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Abstract
Roughly speaking, the problem of geography asks for the existence of varieties
of general type after we fix some invariants. In dimension 1, where we fix
the genus, the geography question is trivial, but already in dimension 2 it
becomes a hard problem in general. In higher dimensions, this problem is
essentially wide open. In this paper, we focus on geography in dimension
3. We generalize the techniques which compare the geography of surfaces
with the geography of arrangements of curves via asymptotic constructions.
In dimension 2 this involves resolutions of cyclic quotient singularities and a
certain asymptotic behavior of the associated Dedekind sums and continued
fractions. We discuss the general situation with emphasis in dimension 3,
analyzing the singularities and various resolutions that show up, and proving
results about the asymptotic behavior of the invariants we fix.
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Chapter 1

Introduction

1.1 Geography problem

We work with normal projective varieties X over the complex numbers C.
As usual, when dimX = 1, 2, or d ≥ 3 we say that X is a curve, a surface, or
a d-fold respectively. A central problem in algebraic geometry is to classify
varieties of general type, i.e., varieties with positive canonical volume vol(X).
By definition

vol(X) = lim sup
m→∞

h0(X,mKX)

md/d!
,

where KX is the Weil divisor associated with the dualizing sheaf and d =
dimX. It is called the canonical divisor of X.

Nowadays this classification problem is guided as follows. Given a non-
singular variety X of general type, we first identify a good birational model
that represents X. For that, we run the minimal model program to find a
variety X ′ birational to X that has at most terminal singularities, and nef
canonical class. After that, we consider its (unique) canonical model Xcan.
This process always works due to [BCHM10]. The numerical biregular invari-
ants of Xcan become invariants for the birational class. One could consider
the top-intersection of KXcan , the analytic Euler characteristic χ(OXcan), the
topological Euler characteristic e(Xcan), etc. Then, after we agree on numer-
ical invariants, the geography problem asks: Given a collection of numbers, is
there a canonical variety of general type whose numerical invariants are equal
to that collection of numbers? Often this set of invariants C are the labels
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8 CHAPTER 1. INTRODUCTION

for the corresponding moduli space MC. That moduli space geometrically
collects all canonical varieties of general type whose invariants are equal to
C. In this way, the geography problem asks whether MC is not empty for
a given C. It turns out that typically MC is an open variety, but there is
a geometric compactification MC [Kol23]. In this compactification, which
may be bigger than the closure of MC, we encounter varieties with controlled
singularities. Then it is interesting to know whether MC is not empty for a
given C, although this does not imply the question for MC [Rol21]. Hence
in this paper, we are interested in a wider geography problem for varieties
of general type with (log) terminal/canonical singularities with nef/ample
canonical bundle.

In dimension one, the main invariant is the genus g. If X is a non-singular
curve of general type, then we have

vol(X) = degKX = −2χ(OX) = −e(X) = 2g − 2 > 0⇔ g ≥ 2.

Thus, the geography problem asks: Given an integer g ≥ 2, is there a curve
of genus g? This can be trivially answered. Indeed, one constructs curves
for any g ≥ 2 as double coverings branched at 2g + 2 points on P1. More-
over, there exists a quasi-projective variety Mg of dimension 3g − 3 which
parametrizes all isomorphism classes of curves of genus g. The variety Mg is
called the moduli space of curves of genus g. It has a natural compactifica-
tion due to Deligne and Mumford [DM69], which is an irreducible projective
variety M g parametrizing nodal curves of arithmetic genus g and ample du-
alizing sheaf.

In dimension two the problem is much harder. In order to choose in-
variants, the Riemann-Roch theorem suggests that, for any surface X, one
can pick the top-intersection of canonical class K2

X , and the analytical Euler
characteristic χ(OX). When X is non-singular, we have the Noether’s for-
mula K2

X+e(X) = 12χ(OX) [Noe75]. Then, these two invariants K2
X , χ(OX)

are equivalent to the two Chern numbers c21(X) = K2
X , and c2(X) = e(X).

Any pair of birational non-singular curves are isomorphic. In contrast,
we have infinitely many birational non-singular models in higher dimensions,
for example, by means of blow-ups at points. However, as we said above, we
can run the MMP for the canonical class, obtaining a minimal model, which
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is unique in dimension two. If we fix our attention to minimal surfaces of
general type, then we have well-known geographical constraints:

c21, c2 > 0, General type inequality, (1.1)
5c21 − c2 + 36 ≥ 0, Noether’s inequality [Noe75], (1.2)
c21 ≤ 3c2, BMY-inequality [Bog78, Miy77, Yau77]. (1.3)

They all are well-known in the theory of surfaces [BHPV04, Ch.VII].

Through the GIT strategy, Gieseker [Gie77] proved that there exists a
moduli space MK2,χ of surfaces of general type with fixed invariants K2, χ.
It is a quasi-projective scheme. The space MK2,χ parametrizes the canonical
models of the minimal models, so they may be singular. (We recall that it is a
classical theorem of Mumford that the canonical models exist [Zar62].) They
have at most ADE singularities, which are precisely the canonical singular-
ities in dimension two. This moduli space MK2,χ could be highly singular,
and with many irreducible components. It actually satisfies Murphy’s law in
algebraic geometry [Vak06]. As in the case of curves, there exists a geomet-
ric compactification MK2,χ of MK2,χ due to Kollár–Shepherd-Barron [KSB88]
and Alexeev [Ale94], but it is constructed now via MMP. These are called
KSBA compactifications, and they are projective schemes and parametrize
singular surfaces with only semi-log-canonical singularities and ample dualiz-
ing sheaf. Hence normal surfaces X with log-canonical singularities and KX

ample are KSBA surfaces.

The geography problem for surfaces asks: Given (a, b) ∈ Z2 satisfying the
restrictions in (1.1, 1.2, 1.3) and the Noether’s formula, is there a minimal
surface X such that c21(X) = a, and c2(X) = b?

A pioneer in this question (and the creator of the term “geography") was
Ulf Persson [Per81]. He proved the existence of minimal surfaces of general
type X with c2(X) = a, c21(X) = b satisfying a−36

5
≤ b ≤ 2a with 2b ̸= a− k,

where k = 2, or k is odd with 1 ≤ k ≤ 15 or k = 19. A more general result
was obtained in [Che87] and [Che91]. Putting all together, for every pair
(a, b), the region bounded by b ≤ 3a and 5b − a + 36 ≥ 0 is realized by the
Chern numbers of a minimal surface of general type, except maybe for points
in finitely many lines b − 3a + 4k = 0 for 0 ≤ k ≤ 347. In Figure 1.1, is
sketched a map that shows the geographical picture. The black points rep-
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resent places where such surfaces exist. (Unfortunately, the author is aware
that this may not be a complete map.) The red zone is delimited by the
inequalities above. The gray lines are defined by c21+ c2 = 12k, k ∈ Z>0. The
dotted lines have equations b − 3a + 4k = 0 for k = 1, . . . , 8, and so there
may be infinitely many points with no representative.

Figure 1.1: A sketched map in coordinates (c2, c
2
1) for surfaces of general

type.

As we just saw, working on the geography problem for pairs (a, b) could be
cumbersome. We can weaken the problem considering Chern slopes c21/c2.
Somesse [Som84] proves that any rational number in [1/5, 3] is realized as
c21(X)/c2(X) by a minimal surface of general type X, answering a question
asked by Hirzebruch in [Hir83, (3.3)]. In particular, there are no “not-allowed-
holes" in [1/5, 3]. The surfaces constructed by Sommese have no control
over other invariants, for example, their fundamental group. One could ask:
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How do the slopes of minimal surfaces of general type with fixed fundamental
group distribute in [1/5, 3]? This was not a trivial question even for simply-
connected surfaces. In [RU15] it was proved that Chern slopes are actually
dense in [1/5, 3] for simply-connected surfaces. The corresponding geogra-
phy problem for pairs (a, b) is wide open. For the case of other fundamental
groups, it was recently proved [TU22] that if G is the fundamental group of
a surface, then the Chern slopes of minimal surfaces of general type with π1

isomorphic to G is dense in [1, 3].

In dimensions greater than or equal to 3, we know dramatically less about
their geography. For each dimension, at least we have the existence of moduli
spaces for KSB-stable models. A comprehensive treatment can be found in
[Kol23], where the following theorem is stated.

Theorem. The moduli functor Md,Kd of KSB-stable families of dimension
d and volumen Kd has a projective coarse moduli space Md,Kd. In this way,
the moduli space Md,Kd of canonical models of dimension d and volume Kd

admits a compactification.

Since in higher dimensions, our minimal models may admit singularities,
we do not have directly the notion of Chern numbers. If X is a non-singular
3-fold, then we have Chern numbers

c31(X) = −K3
X , c1c2(X) = 24χ(OX), c3(X) = e(X).

For X minimal non-singular 3-fold we have a Noether type inequality [CH06],

c31(X) ≤ 1

27
c1c2(X) +

10

3
. (1.4)

When X is singular, we consider as invariants for our geography prob-
lem: K3

X , χ(OX), and e(X). As in the case of surfaces, we also have some
inequalities for them. If X is minimal of general type, we have K3

X > 0.
In [Hu18], was proved the Noether type inequality for Gorenstein minimal
3-folds of general type:

−K3
X ≤

4

3
χ(OX) + 2.

We have the Miyaoka-Yau inequality for Gorenstein minimal 3-folds of gen-
eral type [Miy87],

−K3
X ≥ 72χ(OX),
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with equality if and only if X is a ball quotient. In [GKPT19] was proved
a Q-version of Miyaoka-Yau inequality, i.e., a similar inequality when X is a
projective Kawamata log-terminal 3-fold of general type with nef canonical
divisor. (In the previous two inequalities above, the results were written in
terms of K3

X and χ(ωX). However, since we are restricting ourselves to the
Gorenstein case, we have χ(ωX) = −χ(OX).)

From the birational geometry of 3-folds, the triple (K3
X , χ(OX), e(X)) ∈

Q × Z2 is invariant between minimal models of the same birational class.
This due to the following observations:

• The volume K3
X is invariant on its birational class because for each other

minimal model representative X ′ ∈ [X], the birational map relating
them induces an isomorphism X ′ − B′ ∼= X − B, where B,B′ are of
codimensión at least two [Mat10, 12.1.2]. Then X and X ′ have the
same divisor class group, therefore K3

X = K3
X′ .

• It is well-known that χ(X) is a birational invariant between non-singular
varieties, but not always birational in the singular case. For example
[Maa20]. It is known that minimal models in the same birational class
are connected by flops [Mat10, Cf. Th.12.1.8.]. They are surgeries re-
versing the orientation of some K-trivial rational curves. Then let X
be a minimal model representative of a birational class, and

C ⊂ X

f ##

// C+ ⊂ X+

f+

yy
Y

be a flop. It is known that Y has rational singularities, and we have
OY = f∗OX = f+

∗OX+ since f/f+ are contractions of C/C+. Then
for each i,

H i(X,OX) ∼= H i(Y, f∗OX) ∼= H i(Y, f+
∗ OX+) ∼= H i(X+,OX+),

from we get χ(OX) = χ(OX+).

• For the topological characteristic e(X) we follow [Kol91, Th. 3.2.2.]
to sketch that flops leave invariant the Betti numbers hi(X) for all
i ≥ 0. Let C ⊂ X → Y ← X+ ⊃ C+ be a flop as before. Set
A = X \C, and A+ = X+ \C+. Take U,U+ analytical neighbourhoods
of C and C+ respectively which retract to these rational curves, and set
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B = U \ C and B+ = U+ \ C+. Using Mayer-Vietoris for X = A ∪ U
and X+ = A+ ∪ U+, we get long exact sequences between singular
cohomology groups

...→ H i(B)→ H i(A)⊕H i(U)→ H i(X)→ H i+1(B)→ ...

...→ H i(B+)→ H i(A+)⊕H i(U+)→ H i(X+)→ H i+1(B+)→ ...

Since U and U+ retract to rational curves, we have H i(U) = H i(U+) =
0 for all i except for i = 0, 2. Also, H i(B) = H i(B+) and H i(A) =
H i(A+) for i ≥ 3, and H2(X) = H2(X+) [Kol91, 2.2.9]. We get
rankH i(X) = rankH i(X+), i.e., the same Betti numbers. So, we have
e(X) = e(X+).

The main purpose of this thesis is to study the geography problem for
3-folds of general type. We can state the geography problem as follows:
Given a triple (a, b, c) ∈ Q × Z2 satisfying the restrictions above, is there a
3-fold of general type X such that (−K3

X , χ(OX), e(X)) = (a, b, c)? We can
distinguish two cases:

(C) Geography for minimal 3-folds with terminal singularities, in the realm
of canonical models.

(LC) Geography for minimal 3-folds with log-terminal singularities, in the
realm of KSB-stable models.

For minimal 3-folds X of general type, χ(OX) and e(X) could be negative,
positive or zero. This suggest to take quotients over c31, however this put a
limit in our geography of slopes if we want go out of the realm of general
type varieties. In [Hun89] was proposed the study of slopes

[c31, c1c2, c3] ∈ P2
Q

for non-singular minimal models, extending naturally to the singular case by
taking slopes [−K3

X , χ(OX), e(X)] ∈ P2
Q. This, allows us to work by charts.

Indeed, in [Hun89], the author studied slopes of non-singular 3-folds with
ample canonical class in the chart c1c2 ̸= 0. Moreover, since χ(OX) < 0 for
Gorenstein minimal models of general type, we can extend the zone of study
in that chart for now.
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Finally, a first big question that one can ask is: Those slopes lie in a
bounded region?. Observe that all inequalities above just bound the coor-
dinate c31/c1c2. In [CL01] is proved that the Chern slopes [c31, c1c2, c3] of
non-singular 3-folds with ample canonical bundle defines a bounded region
by finding inequalities for the coordinate c3/c1c2. However, this bound is not
optimal. In a more general set-up, let N(d) be the number of partitions of d.
In [DS22] is proved that Chern slopes [cd1, . . . , cd] ∈ PN(d)−1

Q of non-singular
d-folds with ample canonical bundle define a bounded region.

To illustrate the case of 3-folds, in Figure 1.2 we see the map in chart
c1c2 ̸= 0 for minimal non-singular 3-folds of general type. In the rest, we
describe the zones on that map.

• Allowed zone: This is the region bounded by the Miyaoka-Yau in-
equality c31/c1c2 ≤ 8/3 and c31/c1c2 > 0. They are sketched by black
lines.

• Noether’s line: Since χ(OX) < 0 is an integer, we can avoid small
values of this invariant. Thus, from the Noether’s inequality (1.4), 3-
folds with |c1c2| ≫ 0 must satisfy c31/c1c2 ≥ 1/27. Thus, the Noether’s
line is the red line defined by c31/c1c2 = 1/27.

• Cartesian Product Zone (CP line): The zone CP collects 3-
folds of the form S × C for surface S and a curve C both with am-
ple canonical bundle [Hun89, Subsection 7.2.3] (also Example 2.2.5).
Hunt proved that the Chern slopes (c31/c1c2, c3/c1c2) of these 3-folds
distribute densely along the line in A2 connecting the points (9/4, 1/4)
and (1/2, 5/6). This is the purple line on the map.

• 3-folds in P4 and P5. The minimal non-singular singular 3-folds of
general type in P4 are hypersurfaces of degree d > 5. Thus, they have
well-known Chern classes (see Section 5.2). The Chern numbers have
the form

c31 = −d(d3 − 15d2 + 75d− 125),

c1c2 = −d(d3 − 10d2 + 35d− 50),

c3 = −d(d3 − 5d2 + 10d− 10).

So, their slopes (c31/c1c2, c3/c1c2) are asymptotically near to (1, 1) as d
grows. On the map, they are sketched with blue points.
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In [Cha99] was proved that 3-folds embedded in P5 whose canonical
class K satisfy KiHj > 0 for a hyperplane section, distribute along the
line defined by

x+ y = 2, 1 ≤ x ≤ 2.

We sketch it in the map with a blue line.

• Smooth Complete Intersection Zone (SCI): The zone SCI col-
lects non-singular complete intersections with ample canonical sheaf.
In [Hun89] was studied the case of X being a complete intersection in
Pr+3 of n hypersurfaces of degree a1+1, ..., ar+1 with ai ≥ 1. Observe
that

KX =

(
r∑

i=1

ai − 4

)
H|X ,

so in case r ≥ 5 we are talking about smooth minimal 3-folds of general
type. Moreover, we have

c31(X)

c1c2(X)
=

2(s1 − 4)2

s21 + s2 − 6s1 + 12
,

c3(X)

c1c2(X)
=

(s31 + 3s1s2 + 2s3)/3− 2(s21 + s2) + 6s1 − 8

(s21 + s2 − 6s1 + 12)(s1 − 4)
,

where sj =
∑

aji . In [Cha97] it is proved the existence of an optimal
region for which we have density.

Theorem 1.1.1. Let R ⊂ Q2 be the region between the points (1, 1)
and (2, 1/3), and closed between the curves

U : y +
x

3
− 1 =

(2− x)3/2

3
√
x

and the piece-wise function

L : y = 1− x

3
+

2− x

n
− 2x

3n2
+

(n− 2)x

3n2
√
n− 1

(
2n

x
− n− 1

)3/2

,

where 2 − 2/n < x < 2 − 2/(n + 1) for each n ≥ 2. Every point
p ∈ R realizes a smooth complete intersection with given Chern slopes
(c31/c1c2, c3/c1c2) = p.
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This region is sketched with orange color on the map. The problem
of this region is that it not contains all SCI 3-folds. The remainder are
distributed discretely outside the region R. However, in [SXZ14] was
proved the following.

Theorem 1.1.2. The convex closure of the slopes (c31/c1c2, c3/c1c2) for
SCI 3-folds is a rational polyhedron with infinitely many faces. The
vertices of these polyhedron are

p1 = (1/16, 43/8), p2 = (1/10, 19/5),

p3 = (1/8, 13/4), p4 = (1/3, 23/12),

pn =

(
2(n− 4)2

n2 − 5n+ 12
,
n3 − 3n2 + 14n− 24

n2 − 5n+ 12

)
, n ≥ 5,

p∞ = (2, 1/3).

The region described in this theorem is sketched with the color yellow
on the map.

• Zone Fermat: Generalizing techniques that Sommese developed for
the case of surfaces using the basic construction of Fermat covers, in
[Hun89, Th. 8.2.1 and Th.8.2.2] was proved that there exists triangles
∆ABC in Q2 such that for every (a, b) ∈ ∆ABC there exists a smooth
projective 3-fold X with ample canonical bundle such that,(

c31(X)

c1c2(X)
,
c3(X)

c1c2(X)

)
= (a, b).

Indeed, their construction is based on pivotal points on the CP line.
For example,

A = (12/11, 1/11), B = (6/5, 3/5), C = (41/33, 19/33),

A = (1,−2/5), B = (1, 2/3), C = (32/29, 55/87).

They are sketched by light green triangles on the map. The disadvan-
tage is that the above triangles are the larger found. Other attempts
by Hunt just construct microscopic triangles that can not be sketched
in the map. This technique was improved in [Liu97]. The author used
other pivotal points to construct another dense region. Indeed, it is con-
structed by infinitely many Hunt’s triangles. The regions constructed
are sketched with green.
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• Isolated points: The isolated gray points show minimal non-singular
3-folds constructed by Fermat over arrangements of hyperplanes, and
desingularizations of complete intersection. In this case, we have ex-
amples for c3 > 0 [Hun89, Section 7.3]. We sketch two of these points

(1.4,−0.22) Fermat cover over CEV A3(2),

(0.83,−0.125), Desingularization of complete intersection (5, 5) in P5 .

• Ball quotient point: Among all isolated points there is one special.
The Miyaoka-Yau inequality asserts that every non-singular 3-fold with
ample canonical bundle satisfying c31 =

8
3
c1c2 is a smooth ball quotient.

By Hirzebruch proportionality [Hir58] it is known that this ball quotient
must satisfy c3/c1c2 = 1

6
. This implies that all non-singular varieties

with ample canonical bundle and equating the Miyaoka-Yau inequality
lies in only one point, i.e., (8/3, 1/6).

• Unknown Zone: Hunt conjectured that over the dense zone con-
structed in [Cha97] is empty. However, the result of [SXZ14] expands
this region for discrete points in it. Thus we redefine the unknown zone
as the region over the smooth complete intersection and over the ex-
tension of the CP line from the point (2, 1/3). In this new region, we
do not know about the existence of minimal non-singular 3-folds with
such slopes. This is the unknown zone. See Section 6.3.

1.2 About this thesis

When working with slopes, it turns out that we can apply the tool of n-th
root coverings to investigate their behavior. Although it is not a straightfor-
ward result for dimensions 2 or more, in dimension 1 it is easy to see this
phenomenon.

