We consider the following stationary Keller-Segel system from chemotaxis
Registro Sencillo
Registro Completo
Autor | Musso, Monica Wei, Juncheng |
Título | Stationary solutions to a Keller-Segel chemotaxis system |
Revista | ASYMPTOTIC ANALYSIS |
ISSN | 0921-7134 |
ISSN electrónico | 1875-8576 |
Volumen | 49 |
Número de publicación | 3-4 |
Página inicio | 217 |
Página final | 247 |
Fecha de publicación | 2006 |
Resumen | We consider the following stationary Keller-Segel system from chemotaxis Delta u - au + u(p) = 0, u > 0 in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega, where Omega subset of R-2 is a smooth and bounded domain. We show that given any two positive integers K,L, for p sufficiently large, there exists a solution concentrating in K interior points and L boundary points. The location of the blow-up points is related to the Green function. The solutions are obtained as critical points of some finite-dimensional reduced energy functional. No assumption on the symmetry, geometry nor topology of the domain is needed. |
Derechos | acceso restringido |
Editorial | IOS PRESS |
Enlace | |
Id de publicación en WoS | WOS:000240965400004 |
Paginación | 31 páginas |
Palabra clave | 2-DIMENSIONAL ELLIPTIC PROBLEM SINGULAR LIMITS CONCENTRATING SOLUTIONS MULTIPEAK SOLUTIONS GLOBAL EXISTENCE POINT DYNAMICS UP SOLUTIONS BLOW-UP NEUMANN MODEL |
Tipo de documento | artículo |