → x, where x ∈
⋃k
i=1 Gal(αi), and it is continuous elsewhere,

so it attains its minimum value. Now, we consider the function Hσ : P → R, given by
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Hσ(A1, A2, ..., Ar) = inf gA1,...,Ar,σ.

We define

τ(a, b) =
1

[Ka,b : Q]
sup

(A1,...,Ar)∈P

∑
σ∈G(a,b)

Hσ(A1, ..., Ar).

Definition 4.1.2: Let a, b ∈ Q. If the minimum value of ha,b is achieved only at a finite set of
algebraic numbers, we define K(a, b) = τ(a, b). Otherwise K(a, b) = L(a, b)

Now, we can state the following theorem.

Theorem 4.1.3: Let a, b ∈ Q with a 6= 0. Then,

µess(ha,b) ≥ L(a, b).

Moreover, if the minimum value is achieved only at a finite non empty set of algebraic numbers,
then

µess(ha,b) ≥ τ(a, b).

Before proving the theorem we need the following lemma

Lemma 4.1.4: Let f : Q→ R. Define f in : Q∗ → R by f in(α) = f(1/α). Then

µess(f) = µess(f in).

Proof: We write, µess(f) = M . Then, there exists a sequence of distinct algebraic numbers {γn}n∈N
such that f(γn)→M . In particular, we may assume γn 6= 0 for all n ∈ N. Then {βn}n∈N given by
βn = 1/γn is a sequence of algebraic numbers, and f in(βn) = f(γn)→M , therefore µess(f in) ≤M .
The other inequality is similar. �

Proof of Theorem 4.1.3: Let K/Q be a Galois extension such that a, b, α ∈ K. If ν ∈MK extends
v ∈MQ we will write ν|v. Note that

ha,b(α) =
1

[K : Q]

∑
p

∑
ν||.|p

log+ |α|ν + log+ |aα+ b|ν +
∑
ν||.|

log+ |α|ν + log+ |aα+ b|ν


≥ 1

[K : Q]

∑
ν||.|

log+ |α|ν + log+ |aα+ b|ν

=
1

[K : Q]

∑
σ∈G(a,b)

∑
τ∈Gal(K\Q)

τ |σ

log+ |τ(α)|+ log+ |σ(a)τ(α) + σ(b)|

≥ 1

[Ka,b : Q]

∑
σ∈G(a,b)

inf gσ

= gmin.

Therefore, gmin ≤ ha,b(α) for all α, we conclude that gmin ≤ µess(ha,b). Similarly, we can con-
clude that fmin ≤ µess(ha,b). In fact, we can consider the real-valued function ja,b, given by
ja,b(α) = h(α) + h(1/(aα + b)). Since h(α) = h(1/α), we have ja,b = ha,b. However, the
Archimedean parts of them are different, so, we can use the same inequalities as before and con-
clude that fmin ≤ µess(ja,b) = µess(ha,b). Finally, let the real valued function na,b, be given by
na,b(α) = h(α) + h((a + bα)/α) = hina,b. Using Lemma 4.1.4 and the same method used before, we
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conclude that Gmin ≤ µess(na,b) = µess(hina,b) = µess(ha,b). Therefore, L(a, b) ≤ µess(ha,b).

Assume now that the minimum value of ha,b is achieved only at a finite set {α1, α2, .., αk}. Let α ∈
Q\
⋃k
i=1 Gal(αi) and A1, A2, ..., Ar ∈ P . The product formula gives us that for each i ∈ {1, 2, ..., r},

we have ∑
ν∈MK

Ai log |fi(α)|ν = 0

Therefore

ha,b(α) =
1

[K : Q]

∑
p

∑
ν||.|p

log+ |α|ν + log+ |aα+ b|ν −
r∑
i=1

Ai log |fi(α)|ν


+

1

[K : Q]

∑
ν||.|

log+ |α|ν + log+ |aα+ b|ν −
r∑
i=1

Ai log |fi(α)|ν


≥ 1

[K : Q]

∑
ν||.|

log+ |α|ν + log+ |aα+ b|ν −
r∑
i=1

Ai log |fi(α)|ν


=

1

[K : Q]

∑
σ∈G(a,b)

∑
τ∈Gal(K/Q)

τ |σ

gA1,A2,...,Ar,σ(τ(α))

≥ 1

[Ka,b : Q]

∑
σ∈G(a,b)

Hσ(A1, A2, ..., Ar).

Since the last inequality holds for all (A1, A2, ..., Ar) ∈ P , we have that

ha,b(α) ≥ 1

[Ka,b : Q]
sup

(A1,A2,...,Ak)∈P

∑
σ∈G(a,b)

Hσ(A1, A2, ..., Ar)

= τ(a, b).

Since the last inequality holds for all α except finitely many, we conclude that τ(a, b) ≤ µess(ha,b).
�

Corollary 4.1.5: Let a, b ∈ Q with a 6= 0. Then,

µess(ha,b) ≥ K(a, b).

Proof: This is a direct consequence of Theorem 4.1.4. �

4.2 Specific cases

The following observation will be useful to compute lower bounds. Since gA1,...,Ak,σ is harmonic
off the two sets |z| = 1 and |σ(a)z + σ(b)| = 1, then the minimum is achieved only on these sets.
The same happens with fσ and gσ. For Gσ, the function is harmonic off the two sets |z| = 1 and
|(σ(a) +σ(b)z)/z| = 1, therefore the minimum is achieved on these sets. Now we are ready to prove
the following proposition
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Proposition 4.2.1: Let a, b ∈ Q with a 6= 0. Assume that, there exists σ0 ∈ G(a, b), such that
|σ0(b)| − |σ0(a)| > 1. Then

1

[Ka,b : Q]
min

(
log(|σ0(b)| − |σ0(a)|), log

(
|σ0(b)| − 1

|σ0(a)|

))
≤ µess(ha,b).

Proof: Consider the function

gσ0
(z) = log+ |z|+ log+ |σ0(a)z + σ0(b)|.

Firstly, we consider z = eiθ, with 0 ≤ θ ≤ 2π, arg(σ0(a)) = γ and arg(σ0(b)) = β, note that
|σ0(a)eiθ + σ0(b)| > 1, so we have

gσ0(eiθ) = log |σ0(a)eiθ + σ0(b)|

=
1

2
log(|σ0(a)|2 + |σ0(b)|2 + 2|σ0(b)||σ0(a)| cos(θ + γ − β)).