Consider the following data. Let Z be a non-singular projective variety
of dimension d, and let D1, . . . , Dr be distinct prime divisors in Z. Assume
that Dred := D1 + . . . + Dr is a simple normal crossing divisor (SNC). Let
n > 1 be a positive integer, and let 0 < νi < n be a collection of r integers
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Figure 1.2: The map in coordinates (c31/c1c2, c3/c1c2) for non-singular mini-
mal 3-folds of general type. The y-axis is scaled to show the complete picture.

coprime to n. Assume that there exists a line bundle L on Z such that

L⊗n ≃ OZ

(
r∑

i=1

νiDi

)
. (1.5)

Then, there exists an n-th root cover hn : Yn → Z branched along Dred, where
Yn is a normal projective variety (Section 2.3). There is an action of Z/nZ
on Yn such that Z = Yn/(Z/nZ) . These are the n-th root covers developed
by Esnault and Viehweg in [Esn82], [Vie82] (Cf. [EV92]). For curves, the
prime divisors D1, . . . , Dr are distinct points on Z, and the existence of such
L is equivalent to

∑r
i=1 νi ≡ 0 modulo n. Moreover, since points are isolated,

we have Yn as a non-singular curve. By the Riemann-Hurwitz formula, we
have

c1(Yn)

n
=

nc1(Z)− (n− 1)r

n
= c1(Z)− r +

r

n
= c̄1(Z,Dred) +

r

n
.

Here c̄1(Z,Dred) is the first logarithmic Chern number of the pair (Z,Dred)
(see Section 2.2). Hence, if we fix the points Dred and we consider partitions
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ν1 + . . . + νr = n with n≫ 0 a prime number, then we asymptotically have
c1(Yn) ≈ nc̄1(Z,Dred).

Question 1.2.1. Does this asymptotic phenomenon happen in higher dimen-
sions?

In Chapter 3, we prove that this phenomenon occurs in general when the
branch locus is a disjoint collection of non-singular distinct prime divisors
D1, . . . , Dr. In this case, as above, we have Yn as a non-singular projective
variety, and it is independent of the multiplicities νi.

Theorem 1. Assume we have n-th root covers h : Yn → Z branched at
D =

∑
j νjDj, for n arbitrarily large. If Dred is non-singular, then for each

partition i1 + . . .+ im = d, the Chern numbers satisfy,

ci1 . . . cim(Yn)

n
≈ c̄i1 . . . c̄im(Z,D),

for prime numbers n≫ 0.

However, this theorem is restrictive for us in terms of geography. It is dif-
ficult to get the necessary hypothesis to construct minimal d-fold of general
type. See Section 3.2. On the other hand, we do not drop the possibility of
having applications in other contexts. Also, it is a cornerstone in our research
and open the following discussion.

For dimZ ≥ 2, if the branch divisor Dred = D1+· · ·+Dr has singularities,
then Yn have rational singularities [Vie77]. In order to have well-behaved
invariants, we can choose a (partial) resolution of singularities. For dimZ =
2, the asymptoticity of Chern numbers was proved in [Urz09] for random
n-th root covers. Let us explain briefly what random means (see Section 2.7
for more details). First, in dimension two, each singularity of Yn is a cyclic
surface singularity of type 1

n
(q, 1) for some 0 < q < n. Thus, we use the

Hirzebruch-Jung algorithm (see Section 2.5) to resolve these singularities in
a minimal way. For us, there are two important quantities, (1) the length
of the resolution, i.e., the number of steps of the algorithm, and (2) the
Dedekind sums,

d(q, 1, n) =
n−1∑
i=1

((
iq

n

))((
i

n

))
,
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where ((·)) : R → R is the saw-tooth function (see Section 2.6). We get a
resolution of singularities Xn → Yn. However, the Chern numbers c21 and c2
depend on the lengths and the Dedekind sums coming from all cyclic singu-
larities resolved. To guarantee asymptoticity, we have to consider asymptotic
arrangements . Indeed, for each prime number n ≥ 17, there exists a set
On ⊂ {1, . . . , n} (Section 2.7) such that for each q ∈ On, the lengths and
Dedekind sums are bounded by c

√
n for a constant c > 0. Thus we say that

Dred is an asymptotic arrangement if satisfies :

• For prime numbers n ≫ 0, there exists multiplicities 0 < νj < n such
that the singularity over Dj∩Dk of Yn is of type 1

n
(qjk, 1) with qjk ∈ On.

• For each n there are line bundles L ∈ Pic(Z) such that

L⊗n ≃ OZ

(
r∑

j=1

νjDj

)
.

The main set-up is when there exists H ∈ Pic(Z) such that Dj ≃ H for each
component of Dred. Observe that the condition (1.5) is satisfied as

D = ν1D1 + . . .+ νrDr ∼ (ν1 + . . .+ νr)H ∼ nH,

thus we can construct n-th root covers. In [Urz09] was proved that for a
random partition ν1+ . . .+νr = n, the probability of D being an asymptotic
arrangement tends to 1 as n grows. In this way, for n ≫ 0 we take random
asymptotic partitions, and we get a family of random surfaces Xn with

c21(Xn) ≈ nc̄21(Z,Dred), c2(Xn) ≈ nc̄2(Z,Dred).

Now we can discard the SNC property for the branch divisor. Consider
D1, . . . , Dr non-singular curves on Z, such that any two of them intersect
transversally, and Dred = D1 + . . . + Dr no necessarily SNC. Singularities
of Dred are m-points, this is, points with exactly m curves passing through
them. We consider a log resolution γ : Z ′ → Z, i.e., a sequence of blow-ups
over the m-points of Dred with m > 2, such that the reduced divisor defined
by γ∗Dred is SNC. We denote it by D′

red and observe that it contains the
inverse preimage of each Dj, together with the exceptional data of hn. In
this case, we set c̄i(Z,Dred) := c̄i(Z

′, D′
red) for each i. If D′

red turns out to be
an asymptotic arrangement, then we have the asymptotic result for Chern
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numbers as above. See Theorem 2.7.8 in Section 2.7 or [Urz16] in order to
connect this result with minimal models.

Example 1.2.2. A direct application is a relation between Chern slopes
of simply-connected surfaces of general type and Chern slopes of arrange-
ments of lines. Let D1, . . . , Dr be a collection of r lines in Z = P2. Let
Dred = D1 + . . .+Dr, and denote by tm be the number of m-points of Dred.
To prove the asymptotic result on Chern slopes, we assume that tr = tr−1 = 0
(those are trivial arrangements). Then, D′

red = (γ∗Dred)red is an asymptotic
arrangement. Moreover, since each Di is equivalent to a given line, the mul-
tiplicities for D′

red depend on partitions ν1 + . . . + νr = n [Urz09, Th. 6.1.].
Thus, the n-th root cover construction Xn → Yn → Z ′ → Z produces (non-
singular) surfaces of general type Xn satisfying

c21(Xn)

c2(Xn)
→ c̄21(P2, Dred)

c̄2(P2, Dred)
=

9− 5r +
∑

m≥2(3m− 4)tm

3− 2r +
∑

m≥2(m− 1)tm
.

It turns out that the surfaces Xn are simply-connected. Then, the geography
of line arrangements is translated into results about surfaces of general type.
For complex line arrangements with tr = tr−1 = 0, one can prove that

2− 2

r − 2
≤ c̄21

c̄2
≤ 3− 1

3
,

and slopes are dense in [2, 5/2] [EFU22]. (It is not known if there is any
accumulation point in (5/2, 8/3].)

In this way, in higher dimensions, we have several issues to achieve an
analog asymptotic result. For example, the singularities of Yn are not cyclic,
and the choice of a right (partial) resolution of Yn with good behavior as n
grows is a challenging problem.

Question 1.2.3. Is there an analog of the asymptotic results in dimension
two for dimension three?

For instance, if this question has a positive answer, then we would be able
to study the geography of 3-folds using arrangements of planes in P3. The
first result in this direction is in Section 4.1, where we find that the Chern
number c1c2 = 24χ is asymptotic independents of the chosen resolution.
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However, the volume and the topological characteristic depend on the chosen
resolution. As above, we may be interested in a log-geography. In this way,
the singularities of Yn are log-terminal, however of multiplicity n2, too big.
This means that in order to connect with a non-singular model, at a bad
choice of resolution we could have big exceptional data with respect to n,
and so we would lose the asymptoticity of invariants at least topologically.
In Section 4.2, we introduce a prototype of first step, i.e., by toric methods
we construct a local cyclic resolution . In this way, we get singularities of
multiplicity lower than n, and of cyclic quotient type. We are interested
in cyclic quotient singularities since they are log-terminal and have a well-
known algorithm to resolve them: the Fujiki-Oka continuous fraction [Ash19,
Cf.]. In Section 4.3 we globalize this local cyclic resolution, and we get a
cyclic resolution Xn → Yn. It is important to note that it is an embedded
Q-resolution in the language of [ABMMOG12], introduced as an efficient
resolution without useless data. We summarized the work of that section in
the next theorem.

Theorem 2. Let Z be any non-singular projective 3-fold, and let {D1, . . . , Dr}
be an asymptotic arrangement. For prime numbers n≫ 0 there are projective
3-folds Xn → Z with at most cyclic quotient singularities such that

−K3
Xn

n
,
24χ(OXn)

n
,
e(Xn)

n
≈ c̄31(Z,D), c̄1c̄2(Z,D), c̄3(Z,D),

where c̄i(Z,D) are the Chern classes of the arrangement.

This result can be extended to an arbitrary collection of surfaces A =
{D1, . . . , Dr} having only simple crossing, i.e., each Dj is non-singular, pair-
wise intersections are transversal, and components of Dj1 ∩ . . . ∩ Dje are
non-singular. In Proposition 2.7.7 we use a log-resolution Z ′ → Z to get
a SNC arrangement which results to be asymptotic if A is. In Z ′, we de-
note the logarithmic Chern classes for the reduced total transform of D as
c̄i(Z,D). Therefore, we can apply again Theorem 2. For example, using Pla-
tonic arrangements (see Example 2.7.9), we get 3-folds with at most cyclic
singularities whose slopes are arbitrarily close to those of the Platonic solids.
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Name c̄31(Z,D)/c̄1c̄2(Z,D) c̄3(Z,D)/c̄1c̄2(Z,D)

Hexahedron 11/27 17/27
Octahedron 19/31 16/31

Dodecahedron 623/705 31/205
Icosahedron 2459/2345 25/469

Table 1.1: Logarithmic Slopes for Platonic Solids

Finally, with these constructions: What can we say about geography of
3-folds of general type? As an application of the above theorem to the ge-
ography of 3-folds, we have two results about the behavior of the slopes of
invariants. In Chapter 5 we see our resolution in terms of pairs (Xn, D̃red)→
(Z,Dred). As a corollary, we prove that for asymptotic arrangements of hy-
perplane sections on a minimal 3-fold of general type, the resolution preserves
the bigness of the log-canonical divisor KXn + D̃red.

Corollary 1.2.4. Let Z ↪→ Pd be a minimal non-singular projective 3-fold
of general type, and let {H1, . . . , Hr} be a collection of hyperplane sections in
general position. Then, for prime numbers n≫ 0 there are finite morphisms
of degree n (Xn, D̃red)→ (Z,Dred) such that:

1. Xn is of log-general type, i.e., KXn + D̃red is big and nef,

2. K3
Xn

> 0,

3. Xn has cyclic singularities (log-terminal) of order lower than n, and

4. the slopes (−K3/24χ, e/24χ) of Xn are arbitrarily near to (2, 1/3).

The importance of this theorem is: We are in the realm of log-minimal
models, and the existence of a non-singular model depends on resolve cyclic
quotient singularities of order n. We point out that K3

Xn
> 0, so in future

work, if we are able to apply the MMP, we will have KXn nef, so Xn could be
of general type. For us the goal is that the asymptotic behavior of the slopes
of Xn coincides with the slopes of its minimal models (see Theorem 2.7.8).
For this, we need a good terminalization of the cyclic singularities obtained.
In Chapter 6 we discuss about what means the word good.
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In Section 5.2, choosing a similar path as for Theorem 2, we construct
minimal non-singular 3-fold of general type using as a base 3-folds Z ↪→ P4

with 3 hyperplane sections. So, we get almost asymptoticity of the volume.
This means that with respect to n ≫ 0 the volume converges to c31(Z,D)
plus another finite quantity. However, this allows us to prove.

Theorem 3. For d > 5 and n≫ 0 there are projective minimal non-singular
3-folds Xn of general type over Z with slopes

c31
c1c2

≈ (d− 2)3 − 1

(d− 2)(d− 1)2
,

c3
c1c2

≈ (d− 5)(d2 + 2d+ 6)

(d− 2)(d− 1)2
.

In particular, as the degree of Z grows, the slopes have limit point (1, 1).

We obtain a new map in Figure 1.3. The reader can observe the posi-
tion of the point (2, 1/3) where cyclic resolutions along hyperplane section
arrangements accumulate. Indeed, this is in the border of the Unknown
Zone. See discussion in Section 6.3. The slopes of Theorem D are inside of a
parametrized curve accumulating at (1, 1) defining new points on the map.
Finally, in Chapter 6 we discuss the future of this work.
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Figure 1.3: Map after this work. The parametrized curve of color contains
minimal non-singular 3-folds of general type with slopes arbitrarily near to
(1, 1).
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Chapter 2

Preliminaries

2.1 Intersection numbers

For us, the main reference for intersection theory will be [Ful98] and [Har77].

Let Z be a variety over C of dimension d. We have Chow homology groups
Ae(Z) of e-cycles, i.e., their elements are finite sums of the form

∑
i ni[Vi]

where ni ∈ Z, and [Vi] is the class of a subvariety Vi ↪→ Z of dimension
e modulo rational equivalence. Any 0-cycle

∑
i ni[pi] has a degree given by∑

i ni. Any e-cycle in Ae(Z) can be intersected with a Cartier divisor D
giving an element in Ae−1(Z). If [V ] is the cycle defined by a closed subva-
riety V ⊂ Z of dimension e, and D1, ..., De are Cartier divisors on Z, then
we have intersection numbers well-defined as the degree of the intersection
D1 . . . De [V ] ∈ A0(Z). In this context, we will abuse the notation and de-
note these intersection numbers as D1 . . . De V ∈ Z. For d divisors, we just
denote

D1 . . . Dd := D1 . . . Dd Z ∈ Z,

this allow us to write Dd := Dd Z for any Cartier divisor D.

Remark 2.1.1. If Z is a normal projective variety, the dualizing sheaf de-
fines a Weil divisor KZ on Z which coincides with the canonical divisor if Z
is non-singular. It will be important the case when KZ is Q-Cartier, so any
closed curve C has a curvature number defined as

KZ C =
1

n
(nKZ C) ∈ Q,

27
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where n is the index of KZ, i.e., the minimum positive integer such that
nKZ is Cartier. The word curvature arises since in the non-singular case it
is well-known that the curvature of Z along C is measured by −KZ C. We
say that C is K-(trivial, positive or negative) if KZ C =, >,< 0.

Remark 2.1.2. As an extension of the above remark, we can define inter-
section numbers DC ∈ Q for any Q-Cartier divisor D and C ∈ A1(Z),
i.e.,

DC =
1

n
(nDC),

where n is the index of D. Thus, if Z is Q-factorial, we have well-defined
intersection numbers on Z but now with values in Q. In this way, we say that
two divisors D1 and D2 are Q-numerical equivalent and denoted by D1 ∼Q D2

if for any curve C we have D1C = D2C.

Let f : Y → Z be a proper morphism between varieties. There is an
induced push-forward of cycles f∗ : Ae(Y )→ Ae(Z) given by

f∗[W ] =

{
deg(f |W )[f(W )] if dim f(W ) = e,

0 if dim f(W ) < e.

Sometimes we can pull back a Cartier divisor, and we want to consider that
aspect in our intersection numbers [Ful98, Sec. 2.2]. Let D be a Cartier
divisor, then we have a pull-back sheaf f ∗OZ(D). If there exists a Cartier
divisor E on Y such that |E| ⊂ f−1(|D|) and f ∗OZ(D) = OY (E), we define
f ∗D = E as the pull-back of D. In particular, if D is Cartier effective always
we can pull it back.

Remark 2.1.3. If f is flat, we can define a topological a pull-back f−1 : Ae(Z)→
Ae(Y ) given by f−1[V ] = [f−1(V )], where f−1(V ) is defined as follows: If IV
is the ideal sheaf of V , then f−1(V ) is the closed subvariety defined by the
ideal sheaf f−1(IV )OY . In particular, it is identified with Y ×Z V .

Example 2.1.4. Consider the finite flat morphism f : Spec(A)→ Ad, where
A = C[x1, . . . , xd, t]/(t

n−x1 · · ·xd), and the closed subvariety V ↪→ Ad defined
by x1 = 0. Denote by D the Cartier divisor defined by V . We have f−1(V )
as a closed subvariety of Spec(A) defined by the prime ideal (t, x1) ∈ Spec(A),
i.e., f−1[V ] is the class of such closed subvariety. On the other hand, locally
on x2 · · ·xd ̸= 0, V is defined by the local equation tn = 0. Let D′ the
Weil divisor corresponding to f−1(V ), so we have f ∗D = nD′. Observe that
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D′ is Q-Cartier. In general, if A = C[x1, . . . , xd, t]/(t
n − xν1

1 · · ·x
νd
d ) with

0 < νj < n, the same argument shows that V is defined by local equation
tn/ gcd(n,ν1) = 0, i.e.,

f ∗D =
n

gcd(n, ν1)
D′.

In the following, if a pull-back of a Cartier divisor f ∗D appears, we assume
that it exists.

Proposition 2.1.5. We have the following properties.

1. The intersection numbers are local, i.e., if U is an open subscheme of
Z which contains the support of D1, . . . , De and V , then

D1 . . . De V = D1|U . . . De|U V |U .

2. D1 . . . De V is symmetric and multilinear in the Dj’s.

3. If Z ↪→ Pd and OZ(H) = OZ(1), then Hd = degZ.

4. Projection formula: Let W ↪→ Y be a subvariety, then f ∗D [W ] =
Df∗[W ] for any Cartier divisor D. As consequence,

f ∗D1 . . . f
∗De V = D1 . . . Def∗[V ].

5. Push-pull formula: For Cartier divisors D1, . . . , Dd we have,

f ∗D1 . . . f
∗Dd = deg(f)D1 . . . Dd.

Proof. See [Ful98, Sec. 2.3 & 2.4].

Analogously, we can define the Chow cohomology groups Ae(X) given by
e-cycles of subvarieties of codimension e modulo rational equivalence [Har77,
App. A.]. We can define

A•(Z) :=
⊕
e≥0

Ae(Z), A•(Z) :=
⊕
e≥0

Ae(Z).

We have natural homomorphisms Pic(Z) → An−1(Z) and Pic(Z) → A1(Z)
which in general are not isomorphisms. However, if we assume Z non-
singular, we have A1(Z) ∼= An−1(Z) ∼= Pic(Z). Moreover, the intersection
with divisors extends to the intersection between cycles giving a ring struc-
ture to both A•(Z) and A•(Z). Indeed, we have A•(Z) ∼= A•(Z) [Ful98, Ch.
19]. In this case, we call it the Chow ring of Z and we just denote it as A(Z).
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Remark 2.1.6. For proper morphisms f : Y → Z between non-singular va-
rieties, the pull-back f ∗ : A(Z) → A(Y ) always exists. It coincides with
both, f ∗ for Cartier divisor and f−1 from Remark 2.1.3. Indeed, it induce a
morphism of rings f ∗ : A(Z)→ A(Y ).

In the rest of this thesis, if we are working in a non-singular context, then
we will use interchangeably Ad−e and Ae.

2.2 The Chern numbers
Let Z be a non-singular variety of dimension d, and let E be a vector bundle
on Z of rank r. We have a non-singular projective bundle P(E)→ Z with a
well-known Chow ring [EH16, Ch. 9],

A(P(E)) ∼=
A(Z)[ξ]

(c0(E)ξr + c1(E)ξr−1 + . . .+ cr(E))
,

where ξ is the class of the tautological bundle OP(E)(1), and ce(E) ∈ Ae(Z)
with c0(E) = 1. The cycles ce(E) are the Chern classes of E . We denote
by ce(Z) ∈ Ae(Z), the Chern classes of the tangent bundle TZ , and we just
call them the Chern classes of Z. We have that c1(Z) = −KZ , where KZ is
the canonical class. We define the Chern numbers of Z as the degree of the
top-intersection of its Chern classes

ci1(Z) . . . cim(Z) ∈ Ad(Z), i1 + . . .+ im = d.

In the following, if the context is understood, we abuse notation using the
symbol ci1 . . . cim(Z) for Chern numbers. Also, we may use the notation
ci1 . . . cim .

We have cd1 = (−1)dKd
Z , and since we work over C, it is well-known that

cd = e(Z), the topological Euler characteristic. These numbers are codified
into the Todd class of TZ by the following formal sum

td(TZ) = 1 +
c1
2
+

c21 + c2
12

+
c1c2
24
− c41 − 4c21c2 − 3c22 − c1c3 + c4

720
+ . . . .

As a consequence of the Hirzebruch-Riemann-Roch Theorem, we have the
Noether’s identities , i.e., the analytic Euler characteristic are equal to the
d-th summand of td(TZ). For example

χ(OZ) =
c1c2
24

, when d = 3.
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Example 2.2.1. If S is a non-singular surface of general type whose Chern
numbers equal the BMY-inequality (1.3), then S must be minimal. Indeed,
if S is not minimal, take a contraction S → S ′ to its minimal model. Since
this morphism is a chain of blow-ups at points, for simplicity, let us assume
that S is the blow-up of S ′ at a point p. We have, c21(S) = c21(S

′) + 1 and
c2(S) = c2(S

′) + 1. So, c21(S
′) = 3c2(S

′) + 2 and S ′ does not satisfy the
BMY-inequality, a contradiction.

