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PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

MOTION CORRECTED 3D LIVER

UNDERSAMPLED MRI

FELIPE ANDRÉS YÁÑEZ LANG
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ABSTRACT

The emergence of sparse reconstruction methods for undersampled data in Magnetic

Resonance Imaging (MRI), such as Compressed Sensing (CS), have been valuable tools

to accelerate data acquisition while preserving accurate image reconstruction. However,

sparse reconstruction methods, including CS, are not easy to apply when there is intra-

frame motion. Such is the case of free-breathing dynamic MRI in the liver. It is difficult

to avoid non-rigid motion artifacts, even more so in volumetric acquisitions. To avoid

these kind of artifacts, we propose a new reconstruction technique tailored for dynamic

liver imaging by estimating the motion between frames to correct inconsistencies in k-

space measurements. In this work, we describe how the proposed method addresses an

increase in image efficiency for free-breathing dynamic 3D liver MRI. Our approach pro-

duced results that demonstrate it is feasible to achieve a 10x speedup in acquisition time

and remove motion artifacts without diminishing image quality. The proposed method

produced gains up to 6 dB with respect of traditional CS framework.

Keywords: compressed sensing; undersampling; sparse reconstruction; motion;

motion correction; non-rigid registration; liver.
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RESUMEN

La aparición de métodos ralos de reconstrucción de imágenes para datos submuestrea-

dos en formación de Imágenes por Resonancia Magnética (IRM), como Compressed Sens-

ing (CS), han sido herramientas valiosas para acelerar la adquisición de datos, preser-

vando una reconstrucción precisa de la imagen. Sin embargo, los métodos ralos de re-

construcción de imágenes, incluyendo CS, no tienen una aplicación simple cuando hay

movimiento intra-cuadro. Tal es el caso de IRM dinámicas en el hı́gado, adquiridas en res-

piración libre. Es difı́cil evitar artefactos producto de movimientos no rı́gidos del hı́gado,

más aún en adquisiciones volumétricas. Para evitar este tipo de artefactos, proponemos

una nueva técnica de reconstrucción de imágenes adaptada para imágenes dinámicas de

hı́gado, mediante la estimación del movimiento entre cuadros para corregir inconsisten-

cias en las mediciones del espacio-k. En este trabajo se describe cómo el método prop-

uesto aumenta la eficiencia de la imagen en aplicaciones de IRM dinámicas en el hı́gado,

adquiridas en respiración libre. Nuestro método produce resultados que demuestran que es

factible aumentar 10 veces el tiempo de adquisición y eliminar artefactos de movimiento

sin disminuir la calidad de la imagen. El método propuesto produce ganancias de hasta 6

dB con respecto a la técnica tradicional.

Palabras Claves: compressed sensing; submuestreo; reconstrucción; movimiento;

corrección de movimiento; registro no rı́gido; hı́gado.
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1. INTRODUCTION

Image efficiency in Magnetic Resonance Imaging (MRI), i.e. the trade-off between

acquisition time and image quality (Figure 1.1), has been widely studied in the MRI com-

munity. In the past, image efficiency improvements were shown to be directly related to

hardware development, e.g. acquiring multiple lines in the readout after a single excitation

to speed up data collection (Wright, 1997). Nowadays, we are at the point where physi-

cal and physiological restrictions are the main reasons for limiting the speed while scan-

ning (Lustig, Donoho, & Pauly, 2007). In this sense, the emergence of new approaches

handling the imaging problem with less data as required by the Nyquist-Shannon rate seem

to provide an answer for further improvements in image efficiency.

Scanning time

Im
ag

e 
qu

al
ity

A
1

A
2

B

FIGURE 1.1. Image efficiency in MRI, i.e. the trade-off between acquisition time
and image quality, can be related to two sources of improvement. The first one
is producing higher quality results in a fixed time acquisition scheme (A1 → B);
and the second one is speeding up acquisition time without diminishing image
quality (A2 → B).

These new approaches, also known as sparse reconstruction methods, rely on the idea

of compressibility, which assumes redundancy in an image (Candes, Romberg, & Tao,
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2006a, 2006b). One sparse reconstruction method for undersampled data of high impact

in MRI is Compressed Sensing (CS) (Candes et al., 2006a, 2006b; Candes & Tao, 2006;

Donoho, 2006). Previous work has shown that CS is a relatively new concept in signal

processing used to speed up MRI scanning time (Lustig et al., 2007). CS enables reliable

image recovery for severely undersampled random measurements, if the desired signal is

compressible in a known domain and the aliasing artifacts due undersampling are inco-

herent in the measurement domain (Candes et al., 2006a, 2006b; Candes & Tao, 2006;

Donoho, 2006; Lustig et al., 2007). The CS framework is used in different MRI appli-

cations, e.g. brain imaging (Lustig, Donoho, Santos, & Pauly, 2008), diffusion spectrum

imaging (Bilgic et al., 2012), quantitative susceptibility mapping (Yanez et al., 2013), and

multi-contrast reconstruction (Bilgic, Goyal, & Adalsteinsson, 2011).

