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ABSTRACT

The simulation of physical problems utilizing mathematical models traditionally leads

to a system of partial differential equations whose solution describes the behavior of the

physical quantities in consideration. Although the underlying mathematical theory pro-

vides results on the existence, uniqueness, and asymptotic behaviors of the solutions, ex-

plicit forms for the latter are known for relatively few cases. For this reason, different

methods of approximation have been developed.

The most conventional methods of approximation consist of using local functions (typ-

ically defined over a mesh) in conjunction with a numerical method. The latter converts

the system of partial differential equations into a linear system, whose solution gives the

values to the local functions for the construction of the approximation.

On the other hand, it is well known that the use of high-order global functions (spec-

tral methods) can approximate the solutions of standard partial differential equations more

efficiently (in terms of accuracy achieved versus the number of degrees of freedom used).

However, their use has traditionally been limited by the difficulties that arise when imple-

menting these methods.

The objective of this thesis is to show that, in certain circumstances, spectral meth-

ods can be implemented efficiently, and we can rigorously show the properties of rapid

convergence.

In particular, we will focus on the Helmholtz equation, which has applications to elec-

tromagnetic and acoustic wave scattering diffraction problems. More in detail, we will con-

sider boundary integral formulations of the Helmholtz equation for three different problem,

which are:

(i) Problems of multiple open arcs in two dimensions.

(ii) Quasi-periodic problems in two dimensions.

(iii) Problems of open surfaces in three dimensions.
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In each one of these problems we will: adequately describe the corresponding spectral

method, analyze its mathematical properties, and detail how they can be implemented.

Keywords: spectral methods, boundary integral formulations, wave diffraction

problems, open arc, quasi-periodic problems, open surfaces.
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RESUMEN

La simulación de problemas físicos por medio de modelos matemáticos, tradicional-

mente, se traduce en un sistema de ecuaciones diferenciales parciales cuya solucion de-

scrive el comportamiento de las cantidades físicas en consideración. Pese a que la teoría

matematica provee resultados sobre la existencia, unicidad, y comportamientos asintoticos

de las soluciones, solo en relativamente pocos casos se cuentan con una foma explicita para

estas últimas. Por esta razon se han desarrollado diversos metodos de aproximación.

Los métodos más convencionales de aproximación consisten en usar functiones locales

(tipicamente definidas sobre una malla) junto con un método numerico. Este ultimo, con-

verte el sistema de ecuaciones diferenciales parciales en un sistema lineal, culla solución

da los valores a las functiones locales para construir la aproximación.

Por otra parte se sabe que la utilización de funciones globales de alto orden (méto-

dos espectrales) pueden aproximar las soluciones de las ecuaciones mas rápidamente. Sin

embargo, su uso ha sido tradicionalmente limitado por las dificultades que surgen al imple-

mentar estos métodos.

El objetivo de esta tesis es mostrar que en ciertas circunstancias los métodos espec-

trales pueden ser implementados de manera eficaz y podemos mostrar rigurosamente las

propiedades de convergencia rápida.

En particular nos centraremos en problemas de difracción de ondas acústicas (o elec-

tromagnéticas en ciertas polarizaciones) los cuales pueden ser modelados utilizando una

formulación de integrales de frontera. Más específicamente consideramos tres casos:

(i) Problemas de múltiples arcos abiertos en dos dimensiones.

(ii) Problemas cuasi-periódicos en dos dimensiones.

(iii) Problemas de superficies abiertas en tres dimensiones.

xv



En cada uno de estos problemas describiremos adecuadamente el método espectral

correspondiente, analizaremos sus propiedades desde un punto de vista mátematico, y de-

tallaremos como pueden ser implementados.

Palabras claves: métodos espectrales, formulación de integrales de frontera, prob-

lemas de difracción de ondas, arco abiertos, problemas cuasi-periódicos, superficies

abiertas.
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Chapter 1. GENERAL INTRODUCTION

1.1. Motivation

This thesis has two ideas as main motivation points, consequently, we will present each

of them separately.

First, we will consider a pure mathematical motivation. We explain the principles

behind spectral methods in a general sense and try to convince the reader why, in the right

circumstances, they are an attractive alternative to the more widely used low order methods.

We will also make a brief presentation of the state of the art of spectral methods, especially

those works that are closely related to the topics of this thesis.

In the second part of the motivation, we will present the class of electromagnetic and

acoustic problems that concern us and show the advantages of the spectral methods in this

context.

1.1.1. Mathematical Motivation

Spectral methods, in a nutshell, are methods to approximate a given function by a

linear combination of known functions (belonging to a particular family) that share the

same domain and support of the original function. Different spectral methods differ in the

family of functions used as bases. Examples of non-spectral methods are the approximation

by means of locally supported function, or point-wise approximations.

Lets consider an example of an infinitely smooth function f(x) = 0.28 sin(2.8x) +

0.28 sin(7x) + 0.7 with domain in [0, 1], and two approximations. First, by means of piece-

wise constant functions, and secondly, by orthogonal polynomials (spectral approxima-

tion). We will compare them in terms of their L2 error, ie.√∫ 1

0

|f(x)− fn(x)|2dx

where fn is the approximation (with n ∈ N denoting the number of basis used to construct

the approximation), against the number of basis, n. The results are reported in Figure 1.1.
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FIGURE 1.1. Error of different approximation methods. In red with big circles,
the approximation by piece-wise constant functions, and in green with small circles
the spectral method approximation. The x-axis represents the number of functions
(piece-wise constant or orthogonal polynomials) used to construct the approxima-
tion.

A simple look at the figure shows that with the same number of piece-wise constant func-

tions and orthogonal polynomials, the error in the spectral method is drastically inferior

to the one of the local method. In fact, it can be rigorously proved that, for a class of

smooth functions, the approximation error of the spectral method decays exponentially in

the number of functions used. In contrast, the error for the piece-wise constant approxima-

tion decays as the inverse of the number functions. We refer to (L. Trefethen, 2013) for a

more detailed discussion on the topic.

Generalizing the conclusion of our example, the spectral approximation performs ex-

ponentially better than the local alternative, but it is also more expensive (in terms of the

number of operations) than using local low order functions. However, as we will see

throughout this thesis, in many contexts the cost of the implementation is not extraordi-

narily high, and the benefits of using a small number of functions (which will be explained

in the next section) make up for the more expensive implementation.
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For the remainder of this thesis, our focus is to approximate a function which is the

unique solution of a given partial differential equation1, shortened as PDE. In this context,

we can classify the spectral methods into two classes. First, and more classical, are the

pseudo-spectral methods, also known as spectral collocation methods, in which the solution

of a given PDE is expanded in terms of a global basis, and a system of equations is obtained

by imposing equality in a grid of points. We refer to (L. N. Trefethen, 2000) and references

therein for more details on this topic.

Secondly are the spectral Galerkin methods, the actual framework of this thesis. In

general terms, the Galerkin methods do not obtain the system of equations by imposing

the equality to hold on a set of points, but instead uses a scalar product and find the ap-

proximation as a projection on a finite-dimensional space. Spectral Galerkin methods use

a finite-dimensional space spanning from the basis of a spectral method and the Galerkin

method to construct the approximation.

While our focus is on the approximation of a solution of a PDE, in many situations

it is convenient to transform the latter into a boundary integral equation (see (Sauter &

Schwab, 2011), (McLean, 2000) for details on the equivalence of the two). More details on

the situations in which this equivalence is convenient will be covered in the next section,

but the premise of this thesis is that we are working on problems where it is convenient to

use boundary integrals equations2. In this context, spectral Galerkin methods (as well as

spectral collocation, low order Galerkin, among others) are employed to approximate the

solution of the associated boundary integral equation, which then yields an approximation

of the solution of the PDE which will inherit the accuracy of the underlying approximation

method.

The advantages of using a spectral Galerkin discretization for the approximation of a

boundary integral equation are inherited from the Galerkin theory and the fast convergence

of the spectral method. To be more precise these include:

1We refer to the classical textbook (Evans, 2010) for a detailed review on the theory of partial differential
equations, and to (Epstein, 2017) for a presentation of the importance of this kind of equations in the con-
structions of mathematical models.
2Also referenced as the boundary integral formulation.
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(i) Error bounds easily obtained using functional analysis tools ( Lax-Milgram Lemma,

or compact perturbation theory).

(ii) Fast convergence whenever the real solution is smooth, which can be assured

using PDE theory.

(iii) Smaller linear system compared to low order Galerkin methods.

As for the drawbacks we can enumerate,

(i) More expensive implementation compared to collocation and low order approx-

imations.

(ii) Lack of any fast compression algorithm in comparison to low order Galerkin

method.

(iii) Their utility is in general restricted to problems with smooth solutions.

This thesis will show how some of the drawbacks can be overcome in different contexts,

but for now, let us present some previous works that have used spectral Galerkin methods

in the context of boundary integral equations.

For two-dimensional problems, the work of (Fang, 1995) uses Fourier bases for the

approximation of scattering problems of closed smooth objects. Same ideas were later

used in (Thierry, Antoine, Chniti, & Alzubaidi, 2015) and in (Henríquez & Jerez-Hanckes,

2018). The method is also explained and analyzed in detail in (Saranen & Vainikko, 2013,

Chaper 9). In the latter, a common feature of spectral methods is explained, that is the

connection between spectral methods and pseudodifferential-operators theory3. The link

between the two consists in that the basis of a given spectral discretization is the truncation

to finite-dimension of the functions in which the action of pseudo-differential operators is

well understood.

3A general class of operator which include integral and differential operators.
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While smooth domains with closed boundary the solution of PDEs is known to be

smooth, this does not follow if we consider infinite domains in which an open arc (or sur-

face in three dimensions) is subtracted. For this class of problem, the solution exhibits sin-

gular behavior4 near the edges of the arc (or boundary of the surface in three dimensions).