The minimum value is achieved when cos(θ+ γ − β) = −1, and the minimum value is log(|σ0(b)| −
|σ0(a)|). On the other hand, note that (|σ0(b)| − 1)/|σ0(a)| > 1, therefore, |eiθ − σ0(b)|/|σ0(a)| > 1.
We conclude that

gσ0

(
eiθ − σ0(b)

σ0(a)

)
= log

∣∣∣∣eiθ − σ0(b)

σ0(a)

∣∣∣∣
=

1

2
log

(
|σ0(b)|2 + 1− 2|σ0(b)| cos(θ − β)

|σ0(a)|2

)
.

The minimum is achieved when θ = β, and its value is log((|σ0(b)| − 1|)/|σ0(a)|). Since, L(a, b) ≥
min gσ0/[Ka,b : Q], using Theorem 4.1.3 we conclude the proof of the proposition. �

Proposition 4.2.2: Let a, b ∈ Q, b 6= 0. Assume that there exist σ0 ∈ G(a, b), such that, |σ0(a)| −
|σ0(b)| > 1. Then

1

[Ka,b : Q]
log

(
|σ0(a)|
|σ0(b)|+ 1

)
≤ µess(ha,b).

Proof: we consider

Gσ0(z) = log+ |z|+ log+

∣∣∣∣σ0(a) + σ0(b)z

z

∣∣∣∣.
Let’s consider, z = eiθ, and let arg(σ0(a)) = γ and arg(σ0(b)) = β. Since |σ0(a)eiθ + σ0(b)| > 1,

Gσ0(eiθ) = log |σ0(b)eiθ + σ0(a)|

=
1

2
log(|σ0(a)|2 + |σ0(b)|2 + 2|σ0(b)||σ0(a)| cos(θ + β − γ)).

The minimum value is achieved when cos(θ+β− γ) = −1, an the value is log(|σ0(a)|− |σ0(b)|). On
the other hand, note that |σ0(a)|/(|σ0(b)|+ 1) > 1, therefore, |σ0(a)|/|eiθ−σ0(b)| > 1. We conclude
that
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Gσ0

(
σ0(a)

eiθ − σ0(b)

)
= log

∣∣∣∣ σ0(a)

eiθ − σ0(b)

∣∣∣∣
= −1

2
log

(
|σ0(b)|2 + 1− 2|σ0(b)| cos(θ − β)

|σ0(a)|2

)
.

The minimum is achieved when cos(θ−β) = −1, and its value is log(|σ0(a)|/(|σ0(b)|+1)). Note that,
since |σ0(a)|− |σ0(b)| > 1, it is not hard to prove that |σ0(a)|− |σ0(b)| > |σ0(a)|/(|σ0(b)|+1). Since,
L(a, b) ≥ Gmin ≥ [Ka,b/Q] minGσ0 , using Theorem 4.1.3 we conclude the proof of the proposition. �

Proposition 4.2.3: Let a, b ∈ Q, a 6= 0, b 6= 0. Assume that, there exist σ0 ∈ G(a, b), such that,
0 ≤ ||σ0(a)| − |σ0(b)|| ≤ 1 and |σ0(a)|+ |σ0(b)| < 1. Then

1

[Ka,b : Q]
log

(
1

|σ0(a)|+ |σ0(b)|

)
≤ µess(ha,b).

Proof: In this case, we consider

fσ0(z) = log+ |z|+ log+

∣∣∣∣ 1

σ0(a)z + σ0(b)

∣∣∣∣.
If z = eiθ, then 1/|σ0(a)z + σ0(b)| > 1, therefore

fσ0
(eiθ) = log

∣∣∣∣ 1

σ0(a)eiθ + σ0(b)

∣∣∣∣.
The minimum value is log(1/||σ0(a)|+ |σ0(b)||), now, assume z = (1− σ0(b)eiθ)/(σ0(a)eiθ), we note
that |(1− σ0(b)eiθ)/(σ0(a)eiθ)| ≥ (1− |σ0(b)|)/|σ0(a)| > 1, therefore

fσ0

(
1− σ0(b)eiθ

σ0(a)eiθ

)
= log

∣∣∣∣1− σ0(b)eiθ

σ0(a)eiθ

∣∣∣∣.
The minimum value is log((1− |σ0(b)|)/|σ0(a)|). Since |σ0(a)|+ |σ0(b)| < 1, it is not hard to prove
that (1 − |σ0(b)|)/|σ0(a)| > 1/(|σ0(a)| + |σ0(b)|) , we conclude that the minimum value of fσ0

is
log(1/(|σ0(a)| + |σ0(b)|)). Since, L(a, b) ≥ fmin ≥ [Ka,b/Q] min fσ0 , using Theorem 4.1.3 we con-
clude the proof of the proposition. �

4.3 Examples

Proof of Theorem A: Propositions 4.2.1, 4.2.2 and 4.2.3 give us non zero lower bounds for the cases
a, b ∈ Q, such that there exists σ0 ∈ G(a, b), such that ||σ0(a)| − |σ0(b)|| > 1, b 6= 0, or the cases
where ||σ0(a)| − |σ0(b)|| ≤ 1 and |σ0(a)|+ |σ0(b)| < 1. Using Theorem 4.1.3 together with Proposi-
tions 3.1.4, 4.2.1, 4.2.2 and 4.2.3 we obtain Theorem A. �

Lemma 4.3.1: Let a, b ∈ Q, the following sentences are equivalent

i) The minimum value of ha,b is achieved and min(ha,b) = 0.

ii) b = 0 or b is a root of unity, or there exists a root of unity ζ, such that aζ+ b = 0 or aζ+ b = ζ0
a root of unity.

Furthermore, assume that any of this sentences hold, if b 6= 0, b is not a root of unity and |a| 6= |b|,
then necessarily ||a| − |b|| ≤ 1 and |a|+ |b| ≥ 1
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Proof: (i)⇒(ii) Assume that minha,b is achieved at α ∈ Q. Since, ha,b(α) = h(α) + h(aα+ b), we
need h(α) = 0 and h(aα + b) = 0. The first equality implies α = 0 or α = ζ a root of unity. If
α = 0, we also need h(b) = 0, so there are two options, b = 0 or b is a root of unity. On the other
hand, if α = ζ is a root of unity, we also need aζ + b = 0 or aζ + b a root of unity.