Example 2.2.2. The argument above shows that S is relatively minimal,
i.e., any birational morphism S → S ′ is an isomorphism. Now let us assume
Z a non-singular 3-fold of general type satisfying the equality in the Miyaoka-
Yau inequality, i.e., c31(Z) =

8
3
c1c2(Z). Assume that Z → Z ′ is a blow-down.

If Z is the blow-up at a point p ∈ Z ′, we have

c31(Z) = c31(Z
′)− 8, c1c2(Z) = c1c2(Z

′), c3(Z) = c3(Z
′) + 2

If Z is the blow-up along a curve C ↪→ Z ′, we have

c31(Z) = c31(Z
′) + c1(NC/Z′), c1c2(Z) = c1c2(Z

′), c3(Z) = c3(Z
′) + c1(C),

where NC/Z′ is the normal bundle of Z ′ on C. Thus, c31/c1c2 behaves errati-
cally and we cannot apply the argument above if we assume minimality with
respect to blow-dows.

Let us construct some examples using just fiber products. Consider a col-
lection Z1, . . . , Zs of non-singular projective varieties. Set Z = Z1× . . .×Zs,
and pi : Z → Zi the corresponding projections. We have TZ =

⊕s
i=1 p

∗
iTZi

,
and so in terms of Chern polynomials we can compute

ct(TZ) =
s∏

i=1

p∗i ct(TZi
).

The following proposition is deduced via routine computations.

Proposition 2.2.3. Consider Z = Z1 × Z2 with dimZi = di. Then for any
partition i1 + . . .+ im = d1 + d2 we have

ci1 . . . cim(Z) =
∑

kj+lj=ij
k1+...+km=d1
l1+...+lm=d2

ck1 . . . ckm(Z1)cl1 . . . clm(Z2).

In particular, the topological characteristic satisfy cd+1(Z) = cd(Z1)cd(Z2).
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Remark 2.2.4. The above formula can be extended to products of more va-
rieties in the same way.

Example 2.2.5. Let C be a non-singular curve and V any non-singular
projective variety of dimension d. Set Z = V × C. From the above formula
and for any partition i1 + . . .+ im = d+ 1, we get

ci1 . . . cim(Z) =

(
m∑
j=1

ci1 . . . cij−1 . . . cim(V )

)
e(C).

In particular, cd+1
1 = dcd1(V )e(C). If V is a surface, then Z is a 3-fold with

c31 = 3K2
V e(C), c1c2 = 12χ(OV )e(C), c3 = e(V )e(C).

Then in terms of slopes, we have(
c31
c1c2

,
c3
c1c2

)
=

(
c21(V )

4χ(OV )
,

c2(V )

12χ(OV )

)
.

By Sommese’s result [Som84] about the density of slopes c21/c2 of surfaces of
general type in [1/5, 3], the slopes for 3-folds of general type Z = V × C are
dense on the segment in Q2 connecting the points (1/2, 5/6) and (9/4, 1/4).

Example 2.2.6. Let Z1, Z2 be non-singular surfaces. Then, Z = Z1 ×Z2 is
a 4-fold with

c41(Z) = 6c21(Z1)c
2
1(Z2), c21c2(Z) = c21(Z1)c2(Z2)+c21(Z2)c2(Z1)+c21(Z1)c

2
1(Z2)

c22(Z) = c2(Z1)c2(Z2)+c21(Z1)c
2
1(Z2), c1c3(Z) = c21(Z1)c2(Z2)+c21(Z2)c2(Z1),

c4(Z) = c2(Z1)c2(Z2).

Set x = c21(Z1)/c2(Z1) and y = c21(Z2)/c2(Z2). It is interesting to consider
the following slopes(

c41
c4
,
c21c2
c4

,
c22
c4
,
c1c3
c4

)
(Z) = (6xy, x+ y + xy, 1 + xy, x+ y) .

In this case, using again Sommese’s density, slopes for 4-folds of general type
Z1 × Z2 are dense in a non-linear surface in Q4.
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Definition 2.2.7. A simple normal crossing (SNC) divisor D =
∑r

j=1 Dj is
a reduced effective divisor with distinct non-singular components Dj satisfying
the following condition: for each p ∈ D there are local coordinates x1, . . . , xd

on Z such that the equation defining D on p is x1 . . . xe = 0, with e ≤ d.

From [Iit77] we introduce the following sheaf on Z.

Definition 2.2.8. For a SNC divisor D, the sheaf of log-differentials along
D, denoted by Ω1

Z(logD), is the OZ-submodule of Ω1
Z ⊗OZ(D) described as

follows. Let p ∈ Z be a point.

(i) If p ̸∈ D, then (Ω1
Z(logD))p = Ω1

Z,p.

(ii) If p ∈ D, we choose local coordinates x1, . . . , xd on Z with x1 . . . xe = 0
defining D on p. Then, (Ω1

Z(logD))p is generated as OZ,p-module by

dx1

x1

, . . . ,
dxe

xe

, dxe+1, . . . , dxd.

If D =
∑r

j=1 νjDj is a divisor on Z, whose associated reduced divisor Dred =∑
j Dj is a SNC divisor, then for simplicity we set

Ω1
Z(logD) := Ω1

Z(logDred).

In the rest of this section, we assume D =
∑r

j=1 νjDj as a divisor with
Dred a SNC divisor.

Definition 2.2.9. The log-Chern classes of a pair (Z,D) are defined as

c̄i(Z,D) = ci(ΩZ(logD)∨).

The log-Chern numbers of a pair (Z,D) are defined as the degree of top-
dimensional intersections

c̄i1 . . . c̄im := c̄i1(Z,D) . . . c̄im(Z,D), i1 + . . .+ im = d.

We set Ωe
Z(logD) :=

∧eΩ1
Z(logD) for any 1 ≤ e ≤ d. We have Ωd

Z(logD) =
OZ(KZ + Dred), i.e., c̄1(Z,D) = c1(Z) − Dred. As an application of the
Hirzebruch-Riemann-Roch Theorem, we have (see [Iit78, Prop. 2])

c̄d = e(Z)− e(Dred).
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Lemma 2.2.10. We have a natural exact sequence

0→ Ω1
Z → Ω1

Z(logD)→
r⊕

i=1

ODi
→ 0,

which is known as the residual exact sequence.

Proof. The morphism Ω1
Z → Ω1

Z(logD) is just the inclusion. The other
morphism locally is described as

e∑
j=1

aj
dxj

xj

+
d∑

j′=e+1

bj′dxj′ 7→
e⊕

j=1

aj|Dj

. See the rest of the proof in [EV92, Proposition 2.3].

From the residual exact sequence, we can compute the Chern polynomial
through the identity

ct(Ω
1
Z(logD)) = ct(Ω

1
Z)

r∏
j=1

(
d∑

e=0

De
j t

e

)
. (2.1)

Let 0 ≤ e ≤ d, and let i1+. . .+im = e be any partition of positive integers. By
convention, for the case e = 0 we assume the existence of a unique partition,
i.e., i1 = 0. We introduce the following notation,

D[i1,...,im] :=
∑

j1<...<jm

Di1
j1
. . . Dim

jm
, D[0] = 1.

Examples of this notation are,

D[e] =
r∑

j=1

De
j , D[1,1] =

∑
j<k

DjDk.

Lemma 2.2.11. We have,

r∏
j=1

(
d∑

e=0

De

)
=

d∑
e=0

( ∑
i1+...+im=e

D[i1,...,im]

)
.

Proof. We are taking all combinations Dj1
j1
. . . Dim

jm
without repeated elements.

Then the result follows by induction.
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Corollary 2.2.12. We have the identity,

c̄d = cd +
d∑

e=1

(−1)ecd−e

( ∑
i1+...+im=e

D[i1,...,im]

)
.

Proof. Using identity (2.1), and Lemma 2.2.11 we can compute c̄d as the
degree d element of the expression(

d∑
e=0

ce(Z)

)(
d∑

e=0

( ∑
i1+...+im=e

D[i1,...,im]

))
.

Corollary 2.2.13. Assume D is non-singular, i.e., its non-singular compo-
nents are pairwise disjoint. Then for each 1 ≤ e ≤ d we have c̄e(Z,D) =
ce(Z) +Re(D) where

Re(D) =
∑
k+l=e
k ̸=e

(−1)lD[l]ck(Z),

for each e = 1, . . . , d.

Proof. Since D is non-singular, then DiDj = 0 for all i ̸= j. Thus, from the
identity (2.1) , we get

d∑
e=0

(−1)ec̄e(Z,D)te =

(
d∑

e=0

(−1)ece(Z)te
)(

d∑
e=0

D[e]te

)
.

Using the Cauchy product formula for polynomials we have

(−1)ec̄e(Z,D) =
∑
k+l=e

(−1)kck(Z)D[l],

and from this, the formula follows.

Example 2.2.14. For Z a non-singular curve, set D = νjP1 + . . . + νrPr

where Pi ∈ Z are points. So for the unique log-Chern number we have

c̄1 = c1 − r = −(2g(X)− 2 + r).
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Let Z be a non-singular surface, and D =
∑r

j=1 νjDj with Dj non-singular
curves. Then

c̄21 = c21 − 2c1Dred +D2
red,

c̄2 = c2 + t2 + 2
r∑

j=1

(g(Dj)− 2),

Where t2 is the number of nodes of D. For proof, see [Urz09, Prop. 3.1].

Corollary 2.2.15. Consider a non-singular 3-fold Z, and D =
∑

j νjDj on
Z. We have

c̄2(Z,D) = c2(Z)−Dred(c1 −Dred)−D[1,1].

Thus, the logarithmic Chern numbers for 3-folds are,

c̄31 = (c1(Z)−Dred)
3

c̄1c̄2 = c1c2 −Dred(c
2
1 + c2) + c1(2D

[2] + 3D[1,1])−Dred(D
[2] +D[1,1]).

c̄3 = c3 − c2Dred + c1(D
[2] +D[1,1])−

(
D[3] +D[1,2] +D[2,1] +D[1,1,1]

)
.

Proof. Using identity (2.1) for d = 3, and looking for the degree 2 terms we
obtain c̄2(Z,D). The other formulas are direct computations using the above
lemmas.

Remark 2.2.16. As in the case of nodes for surfaces, let us denote the
number of triple points of D by t3. Then we can rewrite

c̄3 = c3 − c2Dred + c1(D
[2] +D[1,1])−

(
D[3] +D[1,2] +D[2,1] + t3

)
.

Example 2.2.17. Let Z ↪→ Pm be a non-singular projective 3-fold. Let
H1, . . . , Hr ∼ H hyperplane sections defining an SNC arrangement. We have

c̄31 = c31(Z)− r3 deg(Z)− 3rc21H + 3c1(Z)H
2

c̄1c̄2 = c1c2(Z)−rH(c21+c2)(Z)+

(
2r + 3

(
r

2

))
c1(Z)H

2−deg(Z)r
(
r +

(
r

2

))
,

c̄3 = c3(Z)− rHc2(Z)+

(
r +

(
r

2

))
c1(Z)H

2−deg(Z)

(
r + 2

(
r

2

)
+

(
r

3

))
.



2.2. THE CHERN NUMBERS 37

Thus as r grows, we have,

lim
r→∞

c̄31
c̄1c̄2

= lim
r→∞

r3

r
(
r
2

) = 2

lim
r→∞

c̄3
c̄1c̄2

= lim
r→∞

(
r
3

)
r
(
r
2

) =
1

3
.

Example 2.2.18. For a non-singular projective variety V of dimension d,
the product Z = V ×P1 has Pic(Z) = Pic(V )⊕Z. In this case, Z is generated
by a class of a fiber [V ] := [V × p] for a p ∈ P1. This is independent of the
chosen point since all of them are linearly equivalent as divisors. For distinct
points {p1, . . . , pr}, we have a collection of distinct fibers V1, . . . , Vr defining
a non-singular SNC divisor. In this case, Dred = V1 + . . .+ Vr ∼ r[V ]. Since
V e
j = 0 for e > 1, from Corollary 2.2.13 we have

c̄e(Z,D) = ce(Z)−Dredce−1(Z).

For any partition i1 + . . .+ im = d+ 1, we can compute

c̄i1 . . . c̄im = ci1 . . . cim − r[V ]
m∑
j=1

ci1 . . . cij−1 . . . cim(Z).

From Example 2.2.5 we have

ci1 . . . cim = 2

(
m∑
j=1

ci1 . . . cij−1 . . . cim(V )

)
.

Since [V ]e = 0 for e > 1, we have

c̄i1 . . . c̄im = −

(
m∑
j=1

ci1 . . . cij−1 . . . cim(V )

)
(r − 2).

Indeed, the same formula is valid if Z = P(E) → P1, replacing V by Pr−1.
In particular, for V a surface, the 3-fold Z has logarithmic Chern numbers,

c̄31 = −3c21(V )(r − 2), c̄1c̄2 = −12χ(OV )(r − 2), c̄3 = −c2(V )(r − 2).

For V a 3-fold, the 4-fold Z has

c̄41 = −4c31(V )(r−2), c̄21c̄2 = −(c31+2c1c2)(V )(r−2), c̄22 = −2c1c2(V )(r−2)

c̄1c̄3 = (c3 + c1c2)(V )(2− r), c̄4 = −c3(V )(r − 2).
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Remark 2.2.19. For a product V × C, where C is a non-singular curve of
genus g ≥ 1, it is not guaranteed the existence of points p1, . . . , pr ∈ C having
[V × pi] ∼ [V × pj] for arbitrary r. This is due to the fact that Pic(C) could
be uncountable infinite. However, if such arbitrarily large collection of points
exists, then as above we must have the formula

c̄i1 . . . c̄im = −

(
m∑
j=1

ci1 . . . cij−1 . . . cim(V )

)
(r − e(C)).

Definition 2.2.20. Let Z be a non-singular projective variety and D an
effective divisor with Dred as SNC divisor. A surjective morphism h : Y → Z
between non-singular projective varieties is called a log-morphism, if D′

red =
(h∗D)red is a SNC divisor.

Lemma 2.2.21. For any log-morphism h : (Y,D′) → (Z,D), we have an
injection

h∗ΩZ(logD) ↪→ ΩY (logD
′).

Moreover, if h is finite and ramified at D, then we have isomorphism outside
the singularities of D.

Proof. See [Vie82, Lemma 1.6].

2.3 n-th root covers

In this section, we follow [EV92, Sec. 3].

Consider the following building data (Z,D, n,L) where,

1. Z is a non-singular projective variety of dimension d,

2. D =
∑r

j=1 νjDj is an effective divisor on Z, with Dred =
∑r

j=1Dj a
SNC divisor,

3. n ≥ 2 is a prime number, and

4. L a line bundle on Z such that OZ(D) ≃ L⊗n.
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With this building data, we construct a OZ-algebra given by

F =
n−1⊕
i=0

L−i,

where the structure is defined by the following laws:

a) Fix a section s ∈ H0(Z,Ln) defining D.

b) For any m ∈ Z, let {m}n its residue modulo n. Then, the line bundle
L−m identifies with L−{m}n by the OZ-homomorphism h 7→ hs⌊

m
n ⌋.

Using the relative spectrum construction we get an affine morphism

f ′ : Y ′
n = SpecZ F → Z.

The normalization f : Yn → Y ′
n → Z will be called the n-th root covering asso-

ciated to the building data (Z,D, n,L). Take an affine chart U = SpecA ⊂ Z
such that L−1|U trivialize by a A-module generated by t. So, we have
f ′−1(U) = SpecB′ where

B′ =
A[t]

tn − s|U
.

The function field of B′ is K = C(Z)[α], where α is a root such that αn = s|U .
By SNC property of Dred, we can shrink U and choose local coordinates
z1, . . . , zd such that s|U = z

νj1
j1

. . . z
νje
je

. As a consequence, the morphism f is
ramified at D, and topologically f−1(D) ∼= D. Moreover, the singularities
of Y ′

n and Yn are over the singularities of D, i.e., over Dj1 ∩ . . . ∩ Dje for
each e > 1. Indeed, since Z is non-singular, the singularities of Yn over
Dj1 ∩ . . . ∩Dje are locally analytically isomorphic to the normalization of

Spec

(
C[z1, . . . , zd, t]
tn − z

νj1
j1

. . . z
νje
je

)
.

Proposition 2.3.1. The integral closure B of B′ in its fraction field K is
freely generated over A by the generators

αiz

−

νj1i
n


j1

. . . z

−

νjei
n


je

, i = 0, 1, . . . , n− 1.
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Proof. See [Gao11, Th. 3.1].

As corollary, let L be a divisor on Z such that L = OZ(L). We have the
following decomposition on eigenspaces

f∗OYn =
n−1⊕
i=0

OZ(−L(i)), L(i) = −iL+
∑
j

⌊
iνj
n

⌋
Dj.

Indeed, Yn = Specf∗OYn . Therefore f : Yn → Z is an affine finite morphism.

Example 2.3.2 (Prototypical set-up). In Pd, let H1, , ..., Hd+1 be the hyper-
planes given by each coordinate section zj. For any partition

ν1 + . . .+ νd+1 = n

into positive integers, we have D =
∑

j νjHj ∼ nH, for a general hyperplane
section H. Thus, Yn is the normalization over C of the projective variety

Y ′
n
∼= Proj

(
C[z1, ..., zd+1, t]

(tn − zν11 . . . z
νd+1

d+1 )

)
.

,

Proposition 2.3.3. Both constructions Y ′
n and Yn are projective and irre-

ducible.

Proof. Clearly both morphism f ′ : Y ′
n → Z and f : Yn → Z are finite, so they

are projective. Indeed, as the previous example we have Z-isomorphisms
Y ′
n
∼= Proj(S ′) and Yn

∼= Proj(S), where S ′ and S are OZ-algebras defined
by S ′

0 = S0 = OZ , with S ′
i = F and Si = f∗OYn for all i > 0 [Vak, 17.3.F].

To prove irreducibility we just have to prove that any open set is irreducible.
Let U = SpecA ↪→ Z any open set. Then, f ′−1(U) = SpecB′ with B′ =
A[t]/(tn − s|U). Since n is prime and s|U is not a constant, we have tn − s|U
irreducible. Now, Yn is just the normalization of Y ′

n, so it is irreducible.

Remark 2.3.4. Let G = Z/nZ ∼= ⟨ζ⟩ for a n-th root ζn = 1. We have
an induce G-action on f∗OYn given by h → ζ ih for any local section h of
OZ(L

−(i)). So in terms of invariants of the G-action, we have f∗OYn

G = OZ

and Z = Yn/G.

Definition 2.3.5. A partial resolution of singularities of Yn is a projective,
surjective, birational morphism g : X → Yn with X a projective normal
variety having at most rational singularities. This last means that for any
resolution of singularities g′ : X ′ → X we have Rig′∗OX′ = 0 for i > 0.
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Theorem 2.3.6. For the n-th root covering f : Yn → Z we have

1. The morphism f is flat.

2. The variety Yn has rational singularities.

3. For any partial resolution of singularities g : X → Yn, the composition
h = f ◦ g satisfies the following Q-numerical equivalence

KX ∼Q h∗
(
KZ +

n− 1

n
Dred

)
+∆,

where ∆ is a divisor supported on the exceptional divisor of g.

Proof. We have a local description of the singularities of Yn. In Section 2.4
we will see that these are toric singularities, and it is well known that they are
(log-terminal) rational singularities [CLS11, Th.11.4.2], so we have (2). Now,
Yn is Cohen-Macaulay and since f is finite, f must be flat [Vak, Th.28.2.11]
and we are done with (1). Assertion (3) follows from [Par91, Prop. 3.4].

Lemma 2.3.7. Let Y a normal variety, and and g : X → Y a proper,
surjective, birational morphism. Assume that X has rational singularities.
Then g∗OX = OY and Rig∗OX = 0 for all i > 0 if and only if Y has rational
singularities.

Proof. See [Vie77, Lemma 1.].

Corollary 2.3.8. For any partial resolution of singularities g : X → Yn, we
have χ(OX) =

∑n−1
i=0 χ(OZ(−L(i))), i.e., the analytic Euler characteristic of

X is independent of the chosen partial resolution.

Proof. Let g′ : X ′ → X be a resolution of singularities. Since Yn has rational
singularities, by Lemma 2.3.7, we must have h∗OX′ = g∗OX = OY , and
Rih∗OX′ = Rig∗OX = 0 for all i > 0. Thus,

χ(OX′) = χ(OX) = χ(OYn).

Then, we assume that g is just a resolution of singularities, so

H i(X,OX) ∼= H i(Yn, g∗OX) ∼= H i(Yn,OYn), i ≥ 0.
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Since f is an affine morphism, also we have H i(Yn,OYn)
∼= H i(Z, f∗OYn) for

all i ≥ 0. Thus, we have

χ(OX) =
n−1∑
i=0

χ(OZ(−L(i))).

Since the degree n of f is a prime number, from Example 2.1.4 we have
f ∗Dj = nD′

j, where D′
j = (f ∗Dj)red. Thus, for any partial resolution h : X →

Yn → Z we must have a ramification formula

h∗Dj = nD′
j +∆j,

where ∆j is a divisor supported in the exceptional divisors of h over Dj.
Finally, we give a state about the connectedness of a partial resolution.