CS has also been applied in dynamic MRI, where most reconstruction methods use

temporal correlations in the signal. A common approach is to exploit the sparsity of the

residual signal after subtraction of an initial estimate (Jung, Sung, Nayak, Kim, & Ye,

2009; Jung & Ye, 2010). In this way, the signal has a sparse representation, and it is pos-

sible to achieve more accurate results. A similar problem has also been widely studied in

the field of video compression, where video images are compressed using the similarities

between different frames to achieve high efficiency. Some ideas from video compression

algorithms are also used in dynamic MRI reconstructions (Jung & Ye, 2010).

In MRI applications, dealing with motion is also an important issue for reconstruction

methods, because during an exam, i.e. while scanning, unwanted or involuntary motion

from the patient may lead to motion artifacts in the reconstructed images (Lustig et al.,

2008; Usman et al., 2012). The presence of motion may also reduce the sparsity of the

images (Usman et al., 2012). In this sense, a generalized motion correction framework

was developed to correct non-rigid motion in the reconstructed images (Batchelor et al.,

2005). The motion correction framework models a matrix equation that produces motion-

corrupted images from the ideal image. The inversion has been demonstrated in (Batchelor

et al., 2005), where it was shown that it is possible to reconstruct a motion-corrected image

from numerical matrix inversion algorithms.
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In liver MRI, it is critical to have high spatial and temporal resolution to identify small

structures for clinical interpretation, even more so in volumetric acquisitions where poor-

resolution images are usually obtained in patients with end-stage liver diseases because of

breath-hold limitations (Chandarana, Block, Stepancic, Sodickson, & Otazo, 2012). Small

structures such as tumor nodules up to 20 mm and tumor thrombi in small vessels (macro-

scopic angioinvasion) are frequently hard to identify in low-quality images (Chandarana

et al., 2011). Increasing spatial and temporal resolution can help detect tumors in early

stages, thereby avoiding surgery and instead treating the patient with curative therapy,

which provides the best possible long-term survival at a lower cost (Lee et al., 2011; Nau-

gler & Sonnenberg, 2010).

Herein, we propose a compressed sensing framework tailored for free-breathing 3D

liver MRI with high spatial and temporal resolution. The proposed dynamic framework in-

corporates a generalized non-rigid motion registration between frames (Myronenko, 2010;

Hill, Batchelor, Holden, & Hawkes., 2001) to correct inconsistencies in k-space and in-

crease the number of samples to recover a motion corrected image under a CS reconstruc-

tion method (Usman et al., 2012). At each frame, the number of measurements is severely

below the Nyquist-Shannon rate. Parallel imaging was used in this work, where the pro-

posed method was applied independently to each coil. We performed this approach in 3D

in-vivo experiments using various undersampling factors, and obtained improved ratios

with respect to traditional CS technique.
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2. THEORY

We organize this section into three parts: first we present the imaging problem to

solve, we compare different schemes to tackle the problem, and finally we present the

proposed technique.

2.1. Imaging

In traditional dynamic MRI, acquisition techniques sample data according to a regular

breathing position to avoid motion artifacts (Figure 2.1 (a)). Instead, we will consider

sampling through different breathing positions, i.e. the acquired data in a respiratory cycle

of T possible motion states (frames) delivers a collection of T images, as illustrated in

Figure 2.1 (b). We assume that at a particular discrete time t ∈ {1, . . . , T}, all acquired

coefficients are consistent, i.e. each frame is free of motion artifacts.

(b)

(a)

One respiratory cycle

t

d

FIGURE 2.1. Representation of two acquisition approaches employed in dynamic
MRI, considering measurements at different translational displacement positions
across time. (a) Traditional acquisition technique, the acquired data in a respira-
tory cycle of T possible frames delivers a collection of few images (≪ T ). (b)
Proposed acquisition technique, the acquired data in a respiratory cycle of T pos-
sible frames delivers a collection of T severely undersampled images.
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Let us define mt ∈ CN as the underlying vector form of the ideal N -samples sequence

of 3D MR images in the canonical domain at discrete times t ∈ {1, . . . , T}, bt ∈ CP as

the vector form of the P k-space noisy measurements of mt (P ≪ N ), and et ∈ CP as the

corresponding acquisition noise. To facilitate notation, we will drop the subindex t, and

will assume that it represents the vector form at all discrete times t ∈ {1, . . . , T}. With

this, the imaging capture procedure can be written as

b = SFm + e, (2.1)

where F is the 3D Fourier transform operator that transforms independently each im-

age to k-space, and S is the sampling operator that randomly undersamples the k-space

data from each frame.

