The development of medical diagnostic tests is of great importance in clinical practice, public health, and medical research. The receiver operating characteristic (ROC) curve is a popular tool for evaluating the accuracy of such tests. We review Bayesian nonparametric methods based on Dirichlet process mixtures and the Bayesian bootstrap for ROC curve estimation and regression. The methods are illustrated by means of data concerning diagnosis of lung cancer in women.
Registro Sencillo
Registro Completo
Autor | Calhau Fernandes, Inacio De Carvalho Vanda Jara, Alejandro Bras De Carvalho, Miguel |
Título | Bayesian Nonparametric Approaches for ROC Curve Inference |
ISBN | 978-3-319-19517-9 |
ISBN electrónico | 978-3-319-19518-6 |
Página inicio | 327 |
Página final | 344 |
Fecha de publicación | 2015 |
Cómo citar este documento | Vanda Inácio de Carvalho, Alejandro Jara, Miguel de Carvalho. Bayesian Nonparametric Approaches for ROC Curve Inference. In: Riten Mitra and Peter Mueller,editors. Nonparametric Bayesian Inference in Biostatistics. Springer; 2015. p. 327-344. |
Resumen | The development of medical diagnostic tests is of great importance in clinical practice, public health, and medical research. The receiver operating characteristic (ROC) curve is a popular tool for evaluating the accuracy of such tests. We review Bayesian nonparametric methods based on Dirichlet process mixtures and the Bayesian bootstrap for ROC curve estimation and regression. The methods are illustrated by means of data concerning diagnosis of lung cancer in women. |
Derechos | acceso restringido |
Agencia financiadora | FONDECYT |
DOI | 10.1007/978-3-319-19518-6_16 |
Enlace | https://link.springer.com/chapter/10.1007/978-3-319-19518-6_16 |
Id de publicación en WoS | WOS:000376610800017 |
Publicado en / Colección | Nonparametric Bayesian Inference in Biostatistics |
Tema ODS | 03 Good health and well-being |
Tema ODS español | 03 Salud y bienestar |
Temática | Matemática física y química |
Tipo de documento | capítulo de libro |