Proposition 2.3.9. Any partial resolution g : X → Yn is irreducible.

Proof. Since X is normal we reduce the proof to show that X is connected
[Sta18, Tag. 0347]. From Corollary 2.3.8 we know that

h0(OX) = 1 +
n−1∑
i=1

h0(OZ(−L(i))).

If Y is not connected, then h0(OX) > 1, so there exists a i ≥ 1 such that
h0(OZ(−L(i))) ≥ 1. We have,

−nL(i) ∼
r∑

j=1

{iνj}nDj.

So, we choose curves Γj on Z such that Dj Γj > 0. Thus, we get a linear
system Aν ≡ 0 mod n where ν = [ν1, ..., νr]

T and A = (DjΓk)jk. Since n is
prime, ν ≡ 0 mod n, and since 0 < νj < n, we get a contradiction.

2.4 Toric local picture
In this section, for toric varieties we mainly follow the notation of [CLS11].
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Let n > 0 be a prime number and 0 ≤ ν1, . . . , νd < n integers. Choose
a νk ̸= 0, and let 0 ≤ q1, . . . , qd < n be integers such that νj + qjνk ≡ 0
modulo n. In particular, qk = n−1. As usual set N = Zd and NR ∼= Rd with
canonical basis e1, . . . , ed, and M = N∨ ∼= Zd with MR = Rd. Consider the
semigroup

S =

〈
e1, . . . , ek−1,

∑
j ̸=k

qjej + nek, ek+1, . . . , ed,
∑
j ̸=k

νj + qjνk
n

ej + νkek

〉
N

.

Since ∑
j ̸=k

νj + qjνk
n

ej + νkek =
∑
j ̸=k

νj
n
ej +

νk
n

(∑
j ̸=k

qjej + nek

)
,

we have that the saturation [CLS11, p. 27] of S is Ssat = σ∨ ∩ Zd where

σ∨ = C

(
e1, . . . , ek−1,

∑
j ̸=k

qjej + nek, ek+1, . . . , ed−1, ed

)
⊂MR

is the simplicial d-cone defined by those elements. It is the dual cone of

σ = C (ne1 − q1ek, . . . , nek−1 − qk−1ek, ek, nek+1 − qk+1ek, . . . , ned − qdek) ⊂ NR.

Observe that mult(σ) = nd−1 and mult(σ∨) = n. Recall that the fundamental
parallelepiped of a cone σ are the elements of σ with coordinates in [0, 1)
respect its generators. We denote it by Pσ.

Proposition 2.4.1. Every element of v ∈ Pσ ∩ Zd can be written as

v =

∑
j ̸=k vj(nej − qjek) +

{∑
j ̸=k vjqj

}
n
ek

n
, 0 ≤ vi < n.

Proof. An element v ∈ Pσ can be written in terms of the canonical basis as

v =
∑
j ̸=k

nαjej +

(
αk −

∑
j ̸=k

αjqj

)
ek, αj ∈ [0, 1).

Since v ∈ Zd, we have αj ∈ nZ for j ̸= k. Let us write αj = vj/n with
vj ∈ {0, 1, ..., n− 1}. This, implies that nαk ∈ Z and satisfies

nαk ≡n

∑
j ̸=k

vjqj mod n.
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Thus, if we write αk = vk/n with vk ∈ {0, ..., n − 1}, we must have vk ={∑
j ̸=k vjqj

}
n
.

Proposition 2.4.2. The toric variety associated with the semigroup S is

Spec(C[S]) = Spec
(

C[x1, . . . , xd, t]

(tn − xν1
1 . . . xνd

d )

)
.

Moreover, its normalization corresponds with Spec(C[σ∨ ∩ Zd]).

Proof. For simplicity, we will prove the result in the case k = d. Since
Norm(Spec(C[S])) = Spec(C[Ssat]) we will prove the first. Take the surjec-
tive morphism of semigroups ϕ : Nd+1 7→ S such that

ϕ(ej) = ej, ϕ(ed) =
d−1∑
i=1

qjej + ned, ϕ(ed+1) =
d−1∑
j=1

νj + qjνd
n

ej + νded.

It induces a surjective morphism of coordinate rings f : C[x1, . . . , xd, t] →
C[S], and by [CLS11] in Proposition 1.1.9 it is known that

Ker(f) = (xa1
1 . . . xad

d tad+1 = xb1
1 . . . xbd

d t
bd+1 : ϕ(a) = ϕ(b), a, b ∈ Nd+1).

If we set xj = aj − bj, the condition ϕ(a) = ϕ(b) gives equations
x1 + q1xd +

ν1 + q1νd
n

xd+1 = 0

. . . . . . . . .

xd−1 + qd−1xd +
νd−1 + qd−1νd

n
xd+1 = 0

nxd + νdxd+1 = 0

We can assume xd+1 = nc with c > 0, then xd = −νdc, and the equations
reduces to

x1 = −ν1c
. . . . . . . . .
xd−1 = −νd−1c

⇒
{

bj = aj + νjc, 1 ≤ j ≤ d
ad+1 = bd+1 + nc

So Ker(f) is generated by elements of the form

xa1
1 . . . xad

d tbd+1((xν1
1 . . . xνd

d )c − (tn)c),

and the result follows.
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Corollary 2.4.3. The normalization of the affine varieties tn = xν1
1 . . . xνd

d

and tn = xj

∏
j ̸=k x

n−qj
i are isomorphic.

Proof. Observe that the cones defining both varieties are the same up to a
change of basis, equal to σ. Thus, the semigroups defined by σ∨ ∩M are
isomorphic.

Remark 2.4.4. We point out the following. Assume that j = e and νe+1 =
. . . = νd = 0. Thus qe+1 = . . . = qd = 0, and we have a toric description
of the normalization of the varieties tn = xν1

1 ...xνe
e embedded in Ad for any

1 ≤ e ≤ d.

Remark 2.4.5. It is known that the cone σ∨ defines a toric variety isomor-
phic to the d-dimensional cyclic quotient singularity of type

(n− q1, . . . , n− qk−1, 1, n− qk+1, . . . , n− qd)

n
.

We have Spec(σ ∩ Z3) ∼= Cd/⟨ϕ⟩, where ϕ : Cd → Cd is defined by

ϕ : (z1, . . . , zd) 7→ (ζn−q1z1, . . . , ζzk, . . . , ζ
n−qdzd),

with ζd = 1 a primitive root (Cf. [Ash15]). In this way, cyclic quotient
singularities are geometrically dual to the singularities of n-th root covers.
We will denote a cyclic singularity of this type by Cq1,...,q̂k,...,qd. In dimension
2, it occurs the accident that singularities of n-th root covers are also cyclic
quotient singularities.

2.4.1 Toric tools

This subsection is devoted to stating well-known toric results that will be
helpful in the rest of this thesis. Let Σ be a fan in NR, and denote by XΣ its
associated toric variety. Any cone τ in Σ of dimension e is called a e-cone,
and the set of e-cones is denoted by Σe.

Proposition 2.4.6. Any e-cone τ = C(d1, ..., de) in Σ defines a subvariety
in XΣ denote by V (τ). Moreover, it is a toric variety whose fan is defined by

Star(τ) = {σ̃ ⊂ N(τ)R : σ a cone of Σ containing τ},

where N(τ) = N/⟨d1, ..., de⟩Z, and σ̃ is the imagen of σ in N(τ)R.
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Proof. See [CLS11, Prop. 3.2.7].

In particular, any 1-cone (or ray) ρ defines a divisor in XΣ defined by the
class of V (ρ). It is denoted by Dρ.

Theorem 2.4.7. A divisor
∑

ρ∈Σ1 aρDρ ∈ Div(XΣ) is a Cartier divisor if
and only if for every σ ∈ Σd there exists a mσ ∈M such that ⟨mσ, vρ⟩ = −aρ
for every ρ ∈ Σ1 contained in σ.

Proof. See [CLS11, Ch. 4].

The collection {mσ}σ∈Σ is called the Cartier data of a Cartier divisor
E =

∑
ρ∈Σ1 aρDρ. Denote by |Σ| the support of the fan, i.e., the set-theoretic

union of all its cones. In particular, we have a support function ϕE on |Σ|
associated to E defined as

ϕE : |Σ| → R, v 7→ ⟨mσ, v⟩, if v ∈ σ.

A toric Q-Cartier divisor is defined as a Q-divisor E of index r such that its
Cartier data is given by a set {mσ}σ∈Σ ⊂ 1

r
M ⊂ MQ. The definition of ϕE

for E extends naturally. Thus

E = −
∑
ρ∈Σ1

ϕE(vρ)Dρ.

Proposition 2.4.8. Let f : XΣ′ → XΣ be a toric morphism induced by a
refinement Σ′ of Σ in NR. Let E be a Q-Cartier divisor on XΣ with Cartier
data {mσ}σ∈Σ ⊂MQ. Then f ∗E has the same Cartier data on |Σ|, i.e.,

f ∗E = −
∑
ρ∈Σ′1

ϕE(vρ)Dρ.

Proof. This is a particular case of [CLS11, Prop.6.2.7].

The canonical divisor of XΣ is the divisor

KXΣ
= −

∑
ρ∈Σ1

Dρ.

By Proposition 2.4.8 KXΣ
is Q-Cartier if and only if for each σ ∈ Σd there

exists a mσ with ⟨mσ, vρ⟩ = 1 for every ρ ∈ Σ1 contained in σ. Thus, if Σ is
simplicial, then the canonical divisor is always a Q-Cartier divisor. Moreover,
if XΣ is smooth, we have the canonical bundle ωXΣ

= OXΣ
(KXΣ

).
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Proposition 2.4.9. Let XΣ a toric variety with KXΣ
a Q-Cartier divisor.

Let ϕKXΣ
be its support function. Then for every toric morphism f : XΣ′ →

XΣ coming from a refinement Σ′ of Σ we have

KXΣ′ = f ∗KXΣ
+

∑
ρ∈Σ′1\Σ1

(ϕKXΣ
(vρ)− 1)Dρ.

Proof. See [CLS11, Lemma.11.4.10].

Example 2.4.10. Consider the cone σ = C(ne1−q1ed, . . . , ned−1−qd−1ed, ed).
The canonical divisor of Uσ has Q-Cartier data given by

m =
(q1 + 1)e1 + . . .+ (qd−1 + 1)ed−1 + ned

n
∈MQ ∩ σ∨.

Let Σ be a refinement of σ by a lattice point

v =

∑d
j=1 vj(nej − qjed) + {

∑d−1
j=1 qjvj}ned

n
.

If we denote by F the divisor associated to the ray defined by v, then we
compute

KXΣ
= f ∗KUσ + (⟨m, v⟩ − 1)F

= f ∗KUσ +
v1 + . . .+ vd−1 + {

∑d−1
j=1 qjvj}n − n

n
F

Intersection theory

Here we assume our toric variety XΣ with Σ simplicial, in this way XΣ is
Q-factorial. The intersection theory on XΣ is summarized in the following
theorem.

Theorem 2.4.11.

1. The Chow group Ae(XΣ) is generated by {[V (σ)] : σ ∈ Σe} as an abelian
group.

2. There exists a well-defined Q-intersection of cycles in the Q-Chow ring
A•(XΣ)Q = A•(XΣ) ⊗ Q: For σ, σ′, σ′′ ∈ Σ, if σ′ and σ′′ span σ with
dimσ = dimσ′ + dimσ′′, then

[V (σ′)] [V (σ′′)] =
mult(σ′)mult(σ′′)

mult(σ)
[V (σ)],

and [V (σ′)].[V (σ′′)] = 0 if they does not generate a cone of Σ.
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Proof. See [Ful93, Ch. V.].

As a first consequence, for any pair of toric divisors Dρ1 and Dρ2 , for two
rays ρ1 and ρ2 of Σ1. Let τ ∈ Σ2 be the face generated by these two rays.
Then

Dρ1 Dρ2 =
1

mult(τ)
[V (τ)].

Each d-cone σ satisfies deg[V (σ)] = 1 since it is represented by its distin-
guished point. Therefore, if ρ1, ..., ρd generate a d-cone σ, then we have

Dρ1 . . . Dρd =
1

mult(σ)
.

As a second application, let σ1, σ2 ∈ Σd such that τ = σ1 ∩ σ2 ∈ Σd−1.
We have [V (σi)] = 1, and C = [V (τ)] is a closed curve on XΣ. Assume that
τ = C(v1, ..., vd−1), and

σ1 = C(v0, τ), σ2 = C(τ, vd).

Denote by ρi = R+vi, and since mult(ρi) = 1, we have

Dρ0 .C =
mult(τ)
mult(σ1)

, Dρd .C =
mult(τ)
mult(σ2)

.

Moreover, if we consider the unique linear relation up to scalars between
v0, ..., vn given by

a0v0 + a1v1 + ...+ advd = 0,

then
DρiC =

aimult(τ)
a0mult(σ1)

=
aimult(τ)
admult(σ2)

.

Corollary 2.4.12.

KXΣ
C = −

d∑
i=0

DρiC = − mult(τ)
mult(σ1)

d∑
i=0

ai
a0

= − mult(τ)
mult(σ2)

d∑
i=0

ai
ad

.

Remark 2.4.13. Cones defining the same plane has its adjacent walls defin-
ing curves with KXΣ

C = 0. Indeed, there exists a w ∈ MR such that
⟨w, vi⟩ = ⟨w, vj⟩ > 0 for all i ̸= j. This implies that a0 + . . . + ad = 0,
and the assertion follows from the above formula.
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2.5 Planar cones and Hirzebruch-Jung algorithm

Set N ∼= Zd and M = N∨. A planar cone τ in NR ∼= Rd is a cone of
dimension 2, i.e., it is generated by two rays defined by primitive generators
v0, vs+1 ∈ N (s will have sense soon). Assume that mult(τ) = n. It is known
that if n > 1, then there exists some v ∈ τ ∩N such that v0, v generate τ ∩N ,
i.e., | det(v0, v)| = 1. If v = c1v0 + c2vs+1, with ci ∈ Q≥0, then

det(v0, v) = nc2 = 1⇔ c2 = 1/n.

On the other hand, since det(v, vs+1) ∈ N, we have c1 ∈ 1
n
N. If we set q = nc1

with 0 < q < n, we say that τ is of type (n, q) in direction v0 to vs+1, or type
(n, q′) in the opposite direction, where 0 < q′ < n is the inverse modulo n of q.

Let us change the Z-base of N such that e1 = v and e2 = v0. So, we have
vs+1 = ne1 − qe2. We have,

τ∨ = C(e1, pe1 + ne2)⊕
d−3⊕
i=3

Rwi = C(w1, w2)⊕ Rd−2,

where the wi ∈M are such that ⟨v0, wi⟩ = ⟨vs+1, wi⟩ = 0 and ⟨·, w⟩ ≥ 0 on τ
for any w ∈ C(w1, w2). Thus, in terms of toric varieties,

Xτ = Cq × (C×)d−2,

where Cq is the cyclic quotient surface singularity of type 1
n
(q, 1) (Remark 2.4.5).

Assume that n, q are coprime, then consider the Hirzebruch-Jung algo-
rithm of division for n/q, i.e., a pair of sequences

m0 = n > m1 = q > . . . > ms = 1 > ms+1 = 0,

n0 = 0 < n1 = 1 < . . . < ns = q′ < ns+1 = n,

which are related by
mα+1 = kαmα −mα−1

nα+1 = kαnα − nα−1,
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where k1, . . . , ks are integers satisfying kα ≥ 2. Usually we denote n/q =
[k1, . . . , ks]. These sequences define the Hirzebruch-Jung continuous fraction
as

n

q
= k1 −

1

k2 −
1

. . . − 1
ks

.

Remark 2.5.1. Observe that sequence nα is the sequence mα for n/q′, i.e.,
if the pair (m′

α, n
′
α) is the resolution of n/q′ then

(m′
α, n

′
α) = (nα,mα).

Lemma 2.5.2. For each α, we have the following relations

1. mαnα+1 −mα+1nα = n,

2. gcd(mα,mα+1) = gcd(nα, nα+1) = 1,

3. gcd(mα, nα) = 1.

Proof. The identities in (1) follow by induction using as the main tool the
recursion from the k′

αs. Since gcd(n, q) = gcd(n, q′) = 1, (2) follows directly.
For (3), using (1) and (2) we have

gcd(mα, nα) = gcd(mα,mαnα+1 − n) = gcd(mα, n) = 1.

The non-singular resolution of the planar cone τ is a refinement by adding
the rays defined recursively by

vα =
mαvα−1 + vs+1

mα−1

=
mαv0 + nαvs+1

n
, 1 ≤ α ≤ s.

See Figure 2.1. Each cone C(vα, vα+1) is non-singular, since

det(vα, vα+1) =
1

n
(mαnα+1 −mα+1nα) = 1.

From Remark 2.5.1 observe that we have a dual non-singular resolution given
by the sequence

v′α =
m′

αv
′
α−1 + v0
m′

α−1

=
m′

αvs+1 + n′
αv0

n
, 1 ≤ α ≤ s.
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Figure 2.1: Resolved planar cone

from where we have vα = v′s+1−α.
Let us change the Z-base of N such that e1 = v and e2 = v0. So, we have

vs+1 = ne1 − qe2. We have,

τ∨ = C(e1, pe1 + ne2)⊕
d−3⊕
i=3

Rwi = C(w1, w2)⊕ Rd−2,

where the wi ∈M are such that ⟨v0, wi⟩ = ⟨vs+1, wi⟩ = 0 and ⟨·, w⟩ ≥ 0 on τ
for any w ∈ C(w1, w2). Thus, in terms of toric varieties,

Xτ = Cq × (C×)d−2,

where Cq = Spec(C[C(w1, w2)∩M ]) is the cyclic quotient surface singularity
of type 1

n
(q, 1) (Remark 2.4.5). Thus, the constructed resolution is a blow-up

h : Bla(Xτ )→ Xτ , where a = m⊗ C[x±1
3 , ..., x±1

d ] and

m =
⊕

w∈C(w1,w2)∩(M\0)

χm.

For details see [CLS11, 11.3.6]. In particular, Bla(Xτ ) = Blm(Xτ )× (C×)d−2.
We can give a explicit description of m noting that the projection Cq → A2

is given by the surjection C[χw1 , χw2 ]→ C[Cq].
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2.6 Dedekind sums and asymptoticity
Consider the sawtooth function ((x)) : R→ R is defined as

((x)) =

{
x− ⌊x⌋ − 1/2 x ∈ R \ Z

0 x ∈ Z .

Observe that is an odd periodic function of period 1.

Definition 2.6.1. For n ≥ 3 prime and a1, . . . , ad ∈ Z, we define the
Dedekind sum of dimension d by

d(a1, . . . , ad, n) =
n−1∑
i=1

((
ia1
n

))
· · ·
((

iad
n

))
.

By periodicity, we can reduce ai ∈ Z to 0 ≤ ai < n, by

d(a1, . . . , ad, n) = d({a1}n, . . . , {ad}n, n).

where {ai}n is the residue modulo n of ai. Since ((x)) is an odd function, we
always have

d(−a1, . . . ,−ad, n) = (−1)dd(a1, . . . , ad, n),
i.e., d(a1, ..., ad, n) = 0 for any odd dimension d.

We can rewrite this sum as

d(a1, . . . , ad, n) =
1

nd

n−1∑
i=1

(
{ia1}n −

n

2

)
· · ·
(
{iad}n −

n

2

)
.

A well-known result is the Reciprocity Theorem for a Dedekind d(a1, . . . , ad, n)
of dimension d even [Zag73, pag.158]. It tells us the existence of a rational
function ϕn(x0, x1, . . . , xd) with x0 . . . xdϕn a polynomial in d + 1 variables
such that

d(a1, . . . , ad, n) +
d∑

k=1

d(a1, . . . , ak−1, n, ak+1, . . . , ad, ak) = ϕn(x0, x1, . . . , xd),

For an explicit construction of ϕn see [Zag73, Sec. 3]. Indeed the case d = 2
is a classical result given by H. Rademacher in 1956, i.e., we have

d(a, b, n) + d(a, n, b) + d(n, b, a) =
1

4

(
a2 + b2 + n2

3abn
− 1

)
.
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The non-trivial Dedekind sums are those of even dimension. However, by
the vanishing of the odd-dimensional Dedekind sums, we can relate sums of
powers of residues modulo n with Dedekind sums of even dimension. The
following lemma illustrates this.

Lemma 2.6.2. We have the following relations,
n−1∑
i=1

{ia}n{ib}n = n2d(a, b, n) +
n2(n− 1)

4
,

n−1∑
i=1

{ia}2n{ib}n =
n−1∑
i=1

{ia}n{ib}2n = n3d(a, b, n) +
n2(n− 1)(2n− 1)

12

n−1∑
i=1

{ia}n{ib}n{ic}n =
n3

2
(d(a, b, n) + d(a, c, n) + d(b, c, n)) +

n3(n− 1)

8
,

Proof. We have an identity
n−1∑
i=1

{ia}kn =
n−1∑
i=1

ik,

for each k ≥ 0 integer. Indeed, since ia and n are coprimes, the map i 7→
{ia}kn is a permutation of the set {1, ..., n− 1}. Then, we use repeatedly this
identity in the following expressions. The first formula follows from,

n2d(a, b, n) =
n−1∑
i=1

(
{ia}n −

n

2

)(
{ib}n −

n

2

)
,

and using it in,

0 =
n−1∑
i=1

(
{ia}n −

n

2

)(
{ib}n −

n

2

)(
{ic}n −

n

2

)
,

we get the other two.