To achieve an efficient approximation, the basis of the spectral method has to explicitly

include the singular behavior. This kind of problem has been studied in (Frenkel, 1983),

and in (K. E. Atkinson & Sloan, 1991).

It is worth mentioning that if the solution is not smooth and this is not reflected by a

special selection of the spectral basis, the spectral method will still converge faster than a

standard local low order alternative, see (E. Stephan & Suri, 1989). In fact, it converges

twice as fast (with respect to the number of functions used to construct the approximation)

in the worst case. However, the difficulties that arise on the implementation overshadow

the benefits for these cases.

In three dimensions, spectral methods are less common. However, for scattering prob-

lems on domains which are smooth deformations of the unitary sphere a spectral method

based on spherical harmonics was implemented and analyzed in (Graham & Sloan, 2002).

Finally, we wish to mention a family of methods that are closely related to the spec-

tral methods, known as hp-methods. The hp-methods are an extension of the low order

methods in which local high order bases are used. While they benefit from the fast con-

vergence of the spectral method and the flexibility of the low-order alternatives, they are

typically restricted to the usage of polynomials only. A subfamily of these methods are the

p-methods, where the supports (h-discretization) are fixed and only the polynomials degree

are increased. When only one support is used, we get a spectral method with a polynomial

basis. The topic is vast, so we include only a few references that explore problems similar

to the ones presented in this thesis.

4the derivative of the solution is not bounded
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For three-dimensional open surfaces, the work (Heuer, Maischak, & Stephan, 1999),

shows that similar rates as the one obtained by a pure spectral method are achieved by hp-

methods, but special care has to be taken on the refinement of the discretization near the

boundary of the screens. The p-version was analyzed for 2d-polygons in (Guo & Heuer,

2004), and in (Bespalov & Heuer, 2005) for three-dimensional open surfaces.

1.1.2. Physical motivation

Let us now consider a direct scattering problem. In this problem, a known object is

illuminated by an incident wave5. As a result, part of the wave penetrates the object, and

the remaining part is scattered back to the medium.

The applications of this problem range from the design of electric hardware to medical

imaging, including areas such as military design or cancer treatment.

Consider an open domain Ω ⊂ Rd, with d ∈ {2, 3} whose boundary is denoted ∂Ω.

Under the assumption that the temporal component of the incident and scattered waves is

an oscillatory function with a fixed frequency (time-harmonic), we will name uscat, uinc the

spatial component of the scattered and incident wave respectively. With this notations the

PDE model is to find uscat such that

−∆uscat − k2uscat = 0, in Rd \ ∂Ω

Transmision Conditions(uscat, uinc), on ∂Ω

Radiation Condition(uscat),

where k ∈ R is the piece-wise constant wave-number function which depends on the ma-

terials, and the frequency of the incident wave. The transmission conditions ensure the

continuity of the total wave across the interface ∂Ω, while the radiation condition implies

that the scattered wave radiates from the object to the free space and not the other way

around. As in most PDE models, a closed form for the solution is only known for a few

possibilities of Ω. Hence, numerical methods are needed to approximate the solution for

5We will limit ourselves to waves of acoustic or electric nature, but an extension to other cases is possible
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general geometries. We notice that the actual domain of the problem is unbounded, and

so the classical methods such as finite differences, finite elements methods, or pseudo-

spectral methods are unsuited 6. In contrast, the boundary integral formulation reduces the

PDE model to a system of integral equations defined on ∂Ω (which is finite). Thus the

obtained formulation is especially attractive for the problem under consideration. We again

refer to (Sauter & Schwab, 2011), and (McLean, 2000) for the equivalence of boundary

integral formulations and the presented problem.

As it was mentioned in the previous section, we can use different methods to approxi-

mate the solution of the boundary integral equation. To understand how the spectral method

compares to other discretizations is it important to know how expensive are the implemen-

tations of the methods under consideration.

We will focus only on Galerkin discretizations, in this framework, we recognize two

main stages in the implementation:

(i) First is the assembly process, where the boundary operators are transformed into

finite-dimensional matrices by computing the action of the operators on the dis-

cretization basis. This process is similar to the construction of the matrices of the

finite element method, however, the integrals are now singular and the resulting

matrix is not sparse which leads to a more expensive process 7.

(ii) Secondly, once the matrices are obtained a linear system needs to be solved.

Since the matrix is not sparse, and for scattering problems is not even positive-

definite, the process is more costly in comparison to other methods 8.

While the drawbacks in the implementation could be discouraging, it is also true that the

involved matrices are much smaller as they only require bases in the boundary ∂Ω instead

of the domain Ω.

6All these methods could be used if special conditions to create approximations to the radiation condition on
a finite artificial boundary are added.
7What we mean with more expensive is that the number of operations to assembly a matrix coming from
a boundary integral operator, is much greater compared with a matrix of same dimensions coming from a
traditional finite element discretization.
8Again costly in terms of operations when the dimension is the same.
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In the most classical implementation, the matrices are computed using Gaussian quad-

rature with a special change of variable to take care of the singularities, and the linear

system is solved using an iterative method (typically GMRES, see (Saad, 2003) for de-

tails).

For low order Galerkin methods, if we denote by N the number of functions (and thus

the operator matrices are of dimension N2), and NL the number iterations needed for the

linear system solver (which itself depends on N ). The cost, in terms of arithmetic opera-

tions, is dominated by the second stage and is proportional to N2NL. This can be reduced

using compression algorithms (see (Bebendorf, 2008), or (Yijun, 2009)) to NNL logN .

While such analysis is not straightforward for spectral Galerkin methods, and no com-

pression algorithms are generally available, the convergence of spectral method suggests

that if for a fixed accuracy N low order basis are needed, the same accuracy could be

achieved by a number proportional to logN spectral basis, drastically reducing the cost

of the second stage. We again refer to the works presented in the previous section for a

detailed analysis of the cost of specific spectral Galerkin methods.

The question now is how big should N and NL be, for a desire accuracy level. The

answer depends on the geometry and the wave-number k in consideration. While this

is still a topic under active investigation, at least under some assumptions very interesting

results are available. We refer to (Galkowski, Müller, & Spence, 2016),(Graham, Löhndorf,

Melenk, & Spence, 2014), (Chandler-Wilde, Graham, Langdon, & Spence, 2012) for a

detailed discussion on the topic.

Formally speaking what has been observed, and in some cases rigorously proved, is

that as the frequency increases the number of degrees of freedom and iterations of the

linear solver also increase. The detailed dependency is hard to establish, but for low order,

Galerkin discretizations it is known that for some simple objects (typically called non-

trapping domains) the increase is moderate, and is proportional to a low order power of k.

However, for other domains, the effect could be as bad as exponentially increasing.
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The big potential of spectral methods is that it makes problems of high frequency

treatable, as the involved matrices will be small enough to be stored in current generation

hardware. However, this will only be practical if the cost of the first step (assembly of the

operators’ matrices) is reasonably small.

Finally, to close this section we remark that high-frequency scattering problems are of

practical interest. Applications such as radars and sonars could benefit from the higher

frequency in various situations, see for example (Sukharevsky, Vasilets, Nechitailo, &

Khlopov, 2016; Walsh & Gill, 2000). Similarly, when used in medical-image high fre-

quencies provide greater details that could reveal abnormalities that are not detected with

lower frequencies. For example, in (Bisciotti & Eirale, 2013) the authors report that in

many cases muscle injuries are only detected when high-frequency ultrasound is used.

1.2. Objective and Outline of the thesis

The main objective of this thesis is to show the effectiveness of spectral Galerkin meth-

ods for boundary integral formulations in different contexts. With this in mind, we will

analyze and implement spectral Galerkin methods for three different problems.

Chapter 2 focuses on problems of multiple arcs in two dimensions. While this problem

is the most documented in the literature of boundary spectral Galerkin methods (of the

three in consideration), we generalize the convergence analysis with non-smooth arcs and

also provide a compression algorithm. Technical results of this chapter are relegated to

Appendix A.

Chapter 3 is an extension of the classical spectral methods on closed objects of two

dimensions to periodic gratings. The periodic gratings are relevant structures as they have

many engineering applications (see (E. Loewen & Popov, 1997) and reference therein for

details), hence an accurate and fast solver is of great importance. This chapter is comple-

mented with Appendix B, in which the functional setting for this problem is discussed in

detail.
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Chapter 4 is concerned with the problem of open surfaces in R3, with technical re-

sults relegated to Appendix C. While many ideas could be carried from the two-dimension

presentation in Chapter 2, the implementation is much more complicated and special ef-

forts have to be done to optimize the algorithm. For this reason, the mathematical analysis

performed in this chapter is complemented by Appendix D, which presents some special

considerations for the implementation.

Finally, general conclusions and comparison between Chapters are addressed in Chap-

ter 5.
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Chapter 2. HIGH-ORDER GALERKIN METHOD FOR HELMHOLTZ AND

LAPLACE PROBLEMS ON MULTIPLE OPEN ARCS

2.1. Introduction

We present a spectral Galerkin method for solving weakly singular boundary integral

equations (BIEs) arising from Laplace or Helmholtz Dirichlet problems on unbounded do-

mains with boundaries composed of finite collections of disjoints finite open arcs in R2.

Such problems are of particular interest in multiple contexts: in structural and mechanical

engineering, wherein fractures or cracks are represented as slits (Tanaka, Okada, Okazawa,

& Fujikubo, 2013; Tanaka, Suzuki, Ueda, & Sannomaru, 2015; Bittencourt, Wawrzynek,

Ingraffea, & Sousa, 1996; Liew, Cheng, & Kitipornchai, 2007); in the detection of micro-

fractures (Abda, Ameur, & Jaoua, 1999; Andrieux & Abda, 1996) and even for the imaging

of muscular strains due to sport injuries (Verrall, Slavotinek, Barnes, Fon, & Spriggins,

2001). For these applications, one is interested in developing a numerical scheme that can

robustly deal with large numbers of arcs –from tens to thousands– for a broad range of

wavelengths –ranging from zero to several hundred times the length of the arcs.