(ii)⇒(i) If b = 0 or a root of unity, we take α = 0 and we obtain ha,0(α) = 0. On the other hand,
if there exists a root of unity ζ such that aζ + b = 0 or aζ + b = ζ0 a root of unity, we take α = ζ,
and we obtain ha,b(α) = 0. �

Now, assume that b 6= 0, b is not a root of unity and |a| 6= |b|, by (ii), we have that there ex-
ist two roots of unity ζ and ζ0, such that aζ + b = ζ0, therefore |aζ + b| = 1, we conclude that
||a| − |b|| ≤ |aζ + b| = 1 and 1 = |aζ + b| ≤ |aζ|+ |b| = |a|+ |b|. �

Corollary 4.3.2: Let a ∈ Q \ {0}. Then µess(ha,0) = 0 if and only if a is a root of unity (see [23]
for more details or [4] Theorem 1.5.9 for the proof). Moreover,

µess(ha,0) ≥ h(a)

Proof: We consider a ∈ Q\{0} not a root of unity, then ha,0(0) = 0, and it is zero only at 0, therefore
f1(x) = x. Firstly we need to determine the possible values of A1. For each ν non-Archimedean
and α ∈ Q \ {0}, we need that

log+ |α|ν + log+ |aα|ν ≥ A1 log |α|ν .

if |α|ν ≤ 1, this inequality always occur. If |α|ν > 1 and |aα|ν ≤ 1, we get the restriction A1 ≤ 1.
On the other hand, if |α|ν < 1 and |aα|ν < 1, we get the already known restriction 0 ≤ A1, therefore
0 ≤ A1 ≤ 1.

Now, we will consider σ ∈ G(a). Then,

gA1,σ(z) = log+ |z|+ log+ |σ(a)z| −A1 log |z|.

if z = eiθ, we have

gA1,σ(eiθ) = log+ |σ(a)|.

On the other hand, if z = eiθ/σ(a), then

gA1,σ

(
eiθ

σ(a)

)
= log+ 1

|σ(a)|
−A1 log

1

|σ(a)|
.

Assume that |σ(a)| ≥ 1. Then, the minimum value is Hσ(A1) = A1 log |σ(a)|. On the other hand,
if |σ(a)| < 1, then the minimum value is 0, therefore inf gA1,σ = 0. Summarizing, Hσ(A1) =

A1 log+ |σ(a)|, therefore

τ(a, 0) =
1

[Ka : Q]
sup

0≤A1≤1

∑
σ∈G(a)

A1 log+ |σ(a)|

=
1

[Ka : Q]

∑
σ∈G(a)

log+ |σ(a)|

Furthermore, we can improve this result, note that if we go back to the proof of theorem 4.1.3, we
can obtain that, a lower bound for µess(ha) is given by

1

[Ka : Q]

∑
p

prime

∑
σ∈G(a)

min
α∈Q

(
log+ |α|p + log+ |σ(a)α)|p − log |α|p

)
+ τ(a, 0)
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Now, for each p prime and σ ∈ G(a), we set the function fσp : Q → R≥0, defined by fσp (α) =

log+ |α|p + log+ |σ(a)α|p − log |α|p, we will find the minimum value of fσp . Firstly, suppose that
|σ(a)|p ≤ 1 then, we can take α a root of unity, and we get, fσp (α) = 0, since fσp ≥ 0, this

will be the minimum value. On the other hand, if |σ(a)|p > 1, let α ∈ Q, if |α|p ≥ 1, then

fσp (α) = log |σ(a)α|p ≥ log |σ(a)|p. Assume now that, |α|p < 1, then fσp (α) = log+ |σ(a)α|p−log |α|p,
if |σ(a)α|p ≤ 1, then fσp (α) = log 1/|α|p ≥ log |a|p. On the other hand, if |σ(a)α|p > 1, then

fσp (α) = log |σ(a)α|p − log |α|p = log |σ(a)|p. Summarizing, we have that min(fσp ) = log+ |σ(a)|p .
We conclude that

µess(ha,0) ≥ 1

[Ka : Q]

∑
p

prime

∑
σ∈G(a)

log+ |σ(a)|p + τ(a, 0) = h(a)

This concludes the proof of the corollary. �

Note that, using (i) of Proposition 3.2.1, we obtain that µess(ha,0) ≤ h(a), therefore, we have that
µess(ha,0) = h(a).

Corollary 4.3.3: µess(h1,2) ≥ log(
√

3).

Proof: Note that, α and α + 2 are both roots of unity only at α = −1, therefore, f1(x) = x + 1.
Let A0, A1 ∈ R, for each α ∈ Q and p prime, we need

log+ |α|p + log+ |α+ 2|p ≥ A1 log |α+ 1|p.

If |α|p ≤ 1, then we need A1 ≥ 0. On the other hand, if |α|p > 1, we need A1 ≤ 2, so we need
0 ≤ A1 < 2. Now, we take the function

gA1
(z) = log+ |z|+ log+ |z + 2| −A1 log |z + 1|.

The minimum is achieved when z = eiθ or z = eiθ − 2. If z = eiθ, we have

gA1(eiθ) = log |eiθ + 2| −A1 log |eiθ + 1|

=
1

2
log(5 + 4 cos(θ))− A1

2
log(2 + 2 cos(θ)).

Taking the derivative and equalizing to zero, we get the following possible values of theta

θ = 0, or cos(θ) =
A1

4(1−A1)
− 1.

On the other hand, if z = eiθ − 2, then

gA1(eiθ − 2) = log |eiθ − 2| −A1 log |eiθ − 1|

=
1

2
log(5− 4 cos(θ))− A1

2
log(2− 2 cos(θ)).

Again, taking the derivative and equalizing to zero, we get the next possible values of theta

θ = π, or cos(θ) = 1− A1

4(1−A1)
.
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It is not hard to see that the minimum value of the function will be the same in both sets, so we
can take anyone. In order to find the minimum vale, we have to know if the function is lower at
θ = 0 or at cos(θ) = A1/(4(1−A1))−1. Firstly, we will assume 0 ≤ A1 < 1, evaluating at these two
values we obtain log(9)−A1 log(4) and log(1/(1−A1))−A1 log(A1/(2(1−A1))), we can take these
two values and consider the function l : [0, 1)→ R, given by l(x) = log(1/(1− x))− x log(x/(2(1−
x))) − (log(9) − x log(4)). Taking the derivative of l, we obtain l′(x) = − log(x/(8(1 − x))) and
l′′(x) = −1/(x(1 − x)). Therefore, we conclude that, x = 8/9 is an absolute maximum of l. Since
l(8/9) = 0, we conclude that the minimum value is log(1/(1 − A1)) − A1 log(A1/(2(1 − A1))),
and it is achieved at cos(θ) = A1/(1 − A1) − 1. Now, we consider the function respect to A1,
Hid(A1) = log(1/(1−A1))−A1 log(A1/(2(1−A1))), taking the derivative respect to A1 and equal-
izing to zero, we obtain log(A1/2(1−A1)) = 0, therefore A1/2(1−A1) = 1, and we conclude that the

maximum value of Hid(A1) is achieved at A1 = 2/3, replacing this, we obtain Hid(2/3) = log(
√

3).
On the other hand, if 1 ≤ A1 < 2, then, there is no θ such that cos(θ) = A1/(4(1−A1))−1. We con-
clude that, the minimum value of gA1 is (1/2)(log(9)−A1 log(4)), the maximum value is achieved at

A1 = 1 and Hid(1) = log(3/2). Since
√

3 > 3/2, we have τ(a, b) = sup
0≤A1<2

Hid(A1) =
√

3, therefore

log(
√

3) ≤ µess(h1,2). �
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5 Intervals of density

5.1 The main result

A Galois invariant adelic set is a set of the form

E =
∏
v∈MQ

Ev.