Now, we can also describe m from a reference frame mt0 ∈ CN by using the motion

information between each frame and the reference. We denote V as a motion operator

that warps the pixels from an arbitrary reference image mt0 to the positions at all possible

times. In operator form, this can be written as

m = Vmt0 , (2.2)

such that Equation (2.1) is

b = SFVmt0 + e. (2.3)

As k-space has been severely undersampled (P ≪ N ), the system in Equation (2.3)

is ill-posed, i.e. it does not satisfy the Nyquist-Shannon sampling rate. To measure the

degree of undersampling, we define the acceleration factor as R = N/P .

For image recovery, we need additional information to formulate a regularized version

of Equation (2.3), and in this sense, the structure of the true images is key.
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2.2. Approaches

We propose to address the reconstruction of a motion corrected image by solving an

optimization problem for a reference image mt0 ∈ CN , chosen from any of the T possible

frames in the respiratory cycle.

A first approximation for image recovery can be made with a least squares method.

Considering the model in Equation (2.3), one minimizes the residual of data consistency

m̂t0 = arg min
mt0

1
2
||SFVmt0 − b||2ℓ2 , (2.4)

where ||u||ℓp = (
∑n

i=1 |ui|p)1/p denotes the p-norm of vector u ∈ Rn, letting p ≥ 1

be a real number, and the motion operator V is known. The solution of this problem is

well-known and has a closed form, but the main problem is the stability of the solution

because of small perturbations in the measurements. The solution’s stability is directly

related to the large condition number of the encoding matrix, SFV.

A comprehensive theory to tackle this problem was proposed by Tikhonov and Ars-

enin (Tikhonov & Arsenin, 1977), where information of the underlying signals was incor-

porated to the model. This information is the so-called regularization or penalization

m̂t0 = arg min
mt0

1
2
||SFVmt0 − b||2ℓ2 + τ 1

2
||Ψmt0 ||

2
ℓ2
, (2.5)

where τ is the regularization parameter that weights the trade-off between the data

consistency and the penalization, and Ψ is an operator that ensures smoothness in the un-

derlying image. The solution of this problem is also known and has a closed form (Tikhonov

& Arsenin, 1977). The main problem with the ℓ2-regularization method is that the smooth-

ness assumption is not always true in medical imaging.

A new approach was introduced in 2006, Candès et al. (Candes et al., 2006a, 2006b;

Candes & Tao, 2006) and Donoho (Donoho, 2006) proposed a reliable image reconstruc-

tion based on compressibility of the signals. In medical imaging, ℓ1-regularization fits
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very well since medical images can be represented in a sparse domain. Comparing to

Tikhonov and Arsenin’s regularization, sparse reconstruction methods also have the ad-

vantage of achieving more accurate results with high acceleration factors (Ng, 2004). The

ℓ1-regularization method does not have a closed form solution, but it can be solved using

efficient first-order optimization methods (Lustig et al., 2007; Becker, Bobin, & Candes,

2011; Boyd & Vandenberghe, 2004).

2.3. Recovery

For an accurate motion corrected image reconstruction, we propose a second-order

cone program that minimizes the regularized version of Equation (2.3), i.e. the ℓ1 norm of

a sparse representation of mt0 , with the data consistency constraints (Candes & Tao, 2005)

minimize
mt0

||Φmt0 ||ℓ1

subject to 1
2
||SFVmt0 − b||2ℓ2 < σ,

(2.6)

where Φ is a sparsifying operator, e.g. wavelet, or total variation, and σ is a small

number that controls data fidelity, usually determined by the noise level.

Prior to solving the problem of minimization (2.6), we illustrate the procedure to

obtain the motion operator V employed in this recovery.

• First, we compute an initial reconstruction using a CS framework.

• Next, we define a reference frame and estimate the motion vectors by registering

these images to the reference.

• Finally, we define V using this registration to align frames to the reference, and

the inverse registration function is used to warp the reference to all possible

frames.
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2.3.1. Initial reconstruction

For a preliminary estimation, we exploit temporal correlations assuming sparsity of

the residual signal after subtraction of an initial estimate of the mean (Jung et al., 2009).