For a single arc, wellposedness of these problems was studied in (E. P. Stephan &

Wendland, 1984). Here, we only perform minor extensions to ensure uniqueness and ex-

istence of solutions for the multiple arcs case. In particular, volume solutions are shown

to be constructed as superpositions of single layer potentials applied to surface densities

over each arc; these layer densities are derived from solving a system of BIEs. Numerical

approximations of these boundary unknowns are traditionally obtained via either varia-

tional methods such as the boundary element method (BEM) (Sauter & Schwab, 2011) or

Nyström-type strategies (Bruno & Lintner, 2012; Domínguez, 2003). In this work, we opt

for the former.

Still, for the type of applications considered, several issues hinder the standard low-

order BEM performance. On one hand, solutions at the continuous level are well known
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to exhibit square-root singularities at the arcs’ endpoints (Costabel & Dauge, 2002; Gris-

vard, 2011; Krutitskii, 2000). Consequently, convergence of low-order uniform-mesh dis-

cretizations is suboptimal with improvements relying on either graded (Von Petersdorff &

Stephan, 1990) or adaptive mesh refinement (Feischl, Führer, Heuer, Karkulik, & Praeto-

rius, 2015), or on augmenting the approximation space (E. P. Stephan & Wendland, 1984).

Also, the Galerkin matrices derived from first kind Fredholm formulations are intrinsically

ill-conditioned, thus heavily requiring preconditioning (Hiptmair, Jerez-Hanckes, & Urzua-

Torres, 2014; McLean & Steinbach, 1999). Moreover, the minimal number of unknowns to

ensure asymptotic convergence increases with the wavenumber (Melenk & Sauter, 2011)

while the number of matrix entries grow quadratically with the number of arcs in order

to account for cross-interactions. Hence, for the present problems of interest, one can ex-

pect extremely large numbers of degrees of freedom (dofs) when using mesh-dependent

methods and alternative ones must be sought.

In (K. E. Atkinson & Sloan, 1991; Jerez-Hanckes, Nicaise, & Urzúa-Torres, 2018) a

spectral Galerkin-Bubnov discretization for a single arc was shown to greatly reduce the

number of dofs in comparison to the case of locally defined low-order bases. Specifically,

the approximation basis employed is given by weighted first kind Chebyshev polynomials,

where the weight mimics the singular behavior at the endpoints. Our work expands the use

of such bases to multiple arcs and Helmholtz cases providing also a rigorous convergence

analysis. The analysis presented here is based in the asymptotic decay of the Fourier-

Chebyshev expansions coefficients of the solutions. With these tools, one can derive con-

vergence rates for order p polynomial approximations that only depend on smoothness of

the excitations and of the arcs itself, with constants that may depend on the wavenumber.

In particular, one obtains super-algebraic convergence when both arcs and sources can be

represented by analytic functions.

Alternatively, for two-dimensional problems, the BIEs for open arcs can be recasted as

a problem of integral equations on closed boundaries for even functions. This is done using

a cosine change of variables (cf. (K. E. Atkinson & Sloan, 1991) or (Saranen & Vainikko,

2013, Chapter 11)). Using this property along with classical Fourier analysis, we retrieve
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convergence rates given in (K. E. Atkinson & Sloan, 1991) for single arc. Thus, our proof

of convergence can be seen as the Fourier-Chebyshev version of those results, with the

additional extension to the Helmholtz case.

For implementation purposes, we follow the scheme introduced in (Hu, 1994) wherein

all integral kernel singularities are subtracted. This gives rise to smooth functions and sin-

gular functions whose integrals are respectively computed via the Fast Fourier Transform

(FFT) (Jerez-Hanckes, Pinto, & Tournier, 2015) or analytically using a Chebyshev polyno-

mial expansion of the fundamental solution (Frenkel, 1983). Recently, Slevinsky and Olver

(Slevinsky & Olver, 2017) devised a similar construction based on Chebyshev polynomials

for more general integral equations, but limited to line segments and focused exclusively

on the spectral properties of collocation method. Though the authors also provide ideas

on how to extend their method to more general arcs, the focus remains in solving a linear

system. Hewett et al. (Hewett, Langdon, & Chandler-Wilde, 2014) propose a different nu-

merical method for which they also obtain super-convergence. Their discretization basis

captures explicitly the oscillatory behavior on a segment while employing a low polynomial

order adaptive bases for the slow but singular part. Though this splitting leads to impressive

results especially for high-frequency, its use is restricted to collinear segments and not for

general arcs. Still, our approach could be combined with this one but this would require

significant work beyond the scope of the present manuscript.

The structure of a problem with multiple arcs implies that many of the interactions, in

the BIE system, are characterized by a smooth kernel functions. Thus, one can generally

compress these interactions by considering fewer functions than in the self-interaction case.

This hints at a compression algorithm, in the same spirit of (Jiang & Xu, 2010). Here, the

implementation is performed by a bisection algorithm which allows to reuse the integration

routines of self-interactions terms. Moreover, we obtain bounds on how the introduction of

this compression algorithm affects the accuracy of the numerical solution.

It is also well known that first kind formulations for open arc problems suffer from

poor performance when solving the associated linear system via iterative methods. Many
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remedies for this issue have been proposed, among which the construction of precondition-

ers has received attention in recent years (cf. (S. Lintner, 2012; Jerez-Hanckes & Nédélec,

2012; Hiptmair et al., 2014) for detailed reviews). These preconditioning techniques could

be combined with our spectral solver. Indeed, as spectral methods entail significantly fewer

dofs in comparison to low-order methods for a fixed accuracy, it is feasible to invert self-

interaction parts of the matrix using a direct method and, by doing so, obtain a better

preconditioner. Since the multiple scattering problem requires a large amount of memory

to store the problem matrix, direct methods for the full matrix could only be used when

the product of frequency and total length of the arcs is small. Moreover, contrary to what

one could think the direct method also suffers from numerical cancellation/round-off errors

(see Section 2.7.1 for an ilustration). Hence the need of iterative solvers is mandatory, and

to be able to use it effectively we need to accelerate the matrix-vector product.

The paper is organized as follows. Section 2.2 puts forward formal definitions and

properties needed throughout. In Section 2.3, we formulate the problem as a system of

BIEs and show that these are well posed. Section 2.4 gives details on the Galerkin dis-

cretization method; in particular, we establish error convergence rates for the discrete prob-

lem assuming regularity conditions on the data. Employed quadrature schemes are detailed

in Section 2.5. Our proposed compression algorithm is given in Section 2.6. Numerical

results illustrating the accuracy of the method as well as the performance of the compres-

sion algorithm are presented in Section 2.7. Finally, conclusions are drawn along with

appendices for completeness.

2.2. Mathematical tools

2.2.1. General notation

We employ the standard O(·) and o(·) notation for asymptotics. We also use the nota-

tion an . bn if there exists a positive constant C and an integer N > 0 such that an ≤ Cbn

for all n > N .
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Vectors are indicated by boldface symbols with Euclidean norm written as ‖ · ‖2; other

norms are signaled by subscripts. Quantities defined over volume domains will be written

in capital case whereas those on boundaries in normal one, e.g., U : G → C while u :

∂G→ C.

Let G ⊆ Rd, d = 1, 2, be an open domain. For k ∈ N ∪ {0}, Ck(G) denotes the

set of k-times continuously differentiable functions over G. Compactly supported Ck(G)

functions are designated by Ck
0 (G). Denote by D(G) ≡ C∞0 (G) the space of infinitely

differentiable functions with compact support on a open set G. Duals are indicated by

asterisks, e.g., the space of distributions is D∗(G). The class of p-integrable functions

over G is written Lp(G). Duality pairings and inner products are written as 〈·, ·〉 and (·, ·),

respectively, with subscripts declaring the domain involved, if not clear from the context.

We say that g : (−1, 1)→ C is in Cm
v (−1, 1), if is in Cm(−1, 1) and itsmth derivative

has bounded variation, i.e. the distributional derivative g(m+1) is Lebesgue integrable. No-

tice that Cm+1(−1, 1) ⊂ Cm
v (−1, 1). Also we say g (a function as before) is ρ−analytic,

if there exists a Bernstein ellipse of parameter ρ > 1, such that g can be extended to an

analytic function in the complex ellipse containing the interval (−1, 1) (cf. (L. Trefethen,

2013, Chapter 8)). Lastly, throughout we will claim a sesquilinear form to be coercive

if it is the addition of a positive definite form and a compact one; similarly for induced

operators.

2.2.2. Arcs

We call Λ ⊂ R2 a regular Jordan arc of class Cm (resp. Cm
v ), for m ∈ N, if there

exists a bijective parametrization denoted by r : (−1, 1) → Λ, such that its components

are Cm(−1, 1)-functions (resp. Cm
v (−1, 1)-functions) and inft∈(−1,1) ‖r′(t)‖2 > 0. Anal-

ogously, we say that Λ is ρ−analytic, if there is a corresponding parametrization that is

ρ−analytic. Henceforth, we assume all arcs to be Jordan arcs of a given regularity and we

will refer to them as open arcs or just arcs.
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ASSUMPTION 2.1. For any Λ open arc, there exists an extension to Λ̃ which is a simple

closed curve containing and having the same regularity of Λ.