Where Ev = Dv(a, b) is a subset of Cv invariant under the action of the absolute v-adic Galois
group Gal(Qv/Q), for all v, and such that Ev = Ov for all but a finite number of v. The capacity
of E is defined by Cap(E) =

∏
v Cap(Ev), where Ev is closure of Ev in the Berkovich disc. It

is well defined, because Cap(Ev) = Cap(Dv(0, 1)) = 1 (see [16], section 4), for all but a finite
number of v. Furthermore, the equilibrium measure of Dv(0, r) is the linear functional µDv(0,r) :

C0(Dv(0, r),R)→ R, such that, for every polynomial f , we have∫
Dv(0,r)

f(t)dµDv(0,r)(t) = sup
|z|v≤r

|f(z)|v

(see [16], section 4, for more details). The following proposition will be useful

Proposition 5.1.1: Let E =
∏
v∈MQ

Ev an adelic set with Cap(E) = 1. Then, there exists a

sequence (xl)l∈N of pairwise distinc points of Q×, with Gal(xl)v ⊂ B(Ev, 1/l), for all v ∈MQ. Fur-
thermore, for all v ∈ MQ, the sequence of measures (δ(Gal(xl, v)))l∈N converges to the equilibrium
measure µEv weakly.

Proof: Direct from [7] Proposition 7.4 and Proposition 7.3. �

Proof of Theorem B: We use Proposition 5.1.1, for pi ∈ Sa,b we take Epi = Dpi(0, ri) = {z ∈ Cpi : |z|pi < ri},
where ri ∈ Q+. For p /∈ Sa,b we take, Ep = Op. For |.|ν = |.|∞, we take E|.| = B(x, 1/(r1r2...rs)),
where x ∈ R. We define, E =

∏
v Ev, then E is an adelic set such that Cap(E) = 1. Therefore, by

Proposition 5.1.1, there is a sequence (αn)n∈N satisfying Gal(αn,ν) ⊂ B(Eν , 1/n), for each ν ∈MQ,

such that δ(Gal(αn, ν))
∗−→ µEν , therefore

ha,b(αn) −→
n→∞

∑
ν∈MQ

∫
Eν

log+ |t|ν + log+ |at+ b|νdµEν (t) := MEx . (12)

We claim that MEx <∞. Let p a prime number and d ∈ R, then

sup
|z|p≤d

log+ |az + b|p ≤ sup
|z|p≤d

log+ max{|a|p|z|p, |b|p} = log+ max{|a|pd, |b|p}

If |a|pd ≤ |b|p, then, taking t0, such that |t0|p < d, we obtain that |at0+b|p = |b|p = max{|a|pd, |b|p}.
If |a|pd > |b|p, we can take t1, such that |t1|p = d, we obtain that |at1 + b|p = |a|pd. Therefore

sup|z|p≤d log+ |az + b|p = log+ max{|a|pd, |b|p}. Now, note that for p /∈ Sa,b, we have

∫
Ep

log+ |t|p + log+ |at+ b|pdµEp(t) =

∫
Dp(0,1)

log+ |t|p + log+ |at+ b|pdµDp(0,1)(t)

= sup
|z|p≤1

log+ |z|p + sup
|z|p≤1

log+ |az + b|p = log+ max{|a|p, |b|p}

= 0.

Therefore, there are finite many v ∈ MQ in (12). Furthermore, since µEv (Ev) = µEv (1Ev ) < ∞
(where 1Ev

is the continuous function 1Ev
: Ev → R, given by 1Ev

(t) = 1 for each t ∈ Ev) and
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f(t) = log+ |t|v + log+ |at+ b| ≤ log+ ri + log+ max{|a|pri, |b|p}, for each t ∈ Ev, we conclude that
MEx <∞. Consequently, we have that

µess(ha,b) ≤
∑
ν∈MQ

∫
Eν

log+ |t|ν + log+ |at+ b|νdνEν (t)

=
∑
ν∈MQ

∫
Eν

log+ |t|ν + log+ |at+ b|νdνEν (t)

=

s∑
i=1

sup
|z|pi≤ri

log+ |z|pi + sup
|z|≤ri

log+ |az + b|pi +
1

2π

∫ 2π

0

log+

∣∣∣∣ eiθ

r1r2...rs
+ x

∣∣∣∣+ log+

∣∣∣∣ aeiθ

r1r2...rs
+ b+ ax

∣∣∣∣ dθ.
=

s∑
i=1

log+ ri + sup
|z|≤ri

log+ |az + b|pi +
1

2π

∫ 2π

0

log+

∣∣∣∣ eiθ

r1r2...rs
+ x

∣∣∣∣+ log+

∣∣∣∣ aeiθ

r1r2...rs
+ b+ ax

∣∣∣∣ dθ
=

s∑
i=1

log+ ri + log+ max{|a|piri, |b|pi}+
1

2π

∫ 2π

0

log+

∣∣∣∣ eiθ

r1r2...rs
+ x

∣∣∣∣+ log+

∣∣∣∣ aeiθ

r1r2...rs
+ b+ ax

∣∣∣∣ dθ.
= Γa,b(x, r1, r2, ..., rs).

Moreover, suppose that r1, r2, ..., rs ∈ Q+ are fixed, and j ∈ [Γa,b(x, r1, r2, ..., rs),∞). Since,
Γa,b is continuous and Γa,b(x, r1, r2, ..., rs) → ∞, when x → ∞, we can find g ∈ R, such that,
j = Γa,b(g, r1, r2, ..., rs) = MEg , and then, there is a sequence of algebraic numbers (αn)n∈N,
such that, ha,b(αn) → j. Hence, for each x ∈ R, the image of ha,b is dense in the interval
[Γa,b(x, r1, ..., rs),∞). This concludes the proof of the theorem. �

5.2 Observations

Experimental results show that the minimal value of Γa,b is achieved when r1 = r2 = ... = rs = 1,
so, in general we will always take these values, furthermore, if we take |a| = 1, then

Γ1,b(x, 1, 1, ..., 1) = ∆(1, b) +
1

2π

∫ 2π

0

log+
∣∣eiθ + x

∣∣+ log+
∣∣eiθ + b+ x

∣∣ dθ = Ω1,b(x).