Recall from Section 2.5 that each pair of coprime numbers n, a have a
negative-regular continued fraction

n

q
= k1 −

1

k2 −
1

. . . − 1
ks

.
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A well-known result [Bar77] (also see [Hol88]) is the following formula relating
the length s of the continued fraction and Dedekind sums,

Proposition 2.6.3. Let n be a prime number, and q be an integer such that
0 < q < n. Let n/q = [k1, . . . , ks]. Then

d(q, 1, n) + s =
s∑

α=1

(kα − 2) +
q + q′

n
.

2.7 Asymptoticity in dimension 2

Let Z be a non-singular projective surface, and let D be an effective divisor
with SNC reduced divisor. Assume the necessary hypothesis to construct the
normal n-th root cover Yn → Z along D (Section 2.3). We have to choose a
resolution of singularities h : Xn → Yn → Z, and the Chern numbers c21, c2 of
Xn will depend on this resolution. The singularities of Yn over each point of
Dj ∩Dk are analytically isomorphic to the normalization of

Spec
(

C[x, y, t]
tn − xn−qjky

)
,

where νj+qjkνk ≡ 0 modulo n. This singularity is a cyclic quotient singularity
of type 1

n
(qjk, 1), and the singular point can be resolved by some weighted

blow-ups. The exceptional data will be a chain of non-singular rational curves
{E1, . . . , Es} with EjEj+1 = 1 and E2

j = −kj, where the kj ≥ 2 are the
integers that define the negative regular continued fraction

n

qjk
= k1 −

1

k2 −
1

. . . − 1
ks

,

usually called Hirzebruch-Jung continued fraction. See Section 2.5 for de-
tails. The number s is called the length of the resolution and we denoted it
by ℓ(qjk, n). In this way, we resolve all singularities of Yn obtaining a mor-
phism g : Xn → Yn, with composition h : Xn → Z.
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In dimension 2, for the chosen resolution Xn Dedekind sums and lengths
appear in the following formulas [Urz09],

χ(OXn) = nχ(OZ)−
p2 − 1

12n
D[2] − p− 1

4
e(D) +

∑
j<k

d(1, qjk, n)DjDk

c2(Xn) = nc2(Z)− (n− 1)e(D) +
∑
j<k

ℓ(qjk, n)DjDk.

Then, we can recover a formula for c21 by Noether’s identity. In [Gir03] and
[Gir06], Girstmair proved that the lengths and the values of Dedekind sums
have a particular asymptotical behavior.

Theorem 2.7.1 (Girstmair). For n ≥ 17 there exists a set On ⊂ {0, . . . , n}
such that for any q ∈ On we have

d(1, q, n) ≤ 3
√
n+ 5,

ℓ(q, n) ≤ 3
√
n+ 2.

Moreover |{0, . . . , n} \On| ≤
√
n log(4n).

Remark 2.7.2. The set On can be constructed as follows. Let n ≥ 2 be an
integer. A Farey point is a rational number of the form n c

d
, with 1 ≤ d ≤

√
n,

0 ≤ c ≤ d, gcd(c, d) = 1. The interval

I c
d
= {x : 0 ≤ x ≤ n,

∣∣∣x− n
c

d

∣∣∣ ≤ √n
d2
},

is called a Farey neighborhood of n c
d
. Define the bad set as

F =
⋃

1≤d≤
√
n

⋃
c∈Cd

I c
d
,

where Cd = {c : 0 ≤ c ≤ d, (c, d) = 1}. Thus, On is the set of those integers
q ̸∈ F with 0 ≤ q < n.

Remark 2.7.3. Observe that from the relation of Proposition 2.6.3 combin-
ing it with the results of Girstmair, we have an asymptotic behavior for the
coefficients of the Hirzebruch-Jung continued fraction in the following sense:
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For a prime number n≫ 0, and integers q ∈ On with n/q = [k1, . . . , ks], we
have

s∑
α=1

(kα − 2) ≤ 6
√
n+ 7.

Definition 2.7.4. A collection of prime divisors {D1, . . . , Dr} on a non-
singular d-fold Z is an asymptotic arrangement if Dred = D1 + . . . + Dr is
SNC, and for prime numbers n≫ 0:

1. There are multiplicities 0 < νj < n, such that for any j < k with
Dj∩Dk ̸= ∅, we have qjk ∈ On, the unique integer such that νj+qjkνk ≡
0 modulo n.

2. There are line bundles L such that,

OZ

(
r∑

j=1

νjDj

)
≃ L⊗n.

Example 2.7.5. Inside the proof of [Urz09, Th. 6.1], it was proved that for
any large prime number n there exist a partition

ν1 + . . .+ νr = n,

with qjk ∈ On such that νj + qjkνk ≡ 0 modulo n. We call it an asymp-
totic partition of n. Indeed, the probability of a partition of n to be asymp-
totic tends to 1 as n grows to infinity. Thus, any collection of hyperplanes
{H1, . . . , Hr} on Pd defining a SNC divisor, is itself an asymptotic arrange-
ment with

D = ν1H1 + . . .+ νrHr = (ν1 + . . .+ νr)H = nH,

where H is a general hyperplane section on Pd.

Definition 2.7.6. Let A = {D1, . . . , Dr} be an arbitrary collection of hy-
persurfaces in a non-singular projective d-fold Z. We say that A has simple
crossing if each Dj is non-singular, pairwise intersections are transversal,
and the components of Dj1 ∩ ... ∩ Dje are non-singular. For 0 ≤ e ≤ d − 2
and m > d− e, a (e,m)-singularity in A is a e-fold through which exactly m
of the divisors pass.
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Proposition 2.7.7. Let Z be a non-singular projective d-fold, and A =
{D1, . . . , Dr} a collection of hypersurfaces with simple crossings. Assume
that A satisfy the hypothesis (1) and (2) of Definition 2.7.4, then there exists
a log-morphism h : Z ′ → Z such that the components of (h∗D)red define an
asymptotic arrangement. The log-morphism h is called a log-resolution of
the pair (Z,A).

Proof. Let h : Z ′ → Z be the morphism constructed as follows:

1. Blow-up all (0,m)-singularities for m > d.

2. Blow-up all (1,m)-singularities for m > d− 1,

... and inductively,

(d-1) Blow-up all (d− 2,m)-singularities for m > 2.

The pull-back of the arrangement defines a SNC divisor consisting of the
strict transforms D̃j of each divisor and the exceptional divisors over each
(e,m)-singularity. Thus, for n ≫ 0 there are multiplicities 0 < νj < n
such that D =

∑
j νjDj ∼ nL with qjk ∈ On. The multiplicity of D̃j in

h∗D is νj. Let E be a exceptional divisor over a (e, n)-singularity defined
over a component Dj1 ∩ . . . ∩ Djm . The multiplicity of E in h∗D is νj1 +
. . . + νjm . Thus, the multiplicities in h∗D are the same of D together with
its combinatorial sums. This setup translates to an arithmetical one, so
is a consequence of [Urz09, Th.7.1] that (h∗D)red is again an asymptotic
arrangement.

Let us denote by c̄(Z,D) the logarithmic Chern class of the above log-
resolution. In [Urz09] the author uses the observations of the above remark
to get asymptoticity of invariants for arbitrary arrangements of curves.

Theorem 2.7.8. [Urzúa] Let Z be a non-singular projective surface, and
let {D1, . . . , Dr} be an asymptotic arrangement of curves. Denote by Xn →
Yn → Z the resolution of the n-th root cover Yn along each D =

∑
j νjDj.

Then
c21(Xn)

n
,
c2(Xn)

n
−−−−−−−−→
n→∞, n prime

c21(Z,D), c2(Z,D).

Moreover, if each KYn is nef, then with respect to n, the Chern numbers of
the minimal model of Xn are asymptotic to the logarithmic Chern numbers
of the base (Z,D).
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Proof. For the first assertion see [Urz09, Th.7.1]. See [Urz16, Th.4.3] for the
last

The following example shows a classical family of arrangements of planes.
For more examples of this kind we refer to [Hun89].

Example 2.7.9. Let us consider Platonic arrangements, i.e, arrangements
of planes {H1, ..., Hr} in P3 defined by linear polynomials with real coeffi-
cients describing a Platonic solid in P3

R, the projective space over R. In this
case, no more than 2 planes pass through a line. However, there are points
having m ≥ 3 planes passing through them. They are called the m-points
of the arrangement. Let tm be the number of them. Let σ : Z → P3 be the
log-resolution constructed in Proposition 2.7.7. In this case, from [PSG94,
2.2.14] we have Chern classes

c1(Z) = −4σ∗H − 2
∑
p≥4

tm∑
s=1

Em,s,

c2(Z) = 6σ∗H2,

c3(Z) = 4 + 3
∑
m≥4

tm,

where Em,s are the exceptional divisors over m-points, and they satisfy E3
m,s =

1. With this in mind, and using formulas from Corollary 2.2.15, we can
compute the following tables.

Name r # lines Hjk t3 t4 t5 t6

Tetrahedron 4 6 4 - - -
Hexahedron 6 15 8 3 - -
Octahedron 8 28 8 12 - -

Dodecahedron 12 66 40 15 12 -
Icosahedron 20 190 140 90 24 20

Table 2.1: Platonic Solids

They have logarithmic Chern numbers given in the following table.
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Name r c̄31(Z,D) c̄1c̄2(Z,D) c̄3(Z,D)

Tetrahedron 4 0 0 0
Hexahedron 6 11 27 17
Octahedron 8 76 124 64

Dodecahedron 12 623 705 93
Icosahedron 20 4918 4690 250

Table 2.2: Logarithmic Invariants for Platonic Solids
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Chapter 3

Asymptoticity for non-singular
branch locus

3.1 Logarithmic asymptoticity
Let A(Z)R = A(Z) ⊗Z R be the extended Chow ring of a non-singular
variety Z. For each n ≥ 1 assume the existence of finite log-morphisms
hn : Yn → Z between non-singular varieties of the same dimension with
deg(hn) = n (Definition 2.2.20). We have a morphism of extended Chow
rings h∗

n : A(Z)R → A(Yn)R for each n. Since hn is flat, we have that
h∗
n(A

e(Z)) ⊂ Ae(Yn) [Har77, III.9.6]. The following definition lets us to
reduce the notation in the rest of this section.

Definition 3.1.1. Let {Cn}n≥1 be a sequence of e-cycles with

Cn ∈ h∗
n(A

e(Z)R) ⊂ Ae(Yn)R

for each n, and C ∈ Ae(Z)R. We say that Cn has C as limit and denoted by
limn→∞ Cn = C, if for every b ∈ Ad−e(Z)R we have

lim
n→∞

Cn h
∗
nb

n
= Cb.

This is well-defined since Cn h
∗
nb = nhn∗Cn b on Z, i.e., we are dealing with

real numbers depending on Z.

Lemma 3.1.2. For any partition i1 + . . . + im = d, assume that for each
j = 1, . . . ,m there are sequences {Cij

n }n with limnC
ij
n = Cij ∈ Aij(Z)R.

61
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Then, we have

lim
n→∞

Ci1
n . . . Cim

n

n
= Ci1 . . . Cim .

Proof. By definition, there are classes cin ∈ Ai(Z)R such that that Ci
n = h∗

nc
i
n.

Define cn1,...,nm = ci1n1
. . . cimnm

∈ R. Since limn→∞ Ci
n = Ci, we have

lim
nj→∞

cn1,...,nm = ci1n1
. . . cij−1

nj−1
Cijcij+1

nj+1
. . . cimnm

for fixed ni ̸= nj. So, we proceed analogously taking limit for the other ni,
and we get,

lim
n1,...,n2→∞

cn1,...,nm = Ci1 . . . Cim ,

and the result follows.

Theorem 3.1.3. For n ≥ 1 assume the existence of finite log-morphisms
hn : Yn → Z ramified at a non-singular divisor D whose reduced form is a
SNC divisor. Let D1, ..., Dr be the components of D, and D′

j the reduced
preimage of each Dj. Assume h∗

nDj = nD′
j, and that Dd

j does not depend on
n. Then, we have,

lim
n→∞

ci1 . . . cim(Yn)

n
= c̄i1 . . . c̄im(Z,D).

Proof. The proof of the theorem is based in proving the following,

ce(Yn) ∈ h∗
n(A

e(Z)R), and lim
n→∞

ce(Yn) = c̄e(Z,D),

for each e. We proceed by induction on the dimension 1 ≤ e ≤ d. Since D is
non-singular, by Lemma 2.2.21 we have c̄e(Yn, D) = h∗

n(c̄e(Z,D)). Thus, by
Corollary 2.2.13 we get

ce(Yn) = h∗
n(c̄e(Z,D))−Re(D

′), Re(D
′) =

∑
k+l=e
k ̸=e

(−1)lD′[l]ck(Z).

Since h∗
nDj = nD′

j, for the case e = 1 we have,

c1(Yn) = h∗
n(c1(Z)−Dred) +

r∑
j=1

h∗
n(Dj)

n
∈ h∗

n(A
1(Z)R).
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Then for every h∗
nb ∈ h∗

n(A
1(Z)) we have

lim
n→∞

c1(Yn)h
∗
nb

n
= lim

n→∞

[
(c1(Z)−Dred)b+

r∑
j=1

Djb

n

]
= (c1(Z)−Dred)b,

i.e., limn→∞ c1(Yn) = c̄1(Z,D). We assume as induction hypothesis that the
result is true for k < e. Thus, for k = e using Corollary 2.2.13 we have,

Re(D
′) =

∑
k+l=e
k ̸=e

(−1)l
r∑

j=1

(D′
j)

lck(Xn)

=
∑
k+l=e
k ̸=e

(−1)l
r∑

j=1

(h∗
nDj)

l

nl
ck(Xn).

Since k < e, ck(Yn) ∈ h∗
n(A

k(Z)R), also ce(Yn) is in h∗
n(A

e(Z)R). We have
limn ck(Yn) = ck(Z), thus for e > 0 we have

lim
n→∞

Re(D
′)

n
= 0,

from where the result follows.

3.2 Applications

The main situation to apply Theorem 3.1.3 is the case of n-th root covers.
In this case, take a non-singular SNC divisor D1 + . . . + Dr on Z, and we
restrict our attention for prime numbers n ≥ 2. Assume that Dd

j does not
depend on n. For each n, assume the existence of L and 0 < νj < n such
that D =

∑
j νjDj ∼ nL (Section 2.3). Construct the non-singular covers

hn : Yn → Z along each D. Then h∗
nDj = nD′

j, and we get.

Corollary 3.2.1. Under the above hypothesis, the n-th root covers Yn satisfy,

ci1 . . . cim(Yn)

n
≈ c̄i1 . . . c̄im(Z,D),

for prime numbers n≫ 0.
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For our purposes in geography this result has a disadvantage, the diffi-
culty to find good pairs (Z,D) whose covers Yn are minimal of general type.
For example, from Theorem 2.3.6 would be enough KZ big and nef, and D
ample with many components. However, at least the condition KZ big seems
difficult to assure by the following. In [BPS16] was proved the following:
Assume that Z has a collection of disjoint divisors {Dj}j∈J , if |J | ≫ 0, then
there exists a surjective morphism from Z to a curve such that every Dj is
contained in a fiber. For another purposes, these results can be applied to
projective bundles.

Example 3.2.2. Let C be a curve of genus g ≥ 1, and L ≠ OC a line bundle
on C of degree 0. Consider the locally free sheaf E = OC ⊕L of rank 2, and
the non-singular ruled surface,

π : P(E)→ C.

Then, P(E) has two disjoint sections C1, C2 with OP(E)(Ci) ∼= OP(E)(1), and
C2

i = 0 [Har77, Ex. V.2.11.2]. Thus, Corollary 3.2.1 can be applied. We
construct surfaces Yn → P(E) with

c21(Yn)

n
→ c̄21(P(E), C1 + C2) = 12(1− g),

c2(Yn)

n
→ c̄2(P(E), C1 + C2) = 2(1− g),

for prime numbers n ≫ 0. In particular, as n grows the slope c21/c2 of Yn

tends to 6.

By the above discussion, in the rest of this thesis we will study the above
results for the case of 3-folds when D has its components with non-empty
intersection. Thus Yn will have singularities.

Remark 3.2.3. We can extend Corollary 3.2.1 to Abelian covers, i.e., to
the case Gn = Z/n1Z ⊕ . . . ⊕ Z/nkZ a sequence of Abelian groups of order
n = n1 . . . nk with each nj a prime number with nj ̸= nk. See [Par91] or
[Gao11]. In this case, the Abelian covers Yn → X depend on a data Di ∼ niLi

with Di
red a SNC divisor for i = 1, . . . , k. Then the SNC divisor to take is
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Dred = (D1+ . . .+Dk)red. The ramification numbers for each component Dj
i

of Di are given by

h∗Di
j =

n

gcd(ni, νi
j(n))

D′
j
i
= nD′

j
i
,

where νi
j(n) is the multiplicity of Di

j in Di. From here, we leave to the reader
the analog asymptotic result. However, we can ask: How do this argument
be extended to any Galois cover?

Example 3.2.4. Since a n-th root cover Yn → Z (assume n prime) along a
non-singular effective divisor D is non-singular, from Theorem 2.3.6, if KZ

is a nef divisor, then Yn is minimal. Consider Z = V × P1 with projections
p1, p2, and V a non-singular variety of dimension d−1. From Example 2.2.18
consider V1, . . . , Vr ∼ [V ] on Z with r > 2. If KV is nef and r ≥ 3, then Yn

is minimal. Moreover, if V is of general type, then Yn is of general type for
n >> 0. This follows since Kd−1

V > 0, and from the fact that for n >> 0 we
have

Kd
Yn
≈ nKd−1

V (r − 2) > 0.

If V is a surface, the asymptotic result Corollary 3.2.1 implies that(
c̄31
c̄1c̄2

,
c̄3
c̄1c̄2

)
(Yn)→

(
c21(V )

4χ(OV )
,

c2(V )

12χ(OV )

)
,

as n, r → ∞. From Sommese’s density result, we have a line L in Q2 con-
necting (1/2, 5/6) and (9/4, 1/4) whose points are limit points respect to n of
sequences of non-singular minimal 3-folds of general type.

This example gives a new point of view of the n-th root construction: In
fact, Yn is isomorphic to V × Cn where Cn → P1 is a n-th root cover of P1.
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Chapter 4

Asymptoticity of invariants

4.1 Asymptoticity of χ for 3-folds
Consider a data (Z,D, n,L) as in Section 2.3, with Z a non-singular projec-
tive 3-fold. Let h : Xn → Yn → Z be any resolution of singularities of the
branched n-th root cover Yn along the effective divisor D =

∑r
j=1 νjDj ∼ nL

whose reduced form is SNC. We have,

L(i) = iL−
r∑

j=1

⌊
iνj
n

⌋
Dj =

1

n

(
iD −

r∑
j=1

n

⌊
iνj
n

⌋
Dj

)
=

1

n

r∑
j=1

{iνj}nDj.

By Corollary 2.3.8, and Hirzebruch-Riemann-Roch theorem for 3-folds we
can compute

χ(OXn) =
n−1∑
i=0

χ(OZ(−L(i)))

= nχ(OZ)−
1

12

n−1∑
i=1

(
L(i)(L(i) +KZ)(2L

(i) +KZ) + c2(Z).L
(i)
)

= nχ(OZ)−
1

12

n−1∑
i=1

(
2(L(i))3 + 3(L(i))2KZ + L(i)K2

Z + c2(Z).L
(i)
)

= nχ(OZ)−
1

12
R(n,D),

where R(n,D) is a quantity depending only on n and D. We have the
following identities.

67
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n−1∑
i=1

L(i) =
(n− 1)

2
Dred

n−1∑
i=1

(L(i))2 =
(n− 1)(2n− 1)

6n
D[2] +

(n− 1)

2
D[1,1] + 2

∑
j<k

d(νj, νk, n)DjDk.

The above is not difficult to deduce from the formulas in Lemma 2.6.2. To
illustrate, we compute

∑
i(L

(i))3 as follows. The first step, we compute ex-
plicitly:

(L(i))3 =
1

n3

(
iD −

r∑
j=1

n

⌊
iνj
n

⌋
Dj

)3

=
1

n3

(
r∑

j=1

{iνj}nDj

)3

=
1

n3

(
r∑

j=1

{iνj}3nD3
j + 3

∑
j<k

{iνj}2n{iνk}nD2
jDk + {iνj}n{iνk}2nDjD

2
k

+ 6
∑
j<k<l

{iνj}n{iνk}n{iνl}nDjDkDl

)
Applying directly the formulas in Lemma 2.6.2, we get.
n−1∑
i=1

(L(i))3 =
(n− 1)2

4n
D[3] +

(n− 1)(2n− 1)

4n
(D[1,2] +D[2,1]) +

3(n− 1)

4
D[1,1,1]

+ 3
∑
j<k

d(νj, νk, n)(D
2
jDk +DjD

2
k)

+ 3
∑
j<k<l

(d(νj, νk, n) + d(νj, νl, n) + d(νk, νl, n))DjDkDl.