We consider a finite number M ∈ N of open arcs {Γi}Mi=1, such that under Assumption

2.1 their extensions {Γ̃i}Mi=1 : Γ̃i ⊃ Γi, i = 1, . . . ,M, are mutually disjoint. We define

Γ :=
M⋃
i=1

Γi and Ω := R2 \ Γ.

ASSUMPTION 2.2. There areM domains Ωi whose boundaries are given by ∂Ωi = Γ̃i,

for i = 1, . . . ,M , and their closures Ωi are disjoint.

For m ∈ N, we say that the family of arcs Γ is of class Cm (resp. Cm
v ), if each arc Γi

is of class Cm (resp. Cm
v ), and write Γ ∈ Cm (resp. Γ ∈ Cm

v ); similarly for ρ−analytic

arcs. Denote by ri a parametrization of the corresponding regularity mapping (−1, 1) to an

arc Γi, i ∈ {1, . . . ,M}. For a vector function g = (g1, . . . , gM) such that gi : Γi → C, for

i ∈ {1, . . . ,M}, we state that g is of class Cm(Γ) (resp. Cm
v (Γ)), if gi ◦ ri ∈ Cm(−1, 1)

(resp. gi ◦ ri ∈ Cm
v (−1, 1)), for i ∈ {1 . . .M}, and denote g ∈ Cm(Γ) (resp. g ∈ Cm

v (Γ)),

and again the ρ−analytic case is defined analogously.

Finally, we will identify every open arc with a given parametrization so that for exam-

ple Λ1 := {(t3, 1), t ∈ (−1, 1)} and Λ2 := {(t, 1), t ∈ (−1, 1)} are different arcs, even if

they are the same set of points in R2. We will frequently refer to the canonical open arc:

Γ̂ := {(t, 0), t ∈ (−1, 1)}.

2.2.3. Sobolev spaces and trace operators

Let G ⊆ Rd, d = 1, 2, be an open domain. For s ∈ R, we denote by Hs(G) the

standard Sobolev spaces in L2(G) and by Hs
loc(G) their locally integrable counterparts

(Sauter & Schwab, 2011, Section 2.3). We also use the following Hilbert space:

W (G) :=

{
U ∈ D∗(G) :

U(x)√
1 + ‖x‖2

2 log(2 + ‖x‖2
2)
∈ L2(G),∇U ∈ L2(G)

}
,



19

which is a subspace of H1
loc(G). Under Assumption 2.1 for an open arc Λ, we define

H̃s(Λ) := {u ∈ D∗(Λ) : ũ ∈ Hs(Λ̃)}, s > 0,

wherein ũ denotes the extension by zero of u to Λ̃. For s > 0, we can identify

H̃−s(Λ) = (Hs(Λ))∗ and H−s(Λ) = (H̃s(Λ))∗.

We will also need the family of mean-zero Sobolev spaces:

H̃s
〈0〉(Λ) = {u ∈ H̃s(Λ) : 〈u, 1〉 = 0}, s ∈ R.

The following result will be used to establish convergence rates and error computations in

our numerical experiments (cf. Section 2.7) with proof given in Appendix A.2.

LEMMA 2.2.1. Let ζ ∈ H 1
2 (Γi), ψ ∈ H̃− 1

2 (Γi), and ri : (−1, 1)→ Γi, the parametri-

zation of Γi. Then, we have the norm equivalences:

c ‖ζ‖
H

1
2 (Γi)

≤ ‖ζ ◦ ri‖H 1
2 (Γ̂)
≤ C ‖ζ‖

H
1
2 (Γi)

,

c ‖ψ‖
H̃−

1
2 (Γi)

≤ ‖ψ ◦ ri‖H̃− 1
2 (Γ̂)
≤ C ‖ψ‖

H̃−
1
2 (Γi)

,

where the pullbacks for negative order are defined by duality, with generic positive con-

stants c and C depending on Γi.

For the finite union of disjoint open arcs Γ, we define piecewise spaces as

Hs(Γ) := Hs(Γ1)×Hs(Γ2)× · · · ×Hs(ΓM).

Norms and dual products are naturally extended by the previous identification, similarly for

spaces H̃s(Γ) and H̃s
〈0〉(Γ), while Hs(Γ̂) is understood as the Cartesian product

∏M
i=1H

s(Γ̂).

For U ∈ C∞(Ωi) (resp. U ∈ C∞(R2 \ Ωi)), we can set the interior (-) (resp. exterior

(+) ) Dirichlet traces:

γ±i U(x) := lim
ε↓0

U(x± εni) ∀ x ∈ Γi,
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where ni denotes the unitary normal vector with direction of (r′i,2,−r′i,1). If γ+
i U = γ−i U ,

we denote γiU := γ±i U . These definitions can be extended to more general Sobolev spaces

by density, in particular, we have that γ±i : H1
loc(Ω) → H1/2(Γi), as a bounded linear

operator (see (McLean, 2000, Theorem 3.37)). Neumann traces can be defined for smooth

functions U as

γ±N,iU := lim
ε↓0

ni · ∇U(x± εni), ∀ x ∈ Γi.

In contrast to the Dirichlet trace, the extension to Sobolev spaces is carried out using

Green’s formula in Ωi along with the restriction operator. For U ∈ H1
loc(Ωi) and ∆U ∈

L2
loc(Ωi), then γ±N,iU ∈ H−1/2(Γi) (cf. (McLean, 2000, Lemma 4.3)). Finally, traces taken

with respect to the domains Ωi, i ∈ {1, . . . ,M} will be denoted γ̃±i and γ̃±N,i respectively.

2.3. Boundary integral problem formulation

As explained, we are interested in solving the families of boundary value problems in

Ω via suitable integral representations with unknown densities over the boundaries Γ.

PROBLEM 2.3.1 (Volume Problem). Let g = (g1, . . . , gM) ∈ H 1
2 (Γ) and consider a

real wavenumber κ ≥ 0. We seek U ∈ H1
loc(Ω) such that

−∆U − κ2U = 0 in Ω, (2.1)

γ±i U = gi for i = 1, . . . ,M, (2.2)

condition at infinity(κ). (2.3)

The case κ = 0 corresponds to the Laplace operator whereas κ > 0 to the Helmholtz

one. The behavior at infinity (2.3) depends on κ in the following way: if κ > 0, we employ

the classical Sommerfeld condition:

lim
R→∞

∫
‖x‖2=R

∣∣∣∣∂U∂r (x)− iκU(x)

∣∣∣∣2 dΓx = 0,

If κ = 0, we seek solutions U ∈ W (Ω). For κ > 0 the existence and uniqueness of

Problem 2.3.1 can be obtained from (E. P. Stephan & Wendland, 1984, Lemma 1.2), while
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for κ = 0 although very similar to (E. P. Stephan & Wendland, 1984, Lemma 1.1), the

result is sightly different as we need to use the space W (Ω). For sake of completeness,

uniqueness is addressed in Appendix A.1. We can express the volume solution U as

U(x) =
M∑
i=1

(SLi[κ]λi)(x), ∀ x ∈ Ω, (2.4)

where

(SLi[κ]λi)(x) :=

∫
Γi

Gκ(x,y)λi(y)dΓi(y),

denotes the single layer potential generated at a curve Γi with fundamental solution:

Gκ(x,y) =


−1

2π
log ‖x− y‖2 k = 0,

i

4
H1

0 (κ‖x− y‖2) k > 0.
(2.5)

Here, H1
0 (·) denotes the zeroth-order first kind Hankel function (Abramowitz & Stegun,

1965, Chapter 9). From the properties of the single layer potential on closed domains

(McLean, 2000, Chapter 7) and the completion Γ̃i for each arc, one can see that

SLi[κ] : H−1/2(Γi)→ H1
loc(R2),

as a bounded linear map. Moreover, if U is expressed as in (2.4), then it solves (2.1). By

(McLean, 2000, Theorem 9.6) for κ > 0, the representation (2.4) satisfies the Sommerfeld

condition. The case κ = 0 is given by the following result.

LEMMA 2.3.2. The single layer potential SLi[0] is a bounded linear map between the

spaces H̃
− 1

2

〈0〉 (Γi) and W (R2 \ Γi).

PROOF. As H̃
− 1

2

〈0〉 (Γi) ⊂ H̃−
1
2 (Γi) we have that SLi[0] : H̃

− 1
2

〈0〉 (Γi)→ H1
loc(R2). Hence,

we only need to verify the conditions:

(SLi[0]u)(x)√
1 + ‖x‖2

2 log(2 + ‖x‖2
2)
∈ L2(R2 \ Γi), and ∇ (SLi[0]u) ∈ L2(R2 \ Γi).
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For every u ∈ H̃−
1
2

〈0〉 (Γi). From (McLean, 2000, Corollary 8.11), we know that the asymp-

totic behavior of the single layer potential for large arguments is

(SLi[0]u)(x) = − 1

2π
〈u, 1〉 log ‖x‖2 +O(‖x‖−1

2 ), for ‖x‖2 →∞.

Thus, if u ∈ H̃−
1
2

〈0〉 (Γi) then

(SLi[0]u)(x) = O(‖x‖−1
2 ), for ‖x‖2 →∞. (2.6)

Using polar coordinates and the above bound, we can verify that the first condition. The

proof of that the gradient is in L2(R \ Γi) is obtained by using the Taylor expansion of the

gradient of the logarithmic term. �

In order to find the boundary unknowns λi, we take Dirichlet traces of the single lay-

ers potentials and impose (2.2). This induces the definition of weakly singular boundary

integral operators (BIOs) as

Lij[κ] :=
1

2

(
γ+
i SLj[κ] + γ−i SLj[κ]

)
= γiSLj[κ],

the last equation resulting from the continuity properties of the SLi across Γi for each

i = 1, . . . ,M .