Proof of Corollary C: Using Theorem B together with Proposition 3.2.2, we obtain the proof of
this corollary. �

Finally, using Proposition 3.2.1, Proposition 4.2.1 and Theorem B, we obtain the following result

Theorem 5.2.1: Let a, b ∈ Q, |a| ≥ 1, |b| − |a| > 1, and |b/a| ≥ 4, then

log

(
|b| − 1

|a|

)
≤ µess(ha,b) ≤ log

(
|b|
|a|

)
.

Furthermore, assume |a| = 1. Then, ha,b is dense in the interval [log
(
|b|
|a|

)
,∞).

Proof: This a direct consequence of Proposition 3.2.1, Proposition 4.2.1 and Theorem B. �
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6 Parametrized curves

6.1 Generalization of upper bounds

In this section we will generalize all results to the situation when the variety is a parametrized curve.
We will begin with upper bounds. Let p, q ∈ Q(t), we will consider the notation introduced in section
1 and formulas (5), (6) and (7). Let q ∈ Q(t), q = q1(t)/q2(t), write q1(t) = ant

n+an−1t
n−1+...+a0

and q2(t) = bmt
m + bm−1t

m−1 + ... + b0. We denote G(q) = G(a0, ..., an, b1, ..., bm). We define
Uq : Q→ R, given by

Uq(α) =
1

deg(α)

∑
β∈Gal(α)
σ∈G(q)

log+ |qσ(β)|

Lemma 6.1.1: Let q(t) = q1(t)/q2(t), r(t) = r1(t)/r2(t), q1, r1 ∈ Q[t], q2, r2 ∈ Z[t] and α ∈ Z such
that q2(α) 6= 0 and r2(α) 6= 0. Then,

hq,r(α) ≤ Uq(α) + Ur(α) + ∆(q) + ∆(r).

Here, ∆(q) is the number defined in (6) given by

∆(q) =
∑
p

prime

∑
σ∈G(q)

log+ max(|σ(a1)|p, ..., |σ(an)|p). (13)

Proof: We consider K the Galois closure of the field generated by a0, a1, ..., an, b0, b1, ...., bm and α,
Kq the Galois closure of the field generated by a0, a1, ..., an, b0, b1, ...., bm. It is clear that deg(α) ≤
[Kα : Q] ≤ [K : Q]. We denote z = q(α). Then, using Lemma 3.1.1, we have that

h(z) =
1

[K : Q]

∑
p

prime

∑
σ∈Gal(K/Q)

log+ |σ(q(α))|p +
∑

σ∈Gal(K/Q)

log+ |σ(q(α))|



≤ 1

[K : Q]

∑
p

prime

∑
δ∈G(α)
σ∈G(q)

log+ |qσ(δ(α))|p

+
1

[Kα : Q]

 ∑
δ∈G(α)
σ∈G(q)

log+ |qσ(δ(α))|

 .

In the last inequality we have used that [Kα : Q] ≤ [K : Q] and that the number of elements in
Gal(K/Q) is less than or equal to the number of pairs (σ, δ), with δ ∈ G(α) and σ ∈ G(q). Using
the fact that α, b0, b1, ..., bm ∈ Z, we conclude that for every p prime, σ ∈ G(q) and δ ∈ G(α), we
have |qσ(δ(α))|p ≤ max(|σ(an)|p, |σ(an−1)|p, ..., |σ(a0)|p). Therefore

h(z) ≤
∑
p

prime

∑
σ∈G(q)

log+ max(|σ(an)|p, |σ(an−1)|p, ..., |σ(a0)|p) +
1

[Kα : Q]

 ∑
δ∈G(α)
σ∈G(q)

log+ |qσ(δ(α))|


= ∆(q) +

1

deg(α)

∑
β∈Gal(α)
σ∈G(q)

log+ |qσ(β)|

= Uq(α) + ∆(q).
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Using the same argument for r(t) we conclude the proof of the lemma. �

Proposition 6.1.2: Let q(t) = q1(t)/q2(t), r(t) = r1(t)/r2(t), q1, r1 ∈ Q[t], q2, r2 ∈ Z[t]. Then, for
each t ∈ R we have that

µess(hq,r) ≤ Ωq,r(t).

Here, Ωq,r is the function defined in (7) given by

Ωq,r(t) = ∆(q) + ∆(r) +
∑

σ∈G(q)

Ψσ
q (t) +

∑
σ∈G(r)

Ψσ
r (t).

Where

Ψσ
q (t) =

1

2π

∫ 2π

0

log+ |qσ(eiθ + t)|dθ.

Proof: For Lemma 6.1.1, given α ∈ Z, we have that

hq,r(α) ≤ Uq(α) + Ur(α) + ∆(q) + ∆(r) =: ηq,r(α).

For Proposition 3.1.3, given E ⊆ C, a compact set with Cap(E) = 1 and invariant under complex
conjugation, there exists a sequence of algebraic integers αn ∈ Z, such that Gal(αn) ⊂ B

(
E, 1

n

)
and

Uq(αn) + Ur(αn) −→
n→∞

∑
σ∈G(q)

∫
E

log+ |qσ(x)| dµE(x) +
∑

σ∈G(r)

∫
E

log+ |rσ(x)| dµE(x) =: ME .

Therefore

hq,r(αn) ≤ ηq,r(αn) −→
n→∞

∆(q) + ∆(r) +ME =: JE .

We claim that JE < ∞. In fact, we have that the only possible unbounded term in the definition
could be ME . For each δ ∈ G(q), let the function, fδ : R → R, and for each σ ∈ G(r) the function
gσ : R→ R, be defined by fδ(t) = log+ |qδ(t)| and gσ(t) = log+ |rσ(t)|. These functions are contin-
uous and E is a compact set, therefore, ME < ∞. Since JE < ∞, the sequence {hq,r(αn)}n∈N is
bounded, we conclude that there is a subsequence which is convergent, we call it {hq,r(βn)}n∈N.

If hq,r(βn) −→
n→∞

Z, then, by definition of limit, given ε > 0 the set {βn ∈ Z : hq,r(βn) ≤ Z + ε} is

infinite, therefore for every ε > 0 we have µess(hq,r) ≤ Z + ε. Taking ε→ 0 we get µess(hq,r) ≤ Z.
Since Z ≤ JE , we conclude that µess(hq,r) ≤ JE . Given t ∈ R we use E = St = S1 + t, where

S1 = {z ∈ C : |z| = 1}. Then, µSt is the natural translation of the measure µS1 = dθ
2π . We deduce

that

µess(hq,r) ≤ JSt = Ωq,r(t).