We first compute the mean of the measurements, denoted as b̄.

Now, the zero-mean measurements are computed as

b′
t = bt − b̄, ∀t ∈ {1, . . . , T}. (2.7)

A zero-mean CS recovery is applied independently to the residual of each frame b′
t.

Because of the sparsity of the residual image, we select the canonical domain as the sparse

domain. The zero-mean CS reconstruction is defined as follows:

m̂′ = arg min
m′

1
2
||SFm′ − b′||2ℓ2 + β||m′||ℓ1 , (2.8)

where β is the regularization parameter that weights the trade-off between the data

consistency and the penalization.

The initial reconstruction is computed by adding the mean image in the canonical

domain to each residual estimation,

m̂t = m̂′
t + FH b̄, ∀t ∈ {1, . . . , T}, (2.9)

where FH is the Hermitian transpose of F, i.e. the 3D inverse Fourier transform

operator that transforms independently each to k-space frame to the image domain.

2.3.2. Motion vectors estimation

The reconstructed images allow us to select a reference image. The reference frame is

usually chosen at end expiration when the liver is moving less. Each preliminary estima-

tion is registered to the reference frame using a fast and efficient adaptive regularization

approach for non-rigid image registration (Myronenko, 2010).
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Our registration method relies on a Bayesian formulation, where we estimate the

prior distribution on parameters assuming that it is close to some given model distribu-

tion. We constrain the prior distribution to be a Gauss-Markov random field, which allows

us to solve for the prior distribution analytically and provides a fast optimization algo-

rithm (Myronenko, 2010),

Vt = arg min
vt

D(m̂t, m̂t0 |vt) + w
∣∣∣∣kTQvt

∣∣∣∣
ℓ1
, ∀t ∈ {1, . . . , T}, (2.10)

where D(m̂t, m̂t0 |vt) is a similarity measure, e.g. Mutual Information (MI) (Viola

& Wells, 1997), Sum of Squared Differences (SSD), or Sum of Absolute Differences

(SAD), w is the weight between data consistency and penalization, k are the squared-root-

eigenvalues of the model distribution, Q is a matrix containing the eigenvectors of the

inverse covariance shift-invariant matrix. In a prior distribution constrained to be a Gauss-

Markov random field, the eigenvalues and eigenvectors have a known form (Myronenko,

2010). Motion operator V is defined by the motion vectors Vt obtained from the proposed

registration algorithm. The motion vectors are obtained pixel-wise for every frame.

2.3.3. MC-CS recovery

To recover the motion corrected image, m̂t0 , the acquired data from all the motion

states (frames) b and the estimated motion vectors operator V are needed as shown in

Equation (2.6). Considering the noise level in the λ regularization parameter, the uncon-

strained version of the minimization problem in Equation (2.6) is the following convex

problem

m̂t0 = arg min
mt0

1
2
||SFVmt0 − b||2ℓ2 + λ ||Φmt0 ||ℓ1 . (2.11)
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3. MATERIALS AND METHODS

The goal of the proposed technique is to reconstruct a motion corrected 3D liver im-

age from undersampled pseudorandom measurements. The main contribution is employ-

ing motion-corrected inconsistent k-space samples from different frames into a CS recon-

struction framework to estimate a single higher quality image (Figure 2.1). To correct

motion, we estimate the motion vectors between different frames. To compute the motion

vectors we perform a preliminary CS reconstruction to each frame, and then, we register

those reconstructed images to a reference frame. The obtained motion vectors generate

the motion operator V, which is an invertible matrix (Batchelor et al., 2005). Figure 3.1

shows a block diagram with the proposed algorithm steps.

3.1. Imaging protocol

A conventional 3D T1-weighted fast field echo sequence was performed in the liver of

healthy volunteers to generate the in-vivo dataset. Previously, a low-resolution image was

acquired as a prescan. Informed consent was obtained from volunteers prior to imaging. A

four-element body coil was used for all imaging, and images were obtained using a Philips

Achieva 1.5 T scanner (Philips Healthcare, Best, The Netherlands).

3.2. Reconstruction protocol

To solve Equations (2.11) and (2.8), two different ℓ1-norm penalized non-linear con-

jugate gradients with fast & cheap backtracking line-search reconstruction were imple-

mented in Matlab (R2011a, The MathWorks, Inc., Natick, MA) (Lustig et al., 2007). A

pseudo-code of both algorithms can be found in the Appendix.