PROBLEM 2.3.3. For κ > 0 and g ∈ H 1
2 (Γ), we seek λ = (λ1, . . . , λM) ∈ H̃− 1

2 (Γ)

such that

L[κ]λ = g,

or equivalently,

〈L[κ]λ,φ〉Γ = 〈g,φ〉Γ , ∀ φ ∈ H̃−
1
2 (Γ),

where

L[κ] :=


L11[κ] L12[κ] . . . L1M [κ]

L21[κ] L22[κ] . . . L2M [κ]
...

... . . . ...

LM1[κ] LM2[κ] . . . LMM [κ]

 : H̃−
1
2 (Γ)→ H

1
2 (Γ).
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In the case κ = 0, we need g ∈ (H̃−
1
2

〈0〉 (Γ))∗ and restrict λ to H̃−
1
2

〈0〉 (Γ).

REMARK 2.3.4. Problem 2.3.3 can be recast in the reference space H̃− 1
2 (Γ̂) or H̃−

1
2

〈0〉 (Γ̂)

for κ = 0 so as to find λ̂ such that

L̂[κ]λ̂ = ĝ,

wherein ĝj := gj ◦rj , L̂ij are the BIOs defined over the reference arc Γ̂ with integral kernel

Gκ(ri(t), rj(s)) and the unknowns λ̂j := (λj ◦ rj)/‖r′j‖2.

REMARK 2.3.5. Later on we will use the operator Lii[κ] for the choice Γi = Γ̂,

which we denote by Ľ[κ]. The difference with respect to L̂ii[κ] relies on the absence of

parametrizations ri involved in the kernel. In the case of a single open arc with parametriza-

tion r, we will write L̂[κ] ≡ L̂ii[κ]. In this case, and for κ = 0, one can deduce that the

kernel function of the integral operator Ľ[0]− L̂[0] is given by

Er(t, s) := − 1

2π
log

(
‖r(t)− r(s)‖2

|t− s|

)
for which we have the following result.

LEMMA 2.3.6. Let m ∈ N and Λ be a single Cm
v -arc. Then the function Er(t, s) is

a Cm
v (−1, 1)-function in each of its components. If Γ is a ρ−analytic arc, Er(t, s) is a

bivariate ρ-analytic function.

PROOF. By performing a Taylor expansion in t, we can write

Θr(t, s) :=
r(t)− r(s)

t− s
=

m−1∑
j=1

(t− s)j−1r(j)(s)

j!
+

1

t− s

∫ t

s

(t− ξ)mr(m)(ξ)

m!
dξ.

This function admits m continuous derivatives in the t variable. As mentioned at the be-

ginning of Section 2.2.2, open arc parametrizations are injective, and thus, the function can

only be zero if t = s. However, as t approaches s, the above function behaves as r′(s),

which is not zero. Hence, Θr(t, s) does not vanish and so Er(t, s) is the composition of

Cm
v -functions, despite there being an absolute value. The ρ−analytic case follows from the

same argument. �
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REMARK 2.3.7. One should fully understand the differences between the cases κ = 0

and κ > 0. The first one is posed over the smaller space H̃−
1
2

〈0〉 (Γ), and the right-hand side

must be in the dual of this space, which is bigger than H 1
2 (Γ) under the identification of

L2(Γ) with its own dual. However, one has to be careful with the identifications that occur

as many elements of H 1
2 (Γ) are identifiable with one element of (H̃−

1
2

〈0〉 (Γ))∗: for example,

all constants are equivalent to the zero function. A more general formulation for the κ = 0

case can be found in (E. P. Stephan & Wendland, 1984).

Now, we show that Problem 2.3.3 is well posed. First, we prove that the diagonal

operators Lii[k] are coercive and use ideas from (E. P. Stephan & Wendland, 1984) to

transform the problem into a closed domain one.

LEMMA 2.3.8. For i ∈ {1, . . . ,M}, k ≥ 0, there exist a constant ce,i such that

• if κ = 0, it holds

〈Lii[0]u, u〉Γi ≥ ce,i ‖u‖2

H̃−
1
2 (Γi)

, ∀u ∈ H̃−1/2
〈0〉 (Γi)

• if κ > 0, then there are compact BIOs Kii[κ] : H̃−
1
2 (Γi)→ H

1
2 (Γi), such that

〈(Lii[κ] + Kii[κ])u, u〉Γi ≥ ce,i ‖u‖2

H̃−
1
2 (Γi)

, ∀u ∈ H̃−
1
2 (Γi).

PROOF. Given u and v in H̃−1/2(Γi), consider their respective zero extension ũ and

ṽ to ∂Ωi. Denote by Vii[k] the weakly singular integral operator given by taking the trace

over ∂Ωi of the single layer potential in ∂Ωi. Then, we have that

〈Lii[κ]u, u〉Γi = 〈Vii[κ]ũ, ũ〉∂Ωi
.

The results then follows from the closed curves case (cf. (Costabel, 1988, Theorem 2)). �

REMARK 2.3.9. Continuity of operators Lij , i, j ∈ {1, . . . ,M}, can be proved by

using the same arguments as those for Lemma 2.3.8. Then, one can easily show that

Lij[κ] : H̃−1/2(Γj)→ H1/2(Γi)
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as a bounded operator. Moreover, if i 6= j the operator is compact as the kernel function is

at least C1 in each component.

THEOREM 2.3.10. For κ > 0, Problem 2.3.3 has a unique solution λ ∈ H̃− 1
2 (Γ),

whereas for κ = 0 a unique solution exists in the subspace λ ∈ H̃−
1
2

〈0〉 (Γ). Also, we have the

continuity estimate

‖λ‖
H̃−

1
2 (Γ)
≤ C(Γ, κ)‖g‖

H
1
2 (Γ)

.

PROOF. By compactness of the cross-interaction BIOs and the coercivity result of

Lemma 2.3.8, the Fredholm alternative (McLean, 2000, Theorem 2.33) indicates that we

only need to prove injectivity to ensure existence. First, consider the case M = 1: for

κ = 0, the result is obtained from Lax-Milgram lemma while for κ > 0, we obtain the

result from (E. P. Stephan & Wendland, 1984, Theorem 1.7).

Now, we focus in the case M > 1. Let λ = (λ1, . . . , λM) be such that

M∑
j=1

Lij[κ]λj = 0 ∀ i = 1, . . . ,M.

For j ∈ {1, . . . ,M}, let us define volume potentials Uj := SLj[k]λj , solutions of individual

homogenous Helmholtz problems over R2 \Γj as well as the superposition Uσ :=
∑M

j=1 Uj

defined over Ω. Then, it holds

γiUσ = γi

M∑
j=1

Uj =
M∑
i=1

Lij[k]λj = 0, ∀ i = 1, . . . ,M.

However, Uσ is also the solution of Problem 2.3.1, with zero Dirichlet boundary condition.

Hence, as this problem has at most one solution we conclude that

Uσ =
M∑
j=1

SLj[k]λj = 0,

and consequently, for all i = 1, . . . ,M, it holds

Ui = SLi[k]λi = −
∑
j 6=i

SLj[k]λj. (2.7)
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Let us now consider the closed curve Γ̃i = ∂Ωi, and denote by λ̃i ∈ H̃−
1
2 (Γ̃i) the extension

by zero of λi. It holds,

Ui(x) = SLi[k](x)λi = SLΓ̃i
[k](x)λ̃i ∀ x ∈ Ω,

where the last potential is defined on the closed curve Γ̃i. If we take normal jumps, defined

as [γNU ] = γ+
NU − γ

−
NU , by (Sauter & Schwab, 2011, Theorem 3.3.1), we obtain

[γ̃N,iUi]Γ̃i = [γ̃N,iSLΓ̃i
[k]λ̃i]Γ̃i = −λ̃i.

Using (2.7) in the expression above yields

[γ̃N,iUi]Γ̃i = −

[
γ̃N,i

∑
j 6=i

SLj[k]λj

]
Γ̃i

= 0

where the last equality comes from the smoothness of the integral kernel since Γ̃i ∩ Γ̃j =

∅, for j 6= i. Thus, we can conclude that λj = 0 and the same follows for the other

components. �

REMARK 2.3.11. Much of the ideas presented in this section can be used in a more

general context. In a more abstract setting the notion of open arcs Γi has to be changed

by a proper connected Lipschitz subsets of the boundary of a domain Ωi ∈ Rd, for d =

2, 3, and whose normal vector is continuous. Define Ω as the exterior of a finite set of

generalized open arcs Γ. As in (McLean, 2000, Chapter 4), consider any strongly elliptic

second-order self-adjoint partial differential operator, denoted by P, with smooth Cm-

valued vector fields coefficients. Thus, for a given Dirichlet or Neumann datum, g ∈

[H 1
2 (Γ)]m or h ∈ [H− 1

2 (Γ)]m, respectively, we seek for U ∈ [H1
loc(Ω)]m such that,

PU = 0 in Ω,

γU = g or BnU = h on Γ,

with the conormal trace Bn defined as in (McLean, 2000, Chapter 4). The following points

are needed in order to establish the existence and uniqueness of an equivalent boundary

integral formulation for Cauchy data.
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(i) An adequate condition at infinity that ensures the uniqueness of the boundary

value problem.

(ii) A fundamental solution G(x,y) , such that PxG(x,y) = δx−yI, where I is the

identity operator in Rm×m.

(iii) Layer potentials:

(SLiλ)(x) :=

∫
Γi

G(x,y)λ(y)dΓi(y) (Dirichlet trace),

(DLiλ)(x) :=

∫
Γi

Bn(y)G(x,y)λ(y)dΓi(y) (conormal trace),

that display the adequate behavior at infinity specified by the first point in the

trace spaces. Specifically, λ ∈
[
H̃− 1

2 (Γ)
]m

for the Dirichlet problem and λ ∈[
H̃ 1

2 (Γ)
]m

for the conormal trace case.