This concludes the proof of the theorem �
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6.2 Generalization of lower bounds

Now, we proceed with lower bounds. We denote Kq,r the field generated over Q by the coefficients of
q1, q2, r1 and r2, and G(q, r) = Gal(Kq,r/Q). Let σ ∈ G(q, r), we consider the real-valued functions
given by

gσ(z) = log+ |qσ(z)|+ log+ |rσ(z)|, f1σ(z) = log+ |qσ(z)|+ log+

∣∣∣∣ 1

rσ(z)

∣∣∣∣
f2σ(z) = log+

∣∣∣∣ 1

qσ(z)

∣∣∣∣+ log+ |rσ(z)|, G1
σ(z) = log+ |qσ(z)|+ log+

∣∣∣∣rσ (1

z

)∣∣∣∣
G2
σ(z) = log+

∣∣∣∣qσ (1

z

)∣∣∣∣+ log+ |rσ (z)| .

We have that these functions tend to ∞ when |z| → ∞. Furthermore, f1σ → ∞ when rσ(z) → 0,
f2σ → ∞ when qσ(z) → 0 and G1

σ, G
2
σ → ∞ when z → 0, and they are continuous elsewhere,

so they attain their minimum values. We denote by min(gσ),min(f1σ), min(f2σ), min(G1
σ) and

min(G2
σ), the minimum value of each of these functions respectively. Then, we define gmin =

(1/[Kq,r : Q])
∑
σ∈G(q,r) min(gσ), f i,min = (1/[Kq,r : Q])

∑
σ∈G(q,r) min(f iσ), and Gi,min = (1/[Kq,r :

Q])
∑
σ∈G(q,r) min(Giσ), i ∈ {1, 2}. Finally, we define

L(p, q) = max{gmin, f1,min, f2,min, G1,min, G2,min}.

Assume now that the minimum value of hp,q is achieved only at a finite non empty set of algebraic
numbers. Let α1, α2, ..., αk be the algebraic numbers where hp,q is equal to the minimum. We
consider {f1, f2, ..., fr} a set monic irreducible polynomials, such that their combined roots are
{α1, α2, ..., αk}. Now, let A1, A2, ..., Ar ∈ R≥0 be such that, A1 deg(f1)A2 deg(f2)...Ar deg(fr) <

m+ n and for every α ∈ Q \
⋃k
i=1 Gal(αi), and every non-archimedean place ν in MQ, we have

log+ |q(α)|ν + log+ |r(α)|ν ≥
r∑
i=1

Ai log |fi(α)|ν . (14)

We call P the set of all (A1, A2, ..., Ar) ∈ Rr, such that these conditions hold. Since (0, 0, 0, ..., 0) ∈
P , we have that P 6= ∅.

Lemma 6.2.1: The set P defined before is bounded

Proof: Firstly, we have that Ai ≥ 0, therefore each Ai is bounded from below. We fix ν0 ∈
MQ and consider α ∈ Q \

⋃k
i=1 Gal(αi), such that, log+ |q(α)|ν0 = log |anαn|ν0 , log+ |r(α)|ν0 =

log |bmαm|ν0 and for each 1 ≤ i ≤ r, |fi(α)|ν0 = |αdeg(fi)|ν0 ≥ 1. Therefore, from (13) we
have log |anbmαn+m|ν0 ≥

∑r
i=1Ai log |αdeg(fi)|ν0 ≥ At log |αdeg(ft)|ν0 = log |αdeg(ft)At |ν0 , for each

t ∈ {1, 2, ..., r}. For |α|ν0 large enough, this equality holds only if At ≤ (n + m)/deg(ft). This
completes the proof of the lemma. �

Now, for each σ ∈ G(p, q) we define the real valued function gA1,...,Ar,σ by

gA1,...,Ar,σ(z) = log+ |qσ(z)|+ log+ |rσ(z)| −
r∑
i=1

Ai log |fi(z)|.

Since Ai ≥ 0 for each i ∈ {1, 2, ..., r}, and A1 deg(f1)A2 deg(f2)...Ar deg(fr) < n+m, we have that

gA1,...,Ak,σ → ∞ when |z| → ∞ or z → x, where x ∈
⋃k
i=1 Gal(αi), and it is continuous elsewhere,

so it attains its minimum value. Now, we consider the function Hσ : P → R, given by

32



Hσ(A1, A2, ..., Ar) = inf gA1,...,Ar,σ.

We define

τ(q, r) =
1

[Kq,r : Q]
sup

(A1,...,Ar)∈P

∑
σ∈G(q,r)

Hσ(A1, ..., Ar).

Definition 6.2.2: Let q, r ∈ Q(t). If the minimum value of hq,r is achieved only at a finite set of
algebraic numbers, we define K(q, r) = τ(q, r). Otherwise K(q, r) = L(q, r)

Now, we can state the following theorem.

Theorem 6.2.3.: Let q, r ∈ Q(t). Then,

µess(hq,r) ≥ L(q, r).

Moreover, if the minimum value is achieved only at a finite non empty set of algebraic numbers,
then

µess(hq,r) ≥ τ(q, r).

Proof: Let K/Q be a Galois extension such that an, ..., a0, bm, ..., b0, α ∈ K. Note that

hq,r(α) =
1

[K : Q]

∑
p

∑
ν||.|p

log+ |q(α)|ν + log+ |r(α)|ν +
∑
ν||.|

log+ |q(α)|ν + log+ |r(α)|ν


≥ 1

[K : Q]

∑
ν||.|

log+ |q(α)|ν + log+ |r(α)|ν

=
1

[K : Q]

∑
σ∈G(q,r)

∑
τ∈Gal(K\Q)

τ |σ

log+ |qσ(τ(α))|+ log+ |rσ(τ(α))|

≥ 1

[Kq,r : Q]

∑
σ∈G(q,r)

inf gσ

= gmin.

Therefore, gmin ≤ hq,r(α) for all α, we conclude that gmin ≤ µess(hq,r). Similarly, we can con-
clude that f1,min ≤ µess(hq,r). In fact, we can consider the real-valued function jq,r, given by
jq,r(α) = h(1/q(α))+h(r(α)). Since h(α) = h(1/α), we have jq,r = hq,r. However, the Archimedean
parts of them are different, so, we can use the same inequalities as before and conclude that
f1,min ≤ µess(jq,r) = µess(hq,r), the proof for f2,min is the analogous. Finally, let the real val-
ued function np,q, be given by np,q(α) = h(q(α)) + h(r(1/α)) = hinp,q. Using Lemma 4.1.4 and the

same method used before, we conclude that G1,min ≤ µess(np,q) = µess(hinp,q) = µess(hp,q), the proof

for G2,min is the analogous. Therefore, L(p, q) ≤ µess(hp,q).