To run the algorithms, we used a computer with an Intel(R) Core(TM) i7-3770 CPU

@ 3.40 GHz and a memory (RAM) capacity of 32.0 GB. In both reconstructions, we

performed a maximum of 150 conjugate gradient iterations. Equation (2.11), for compu-

tational efficiency, was solved using the Hermitian-symmetric form for data consistency:
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(1) Zero-mean CS 

recovery

(3) Motion-corrected 

CS reconstruction

(2) Motion vectors 

estimation

Undersampled motion 

corrupted k-space 

acquisitions

Motion-corrected 

3D liver image

FIGURE 3.1. Block diagram of the proposed free-breathing dynamic 3D liver
MRI reconstruction framework. (1) From the acquired undersampled motion cor-
rupted samples, the mean of the data is subtracted. A CS recovery is performed
to the residual, independently for each of the T frames. The estimation of each
image is computed as the sum of the corresponding CS recovery with the mean
image in the canonical domain. (2) The reconstructed images allows us to select
a reference frame, usually chosen at end expiration where the liver is moving less.
The T reconstructed frames are registered to the reference image, to compute the
corresponding motion vectors. (3) The undersampled motion corrupted k-space
acquisitions and the previously computed motion vectors are used to perform a
motion corrected CS reconstruction to obtain a high resolution 3D liver image.

VHFHSHSFVmt0 = VHFHSHb.

For Equations (2.11) and (2.8), we selected optimal λ and β respectively via the com-

putation of the L-curve criterion (Hansen, 2000). In this case, optimal regularization pa-

rameters lie on the corner of the L-curve (Hansen, 1992), but sometimes it is difficult to

distinguish the operating point that lies on the corner. Because of this difficulty, Hansen
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and O’Leary proposed the criteria of choosing the point with maximum curvature to be

the optimal point (Hansen & O’Leary, 1993).

In Equation (2.11), the sparse representation is obtained via wavelet transformation,

where the wavelet transform operator Φ is an especially effective and computationally ef-

ficient biorthogonal wavelet: Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) wavelet trans-

form1, which was reported to yield high quality sparse approximations for simulated dif-

fusion propagators (Merlet, Paquette, Deriche, & Descoteaux, 2012). In Equation (2.8),

the sparse representation is in the canonical domain.

3.3. In-vivo experiments

We performed a conventional breath-held 3D T1-weighted fast field echo sequence

with fully sampled cartesian trajectory in the liver of four healthy volunteers to generate

the in-vivo dataset. During data collection, we acquired different frames in one respira-

tory cycle. For liver imaging, a four-element body coil was used, and the measurements

were obtained with the following parameters: pulse repetition time = 4.1 ms, echo time =

1.95 ms, field of view = 160× 224× 150 mm3, flip angle = 10o, slice thickness = 10 mm,

dynamic scans = 16, spatial resolution = 2 mm isotropic, scan time = 222 s.

The coil sensitivity maps were estimated by preliminarily acquiring a fully-sampled

low-resolution image prior to the 3D T1-weighted fast field echo sequence. Both acquisi-

tions had identical previously defined scan parameters. Secondly, a smoothing filter was

applied to the low-resolution images from each coil. Finally, the estimated maps were

found to be the normalization of each smoothed low-resolution image by computing the

sum-of-squares of all coil images.

Undersampled k-space data were obtained by multiplying the acquired measurements

from each coil with the sampling pattern. The sampling pattern is different for each frame,

and it is generated using a Monte Carlo algorithm with minimum peak interference ac-

cording to a particular acceleration factor (R) (Lustig et al., 2007). The random sampling

1Matlab code available online at http://www.getreuer.info/home/waveletcdf97
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pattern is based on a polynomial variable density function, i.e. the low-frequency regions

are more dense than the higher frequency regions (Figure 3.2 ). The number of samples

from each frame is determined by the probability density function and the sampling factor

(R). We also enabled a sampling pattern that does not require a probability density func-

tion (results not shown). In-vivo experiments were performed at various sampling factors

(R).

k
y

k
z

(A) Polynomial of order 4.

k
y

k
z

(B) Polynomial of order 6.

k
y

k
z

(C) Polynomial of order 8.

k
y

k
z

(D) Polynomial of order 10.

FIGURE 3.2. Sampling patterns at R = 5. Each sampling pattern was generated
using a polynomial variable density function, where the order of the polynomial
can vary. For image display we show 2D slices crossing the center of k-space.
The sampling pattern is a binary matrix, which represents if a sample is acquired
(white) or not (black). In our experiments we use a polynomial of order 6 to
generate the sampling pattern.
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To apply the proposed technique, we previously constructed the motion operator V

using motion information between frames. A CS recovery is applied within each frame to

ultimately compute the motion vectors. The underlying initial CS reconstruction is defined

as follows: we subtract the mean data across frames (mean image); estimate the residual

for each frame via CS recovery; and add them to the mean image in the canonical domain.