With the above, the integral equation is constructed by imposing the boundary condi-

tion to the following representations:

U =
M∑
i=1

SLiλi (Dirichlet trace),

U =
M∑
i=1

DLiλi (conormal trace).

If the previously stated conditions are satisfied, then the construction of the arising

BIEs as well as their wellposedness proof is done as in the cases that we presented in

detail. It is worth noticing that the 2D-Laplace case is slightly different as the condition at

infinity of the potential only holds in a subspace.

2.4. Numerical Analysis

We now describe a spectral Galerkin numerical scheme for solving Problem 2.3.3 and

establish specific convergence rates.
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2.4.1. Approximation Spaces

Our aim is to construct a dense conforming discretization of the spaces H̃−1/2(Γi)

and H̃−1/2
〈0〉 (Γi), for i ∈ {1, . . . ,M}. Certainly, one could use traditional low-order bases

built on arc meshes for which approximation properties are well known. However, this

would imply large numbers of dofs to solve problems with many arcs and/or large values

of κ. Thus, we opt for high-order global polynomial bases such as weighted Chebyshev

polynomials per arc.

2.4.1.1. Single Arc Approximation

We denote by {Tn}Nn=0 the set of first N+1 first-kind Chebyshev polynomials, orthog-

onal under the weight w−1 with w(t) :=
√

1− t2. Consider the elements pin = Tn ◦ r−1
i

over each arc Γi, the space they span is denoted TN(Γi), and define the normalized space:

TN(Γi) :=

{
p̄i ∈ C(Γi) : p̄i :=

pi∥∥r′i ◦ r−1
i

∥∥
2

, pi ∈ TN(Γi)

}
.

We account for edge singularities by multiplying by a suitable weight:

QN(Γi) :=
{
qi := w−1

i p̄i : p̄i ∈ TN(Γi)
}
,

wherein wi := w ◦ r−1
i . The corresponding bases for QN(Γi) will be denoted {qin}Nn=0, and

are characterized by qin = w−1
i ‖r′i ◦ r−1

i ‖−1
2 Tn ◦ r−1

i . By Chebyshev orthogonality, we can

easily define the mean-zero subspace:

QN,〈0〉(Γi) := QN(Γi)/Q0(Γi),

spanned by {qin}Nn=1. Basic approximation properties of the spaces QN(Γi) are detailed in

Appendix A.3.

2.4.1.2. Multiple Arcs Approximation

Let us define the approximation product spaces:

HN :=
M∏
i=1

QN(Γi), HN
〈0〉 :=

M∏
i=1

QN,〈0〉(Γi).
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With the previously defined discrete spaces, we can find an approximation to the solu-

tion of Problem 2.3.3 by solving the following linear system.

PROBLEM 2.4.1 (Linear System). Let m,N ∈ N, Γ ∈ Cm
v , κ > 0, and g ∈ H 1

2 (Γ),

we seek coefficients u = (u1, . . . , uM) ∈ CM(N+1), such that

L[κ]u = g,

wherein we have defined the Galerkin matrix L[κ] ∈ CM(N+1)×M(N+1) with matrix blocks

Lij ∈ C(N+1)×(N+1) whose entries are

(Lij[κ])lm =
〈
Lij[κ]qjm, q

i
l

〉
Γi
, ∀ i, j = 1, . . . ,M, and ∀ l,m = 0, . . . , N. (2.8)

The right-hand g = (g1, . . . , gM) ∈ CM(N+1) has components (gi)l = 〈gi, qil〉Γi .

For κ = 0 we impose g ∈ (H̃−
1
2

〈0〉 (Γ))∗, and the spaces QN(Γj) have to be changed to

QN,〈0〉(Γj).

Approximations to solutions of Problem 2.3.3 are constructed using the solution u of

Problem 2.4.1 as follows

(λN)i =
N∑
l=0

(ui)lq
i
l in Γi, for all i ∈ {1, . . . ,M}.

Observe that the sum starts with l = 1 if κ = 0.

REMARK 2.4.2. By performing a change of variables, we can recast Problem 2.4.1 on

Γ̂ with matrix terms given by

(Lij[κ])lm =
〈
L̂ijw

−1Tm, w
−1Tl

〉
Γ̂
, ∀ i, j = 1, . . . ,M, and ∀ l,m = 0, . . . , N,

with w(t) =
√

1− t2, and the right hand side g = (g1, . . . , gM) ∈ CM(N+1) with com-

ponents (gi)l = 〈g ◦ ri, w
−1Tl〉Γ̂. We have the corresponding approximation of the pulled

back solution λ̂:

(λ̂N)i =
N∑
l=0

(ûi)lw
−1Tl in Γ̂, for all i ∈ {1, . . . ,M}
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The following result is a direct consequence of the coercivity of L[κ] and the basic ap-

proximation properties presented in Appendix A.3 (see (Sauter & Schwab, 2011, Theorem

4.29) for a detailed proof).

THEOREM 2.4.3. For κ > 0, given g ∈ H 1
2 (Γ), there exist N0 ∈ N, and C > 0, both

depending of Γ, g, and κ such that for any N ∈ N : N > N0 there exist only one solution

u of Problem 2.4.1. Moreover, for the approximation λN ∈ HN we can bound the error as

‖λN − λ‖H̃− 1
2 (Γ)
≤ C inf

vN∈HN
‖vN − λ‖H̃− 1

2 (Γ)
.

For κ = 0 we need to take g ∈ (H̃−
1
2

〈0〉 (Γ))∗, and HN
〈0〉 as the discrete space, for the result to

hold.

2.4.2. Convergence Results

The density of the family of spaces {HN}N∈N in H− 1
2 (Γ) (resp. {HN

〈0〉}N∈N in H−
1
2

〈0〉 (Γ))

shown in Appendix A.3 combined with Theorem 2.4.3 allows to conclude that when N

goes to infinity convergence occurs in the general context. However, this does not provide

any insight on convergence rates.

In this section, we will bound the error in terms of the dimension N , the degree of

polynomials used in each arc. Explicit convergence rates with respect to κ are not analyzed

and we leave this as future work. Similar bounds for error convergence rates were estab-

lished in (Jerez-Hanckes et al., 2018) (for κ = 0 on an interval) and in (K. E. Atkinson

& Sloan, 1991) . This last work while only shows the Laplace case for one arc, could be

extended for multiple arcs easily. The authors also consider the error introduced by the

quadrature scheme. However, the extension to Helmholtz does not appear to be straightfor-

ward, as it is hard to argue data regularity is preserved. In fact, proving this last point takes

significant effort. The effect of numeric integration will not be considered here but one can

easily show that it introduces an extra error which decays as fast as the Fourier-Chebyshev

coefficients of the (regular) right-hand side and the geometry (cf. Section 2.5).
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Before carrying on, we review the general idea presented in this section. In Sections

2.4.2.1, and 2.4.2.2 we characterize the decay of Chebyshev coefficients {λn}n∈N appearing

in the solution of the single scatter problem. This is done in a constructive way: we start

with the most simple case (κ = 0,Γ = Γ̂) Lemma 2.4.5, and finalize with a general

arc for non-zero frequency in Lemma 2.4.16 (Lemmas 2.4.9, and 2.4.13 are intermediate

results). Once the coefficients’ decay is characterized, we use it in conjunction with the

quasi-optimality result to establish the error convergence of a single arc problem (Theorem

2.4.17). Finally, in Section 2.4.2.4 we generalize the results for multiple arcs. For this, we

first establish the decay of the coefficients (Lemma 2.4.20) and conclude, as in the single

arc case, in Theorem 2.4.21 which gives the rate of convergence for general multiple arcs

and κ ≥ 0.

We start by analyzing the most simple problem –κ = 0 and a single interval–, and from

there we gradually consider more generalities until we arrive to the most complex case

(κ > 0 for multiple arcs). Every function λ̂ in H̃−
1
2 (Γ̂), can be expressed as a convergent

series:

λ̂(s) = w−1
∑
n≥0

λnTn(s), s ∈ (−1, 1).

Furthermore, we have an explicit expression for the H̃−
1
2 (Γ̂)-norm when such representa-

tion is used ∥∥∥λ̂∥∥∥2

H̃−
1
2 (Γ̂)

=
∑
n≥0

|λn|2dn, (2.9)

where d0 = 1, and dn = n−1 for n > 0 (Jerez-Hanckes & Nédélec, 2011, proof of Propo-

sition 3.5).

2.4.2.1. Chebyshev Coefficients Behavior: Laplace Case

We recall operators Ľ[0] and L̂[0] defined over Γ̂ (cf. Remark 2.3.5). In this section,

we consider the pullback problem:

PROBLEM 2.4.4. For m ∈ N given Γ ∈ Cm
v , and g ∈ Cm

v (Γ) ∩ (H̃
− 1

2

〈0〉 (Γ))∗, we seek

λ̂ ∈ H̃−
1
2

〈0〉 (Γ̂) such that

L̂[0]λ̂ = ĝ on Γ̂,
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which is equivalent to Problem 2.3.3 with κ = 0 and M = 1.

We aim to characterize the mapping properties of these weakly singular BIOs (defined

as in Section 2.3) acting on weighted Chebyshev polynomials.

LEMMA 2.4.5. For n and l in N, it holds〈
Ľ[0]

Tn
w
,
Tl
w

〉
=

π

4n
δnl.

PROOF. Direct consequence of the kernel expansion ((Jerez-Hanckes & Nédélec, 2012,

Theorem 4.4)):

G0(x,y) = − 1

2π
log |t− s| = 1

2π
log 2 +

∑
n≥1

1

πn
Tn(t)Tn(s), ∀ s 6= t.

and the orthogonality property of Chebyshev polynomials. �

One can interpret this result as follows: given an element in λ̂ ∈ H̃− 1
2 (Γ̂), its image by

Ľ[0] is a function whose Chebyshev coefficients decay as O(n−1). The rest of this section

extends this idea to more general arcs.