On the other hand,

n−1∑
i=1

(L(i))2KZ =
(1− n)

2
c1(Z)

(
(2n− 1)

3n
D[2] +D[1,1]

)
+2
∑
j<k

d(νj, νk, n)DjDkKZ ,
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n−1∑
i=1

L(i)K2
Z =

(n− 1)

2
K2

ZDred =
(n− 1)

2
Dredc

2
1(Z),

n−1∑
i=1

L(i)c2(Z) =
(n− 1)

2
Dredc2(Z).

Thus, we have R(n,D) = R1(n,D) +R2(n,D) +R3(n,D), where

R1(n,D) =
(n− 1)2

2n
D[3] +

(n− 1)(2n− 1)

2n
(D[1,2] +D[2,1]) +

3(n− 1)

2
D[1,1,1],

R2(n,D) =
(1− n)

2
c1(Z)

(
(2n− 1)

n
D[2] + 3D[1,1]

)
+
(n− 1)

2
Dred(c

2
1(Z)+c2(Z)),

R3(n,D) = 6

(∑
j<k

d(νj, νk, n)DjDk(Dj +Dk +KZ)

+
∑
j<k<l

(d(νj, νk, n) + d(νj, νl, n) + d(νk, νl, n))DjDkDl

)
.

Theorem 4.1.1. If {D1, . . . , Dr} is an asymptotic arrangement, then

χ(OXn)

n
≈ c1c2(Z,D)

24
,

for prime numbers n≫ 0.

Proof. First observe the following limits

lim
n→∞

R1(n,D)

n
=

1

2
D[3] + (D[1,2] +D[2,1]) +

3

2
D[1,1,1] =

1

2
Dred(D

[2] +D[1,1]),

lim
n→∞

R2(n,D)

n
= −1

2
c1(Z)

(
2D[2] + 3D[1,1]

)
+

1

2
Dred(c

2
1(Z) + c2(Z)).

From formulas in Corollary 2.2.15, we get the identity

lim
n→∞

R1(n,D) +R2(n,D)

n
=

1

2
(c1c2(Z)− c1c2(Z,D)).
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Since the collection of divisors is an asymptotic arrangement, we use Theo-
rem 2.7.1 to get R3(n,D)/n ≈ 0 for prime numbers n ≫ 0. Thus, in this
case we have

χ(OXn)

n
≈ c1c2(Z)

24
− 1

24
(c1c2(Z)− c1c2(Z,D)) =

c1c2(Z,D)

24
,

for prime numbers n≫ 0.

Remark 4.1.2. Observe that the formula for (L(i))3 can be extended to higher
dimensions. In the same way of Lemma 2.6.2, we can find formulas for (L(i))e

depending only on the combinatorial aspects of D and higher dimensional
Dedekind sums. Thus, for asymptoticity of χ(OXn) in any dimension, we
need asymptoticity of Dedekind sums, i.e., the higher dimensional analogs of
Girstmair’s results. For dimension d ≥ 4 this is an open problem.

4.2 Toric local resolutions

In this section, we study the 3-fold singularity given by the normalization
of tn = xν1

1 xν2
2 xν3

3 , with n ≥ 2 a prime number and 0 < νi < n. The aim
is to achieve good local resolutions of singularities in asymptotic terms with
respect to n. Since this singularity is toric, it can be resolved by subdivi-
sions of its associated cone obtaining a refinement fan. To assure asymp-
totic properties, we have to pay attention to the combinatorial aspects of
the refinement. Let 0 < p, q < n be integers such that ν1 + pν3 ≡ 0 and
ν1 + qν3 ≡ 0 modulo n. By Section 2.4, this 3-fold singularity is a toric vari-
ety Yp,q := Spec(σ∨ ∩ Z3) defined by the cone σ = C(d1, d2, d3) ⊂ R3, where
d1 = ne1 − pe3, d2 = ne2 − qe3, and d3 = e3 are the primitive ray generators.
A transversal section of this cone is sketched in Figure 4.1.

The fan defined by the cone σ has 2-dimensional faces (walls) given by
τjk = C(dj, dk) for j < k. By Section 2.5, each wall τjk can be resolved by
Hirzebruch-Jung sequences (mjk,α, njk,α)

sjk+1
α=0 in direction dj to dk with initial

data
mjk,0 = n, njk,0 = 0, njk,1 = 1, ∀j < k,

m13,1 = p′, m23,1 = q′, m12,1 = {−p′q}n,



4.2. TORIC LOCAL RESOLUTIONS 71

Figure 4.1: Transversal section of σ.

where p′ and q′ are the inverse modulo n of p and q. Thus, there are integers
kjk,α ≥ 2, such that

n

mjk,1

= [kjk,1, ..., kjk,sjk ].

Then, the walls τjk can be resolved by subdividing them in a sequence of
steps by rays with generators (ejk,α)

sjk
α=1 defined recursively as

ejk,α =
mjk,αdj + njk,αdk

n
, 1 ≤ α ≤ sjk.

If we fix j < k, we denote by ekj,α the exceptional divisors in direction dk to
dj. We have the relation ejk,α = ekj,s+1−α. In Figure 4.2 are illustrated the
border generators.

In order to choose a good asymptotic local resolution of σ, imitating the
2-dimensional case, we can ask for a minimal local resolution, i.e., with nef
canonical bundles. However, minimal varieties in higher dimensions may have
terminal singularities, minimal singular models are not necessarily unique,
and there are no efficient algorithms in the toric case. In this last, at least
there exists a kind of optimal method. Minimal resolutions can be obtained
by the canonical resolution of σ which is obtained by the canonical refine-
ment of the cone [CLS11, Prop. 11.4.15]. However, the canonical refinement
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Figure 4.2: Lattice points that resolve each wall

appears not to have a regular pattern for any p, q.

In the following, we will see some examples of minimal resolutions. With
the irregular forms that they take, in Section 4.2.2, we propose a cyclic
resolution that imitates the resolution for the case {p + q}n = 1. Then, in
Section 4.3 we observe that this resolution has the asymptotic properties that
we have been looking for.

4.2.1 Minimal resolutions

4.2.1.1 Case (p, q) = (n− 1, q)

Following the notation of Section 2.5 for each τjk we have

τ12 and τ23 of type (n, q′),

τ13 of type (n, n− 1),

thus τ12 and τ23 have the same Hirzebruch-Jung resolution. We construct a
minimal resolution in the following steps.
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Step 1 : Since τ12 and τ23 are of the same type, their resolutions have
the same length, so let us denote s = s12 = s23. In particular, we will denote

mα := m12,α = m23,s−1+α, nα := n12,α = n23,s−1+α.

Then, we do toric blow-ups in both respective walls of σ in the following
order

e12,1 → e23,s → ...→ e12,α → e23,s−1+α → ...→ e12,s → e23,1.

We get a fan σ∗ as a refinement of σ. This fan can be illustrated in Figure 4.3.

Figure 4.3: The fan σ∗. Black and yellow walls will be identified below.

Denote by X∗ → Yp,q the corresponding projective morphism induced by the
refinement. Denote

σ12,α = C(e12,α, e12,α+1, e23,s+1−α), 0 ≤ α ≤ s,

σ23,α = C(e12,α+1, e23,s+1−α, e23,s+2−α), 0 ≤ α ≤ s,

τα = C(e12,α, e23,s+1−α), τ ′α = C(e12,α, e23,s+2−α), 1 ≤ α ≤ s.

Observe that τα are the yellow walls in Figure 4.3, while τ ′α are the black
ones. We will denote by Σα the non-simplicial cone conformed by generator
of σ12,α and σ23,α.
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Proposition 4.2.1. For the refinement σ∗ we have,

1. mult(σ12,0) = n.

2. mult(σ12,α) = mult(σ23,α−1) = mα, 1 ≤ α ≤ s.

3. mult(τα) = mα, and mult(τ ′α) = 1.

4. The canonical divisor of X∗ has the explicit Cartier data given by:

wα =

(
nα+1 − nα,

(mα −mα+1) + q(nα+1 − nα)

n
, nα+1 − nα

)
∈M,

on each Σα. In particular KX∗ is Cartier.

5. X∗ has canonical singularities.

Proof. (1) and (2) are direct calculations using determinants. (3) follows
from the fact that n is prime and (mα, nα) = 1. (4) is a direct computation
since w·,α must satisfy ⟨wα, ·⟩ = 1 on σ12,α and σ23,α with the symmetry of
the context. Since mα ≡ qnα mod n, we have wα ∈ M , this implies KX∗

Cartier, and (5).

Each primitive generator of σ∗ defines a divisor Ejk,α = V (C(ejk,α)) Sec-
tion 2.4.1. Also, we have closed curves Cα = V (τα) and C ′

α = V (τ ′α). In
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terms of intersection theory, we have

E12,α.E23,s+1−α = Cα,

E12,α.E23,s+2−α = C ′
α.

Proposition 4.2.2. We have,

KX∗ C ′
α = 0

KX∗ Cα = kα − 2 ≥ 0.

Proof. We have the following relation between primitive generators

e12,α = e23,s+1−α +mα(1, 0,−1).

e12,α−1 + kαe12,α + e12,α+1 = 0,

e23,s+2−α + kαe23,s+1−α + e23,s−α = 0.

By combining them we have

2e12,α−1 + k12,αe12,α − 2e12,s+2−α − k23,αe23,α = 0,

e23,s+2−α + (k12,α − 1)e12,α + e23,s+1−α + e12,α+1 = 0,

and the result follows using Corollary 2.4.12.

Step 2 : Since mult(τα) = mα, observe that
1

mα

((mα − 1)e23,s+1−α + e12,α) = e23,s+1−α + (1, 0,−1) ∈ N,

thus, this singularity is of type (mα,mα − 1), i.e., a canonical singularity.
Then τα can be resolved by the following ray generators Iα,ℓ defined recur-
sively by

Iα,ℓ+1 = 2Iα,ℓ − Iα,ℓ−1, Iα,1 = e23,s+1−α + (1, 0,−1), Iα,0 = e23,s+1−α,

or explicitly Iα,ℓ = e12,s+1−α+ℓ(1, 0,−1). In the next we will use interchanged
the same notations for divisors defined by this ray generators. So we define
a refinement σt of of σ∗ doing toric blow-ups through the generators Iα,ℓ in
the following order

I1,1 → I1,2 → ...→ I1,m1−1 → I2,1 → ...→ I2,m2−1 → ...→ Is,ms−1.

Denote by X the toric variety defined by σt, and by g : X → X∗ → Yp,q

the corresponding projective morphism. In Section 4.2.1.1 is illustrated the
refinement σt at the level of blocks Σα.
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Proposition 4.2.3. h : X → Yp,q is a minimal resolution of singularities,
i.e., KX is nef.

Proof. Since τα defines a canonical singularity, each one of Iα,· are in the same
plane. So by [CLS11, Prop 11.4.17] the toric blow-ups along each Iα,· defines
a projective crepant birational morphism, and the resulting toric variety will
have at worst terminal singularities. The singularities of X are determined
precisely by its cones of multiplicity strictly greater than 1. Now each one of
these cones is of the form

σ23,α,ℓ = C(E23,α−1, Iα,ℓ, Iα,ℓ+1) or σ12,α,ℓ = C(E12,α+1, Iα,ℓ, Iα,ℓ+1).

So the multiplicity is computed by

mult(σ23,α,ℓ) = | det(E23,s+2−α, Iα,ℓ, Iα,ℓ+1)|
= | det(E23,s+2−α, E23,s+1−α + ℓ(1, 0,−1), E23,s+1−α + (ℓ+ 1)(1, 0,−1))|
= | det(E23,s+2−α, E23,s+1−α + ℓ(1, 0,−1), (1, 0,−1))|
= | det(E23,s+2−α, E23,s+1−α, (1, 0,−1))|

=

∣∣∣∣nα−1

(
mα − qnα

n

)
− nα

(
mα−1 − qnα−1

n

)∣∣∣∣
=

1

n
|nα−1mα − nαmα−1| = 1,
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by Lemma 2.5.2. And the result is analogous for mult(σ12,α,ℓ) = 1. Moreover
the Cartier data of KX is the same on the blocks Σα in σt as before, this
is due to the collection {Iα,ℓ}ℓ lies on the same plane of the block Σα. So
each curve given by a face C(E23,s+2−α, Iα,ℓ) or C(E12,s+1−α, Iα,ℓ) is K-trivial,
therefore KX is a nef divisor.

So if we denote by h : X → Yp,q → A3 the composition of g : X → Yp,q

given by the refinement, and f : Yp,q → A3. Let us denote by D̃j the strict
transform of the coordinate divisor Hj under h. Abusing notation, we also
denote Iα,ℓ to the divisor defined by its correspondent ray generator. Using
Proposition 2.4.8 we get explicitly

h∗H1 = nD̃1 +
s∑

α=1

(
mαE12,α +

mα−1∑
ℓ=1

ℓIα,ℓ

)
+

n−1∑
β=1

βE13β,

h∗H2 = nD̃2 +
s∑

α=1

nα(E12,α + Iα,1 + ...+ Iα,mα−1 + E23,α),

h∗H3 = nD̃3 +
s∑

α=1

(
nαE23,α +

mα−1∑
ℓ=1

(nα − ℓ)Iα,ℓ

)
+

n−1∑
β=1

(n− β)E13,β.

Moreover, since the resolution X → X∗ is crepant we have

KX = h∗KYp,q +
s∑

α=1

(
mα + nα

n
− 1

)
Eα,

where
Eα = E12,α + Iα,1 + ...+ Iα,mα−1 + E23,s+1−α.

Since the Cartier data of KX is unchanged, we have

KX E23,s+1−α Iα,1 = KX Iα,1 Iα,2 = ... = KX Iα,mα−1E12,α = kα − 2,

KX E23,s+2−α Iα,ℓ = KX E12,α+1 Iα,ℓ = 0.

4.2.1.2 Case p+ q = n+ 1

Consider for 0 < p, q < n the toric variety Yp,q isomorphic to the normaliza-
tion of tn = xn−pyn−qz with (n− p) + (n− q) + 1 = n, i.e., p+ q = n+1. To
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construct the minimal smooth resolution of σ we refine the fan associated in
two steps:

Step 1: Since p + q = n + 1, it is not difficult to check that v = e1 +
e2 − e3 ∈ σ ∩ N always maximizes the distance from the lattice points of
Conv(σ(1) ∪ {0}) to the plane generated by σ(1). So as first step, we do a
toric blow up through the ray generated by v, obtaining a refinement σ∗ of
σ.

Figure 4.4: The fan σ∗

Step 2: Now do toric blow-ups through each wall following the non
singular resolution associated in directions dj to dk where j < k. So we
obtain a refinement σt, and denote X the toric variety associated to this fan.
This refinement give us a birational projective morphism gloc : X → Yp,q

which is the minimal resolution of Yp,q. In the following, we prove that X
is a quasi-projective minimal smooth 3-fold over Yloc. Denote each cone of
(σt)3 by

σjk,α = C(v, ejk,α, ejk,α+1), 0 ≤ α ≤ sjk.

We will use the same notation to speak about the pair (mjk,α, njk,α) of a
Hirzebruch-Jung resolution for a 2-face of σ. We also denote each inner wall
by τjk,α = C(v, ejk,α).
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Figure 4.5: The fan σt

Lemma 4.2.4. We have mult(σjk,α) = 1, and mult(τjk,α) = 1.

Proof. The first assertion is a direct compute using determinants and prop-
erties of 2.5.

Each ray generated by some ejk,α defines a toric divisor on X given by
Ejk,α = V (C(ejk,α)), at the say time we fix notation for j < k by Ekj,α :=
Ejk,s+1−α. The inner ray generated by v also defines a toric divisor which
we denote by F. Each inner wall τjk,α defines a closed curve on X given
by Cjk,α = V (C(τjk,α)). Since the refinement σt is simplicial with cones of
multiplicity one, X is smooth, and the canonical divisor KX is a Cartier
divisor. Then we have defined an intersection theory on X.

Lemma 4.2.5. We have

Ejk,αEjk,α±1F = 1, E2
jk,αF = −kjk,α, Ejk,αF

2 = 0,

D̃jF
2 = D̃j

2
F = −1, F 3 = n, KXF

2 = −(n− 3),

KX Cjk,α =

{
kjk,α − 2 1 ≤ α ≤ sjk

0 α = 0, sjk+1
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where kjk,α ≥ 2 are the coefficients of the resolution (mjk,α, njk,α) defined in
2.5. Then for the inner divisor F we have

K2
X F = −

∑
KX Cjk,α = −

∑
(kjk,α − 2),

KX F 2 = 3− n.

Proof. Using 2.4.11, and noting that each Cjk,α is defined by a wall between
two cones in (σt)3. Since we are over a point, then h∗DjF

2 = 0 by projection
formula. So we have

nD̃jF
2 +

∑
k

sjk∑
α=1

m1k,αEjk,αF
2 + F 3 = −n+ F 3 = 0.

Therefore X is a smooth quasi-projective variety with nef canonical di-
visor, i.e., X is minimal. Denote by h : X → Yp,q → A3 the composition
morphism g ◦ f , from 2.4.8 we can compute

h∗Hj = nD̃j +
∑
k

sjk∑
α=1

mjk,αEjk,α + F,

KX = g∗KUσ +
∑
j<k

sjk∑
α=1

Njk,αEjk,α −
n− 3

n
F,

where
Njk,α :=

mjk,α + njk,α

n
− 1.

4.2.1.3 Case p+ q = n

Since p + q ≡n 0, we have τ12 of type n
1
, i.e., that wall can be resolved with

just one blow-up. We construct the minimal resolution in the following steps.
Step 1: We blow-up the wall τ12 at the ray generator

e12,1 =
1

n
(d1 + d2) =

1

n
(n, n,−(p+ q)) = (1, 1,−1).

Indeed this generator is that one minimizes the distance of lattice cone points
with the origin. Thus we do the corresponding toric blow-up at that generator
obtaining a fan σ∗ illustrated Section 4.2.1.3.
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Figure 4.6: The fan σ∗

The fan σ∗ has two 3-cones of multiplicity n, and since the remainder
walls are of multiplicity n, these 3-cones do have not lattice points inside
their parallelepiped associated.

Step 2: Now we blow-up completely the other walls following the Hirzebruch-
Jung process. We get a fan σt illustrated in Section 4.2.1.3.

Denote by X the toric variety defined by σt, and h : X → Yp,q the
projective birational morphism induce by this refinement of σ.

Proposition 4.2.6. h : X → Yp,q is a resolution of singularities.

Proof. For a pair j, k ̸= 1, 2 a cone σjk,α = C(ejk,α, jk, α + 1, e12,1) have

mult(σjk,α) =
1

n2
| det(mjk,αdj + njk,αdk,mjk,α+1dj + njk,α+1dk, e12,1)|

=
|mjk,αnjk,α+1 −mjk,α+1njk,α|

n2
| det(dj, dk, e12,1)|

=
| det(dj, dk, e12,1)|

n
= 1,

by Lemma 2.5.2.
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Figure 4.7: The fan σt

We denote the inner curves on X by

C = V (C(e3, e12,1)), Cjk,α = V (C(ejk,α), e12,1).

Proposition 4.2.7. We have

KX C = 0,

KX Cjk,α = kjk,α − 2,

where kjk,α ≥ 2 are the coefficients of the Hirzebruch-Jung resolution of the
wall τjk.

Proof. The proof is direct using Corollary 2.4.12, and the relations between
ray generators

e1 + e2 − e3 − e12,1 = 0,

ejk,α − kjk,αejk,α + ejk,α = 0.

Thus as before, for the composed resolution h : X → Yp,q → A3 we have
the following pull-backs
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h∗Hj = nD̃j +
∑
k

sjk∑
α=1

mjk,αEjk,α + F,

KX = g∗KUσ +
∑
j<k

sjk∑
α=1

Njk,αEjk,α −
n− 3

n
F,

where
Njk,α :=

mjk,α + njk,α

n
− 1.

4.2.2 Cyclic resolution

From Proposition 2.4.1 we know that every v ∈ Pσ ∩N can be written as

v =
v1d1 + v2d2 + v3d3

n
, v3 = {pv1 + qv2}n 0 ≤ vi < n.

Fix a v, with v1 + v2 + v3 ≤ n and vi > 0.
Step 1: We refine by a star subdivision along v obtaining a fan as illus-

trate Section 4.2.2.

Figure 4.8: Star subdivision along minimizer v

Step 2: Now we refine each wall by doing toric blow-ups following the
Hirzebruch-Jung algorithm. So we obtain a refinement σ∗ and denote by X
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the toric variety associated. This refinement gives us a birational projec-
tive morphism g : X → Yp,q [CLS11, 11.1.6]. This refinement is sketched in
Figure 4.9. Denote each 3-cone of σ∗ by

Figure 4.9: Cyclic local resolution

σjk,α = C(v, ejk,α, ejk,α+1), 0 ≤ α ≤ sjk.

The 2-cones of σ∗ are given in two types. The exterior walls τjk,α = C(ejk,α, ejk,α+1),
and the inner walls ρjk,α = C(v, ejk,α). For any permutation (vj, vk, vl) with
j < k, using determinants and properties of Section 2.5, we have

mult(σjk,α) = vl, mult(ρjk,α) = gcd(vjnjk,α−vkmjk,α, vl), mult(τjk,α) = 1.