The CS reconstructions from each receiver coil are combined using the sum of squares

prior to registration. The reference image (frame) is chosen from previous combined re-

constructions. We set as the reference the most common respiratory motion state at end

expiration when the liver is moving less. All CS estimations are non-rigidly registered to

the reference using an adaptive image registration algorithm (Myronenko, 2010). We used

this registration to align frames to the reference, and the inverse registration function to

warp the reference to all possible frames. Motion operator V is constructed with these two

functions.

We performed the registration algorithm that solves Equation (2.10) using the Mutual

Information (MI) (Viola & Wells, 1997) similarity measure. We considered 250 iterations

of a single hierarchical level with a mesh window size of 16 voxels.

We used the motion operator V and undersampled k-space data to reconstruct the un-

derlying motion corrected 3D liver image using the proposed technique. To test accuracy

in reconstructions, we considered the signal-to-error ratio (SER)

SER = 20 log10

(
∥y∥ℓ2
∥x− y∥ℓ2

)
, (3.1)

and the complex wavelet structural similarity (CW-SSIM) index (Sampat, Wang, Gupta,

Bovik, & Markey, 2009) defined as

CW-SSIM =
2|
∑n

i=1 cx,ic
∗
y,i|+K∑n

i=1 |cx,i|2 +
∑n

i=1 |cy,i|2 +K
, (3.2)
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where in both cases x ∈ Rm and y ∈ Rm are the vector representation of the estimated

image and the true image, respectively. In the CW-SSIM index, cx ∈ Cn and cy ∈ Cn rep-

resent the wavelet coefficients of images x and y; ()∗ represents the complex conjugation

operation; and K represents a small positive constant to achieve accurate performance in

local low contrast regions (Sampat et al., 2009). SER and CW-SSIM are measures quanti-

fied in dB and %, respectively.
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4. RESULTS

The proposed technique was tested on the in-vivo dataset with breath-held 3D liver

MRI data simulating 5 different motion states. The performance of the proposed motion-

corrected CS technique (MCCS), tailored for free-breathing acquisitions, was compared

against a traditional CS reconstruction (CS), from free-breathing data without motion es-

timation and motion correction.

Data consistency
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FIGURE 4.1. Optimal parameter selection for the traditional CS method. The
L-curve was computed on the left, where the X-axis represents the data consis-
tency term 1

2 ||SFVmt0 − b||2ℓ2 , and the Y-axis represents the regularization term
||Φmt0 ||ℓ1 . We solved Equation (2.11) for 15 values of fixed λ. Setting fixed λ as
defined in (a) yielded to an under-regularized recovery, whereas using (c) resulted
in an over-regularized reconstruction. On the right, we illustrate the computation
of the curvature as function of the regularization parameter. Point λ as defined in
(b) is the operating point that maximizes the curvature. Therefore, λ as defined in
(b), is the optimal regularization parameter λopt.

4.1. Regularization parameters

We selected optimal settings for the MCCS and CS frameworks. Computations of

the L-curve were performed on the in-vivo dataset using several reduction factors (R),

and selecting the operating point with maximum curvature. Figures 4.1 and 4.2 illustrate

the L-curve and curvature of the regularization parameters for Equations (2.11) and (2.8)

with 5-fold acceleration. For both cases, setting λ = 0.01 and β = 0.002, defined in
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Figures 4.1 (a) and 4.2 (a), yield to an under-regularized image reconstruction, whereas

using λ = 0.5 and β = 0.2, as in Figures 4.1 (c) and 4.2 (c), result in an over-regularized

image reconstruction.
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FIGURE 4.2. Optimal parameter selection for the traditional CS method. The L-
curve was computed on the left, where the X-axis represents the data consistency
term 1

2 ||SFm′ − b′||2ℓ2 , and the Y-axis represents the regularization term ||m′||ℓ1 .
We solved Equation (2.8) for 15 values of fixed β. Setting fixed β as defined
in (a) yielded to an under-regularized recovery, whereas using (c) resulted in an
over-regularized reconstruction. On the right, we illustrate the computation of the
curvature as function of the regularization parameter. Point β as defined in (b) is
the operating point that maximizes the curvature. Therefore, β as defined in (b), is
the optimal regularization parameter βopt.