LEMMA 2.4.6. For m ∈ N, let h : [−1, 1]2 → C be such that h(t, ·) and h(·, s) are

Cm
v (−1, 1)-functions as functions of s and t, respectively. Thus, we can write h as

h(t, s) =
∞∑
n=0

∞∑
k=0

bnkTn(t)Tk(s),

with coefficients decaying as follows:

bnk = O
(
min{n−m−1, k−m−1}

)
.

If h is ρ−analytic in both variables

bnk = O
(
ρmin{−n,−k}) .

PROOF. This is just the bivariate version of (L. Trefethen, 2013, Theorem 7.1) and

(L. Trefethen, 2013, Theorem 8.1) (see Appendix A.2 for a detailed proof). �
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LEMMA 2.4.7. Let m ∈ N and h : [−1, 1]2 → C be a Cm
v (−1, 1)-function in both

arguments. Consider the integral operator taking as kernel the bivariate function h:

(Hf)(s) :=

∫
Γ̂

h(t, s)f(t)dt,

Let f ∈ H̃−1/2(Γ̂), then for ε ∈ R such that 0 < ε < 1, we have that the Fourier-Chebyshev

coefficients of Hf , denoted {vl}l∈N0 , decay as

vl = O
(
l(−1+ε)m

)
.

Moreover, if the kernel is ρ−analytic we have that

vl = O
(
ρ−l
)
.

PROOF. See Appendix A.2. �

REMARK 2.4.8. The previous result is by no means sharp. In the context of pseudo-

differential operators using Fourier expansion for the norms one could obtain better bounds,

see for example (Saranen & Vainikko, 2013, Chapter 7). Results for open arcs in terms of

Fourier-Chebyshev expansions can be obtained using the cosine change of variables.

We continue by estimating bounds for the Chebyshev coefficients of solutions of the

BIE associated to the Laplace problem for any sufficiently smooth single arc.

LEMMA 2.4.9. Let λ̂ ∈ H̃−
1
2

〈0〉 (Γ̂) be the unique solution of Problem 2.4.4, with m ≥ 2.

If we expand λ̂ as

λ̂ = w−1

∞∑
n=1

anTn,

we obtain the following coefficient asymptotic behaviors:

an = O
(
n−m

)
.

Moreover, if Γ is a ρ−analytic arc and g is also ρ−analytic, we obtain

an = O
(
nρ−n

)
.
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PROOF. Since ĝ = g ◦ r, we can expand it as a Fourier-Chebyshev series with coeffi-

cients ĝl leading to

(L̂[0]λ̂)l = ĝl, ∀ l ∈ N.

The coefficients of the left-hand side of the latter equation can be computed by adding and

subtracting the term Ľ[0]λ̂. By doing so and combining Lemmas 2.4.5, 2.4.6, 2.4.7 and

2.3.6, we obtain the following expression:

π

4

al
l

+ vl = ĝl, ∀ l ∈ N,

where the coefficient vl corresponds to that in the expansion of (L̂[0] − Ľ[0])λ̂. By the

regularity conditions, it holds ĝl = O(l−m−1), and therefore,

π

4
all
−1 + vl = O

(
l−m−1

)
.

Hence, there are two alternatives: either (i) al = O(l−m) and vl = O (l−m−1), or (ii) both

have the same decay order. As the first implies the result directly, we assume the second

alternative in what follows.

Let 2 < m <∞. By Lemma 2.4.7 (i), we have that vl = O
(
l(−1+ε′)m

)
, and under our

current assumption, this implies that

al = O
(
l(−1+ε′)m

)
.

Since m > 2, we can choose ε such that
∑∞

n=1 an is finite and a new estimate for vl holds

vl =
∞∑
n=1

bnlan . l−m−1.

Here, bnl are the coefficients detailed in Lemma 2.4.6 for the function Er defined in Re-

mark 2.3.5 This last equality implies the result directly. The case m = 2 is slightly

more complicated as one can not directly ensure that the coefficients al are summable.

However, by Lemma 2.4.7, for a small δ > 0, then vl = O
(
l−2+δ

)
, which implies that

al = O
(
l−1+δ

)
. By re-estimating bounds on vl, we now obtain that vl = O

(
l−3+2δ

)
.

Hence, al = O
(
l−2+2δ

)
which are summable from where one can argue as before. For the
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ρ−analytic, the result is direct as the vl already has a decay that implies the corresponding

behavior of the coefficients al. �

2.4.2.2. Chebyshev Coefficients Behavior: Helmholtz Case

We now consider the following single arc problem:

PROBLEM 2.4.10. For m ∈ N, κ > 0, given Γ ∈ Cm
v , and g ∈ Cm

v (Γ), we seek

λ̂ ∈ H̃−
1
2

〈0〉 (Γ̂) such that

L̂[κ]λ̂ = ĝ on Γ̂, (2.10)

which is equivalent to Problem 2.3.3 with κ > 0 and M = 1.

One could see the Helmholtz case as a perturbation of the previous one, but this per-

turbation is not smooth as the operator difference L̂[κ]− Ľ[0] (cf. Remark 2.3.5) only has

a C1-kernel, even for smooth arcs. Thus, we can not replicate the previous arguments and

need to examine in depth L̂[κ]− Ľ[0] in terms of Chebyshev coefficients.

Using (Abramowitz & Stegun, 1965, Formula 9.1.13), the kernel of L̂[κ], given in

(2.5), can be also be written as

Ĝk(t, s) =
i

4
H1

0 (k ‖r(t)− r(s)‖2) =
∞∑
p=0

zpRp(t, s)|t− s|2p log |t− s|+ ψR(t, s),

wherein r : (−1, 1)→ Γi is a suitable parametrization,

zp :=
1

2π
(−1)p

(
k

2

)2p

(p!)−2, (2.11)

Rp(t, s) :=

(
‖r(t)− r(s)‖2

|t− s|

)2p

, (2.12)

and ψR is Cm
v (−1, 1)-regular in each component. Notice that the term |t − s|2p log |t− s|

is a C2p−1(−1, 1)-function in each component.

We begin by analyzing the Helmholtz case for Γ̂ following similar techniques to those

in (Frenkel, 1983). To simplify notation, we define kernels Ĝp
k(t, s) := zpRp(t, s)|t −
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s|2p log |t− s| and their corresponding BIOs:

L̂p[κ]f :=

∫ 1

−1

Ĝp
k(t, s)f(t)dt.

Extensive use will be given to the following lemma:

LEMMA 2.4.11. For p ∈ N0, we have

|t− s|2p log |t− s| =
∞∑
n=0

∞∑
l=0

bpnlTn(t)Tl(s)

where

bpnl =

O(l−(2p+1)) n = l, l ± 2, . . . , l ± 2p

0 any other case.

PROOF. We proceed by induction. As the case p = 0 was proven in Lemma 2.4.5, we

start by setting p = 1. By Lemma A.4.2, it holds

|t− s|2 log |t− s| =
∑

j∈{−1,0,1}

∞∑
n=0

β(j)
n Tn(t)T|n+2j|(s).

Moreover, bounds for coefficients β(j)
n are found by using Lemma A.4.2. Since in this case

an := b0
n = O( 2

n
) (cf. Lemma 2.4.5), we obtain the stated result.

Assuming now that the result holds for p ≥ 2, we prove it for p+ 1. Indeed,

|t− s|2(|t− s|2p log |t− s|) = |t− s|2
∞∑
n=0

∞∑
l=0

bpnlTn(t)Tl(s)

= |t− s|2
∑

j∈{−1,0,1}n

∞∑
n=0

β(j)
n Tn(t)T|n+2

∑
j|(s)

and we proceed as in the proof of Lemma A.4.2 to obtain the expansion. The asymptotic

behavior is obtained by a direct computation using expressions of Lemma A.4.2. �

LEMMA 2.4.12. Let λ̂ ∈ H̃− 1
2 (Γ̂) with expansion

λ̂ = w−1

∞∑
n=0

anTn.
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Then, the Fourier-Chebyshev coefficients of L̂p[κ]λ̂, denoted {vpl }l∈N0 , are given by

vpl = zp

∞∑
n=0

bpnlan,

where the coefficients bpnl are given by Lemma 2.4.11, and terms zp are defined in (2.11).

Moreover, it holds

vpl = O(l−2p− 1
2 ).

PROOF. The representation is a direct consequence of the Fourier-Chebyshev expan-

sion of λ̂ and the kernel function given by Lemma 2.4.11. The asymptotic behavior is

deduced as follows

|vpl | ∼

∣∣∣∣∣
∞∑
n=0

bpnlan

∣∣∣∣∣ ≤ ‖λ̂‖H̃− 1
2 (Γ̂)

∣∣∣∣∣
∞∑
n=0

(bpnl)
2d−1
n

∣∣∣∣∣
1
2

,. l−2p− 1
2 ,

with dn coming from (2.9) and where the last inequality is obtained using Lemma 2.4.11.

�

With the above results, we can estimate the asymptotic order of the Chebyshev coef-

ficients of Ľ[κ] − Ľ[0], where Ľ[κ] is the weakly singular Helmholtz operator for the

special case Γ ≡ Γ̂. This bound turns out to be crucial in proving the convergence of the

proposed method.

LEMMA 2.4.13. Let λ̂ ∈ H̃− 1
2 (Γ̂) be the only solution of Problem 2.4.10, with Γ = Γ̂,

and expand it as

λ̂ = w−1

∞∑
n=0

anTn

Then, the coeficients an decay as

an = O(n−m).