Assume now that the minimum value of hp,q is achieved only at a finite set {α1, α2, .., αk}. Let α ∈
Q\
⋃k
i=1 Gal(αi) and A1, A2, ..., Ar ∈ P . The product formula gives us that for each i ∈ {1, 2, ..., r},

we have ∑
ν∈MK

Ai log |fi(α)|ν = 0

Therefore
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hq,r(α) =
1

[K : Q]

∑
p

∑
ν||.|p

log+ |q(α)|ν + log+ |r(α)|ν −
r∑
i=1

Ai log |fi(α)|ν


+

1

[K : Q]

∑
ν||.|

log+ |q(α)|ν + log+ |r(α)|ν −
r∑
i=1

Ai log |fi(α)|ν


≥ 1

[K : Q]

∑
ν||.|

log+ |q(α)|ν + log+ |r(α)|ν −
r∑
i=1

Ai log |fi(α)|ν


=

1

[K : Q]

∑
σ∈G(q,r)

∑
τ∈Gal(K/Q)

τ |σ

gA1,A2,...,Ar,σ(τ(α))

≥ 1

[Kq,r : Q]

∑
σ∈G(q,r)

Hσ(A1, A2, ..., Ar).

Since the last inequality holds for all (A1, A2, ..., Ar) ∈ P , we have that

hq,r(α) ≥ 1

[Kq,r : Q]
sup

(A1,A2,...,Ak)∈P

∑
σ∈G(q,r)

Hσ(A1, A2, ..., Ar)

= τ(q, r).

Since the last inequality holds for all α except finitely many, we conclude that τ(q, r) ≤ µess(hq,r).
�

6.3 Generalization of intervals of density

Now we are ready to prove Theorem E

Proof of Theorem E: We use Proposition 5.1.1, for pi ∈ Sq
⋃
Sr we take Epi = Dpi(0, ri) =

{z ∈ Cpi : |z|pi < ri}, where ri ∈ Q+. For p /∈ Sq
⋃
Sr we take, Ep = Op. For |.|ν = |.|∞, we

take E|.| = B(x, 1/(r1r2...rsq+sr )), where x ∈ R. We define, E =
∏
v Ev, then E is an adelic set

such that Cap(E) = 1. Therefore, by Proposition 5.1.1, there is a sequence (αn)n∈N satisfying

Gal(αn,ν) ⊂ B(Eν , 1/n), for each ν ∈ MQ, such that δ(Gal(αn, ν))
∗−→ µEν (see section 5 and

section 2 for the definition of Eν), therefore

hp,q(αn) −→
n→∞

∑
ν∈MQ

∫
Eν

log+ |q(t)|ν + log+ |r(t)|νdµEν (t) := MEx . (15)

We claim that MEx < ∞. Let p a prime number and d ∈ R. Then, using Gauss’s Lemma (see [5]
or [4] for an elementary proof)

sup
|z|p≤d

log+ |q(z)|p = log+ max
0≤k≤n

|ak|pdk

Let log+ max0≤k≤n |ak|pdk = |al|pdl, if there are some other a, we can take t1 such that |t1|p < d
and we obtain |q(t1)|p = |al|pdl. Now, note that for p /∈ Sq

⋃
Sr, we have
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∫
Ep

log+ |q(t)|p + log+ |r(t)|pdµEp(t) =

∫
Dp(0,1)

log+ |q(t)|p + log+ |r(t)|pdµDp(0,1)(t)

= sup
|z|p≤1

log+ |q(z)|p + sup
|z|p≤1

log+ |(z)|p

= log+ max
0≤k≤n

|ak|p + log+ max
0≤k≤m

|bk|p

= 0

Therefore, there are finite many v ∈ MQ in (14). Furthermore, since µEv (Ev) = µEv (1Ev ) < ∞
(where 1Ev

is the continuous function 1Ev
: Ev → R, given by 1Ev

(t) = 1 for each t ∈ Ev) and

f(t) = log+ |q(t)|p+ log+ |r(t)|p ≤ log+ max0≤k≤n |akrkp |v + log+ max0≤k≤m |bkrkp |v, for each t ∈ Ev,
we conclude that MEx <∞. Consequently, we have that

µess(hq,r) ≤
∑
ν∈MQ

∫
Eν

log+ |q(t)|ν + log+ |r(t)|νdνEν (t)

=

sq∑
i=1

log+ max
|z|pi≤ri

|q(z)|pi +

sq+sr∑
i=sq+1

log+ max
|z|pi≤ri

|r(z)|pi

+
1

2π

∫ 2π

0

log+

∣∣∣∣q( eiθ

r1r2...rsq+sr
+ x

)∣∣∣∣+ log+

∣∣∣∣r( eiθ

r1r2...rsq+sr
+ x

)∣∣∣∣ dθ.
= Γq,r(x, r1, r2, ..., rsq+sr ).

Moreover, suppose that r1, r2, ..., rsq+sr ∈ Q+ are fixed, and j ∈ [Γq,r(x, r1, r2, ..., rsq+sr ),∞).
Since, Γq,r is continuous and Γq,r(x, r1, r2, ..., rsq+sr ) → ∞, when x → ∞, we can find g ∈ R,
such that, j = Γq,r(g, r1, r2, ..., rsq+sr ) = MEg , and then, there is a sequence of algebraic numbers
(αn)n∈N, such that, hq,r(αn)→ j. Hence, for each x ∈ R, the image of hq,r is dense in the interval
[Γq,r(x, r1, ..., rsq+sr ),∞). This concludes the proof of the theorem. �

Experimental results show that the minimal value of Γ is achieved when r1 = r2 = ... = rs+q = 1,
so, in general we will always take these values. We have that

Γq,r(x, 1, 1, ..., 1) = ∆(q) + ∆(r) +
∑

σ∈Gal(q)

Ψσ
q (t) +

∑
σ∈Gal(r)

Ψσ
r (t) = Ωq,r(x).

6.4 Examples

Example 6.4.1: Let a ∈ Q, |a| > 2. We consider Y : y2 = x3 + ax2. Then

µess(hY ) ≤ log |a|.