For both cases, the second column in Figures 4.1 and 4.2 illustrates the computation

of the curvature as function of the regularization parameter, where λ and β as defined in

Figures 4.1 (b) and 4.2 (b) are the operating point that maximizes the curvature. Therefore,

λopt = 0.1 and βopt = 0.04 as defined in Figures 4.1 (b) and 4.2 (b), are the optimal

regularization parameters. All MCCS and CS reconstructions are performed with these

optimal settings.

4.2. Image recovery

The proposed technique was tested on the in-vivo dataset with breath-held 3D liver

MRI data simulating 5 different motion states. The ground truth, fully-sampled image is

illustrated in Figure 4.3 displaying a coronal cut. The first out of sixteen frames is set as
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True image
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CS MCCS

R = 5

R = 6.7
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R = 20

FIGURE 4.3. Results obtained using the MCCS and CS methods at different R.
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Ground truth image

Transversal Coronal Sagittal

Traditional CS reconstruction

Transversal Coronal Sagittal

Proposed MCCS technique

Transversal Coronal Sagittal

FIGURE 4.4. Body planes obtained using the MCCS and CS methods at different R.
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the reference. The performance of the proposed motion-corrected CS technique (MCCS),

tailored for free-breathing acquisitions, was compared against a traditional CS reconstruc-

tion (CS), applied just the reference frame free-breathing data. In our experiments, we

downsampled the data according to different sampling patterns (S) using acceleration fac-

tors from R = 4 to R = 20. Figure 4.3 presents also the traditional CS and proposed

MCCS reconstructions at reduction factors of 4, 5, 6.7, 10 and 20. For the CS reconstruc-

tions, motion artifacts due to severely undersampling k-space become more evident as R

increases. Preservation of sharp edges and correction of motion artifacts can be observed

in the MCCS reconstructions.

We also display the three body planes obtained by the MCCS and CS recostrucions

at R = 6.7. The ground truth image, the traditional CS reconstruction and the proposed

MCCS technique are illustrated in Figure 4.4, considering the transversal, coronal and

sagittal planes from left to right. We can appreciate that the proposed method recovers an

accurate image, whereas the CS reconstruction could not avoid the presence of artifacts

because of the few measurements.
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FIGURE 4.5. Computation of the reconstruction SER for the proposed motion-
corrected CS recovery (MCCS) and traditional CS framework (CS) at different
acceleration factors (R) using the 3D-liver in-vivo dataset.
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4.3. Computation of ratios

The proposed motion-corrected CS image reconstruction method with optimal set-

tings at different acceleration factors was compared against a traditional CS framework.

Figure 4.5 illustrates the signal-to-error ratio as function of R. Reconstructions obtained

with the proposed technique reported more accurate results, with SER gains up to 6 dB

compared to the traditional CS framework.
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FIGURE 4.6. Computation of the reconstruction CW-SSIM index using the
MCCS technique for the 4 volunteers of the dataset at different acceleration fac-
tors (R). The mean CW-SSIM index of the 4 MCCS reconstructions is illustrated
as a function of R, with its respective standard deviation.

Four different volunteers were scanned to create the underlying dataset. To test the

robustness of the proposed technique, the complex wavelet structural similarity index be-

tween the ground truth and each reconstruction was performed for several reduction fac-

tors. Figure 4.6 illustrates a plot of the mean and standard deviation of the index as a

function of R. Reported results show that the proposed technique is stable under high

reduction factors (up to R = 10). At higher reduction factors, the motion information

estimation is poor because of the few samples, leading to unstable MCCS reconstructions.

21



5. DISCUSSION

We proposed a motion corrected reconstruction technique tailored for dynamic 3D

liver undersampled MRI. The main contribution is to employ motion-corrected inconsis-

tent k-space samples from different motion states (frames) of the liver into a CS recon-

struction framework to estimate a motion corrected image (Usman et al., 2012). As shown

in the results, this technique achieved accurate and reliable reconstructions in the in-vivo

experiments (Figures 4.3, 4.4, 4.5 and 4.6).

To correct motion, we estimated the motion vectors between different motion states

(frames) by using CS to reconstruct each frame and by registering these images to a ref-

erence. The CS framework recovers structured images by relying on compressibility, i.e.

high contrast components are chosen over low contrast (Figures 4.3 and 4.4). In addi-

tion, registration also favors high contrast samples, which leads to decreased signal-to-

error ratios outside the liver (higher contrast region) (Usman et al., 2012; Asif, Hamil-

ton, Brummer, & Romberg, 2012). We have used an adaptive non-rigid registration al-

gorithm (Myronenko, 2010) to estimate the inter-frame motion between different frames.

A source of improvement to the current theory may be to estimate motion vectors within

neighboring frames in the form of a linear dynamical system instead of estimating them

with respect to a single reference motion state (Asif et al., 2012).