Lemma 4.2.8. Each cone σjk,α is a cyclic singularity of type

(ajk,α, bjk,α, 1)

vl
, ajk,α = {mjk,α+1vk−njk,α+1vj}vl , bjk,α = {mjk,αvk−njk,αvj}vl ,

where {·}vl is the residue modulo vl.

Proof. Since τjk,α is non-singular, then σjk,α is semi-unimodular respect to v.
By [Ash15, Prop. 1.2.3] if there is positive integer x, y such that

xejk,α + yejk,α+1 + v

vl
∈ Z3,
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then x, y define the type of the cyclic singularity. Since gcd(n, vl) = 1, we
can solve the equations modulo vl and the result follows.

Denote by h : X → Yp,q → A3 the composition with the natural projection
to A3. Denote by Dj the divisor in A3 defined by the coordinate xj. Each
ray on σ∗ generated by dj, ejk,α, or v defines a toric divisor on X given by

D̃j = V (C(dj)), Ejk,α = V (C(ejk,α)), F = V (C(v)),

where V (·) denotes the orbit closure of a cone [CLS11, p. 121]. At the same
time we fix notation for j < k by Ekj,α := Ejk,s+1−α. Using Proposition 2.4.8
we can compute

h∗Dj = nD̃j +
∑
k

sjk∑
α=1

mjk,αEjk,α + vjF,

KX = g∗KYp,q +
∑
j<k

sjk∑
α=1

Njk,αEjk,α +
v1 + v2 + v3 − n

n
F, (4.1)

where
Njk,α :=

mjk,α + njk,α

n
− 1.

It is satisfied the relation kjk,αNjk,α −Njk,α+1 = Njk,α−1 − (kjk,α − 2), which
gives

sjk∑
α=1

Njk,α(kjk,α − 2) = −(Njk,1 +Nkj,1)−
sjk∑
α=1

(kjk,α − 2).

Proposition 4.2.9. The Q-divisor

h∗
(
n− 1

n
(D1 +D2 +D3)

)
+
∑
j<k

∑
α

Njk,αEjk,α +
v1 + v2 + v3 − n

n
F,

is an effective Z-divisor.

Proof. The local pullback h∗(D1 +D2 +D3) equals

n(D̃1 + D̃2 + D̃3) +
∑
j<k,α

(mjk,α + njk,α)Ejk,α + (v1 + v2 + v3)Fjkl,p.
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Thus, h∗ (n−1
n
(Dj +Dk +Dl)

)
+∆ equals to

(n− 1)(D̃1 + D̃2 + D̃3) +
∑
j<k,α

(mjk,α + njk,α − 1)Ejk,α + (v1 + v2 + v3− 1)F,

i.e., an effective Z-divisor.

Each inner wall defines a closed curve on X given by

Cj = V (C(dj, v)), Cjk,α = V (C(ρjk,α)).

The refinement σ∗ is simplicial with cones of multiplicity one, and the canon-
ical divisor KX is a Q-Cartier divisor. For any pair vj, vk, j < k, let vl be
the another coordinate. The following relation among lattices generators,

ejk,α−1 + (−kjk,α)ejk,α + 0 · v + ejk,α+1 = 0,

vjelj,1 +

(
vl −mlj,1vj −mlk,1vk

n

)
dl + (−1)v + vkelk,1 = 0,

describe the intersection theory on X. Using Theorem 2.4.11 we have,

Ejk,αCjk,α±1 =
mult(ρjk,α)

vl
, Ejk,αCjk,α = −kjk,αmult(ρjk,α)

vl
, FCjk,α = 0,

D̃l Cl =
gcd(vj, vk)(vl −mlj,1vj −mlk,1vk))

nvjvk
, F Cl = −

gcd(vj, vk)

vjvk
,

KX Cl = −
gcd(vj, vk)

vjvk

(
vj + vk − 1 +

vl −mlj,1vj −mlk,1vk
n

)
,

KX Cjk,α =
mult(ρjk,α)

vl
(kjk,α − 2), 1 ≤ α ≤ sjk. (4.2)

Lemma 4.2.10. We have
F 3 =

n

v1v2v3
.

Proof. The divisor vjF is Cartier for any j, then from the pullback identities
above we have

v1v2v3F
3 =

3∏
j=1

(
h∗Dj − nDj −

∑
k

∑
α

mjk,αEjk,α

)
= h∗D1 h

∗D2 h
∗D3 = n,
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where the last is by projection formula.

As a consequence, using Corollary 2.4.12 we can compute,

KXF
2 = −F 2 (D1 +D2 +D3 + F )

=
v1 + v2 + v3 − n

v1v2v3
.

From the last one, we get

K2
X F = −

∑
l

KX Cl

gcd(vj, vk)
−
∑
j<k,α

KX Cjk,α

mult(ρjk,α)
−KXF

2.

The following arithmetic lemma will be useful in Section 4.3.

Lemma 4.2.11. There exists v ∈ Pσ ∩N such that v1 + v2 + v3 = n, so KX

has multiplicity zero at F . Moreover, for n ≫ 0 we can choose v such that
the slopes vj/vk ≤ 3.

Proof. By Proposition 2.4.1 we have v3 = {v1p+ v2q}n. So v1 + v2 + v3 = n,
implies that (v1, v2) are solutions (x, y) of the Diophantine equation

y ≡ cx mod n, c = {−(p+ 1)(q + 1)′}n.

Moreover, for any of those solutions with x+ y < n, we have v3 = n− x− y.
A degenerate case is p + q = n − 2, equivalently c = 1, thus the solution
to the equation is the diagonal. Thus, we can choose x = y = ⌊n

3
⌋, and

the result follows for this case. Let us assume that c < n/2, otherwise we
do (x, y) 7→ (−x, y). The integer points in the square [1, n − 1]2 solving the
equation distribute in R2 along the lines Lβ : y = cx− βn for 0 ≤ β ≤ c− 1.
Thus, over each Lβ the integer solutions over the line are defined by those
integers in the interval

Iβ =

(⌊
βn

c

⌋
,

⌊
(β + 1)n

c

⌋]
.

For each 1 ≤ k ≤ ⌊n
c
⌋, we have

yk = y

(⌊
βn

c

⌋
+ k

)
= ck − r,
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where 0 ≤ r < c is the residue of βn modulo c. So, c(k − 1) ≤ yk ≤ ck. Let
us choose β = ⌊ c−1

3
⌋, and k = ⌊ n

3c
⌋. In particular ⌊n

3
⌋ ∈ Iβ. So, as n≫ 0 we

have yk ≈ n
3
. By construction, we have xk =

⌊
βn
c

⌋
+ k. Let 0 ≤ r∗ ≤ 2 the

residue of c− 1 modulo 3, then xk ≈ n(c−r∗)
3c

. Since 1
2
≤ c−r∗

c
≤ 1, the result

follows chosing v1 = xk and v2 = yk as n≫ 0.

Example 4.2.12. Case {p+q}n = 2: In this case, again v1 = v2 = 1 defines
a interior lattice point v minimizing v1 + v2 + v3. In this case, we have
σ13,α and σ23,α as non-singular cones. On the other hand, each σ12,α is cyclic
singularity of order 2. Thus, they define canonical and terminal singularities.
The first ones achieve a terminal resolution by one blow-up. Moreover,

KXC3 = 0, KXCj ∈
{
0,−1

2

}
, j = 1, 2

so there are p, q with canonical divisor KX nef. In the worst case, i.e.,
KX Cj < 0 for j = 1, 2, we can do toric flips a to get a nef toric variety
given whose fan is sketched in Figure 4.10.

Figure 4.10: Flipped fan for {p+ q}n = 2.

Example 4.2.13. If we drag the lattice point v to one of the generators of
the cone σ, we get a degenerated fan as in Figure 4.11. In this case, the
singularities are of order n, and as an advantage, we do not have a divisor
F .

As we see, having vj ≤ 2 gives us good singularities to work. Indeed, if
the v′js are small enough, the singularities are also good in asymptotic terms.
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Figure 4.11: Degenerated cyclic resolution

Step 3 (Optional): Now we can desingularize each non-terminal cyclic
singularity using the Fujiki-Oka algorithm. See [Ash19] for a modern treat-
ment. Denote the complete resolution as X̃ → X → Yp,q. Since the cone
of toric cyclic singularities of any type a,b

c
has multiplicity c, then there is a

resolution of singularities with length at most c. In this case, if we assume
vj bounded by n1/C with C ≥ 1, then the lengths on σ∗ can be bounded by∑

j<k

sjkn
1/C ≤ 3C ′n2/C ,

for another constant C ′ > 0 using the result of Girstmair (Theorem 2.7.1).
For C > 2, it is guaranteed that X̃ is a resolution of singularities with good
asymptotical behavior.

4.3 Global resolution
Let {D1, ..., Dr} be an asymptotic arrangement on Z. Thus, for prime num-
bers n ≫ 0 we have multiplicities 0 < νj < n depending on n, with its
respective qjk ∈ On. We have n-th root covers fn : Yn → Z branched at
each D =

∑
j νjDj. Let us fix a n ≫ 0, so we drop the subscript n of the

morphisms, i.e., we are fixing a f : Yn → Z.

For j < k, the singularities of Yn over curves in Djk := Dj ∩ Dk are
locally analytically isomorphic to Cqjk,n×C where Cqjk,n is the surface cyclic
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quotient singularity of type 1
n
(qjk, 1). For a triple j < k < l, the singularity

of Yn over a point in Djkl := Dj∩Dk∩Dl is locally analytically isomorphic to
the normalization of Spec(σ∨

jkl ∩M) where σjkl is a cone with walls of types
1
n
(qjk, 1),

1
n
(qjl, 1),

1
n
(qkl, 1) as we see in Section 4.2. We will get the cyclic

resolution Xn → Yn via weighted blow-ups in two steps.

Step 1: Since singularities over Djkl are isolated, for each σjkl, we do a
weighted blow-up at a convenient interior lattice point vjkl. So, this refine-
ment locally gives a projective morphism which is a blow-up over an isolated
point [CLS11, 11.1.6]. In this case, we get a projective birational morphism
h′ : X ′

n → Yn. We have exceptional divisors Fjkl whose components are over
the points of Djkl and they are isomorphic to weighted fake projective planes
[Buc08]. For future computations, we fix the notation of vjkl and Fjkl inde-
pendent of the order of the triple j, k, l. For example, vjkl = vkjl.

Step 2: Since the centers of the above blow-ups are points, the sin-
gularity type over intersections Djk was not affected. For curves in Djk,
locally by SNC property, we can assume that they are supported on a local
equation xy = 0 for local coordinates x, y. Then over such curves, the sin-
gularities on X ′

n are locally analytically isomorphic to Cqjk,n × C, thus we
use the Hirzebruch-Jung algorithm which is a weighted blow-up to resolve
Cqjk,n. The Hirzebruch-Jung resolution can be realized by a single blow-up
Blm(Cqjk,n) → Cqjk, where m is a maximal ideal determined explicitly in co-
ordinates x, y as we see at the end of Section 2.5 (also see [KM92, 10.5]). In
terms of local resolutions, we need to follow an order compatible with the
resolution, i.e., if we locally blow-up a curve in Djk then this operation must
be reflected on the other local toric pictures following the centers to blowing-
up. See Figure 4.12. Thus, this construction extends and we have resolved
the curves Djk. Consequently, we get a projective morphism denoted by
g : Xn → X ′

n → Yn, and denote by h : Xn → Z the composition. Since Xn

was constructed by a sequence of weighted blow-ups with cyclic singularities,
then, Xn is an embedded Q-resolution of Yn [ABMMOG12, 2.1]. As we see
in Proposition 2.3.9, the varieties Xn are irreducible. We summarize this in
the following.

Proposition 4.3.1 (and Definition). There exists a cyclic partial resolution
g : Xn → Yn, i.e. a projective, surjective, birational morphism such that Xn

is irreducible and, it has at most isolated cyclic quotient singularities of order
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lower than n.

Over each Djk = DjDk, we get exceptional divisors Ejk,α, 0 ≤ α ≤ sjk,
where sjk = ℓ(n, qjk) and whose components are over those of Djk. From the
local computations of the section above, we have

h∗Dj = nD̃j +
∑

DkDj ̸=∅

sjk∑
α=1

mjk,αEjk,α +
∑

DklDj ̸=∅

Fkl,j, (4.3)

where Fkl,j is a divisor whose components are the exceptional divisors over
points in Djkl.

Explicitly, for any triple of positive integers numbers j, k, l, let ρkl(j) ∈
{1, 2, 3} the position of j if we order the triple. For example ρ23(1) = 1,
ρ57(6) = 2 or ρ54(8) = 3. Thus, if Fjkl,p is the exceptional divisor over a
point p ∈ DjDkDl, then

Fjkl =
∑

p∈Djkl

Fjkl,p

Fkl,j =
∑

p∈Djkl

ρkl(j)Fjkl,p. (4.4)

In terms of intersection theory, we have

F 3
jkl =

n

vjkl1 vjkl2 vjkl3

Djkl, D̃jD̃k = 0.

From Theorem 2.3.6 we have KXn ∼Q h∗(KZ + n−1
n

∑
j Dj) + ∆ where

∆ =
∑
j<k

Ejk +
∑
j<k<l

VjklFjkl,

Vjkl =
vjkl1 + vjkl2 + vjkl3 − n

n
,

Ejk =

sjk∑
α=1

Njk,αEjk,α.

The following proposition will be useful in Chapter 5. From Remark 2.1.1,
recall that on a normal variety X, a curve C is a m-curve if KX C = m. A
m-curve C is K-negative, K-positive or K-trivial if m < 0, m > 0 or m = 0
respectively.
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Proposition 4.3.2. The Q-divisor h∗ (n−1
n

∑r
i=1Di

)
+ ∆ is an effective Z-

divisor. Thus, if KZ is nef, then the K-negative curves of Xn are contained
in the support of h∗D.

Proof. The first assertion is a direct consequence of Proposition 4.2.9. Now
assume that KZ is nef, and let C be a curve in X. If C is not contained in
the support of h∗D, then

KXn C =

(
h∗

(
KZ +

n− 1

n

r∑
i=1

Di

)
+∆

)
.C > 0,

since h∗KZ is nef (projection formula), and effectiveness of h∗ (n−1
n

∑r
i=1 Di

)
+

∆. Thus, if C is negative must lie in the support of h∗D.

Now we describe how the intersection theory on Xn behaves under pull-
backs of divisors of Z. In what follows, we set Ejk,0 = D̃j and Ejk,sjk+1 = D̃k.

Proposition 4.3.3. Let G,G′ any divisors on Z, then h∗GFkl,j = 0 as 2-
cycle, for any 1 ≤ α ≤ sjk,

h∗Gh∗G′Ejk,α = 0,

h∗GE2
jk,α = −kjk,αGDjk, h∗GEjk,αEjk,α±1 = GDjk.

Proof. We use the projection formula repeatedly. The first one is given by
the fact that h∗Fjk,l has codimension 3. Now for a 1 ≤ α ≤ sjk we have
h∗Ejk,α supported in codimension 2, thus

h∗Gh∗G′Ejk,α = GG′h∗Ejk,α = 0.

Finally, for any α we have

h∗Djh
∗GEjk,α = 0 = h∗G(mjk,α−1Ejk,α−1Ejk,α+mjk,αE

2
jk,α+mjk,α+1Ejk,α+1Ejk,α),

h∗Dkh
∗GEjk,α = 0 = h∗G(njk,α−1Ejk,α−1Ejk,α+njk,αE

2
jk,α+njk,α+1Ejk,α+1Ejk,α).

The recursive relations with kjk,α give[
mjk,α mjk,α+1

njk,α njk,α+1

] [
h∗G(E2

jk,α + kjk,αEjk,α−1Ejk,α)
h∗G(Ejk,α+1Ejk,α − Ejk,α−1Ejk,α)

]
=

[
0
0

]
.
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From Lemma 2.5.2 we have the determinant mjk,αnjkα+1−mjk,α+1njk,α = n,
thus

h∗G(E2
jk,α + kjk,αEjk,α−1Ejk,α) = 0

h∗G(Ejk,α+1Ejk,α − Ejk,α−1Ejk,α) = 0.

In particular, we have

h∗GEjk,α+1Ejk,α = h∗GD̃jEjk,1 = GDjk,

and the result follows.

Corollary 4.3.4. For any divisor G on Z we have

h∗GEjkKX = −DjkG

(
(Njk,1 +Nkj,1) +

sjk∑
α=1

(kjk,α − 2)

)
.

Proof. Since h∗GF vanishes at top-dimensional intersections, and Ejk,α1Ejk,α2 =
0 for |α1 − α2| > 1, we have

h∗GEjkKX = h∗G(Ejk)
2 = h∗G

sjk∑
α=1

N2
jk,αE

2
jk,α + 2Njk,αNjk,α+1Ejk,αEjk,α+1

= DjkG

sjk∑
α=1

−kjk,αN2
jk,α + 2Njk,αNjk,α+1

= DjkG

sjk∑
α=1

Njk,αNjk,α+1 −Njk,αNjk,α−1 +Njk,α(kjk,α − 2)

= DjkG

sjk∑
α=1

Njk,α(kjk,α − 2)

= −DjkG

(
(Njk,1 +Nkj,1) +

sjk∑
α=1

(kjk,α − 2)

)
.

where the last identity is by telescoping sum argument.

Corollary 4.3.5. If C is a curve on Xn contained in H̃j and disjoint to any
exceptional divisor Fjkl, then

D̃jC =
h∗C

n

(
Dj −

∑
j ̸=k

mjk,1Dk

)
.
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Proof. From (4.3) we have

h∗DjC = Djh∗C = nD̃j +
∑
k

mjk,1Ejk,1C,

h∗DkC = Dkh∗C = Ejk,1C, ∀j ̸= k,

and the result follows.

4.3.1 Asymptoticity of K3
Xn

.

For simplicity, let us denote KX = KXn . Let us introduce the following
notation

|D|jk := |Dj|k + |Dk|j,
where |Dj|k satisfy ∑

Dll′Dj ̸=0

Fll′,jEjk,αKX = |Dj|k(kjk,α − 2).

Remark 4.3.6. Using equations from (4.2), observe that |Dj|k depends on
slopes of weights vjkl1 , vjkl2 , vjkl3 of the lattice points vjkl. Explicitly, using (4.4),
we have

|Dj|k =
∑
l

vjklρkl(j)

vjklρkj(l)

Djkl.

We need this to compute the intersection of KX with the external walls
of the local toric resolution. Recursively we denote,

xjk,α = KXEjk,α−1Ejk,α, 1 ≤ α ≤ sjk + 1

yjk,α = KXE
2
jk,α, 1 ≤ α ≤ sjk.

Thus, we can write

h∗DjEjk,αKX = mjk,α−1xjk,α +mjk,αyjk,α +mjk,α+1xjk,α+1 + |Dj|k(kjk,α − 2)
(4.5)

Using the Q-numerical equivalence of KX in 2.3.6, we compute

xjk,1 = h∗DkD̃jKX = Djk

(
K +

∑
l ̸=j

Njl,1Dl

)
,

xjk,s+1 = h∗DjD̃kKX = Djk

(
K +

∑
l ̸=k

Nkl,1Dl

)
.
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Proposition 4.3.7. We have

xjk,α = xjk,1 +
1

n
(m∗

jk,α(DjkDk − |Dk|j)− n∗
jk,α(DjkDj − |Dj|k)),

yjk,α = −kjk,αxjk,α+
(kjk,α − 2)

n
(njk,α+1(DjkDj−|Dj|k)−mjk,α+1(DjkDk−|Dk|j)).

Where m∗
jk,α = mjk,α −mjk,α−1 −mjk,1 +mjk,0 and analogous for n∗

jk,α.

Proof. Using the recursion given by the k′
jk,αs, and formulas for h∗Dj Ejk,αKX

and h∗Dk Ejk,αKX of (4.5), we have[
(D2

jDk − |Dj|k)(kjk,α − 2)
(DjD

2
k − |Dk|j)(kjk,α − 2)

]
=

[
mjk,α mjk,α+1

njk,α njk,α+1

] [
kjk,αxjk,α + yjk,α
xjk,α+1 − xjk,α

]
The determinant mjk,αnjk,α+1−mjk,α+1njk,α = n, implies second relation for
yjk,α, and

xjk,α+1 = xjk,α +
(kjk,α − 2)

n
(mjk,α(DjkDk − |Dk|j)− njk,α(DjkDj − |Dj|k))

The recurrence for xjk,α with a telescopic sum arguments give the result.

Theorem 4.3.8. If {D1, . . . , Dr} is an asymptotic arrangement, then

K3
Xn

n
≈ −c̄31(Z,D),

for prime numbers n≫ 0.

Proof. We will compute K3
X using the above numerical equivalence, squaring

we get

K2
X ∼Q h∗K2 +

(∑
j<k

Ejk

)2

+
∑
j<k<l

V 2
jklF

2
jkl + 2

∑
j<k

Ejk

(
h∗K +

∑
j<k<l

VjklFjkl

)
.

We have explicitly

(h∗K)2KX = (h∗K)3 = nK3.