Moreover, the image of hY is dense in the interval [log |a|,∞)

Proof: We consider the parametrization y = t3 − at, x = t2 − a, therefore we have q(t) = t2 − a
and r(t) = t3 − at. Taking t = 0 in proposition 6.1.2, we have that µess(hY ) ≤ Ωq,r(0). Then
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Ωq,r(0) =
1

2π

∫ 2π

0

log |e2iθ − a|+ log |e3iθ − aeiθ|dθ

=
1

2π

∫ 2π

0

2 log |e2iθ − a|dθ

=
1

2π
Re

(∫ 2π

0

2 log(e2iθ − a)dθ

)
=

1

2π
Re

(∫
S1

1

iz
log |z2 − a|dz

)
= log |a|.

using the fact that a ∈ Q and Theorem E, we conclude the proof. �

Example 6.4.2: Let a, c ∈ Q with a 6= 0. We consider Y : y = ax2 + c and the parametrization
x = q(t) = t and y = r(t) = at2 + c. Assume that |a| − |c| > 1. Then,

µess(hY ) ≤ ∆(a, c) +
1

2
log |c|

Proof: Taking t = 0 in proposition 6.1.2, we have that µess(hY ) ≤ Ωq,r(0). Then

Ωq,r(0) = ∆(r) +
1

2π

∫ 2π

0

log |ae2iθ + c|dθ

= ∆(r) +
1

2π
Re

(∫ 2π

0

log(ae2iθ + c)dθ

)
= ∆(r) +

1

2π
Re

(∫
S1

1

2iz
log(az + c)dz

)
= ∆(r) +

1

2π
Re

(
2πi

1

2i
log(c)

)
= ∆(a, c) +

log |c|
2

�

Example 6.4.3: Let a, c ∈ Q with a 6= 0. We consider Y : y = axn + c with n ∈ N. Assume that,
there exists σ0 ∈ G(a, c), such that |σ0(c)| − |σ0 (a) | > 1. Then,

µess(hY ) ≥ 1

[Ka,c : Q]
min

{
log (|σ0(c)| − |σ0 (a)|) , log

(
n

√
|σ0(c)| − 1

|σ0(a)|

)}
.

Proof: We consider the parametrization x = q(t) = t and y = r(t) = atn + c. Then, we consider

gσ0
(z) = log+ |z|+ log+ |σ0(a)zn + σ0(c)|

Firstly, we will take z = eiθ. Then,

gσ0(eiθ) = log+ |σ0(a)eniθ + σ0(c)|
≥ log(|σ0(c)| − |σ0(a)|).
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On the other hand, if σ0(a)zn + σ0(c) = eiθ, we have z = n
√

(eiθ − σ0(c))/σ0(a). Then,

gσ0

(
n

√
eiθ − σ0(c)

σ0(a)

)
= log+

∣∣∣∣∣ n
√
eiθ − σ0(c)

σ0(a)

∣∣∣∣∣
≥ log n

√
|σ0 (c)| − 1

|σ0(a)|
.

Both values are achieved. Then, by Proposition 6.2.3, we have that min gσ0
/[Ka,c : Q] ≤ L(q, r) ≤

µess(hY ). This concludes the proof. �

Example 6.4.4: We consider Y : x2 + y2 = 1. Then

µess(hY ) ≤
∫ 2π

0

log+

∣∣∣∣1− (1 + eiθ)2

1 + (1 + eiθ)2

∣∣∣∣+ log+

∣∣∣∣ 2(1 + eiθ)

1 + (1 + eiθ)2

∣∣∣∣ dθ.
Proof: We will consider the parametrization

x = q(t) =
1− t2

1 + t2
and y = r(t) =

2t

1 + t2

Using proposition 6.1.2 with t = 1, we conclude that

µess(hS1
) ≤ 1

2π

∫ 2π

0

log+

∣∣∣∣1− (1 + eiθ)2

1 + (1 + eiθ)2

∣∣∣∣+ log+

∣∣∣∣ 2(1 + eiθ)

1 + (1 + eiθ)2

∣∣∣∣ dθ
In order to obtain a non-trivial upper bound, we have used S1 + 1 instead of S1. �

Proof of Theorem D: This theorem is a direct consequence of Proposition 6.1.2, Theorem 6.2.3 and
Example 6.4.3. �
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7 Further directions

Future investigations in this thesis will be related to the upper and lower bounds for X = E an

elliptic curve, in this case we will use the Néron-Tate Height ĥE : E(Q)→ R, given by

ĥE(P ) = lim
n→∞

hE(nP )

n2
.

where h is a Weil height. This is well defined and it is zero if and only if P is a torsion point (see
[23] section 6, [14] and [13] chapter B5). Since the set of torsion points is Zariski dense we have that

µess(ĥE) = 0. Consider the height HE : E(Q)× E(Q)→ R given by

HE(P,Q) = ĥE(P ) + ĥE(Q).

Note that, given two torsion points P,Q ∈ E(Q), we have that HE(P,Q) = 0. Assume that there
is a non-torsion point N ∈ E(Q), then, we can consider the sub-variety of E(Q) × E(Q) given by
V (N) = {(P, P + N) : P ∈ E(Q)}, and then consider HN

E = HE |V (N), note that, we can consider

HN
E as a one-variable function, HN

E : E(Q)→ R, given by, HN
E (P ) = HE(P ) +HE(P +N).

We have that V (N) is a sub-variety of E(Q)× E(Q) which is not a torsion subvariety. Now, using
Zhang’s theorem we have that µess(HN

E ) > 0, this is the height we are going to study. In order to
study this height we will use the Fekete-Szegö theorem for elliptic curves, given in [16].

Let E be an elliptic curve, we consider E in its Weierstrass form, this means E = Ep,q : y2 =

x3 + px2 + q, where p, q ∈ Q. Now, assume that rank(E) > 0, then, there are non-torsion rational
points in E, in order to find these points, we will use a result proved by Lutz and Nagell (see
[19], Corollary 7.2), we consider a point (x, y) ∈ E(Q), such that (x, y) /∈ E(Z); or (x, y) ∈ E(Z),
2 ∗ (x, y) 6= [0 : 1 : 0] and y2 does not divide ∆(E) = −16(4p3 + 27q2), then (x, y) is a non-torsion
point.

For instance, we can take E : y2 = x3 + 17, then, the point P =

(
137

64
,

2651

512

)
∈ E is a non-torsion

rational point of E, therefore, the variety V (P ) is a non-torsion variety. We can also consider the
point Q = (2, 5), in this case, 2Q 6= 0 because the second coordinate of Q is not zero, and also, we
have that 52 does not divide ∆(E) = −2433172, therefore it is a non-torsion point and V (Q) is a
non-torsion variety.

We have that our method to obtain intervals of density in lines only works for a, b ∈ Q, it is an open
question if this result can be extended to any a, b ∈ Q.
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