The main limitations of this work can be grouped as follows: architecture and im-

plementation. As shown in Figure 3.1, the architecture of the proposed technique is a

sequential process. Even though each step is robust, if a poor initial CS reconstruction

is performed, it will lead to inexact motion vectors and finally to a low resolution mo-

tion corrected image. A comprehensive approach to avoid this kind of limitation may be

to merge the three separate steps into a single optimization algorithm (Asif et al., 2012;

Odille, Vuissoz, Marie, & Felblinger, 2008). On the other hand, the implementation of the

proposed technique over a traditional CS framework is computationally more expensive,

because three steps must be performed. We used a computer with an Intel(R) Core(TM)

i7-3770 CPU @ 3.40 GHz and memory (RAM) capacity of 32.0 GB to run the proposed
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technique, with the algorithm taking approximately 100 minutes. Speeding up the recon-

struction time may be possible by parallel computing techniques.

The proposed method can be extended to 3D CINE liver MRI as an approach for ap-

plications where the respiratory signal can be used as a motion surrogate signal, such as is

done in coronary MR angiography (Stuber, Botnar, Danias, Kissinger, & Manning, 1999;

Spuentrup & Botnar, 2006). In coronary MR angiography, spatial resolution is bounded

by breath-hold acquisition (15–20 s) (Spuentrup & Botnar, 2006), but with the emergence

of navigator techniques, the spatial resolution is improved by correcting free-breathing ac-

quisitions (Stuber et al., 1999). Using motion corrupted data (avoiding external navigator),

a 3D CINE liver MR image may be generated from the motion corrected image obtained

in this work. As previously discussed, to reconstruct the motion corrected image m̂t0 , we

need to solve Equation (2.11). By employing the acquired data from all the frames b and

the estimated motion vector operator, the proposed 3D CINE liver is defined as follows:

m̂ = Vm̂t0 . (5.1)

Equation (5.1) shows how to generate the whole time series, where an accurate esti-

mation of the respiratory signal may be obtained through rigid registration in the head-feet

(H-F) direction of a region of interest (ROI) including the liver.
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6. CONCLUSION

We have presented a recovery algorithm tailored for free-breathing dynamic 3D liver

MRI, which demonstrated an increase in imaging efficiency while reducing acquisition

time and removing non-rigid motion artifacts. In addition, the recovery algorithm does

not sacrifice image quality. In the in-vivo experiments, our framework produced improved

signal-to-error ratios and complex wavelet structural similarity indexes in comparison with

the ground truth, demonstrating that it is feasible to achieve a 10x speedup in acquisition

time and remove motion artifacts without diminishing image quality.
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APPENDICES



APPENDIX A. PSEUDO-CODE

In this section we present the pseudo-code of the proposed we present the pseudo-code

of the proposed Motion Corrected Compressed Sensing framework for free-breathing 3D

liver MRI. Prior to solve Equation (2.11), we need to compute the motion operator V using

the acquired k-space undersampled data b. The pseudo-code is illustrated in Algorithm 1.

Algorithm 1: Pseudo-code of the computation of motion operator V.

Data: K-space undersampled data b

Result: Motion operator V

Initialization;

for each of the T frames do

Initial reconstruction: m̂t ←
(
arg min

m′

1
2
||SFm′ − b′||2ℓ2 + β||m′||ℓ1

)
t

+ FH b̄;

end

Select reference frame m̂t0;

for each of the T frames do

Motion vectors estimation: Vt ← arg min
vt

D(m̂t, m̂t0 |vt) + w
∣∣∣∣kTQvt

∣∣∣∣
ℓ1

;

end
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Using the k-space measurements b and the previously computed motion operator V,

we are able to solve Equation (2.11) as illustrated in Algorithm 2.

Algorithm 2: MC-CS recovery.

Data: K-space undersampled data b and motion operator V

Result: Motion corrected 3D Liver image

Initialization;

while Stopping criteria not reached do

Pre-computation of parameters for line-search;

Line-search for optimal stepsize:

t⋆ ← arg mint
1
2
||SFV (mt0 + t∆mt0)− b||2ℓ2 + λ ||Φ (mt0 + t∆mt0)||ℓ1;

Motion corrected image update: mt0 ← mt0 + t⋆∆mt0;

Gradient computation: gnew ← VHFHSH(SFVmt0 − b) + λΦH |Φmt0 |;

Search direction: b← ||gnew||2ℓ2/||gold||
2
ℓ2

;

Gradient update: gold ← gnew;

Conjugate gradient update: ∆mt0 ← −gnew + b∆mt0;

end
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