EjkFjklKX = Djkl

sjk∑
α=1

Njk,α(kjk,α−2) = −Djkl

(
(Njk,1 +Nkj,1) +

sjk∑
α=1

(kjk,α − 2)

)
.
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In the rest, we will denote

(k − 2)jk =

sjk∑
α=1

(kjk,α − 2).

Using Corollary 4.3.4 for G = K, we get

K3
X =nK3 − 2

∑
j<k

(
DjkK +

∑
j<k<l

VjklDjkl

)
(Njk,1 +Nkj,1 + (k − 2)jk)

+
∑
j<k<l

nV 3
jkl

vjkl1 vjkl2 vjkl3

Djkl +KX

(∑
j<k

Ejk

)2

.

Just rest to compute

KX

(∑
j<k

Ejk

)2

=
∑
j<k

sjk∑
α=1

Njk,α(Njk,α−1xjk,α +Njk,αyjk,α +Njk,α+1xjk,α+1).

From Corollary 4.3.4, we have

Djk(Dj +Dk)(kjk,α − 2)

n
=

h∗(Dj +Dk)Ejk,αKX

n
= Njk,α−1xjk,α +Njk,αyjk,α +Njk,α+1xjk,α+1

+ (xjk,α + yjk,α + xjk,α+1) +
(kjk,α − 2)

n
|D|jk,

So, we have explicitly

KX

(∑
j<k

Ejk

)2

=
∑
j<k

sjk∑
α=1

Djk(Dj +Dk)− |D|jk
n

Njk,α(kjk,α − 2)

−
∑
j<k

sjk∑
α=1

Njk,α(xjk,α + yjk,α + xjk,α+1).

The first term of the sum contains
∑

αNjk,α(kjk − 2), which is asymptotic
respect to n by previous discussion (Section 2.7). Thus, we just have to prove
asymptoticity for ∑

j<k

sjk∑
α=1

Njk,α(xjk,α + yjk,α + xjk,α+1) (4.6)
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Proceeding as above, it is not difficult to show the following identity,

sjk∑
α=1

Djk(Dj +Dk)− |D|jk
n

(kjk,α − 2) =

sjk∑
α=1

(Njk,α + 1)(xjk,α + yjk,α + xjk,α+1)

−Njk,1xjk,1 −Njk,sxjk,s+1.

So, the asymptoticity of (4.6) depends only on the asymptoticity of

∑
j<k

sjk∑
α=1

(xjk,α + yjk,α + xjk,α+1). (4.7)

By Proposition 4.3.7, xjk,α + yjk,α + xjk,α+1 equals to

kjk,α − 2

n
(m∗∗

jk,α(DjkDk − |Dk|j)− n∗∗
jk,α(DjkDj − |Dj|k)− nxjk,1),

where m∗∗
jk,α = mjk,α−1 − mjk,α+1 − mjk,0 + mjk,1, and analogous for n∗∗

jk,α.
Observe that these terms are bounded by Cn for some constant C > 0. On
the other hand, the terms (DjkDj−|Dj|k) and (DjkDk−|Dk|j) asymptotically
depend only on the slopes of coordinates of the chosen lattice points vjkl on
each intersection Djkl. By Lemma 4.2.11, we can choose lattice points with
slopes asymptotically bounded by 3 as n grows, with KX having Vjkl = 0 for
all j < k < l. So, we have

|D|jk ≤ 6
∑
l

Djkl.

Thus, as n grows, all the terms in K3
X/n vanish except nK3 ≈ −nc̄31(Z,D).

4.3.2 Asymptoticity of e(Xn).

The topological characteristic can be computed from the topology of (Z,D)
and the exceptional divisors Ejk,α, Fjkl. The divisors Fjkl =

∑
p∈Djkl

Fjkl,p

where Fjkl,p is the corresponding exceptional divisor over a p ∈ Djkl. Thus,
e(Fjkl) = Djkle(Fjkl,p). In the toric picture (Section 4.2) of Xn over p, let
v = vjkl the ray generator defining Fjkl,p.

Lemma 4.3.9. We have e(Fjkl,p) = sjk + sjl + skl + 3.
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Proof. It is well-known that Fjkl,p is the toric variety associated to the star-
fan Star(C(v)) ⊂ (Nv)R, i.e., the induced fan by the lattice quotient Nv =
N/vN (Proposition 2.4.6). In this case, the 2-cones of Star(C(v)) are the in-
duced by each C(ejk,α, ejk,α+1). Since e(Fjkl,p) is the sum of its top-dimensional
cones [CLS11, Thm. 12.3.9], we have the result.

The components of divisors Ejk,α are determined locally as exterior divisor
of the toric picture of Xn. They intersect F at the rational curves Cjk,α.
Locally each component of Ejk,α is isomorphic to A1 × P1, this follows for
the star-fan construction. Thus, their closure in Xn are birationally ruled
surfaces over it associated component of Djk [Har77, Rmk. 2.2.1].

Lemma 4.3.10. If Ejk,α =
∑

C∈Djk
Ejk,α,C is the decomposition in com-

ponenets, then we compute

e(Ejk,α) = 4
∑

C∈Djk

(1− pg(C)).

Proof. We have e(Ejk,α) =
∑

C e(Ejk,α,C). Since Ejk,α,C is a fibration over
C with fiber F = P1, it is known that e(Ejk,α,C) = e(P1)e(C) = 4(1 −
pg(C)).

Lemma 4.3.11. If X is a complex algebraic variety, and A ⊂ X is a sub-
variety such that X \ A is smooth, then e(X) = e(X \ A) + e(A).

Proof. See [Ful93, p. 141].

Remark 4.3.12. The above lemma implies the exclusion-inclusion principle,
i.e., for subvarieties V,W ↪→ X we have e(V ∪W )+e(V ∩W ) = e(V )+e(W ).

Theorem 4.3.13. If {D1, . . . , Dr} is an asymptotic arrangement, then

e(Xn)

n
≈ c̄3(Z,D),

for prime numbers n≫ 0.

Proof. Denote by R the ramification divisor of h : Xn → Z is a n : 1 mor-
phism which is an isomorphism outside R we have

e(X \R) = ne(Y \D) = n(e(Y )− e(D)).
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On the other hand, R =
⋃

j D̃j ∪ Exc(h), where Exc(h) is the exceptional
data of h. Topologically is given by

Exc(h) =
⋃

j<k<l

Fjkl ∪
⋃
j<k

⋃
α

Ekj,α.

By the exclusion-inclusion observe that

e

(⋃
j

D̃j

)
− e

(⋃
j

D̃j ∩ Exc(h)

)
= e(D)− e(Sing(D)).

So, we get
e(R) = e(D)− e(Sing(D)) + e(Exc(h)).

On the other hand, the components of Ejk,αEjk,α are curves over Djk isomor-
phic to their respective components. Also, each component of Ejk,αFjkl is a
rational curve over its corresponding point in Djkl. Thus, we have identities,

e(Ejk,αEjk,α+1) = e(Djk)

e(Ejk,αFjkl) = 2Djkl.

Using repeatedly the exclusion-inclusion principle we we compute

e(Exp(h)) =
∑
j<k

∑
C∈Djk

[sjk(3− 4pg(C))− 1]−
∑
j<k<l

(sjk + sjl + skl − 3)Djkl.

By the previous discussion in Section 2.7, the lengths sjk/n are asymptoti-
cally zero as n grows. Thus, e(Xn) ≈ n(e(Z)− e(D)) as n grows.
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Figure 4.12: Assume r = 4 with Djkl = 1, then on Y the singularities over
each Djkl can be sketched as in the figure. So the resolution process is in
the following order: First the internals blow-ups, and then the walls in the
following order D12, D13, D14, D23, D24, D34.



Chapter 5

Applications to geography of
3-folds

5.1 Hyperplane sections arrangements.

The above partial resolution can be seen as a resolution of pairs

h : (Xn, D̃red)→ (Z,Dred),

where D̃ is the inverse direct image of D. The reduced divisor of D′ is an
SNC divisor. Indeed, in terms of log-resolutions [KM92, p. 5], we can see
that our partial resolution has a good behavior in logarithmic terms, i.e., they
preserves the log-structure of the variety n-th root cover Yn. The following
result illustrate this ideas.

Theorem 5.1.1. Let Z be a minimal non-singular projective 3-fold, and let
{H1, . . . , Hr} be a collection of hyperplane sections in general position. Then,
for prime numbers n≫ 0 there are log-morphisms (Xn, D̃red)→ (Z,Dred) of
degree n such that:

1. Xn is of log-general type, i.e., KXn + D̃red is big and nef,

2. Xn has cyclic quotient singularities, and so log-terminal of order lower
than n, and

3. the slopes (−K3/24χ, e/24χ) of Xn are arbitrarily near to (2, 1/3).

101
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Proof. We take D =
∑r

j=1 νjHj, where Hj are hyperplane sections on Z

and
∑r

j=1 νj = n an asymptotic partition. Recall that HjHkHl = H2
jHk =

deg(Z) for any j < k < l. Take h : Xn → Yn → Z the asymptotic cyclic
resolution constructed in Theorem 4.3.13. Again for simplicity let us denote
KX = KXn . From, the explicit description given in Proposition 4.2.9, we
have

KX +D′
red = KX +

∑
j

D̃j +
∑
j<k,α

Ejk,α +
∑
j<k<l

Fjkl = h∗(KZ +Dred).

First observe that for any curve C outside the exceptional data of h, we have
(KX +D′

red)C ≥ 0, by projection formula and since KZ +Dred is ample. For
every closed curve C = Cjk,α of C = Cl of the local toric picture (Section 4.2)
of the resolution, we have (KX +D′

red)C = 0. For the remainder curves, we
just need to concern about the positivity of its intersection with KX . Since
KZ is a nef divisor, by Proposition 4.3.2 we must have any KX-negative
curve contained in the support of h∗(D). Thus, the rest of rational curves in
Supp(h∗D) are of the following types:

1. Curves defined by the closure of a wall Ejk,α−1Ejk,α for 1 ≤ α ≤ sjk.

2. A curve contained in Ejk,α but not in Ejk,α±1 for 1 ≤ α ≤ sjk.

3. A curve contained in H̃j.

If C is of type (1), from Proposition 4.3.3 we have,

(KX +D′
red)Ejk,αEjk,α+1 = h∗(KZ +D)Ejk,αEjk,α+1 = (KZ +Dred)Hjk > 0,

for any α. If C is of type (2), then C must be a fiber of the ruled surface
Ejk,α,i.e., is in the class of Cjk,α. But, by (4.1) we have KXC > 0. Finally, if
C is of type (3), we assume that it does not intersect interior divisors Fjkl.
If does it, then by the toric local description C must be of the form Ejk,1H̃j

for some k. Again by projection formula, we have (KX + D′
red)C = (KZ +

D)h∗C ≥ 0. Then, KX +D′
red is a nef divisor, and moreover (KX +D′

red)
3 =

(KZ +D)3 > 0.Thus, by [Laz04, Th. 2.2.16.], the divisor KX +D′
red is big.

Now, from Theorem 4.3.13 we know that for n≫ 0,

K3
X

n
≈ −c31(Z,D) = (KZ + rH)3

= K3
Z + r3 deg(Z) + 3rKZH

2 + 3K2
ZH,
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where H is a generic hyperplane section on Z. Thus, if we choose r depending
on n with r(n)/n→ 0 as n grows, then the numbers |D|jk goes to zero respect
with n. Then, we have K3

X > 0, so Xn is of general type. Moreover, from
Example 2.2.17 we have (−K3/24χ, e/24χ)(X) arbitrarily near to (2, 1/3).

5.2 A degenerated situation.
Consider Z ↪→ P4 of degree d = deg(Z). In this case, we have explicitly

KZ = (d− 5)H|Z , c2(Z) = (10 + d(d− 5))H2|Z ,

c3(Z) = −d
(
d2(d− 5) + 10d− 10

)
,

for a generic hyperplane section H. Take 3 hyperplane sections {H1, H2, H3}
in general position, and asymptotic partitions ν1 + ν2 + ν3 = n. Along
D =

∑
j νjHj ∼ nH consider the respective n-th root cover Yn → Z. Its sin-

gularities are over d points in H1H2H3. As we see in Section 4.2.1.2, these sin-
gularities admit a locally nef non-singular resolution. Unfortunately, in this
resolution the lattice point v does not satisfy the condition of Lemma 4.2.11,
i.e., the volume K3

X will not be completely asymptotic to the logarithmic
Chern number c̄31(Z,D). However, since the chosen v satisfy vj = 1. So,
following the methods of Theorem 4.3.13 to compute K3

X , we get

xjk,α = Ejk,αEjk,α+1KX = d(d− 3), 1 ≤ α ≤ sjk.

Now we compute

K3
X = d(d− 3)

(
nd2 − 3nd+ 3n− 9d+ 18− 3

∑
j<k

(k − 2)jk

)
,

since ∑
j<k

(Njk,1 +Nkj,1) = −3
n− 3

n
,

KX

(∑
j<k

Ejk

)2

= −d(d− 3)
∑
j<k

(Njk,1 +Njk,s + (k − 2)jk).
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In particular for prime numbers n≫ 0,

K3
X

n
≈ (KZ +H1 +H2 +H3)

3 − d = d(d− 2)3 − d.

On the other hand, from Section 4.1 we have

χ(OX) = nχ(Z,OZ)−
1

12
(R1(n) +R2(n) +R3(n)),

where
χ(Z,OZ) = −

d(d− 5)(10 + d(d− 5))

24

R1(n) =
9d(n− 1)(2n− 1)

2n
,

R2(n) =
3d(d− 5)(n− 1)(5n− 1)

2n
+

3d((d− 5)2 + d(d− 5) + 10)(n− 1)

2

R3(n) = 6d(d− 2)(d(ν1, ν2, n) + d(ν1, ν3, n) + d(ν2, ν3, n)).

Since, the partition is asymptotic, for n≫ 0 we have

χ(OX)

n
≈ −d(d− 2)(d− 1)2

24
.

For n≫ 0, the topological characteristic behaves as

e(X)

n
≈ c3(P3, Dred) = −d(d− 5)(d2 + 2d+ 6).

Following the proof of Theorem 5.1.1, we get KX nef for n ≫ 0. As a
consequence of the above computations, we have.

Theorem 5.2.1. For d ≥ 5 and n ≫ 0 there are minimal non-singular
3-folds X of general type having degree n over Z with slopes

c31
c1c2

≈ (d− 2)3 − 1

(d− 2)(d− 1)2
,

c3
c1c2

≈ (d− 5)(d2 + 2d+ 6)

(d− 2)(d− 1)2
.

In particular, as the degree of Z grows, the slopes have limit point (1, 1).



Chapter 6

Discussion & Future Work

In this section, we will see the possible future paths in order to extend this
work.

6.1 Asymptoticity through minimal models

One of the main horizons of this research is to achieve the asymptoticity of
invariants through minimal models. This means that, as we see in Theo-
rem 2.7.8, the invariants of Xn, with respect to n, could be asymptotically
equal to the respective invariants of its minimal model. Thus, we will be in a
very nice position to do geography, i.e., the study of arrangements of hyper-
surfaces is identified through the slopes of Chern numbers with a "region" of
minimal projective varieties. As we see in Theorem 5.1.1 and Theorem 5.2.1,
if the basis pair (Z,D) has Z minimal of general type and D composed by
ample divisors, then our constructions preserves important features in terms
of minimal models. However, this in general it is not something easy to work.
For the future of this work 3 aspects are important.

1. Asymptotic study of (partial) desingularization of cyclic quotient sin-
gularities of dimension ≥ 3.

2. Hirzebruch-Riemann-Roch for singular varieties with terminal and log-
terminal singularities with their asymptotic analogs.

3. The behavior of the invariants after applying the MMP to our con-
structed varieties.
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In the next section, we discuss (1). If we achieve our goal we will be,
able to construct good partial resolutions Xn → Yn, i.e., the Chern numbers,
with respect to n, are asymptotically equal to the logarithmic Chern numbers
of the basis (Z,D). We expect that we can improve the singularities to the
terminal ones, so we will be able to run the MMP, i.e. we want to construct a
terminal good partial resolution. For (2), we have results of [Rei87] and [BS05]
which are a kind of starting point for future work. These contain versions
of the Hirzebruch-Riemann-Roch theorem for varieties with canonical and
cyclic quotient singularities. For (3), we think that the answer could be
hidden in all the massive previous work done around the minimal model
program [BCHM10], [KM92]. We expect, that the involved invariants do not
suffer dramatic changes after flipping or contractions operations as occur in
the case of surfaces. Then, asymptotically with respect to n, the invariants
remain unchanged. We state the above discussion as conjecture.

Conjecture 6.1.1. Let Xn → Yn → (Z,D) be a terminal good partial res-
olution of singularities of the n-th root cover construction. Assume that
KYn is nef, and let X ′

n a minimal model of Xn. Then, for any partition
i1 + . . .+ im = d we have

ci1 . . . cim(X
′
n)

n
≈ c̄i1 . . . c̄im(Z,D),

for prime numbers n≫ 0.

6.2 What about the length of resolution of 3-
fold c.q.s

Cyclic quotient singularities of dimension 3 can be desingularized using a
generalization of the Hirzebruch-Jung algorithm, this is the Fujiki-Oka algo-
rithm. See [Ash19] for a modern treatment. After the local cyclic toric reso-
lution of Section 4.2.2, instinctively we want to desingularize each one with
the Fujiki-Oka process. However, since we want asymptoticy of invariants
in our resolutions, so we ask for the topological length and the intersection
number behavior of such an algorithm. For the first, we mean the amount of
new topological data, i.e., how the Betti numbers grow for the chosen resolu-
tions. For last, we mean how the new curves and divisors on the exceptional
data affect the volume K3

X . As we discussed in Section 2.7, the algorithm
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in dimension 2 has both aspects behaving as ∼
√
n for a suitable class of

integer numbers.

Let us assume that we choose a partial resolution for the local cyclic
resolution, so the amount of new topological data will behave approximately
as

∼ 3
√
n
∑
j<k,α

ℓ(vl, ajk,α, bjk,α),

where ℓ(vl, ajk,α, bjk,α) is a length number depending on each cyclic singular-
ities given in Lemma 4.2.8. Thus, asymptotically respect with n, we require
that ℓ(vl, ajk,α, bjk,α) ∼ n1/c for c < 1/2. In particular, Fujiki-Oka algorithm
for a cyclic quotient singularity of type 1

n
(a, b, 1) contains the processes for

those of dimension two 1
n
(a, 1) and 1

n
(b, 1). Thus, in the best case, we will

have ℓ(vl, ajk,α, bjk,α) ∼
√
vl. To assure asymptoticity in Theorem 4.3.13 we

must have vl ∼ n/3, thus after resolve we lose the asymptoticity on the
topological side. On the other hand, if we admit all v′ls small as we see in
Theorem 5.2.1, then after resolve we lose the asymptoticity of the volume.
These observations lead us to a well-known question: the existence of a ter-
minal resolution for cyclic quotient singularities, i.e., having only terminal
singularities.

The terminalization of a toric singularity is a well-known process [CLS11,
Sec. 11.4]. Indeed, assume that our toric singularity has associated cone
σ ⊂ Rd. First, we have to compute the convex hull of σ∩Zd−{0}. This will
give us a refinement of σ, which is a canonical resolution, i.e. having at most
canonical singularities with ample canonical bundle. Finally, each canonical
toric singularity defined by a cone can be terminalizated by blowing-up each
lattice point on the plane generated by the primitive generators of the cone.
However, we do not know the growing behavior of this algorithm. In fact, it
is known that the best convex-hull algorithm behaves as ∼ n log n when the
number of lattice points is n [Gre90]. This not seems like a good algorithm
to choose.

Question 6.2.1. How can we construct a terminal algorithm for cyclic quo-
tient singularities with the desired asymptotic properties? Is it possible?

As we see in Section 4.2.1.1, 4.2.1.2 and 4.2.1.3, to achieve a well-behaved
resolution it is probable that we will have to impose different conditions on
the integer a and b.
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6.3 Geography questions
Another of the objectives of this work was to achieve minimal non-singular 3-
folds of general type in the unknown zone of the map in Figure 1.2. Explicitly,
this is the zone over the lines connecting (1/2, 5/6) and (1/16, 43/8) with
(2, 1/3), i.e., the region

R =

{
(x, y) ∈ Q2 : y +

1

3
x− 1 > 0, y +

242

93
x− 515

93
> 0

}
.

However, with all our constructions we were unable to establish a point on
that zone. So, we repeat the question asked by Hunt in [Hun89, Ch. 10].

Question 6.3.1. Are there minimal non-singular 3-folds with slopes on the
unknown zone R?

In Theorem 5.1.1 we see that there are 3-folds with cyclic quotient sin-
gularities accumulating in the well-known point of the map (2, 1/3). We are
curious if after applying the process proposed in Section 6.1, the minimal
3-folds expected will preserve the accumulating point or they move out.

Finally, the principal motivation for all this work is the profound connec-
tion between arrangements of hypersurfaces and the geography of invariants
of minimal varieties. For us will be interesting to explore the geography
through arbitrary arrangements of planes on P3. We are curious about the
regions that minimal models of n-th root covers could cover in the map of
Figure 1.2 through arrangements. As we see in Proposition 2.7.7, for us the
most important tool is the log-resolution.

Question 6.3.2. What is the region covered by minimal models of n-th root
cover Yn along arrangements of planes in P3?.
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