Moreover, if g is ρ−analytic, we have that

an = O(nρ−n).
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PROOF. By the regularity of g, we have

(Ľ[κ]λ)l = gl = O
(
l−m−1

)
.

On the other hand, using the integral kernel expansion and Lemma 2.4.5, for any Q ∈ N,

with Q > 1, we derive

(Ľ[κ]λ)l =
π2

4

al
l

+

Q−1∑
j=1

vjl + v
R(Q)
l ,

where coefficients vjl are given by Lemma 2.4.12 and v
R(Q)
l is the remainder of order

O
(
l−2Q− 1

2

)
. Thus, if we choose Q as the upper integer part of m+1

2
, we have that

π

4

al
l

+

Q−1∑
j=1

vjl = O(l−m−1).

From the latter equation we need to deduce the behavior of the coefficients al given the

value of m. We proceed by induction, if m = 1 we have that

π2

4

al
l

= O
(
l−2
)
,

which directly implies al = O(l−1). For the induction hypothesis we denote Q(r) the

corresponding value of Q given a natural number r < m. Then, the induction hypothesis

reads as: if
π

4

al
l

+

Q(r)−1∑
j=1

vjl = O
(
l−r−1

)
, (2.13)

then al = O(l−r). Now, we prove for r + 1, since we do not assume that r is even or odd

we have two options: Q(r + 1) = Q(r) or Q(r + 1) = Q(r) + 1. If the latter is true, there

is a new term of order −r − 1. Thus, without loss of generality we can assume that

π

4

al
l

+

Q(r)−1∑
j=1

vjl = O
(
l−r−1

)
.
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By the induction hypothesis, al = O(l−r). Then, by definition of coefficients vjl as in

Lemma 2.4.12, and Lemma 2.4.11 one has

v1
l = O

(
l−r−3

)
v2
l = O

(
l−r−5

)
... =

...

v
Q(n)−1
l = O

(
l−r−1−2(Q(r)−1)

)
,

and so from (2.13) we obtain the correct order for al.

The ρ−analytic case employs the same argument. As all−1 and
∑∞

j=1 v
j
l cannot have

the same decay order, the only option is for both terms to decay geometrically. �

To end this section, we consider the Helmholtz case for general arcs. Our main in-

gredients here are the bounds for Chebyshev coefficients of the product of two functions.

For one-dimensional C1-functions, this can be done easily: let f(t) =
∑

k∈N0
fkTk(t) and

g(t) =
∑

l∈N0
glTl(t). One can write

f(t)g(t) =
∑
n∈N0

encnTn(t), where en =

∫ 1

−1

f(t)g(t)
Tn(t)

w(t)
dt,

and c0 = π−1, cn = 2π−1, for n > 0. By replacing the series expansion for f above, we

derive

en =
∑
k∈N0

fk

∫ 1

−1

g(t)Tk(t)
Tn(t)

w(t)
dt,

Using now Lemma A.4.1 and Chebyshev orthogonality, it holds

en =
∑
k∈N0

fk

∫ 1

−1

g(t)
Tk+n(t) + T|k−n|(t)

2w(t)
dt =

∑
k∈N0

fk
2

(
gk+n

ck+n

+
g|k−n|
c|k−n|

)
.

Consequently, we can estimate the decay of en by the properties of fn and gn. In two

dimensions we have a similar result.
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LEMMA 2.4.14. Letm ∈ N, p ∈ N, and recall the definition ofRp(t, s) given in (2.12).

Then, the series

Rp(t, s)|t− s|2p log |t− s| =
∞∑
i=0

∞∑
j=0

Cp
ijTi(t)Tj(t), ∀ (t, s) ∈ [−1, 1]2,

holds, with coefficients

Cp
ij =

∞∑
n=0

∞∑
l=0

bpnl
4

(
rn+i,l+j + rn+i,|l−j| + r|n−i|,l+j + r|n−i|,|l−j|

)
with coefficients bpnl being those of Lemma 2.4.11 and ri,j the Chebyshev coefficients of

Rp(t, s). Moreover, the following asymptotic behavior hold

Cp
ij = O(min{i−min(m+1,2p+1), j−min(m+1,2p+1)}).

If we consider a ρ−analytic arc we have

Cp
ij = O(min{i−(2p+1), j−(2p+1)}).

PROOF. See Appendix A.2. �

LEMMA 2.4.15. For m ∈ N, let Γ ∈ Cm
v and λ̂ ∈ H̃− 1

2 (Γ̂) have the representation:

λ̂ = w−1

∞∑
n=0

anTn.

Then, the Fourier-Chebyshev coefficients of L̂p[κ]λ̂, denoted {vpl }l∈N0 , satisfy

vpl = zp

∞∑
n=0

Cp
nlan,

where the coefficients Cp
nl are given in Lemma 2.4.14, zp are defined in (2.11), and the

asymptotic behaviors hold

(i) If m ≤ 2p and for ε ∈ R such that 0 < ε < 1− 1
m+1

, vpl = O(l−m+(m+1)ε)

(ii) If m > 2p and for ε ∈ R such that 0 < ε < 1− 1
2p+1

, vpl = O(l−2p+(2p+1)ε).
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PROOF. The proof follows the steps of Lemma 2.4.7 but by using Lemma 2.4.14 in-

stead of Lemma 2.4.11. �

LEMMA 2.4.16. For m ∈ N with m ≥ 2, let λ̂ ∈ H̃− 1
2 (Γ̂) be the unique solution of

Problem 2.4.10. Then, if the solution is expanded as λ̂ =
∑∞

n=0 anw
−1Tn, the following

asymptotic behaviors for coefficients an holds

an = O(n−m).

Moreover, if Γ and g are ρ−analytic

an = O(nρ−n).

PROOF. We follow similar steps of those for Lemmas 2.4.13 and 2.4.9, the integral

equation reads as

(L̂[κ]λ̂)l =
π

4

al
l

+

Q∑
j=1

vjl + vRl = O(l−m−1),

where vjl are defined as in Lemma 2.4.15, and Q is fixed such that the remainder is given

by a Cm
v (−1, 1)-function. Thus, for ε ∈ (0, 1 − 1

m+1
), vRl = O(l−m+(m+1)ε). Moreover,

we can assume that, for δ ∈ (0, 1 − 1
3
), by Lemma 2.4.15, it holds vjl = O(l−2j+(2j+1)δ),

for all j = 1, . . . , Q. The rest of the proof is the same as in Lemma 2.4.9, as standard, the

ρ−analytic case follows the same arguments. �

2.4.2.3. Convergence rates for a single arc

From the decay properties of Chebyshev coefficients, we can obtain bounds for the

approximation error. First, notice that, by norm equivalences (cf. Lemma 2.2.1), we can

do all the estimates in Γ̂ and transform λ 7→ λ̂. On the other hand, we have the quasi-

optimality result (cf. Theorem 2.4.3): there exists N0 > 0 and a constant C(Γ, κ) > 0, such

that for all N > N0:

‖λ− λN‖H̃−1/2(Γ) ≤ C(Γ, κ) inf
qN∈QN (Γ̂)

∥∥∥λ̂− qN∥∥∥
H̃−1/2(Γ̂)

.
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For λ̂ we have an expansion of the form λ̂ =
∑
anw

−1Tn. Hence, we can choose

qN =
∑

n≤N anw
−1Tn, and use the norm representation to estimate the error as∥∥∥λ̂− qN∥∥∥2

H̃−1/2(Γ̂)
=
∑
n>N

|an|2

n
.

Finally, using the bounds from Lemmas 2.4.16, and 2.4.9 for the behavior of coefficients

an, we can establish convergence rates.

THEOREM 2.4.17. Let κ > 0, m ∈ N with m ≥ 2, Γ ∈ Cm
v . For g ∈ Cm

v (Γ), let λ be

the unique solution of Problem 2.3.3, and λN the approximation obtained from the solution

of 2.4.1, with N > N0 according to Theorem 2.4.3. Then there is a constant C(Γ, κ), such

that

‖λ− λN‖H̃−1/2(Γ) ≤ C(Γ, κ)N−m.

Moreover, if Γ and g are ρ−analytic we have that

‖λ− λN‖H̃−1/2(Γ) ≤ C(Γ, κ)ρ−N+2
√
N.

If κ = 0 we need also that g ∈ (H̃
−1/2
〈0〉 (Γ))∗, for the result to hold true.

PROOF. Following the above discussion, we have to estimate
∑

n>N
|an|2
n

, where the

an are characterized in Lemmas 2.4.9 and 2.4.16. Since these are decreasing, the results

follows from the following elementary estimation:∑
n>N

|an|2

n
≤
∫ ∞
N

a(ξ)2

ξ
dξ,

where a(ξ) is a monotonously continuous decreasing function such that a(n) = |an|. �

REMARK 2.4.18. Even though N0 and C(Γ, κ) depend on the geometry and wave-

number κ, the decay rates do not depend on any of these two.
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2.4.2.4. Multiple arcs approximation

Since the existence of more than one arc translates into perturbations of the Chebyshev

coefficients with decay rates given by arc regularity, convergence rates for the case of mul-

tiple arcs are given by those of the single arc case. To see this, let us recall Problem 2.3.3

for the case of two Cm
v -arcs pullbacked onto Γ̂: for g1, g2 ∈ Cm

v (Γ̂), find λ̂1, λ̂2 ∈ H̃−
1
2 (Γ̂)

such that

L̂11[κ]λ̂1 + L̂12[κ]λ̂2 = ĝ1,

L̂21[κ]λ̂1 + L̂22[κ]λ̂2 = ĝ2.

By Assumption 2.2, the arcs cannot touch nor intersect. Hence, there is always d > 0 such

that for all (x,y) ∈ Γ1 × Γ2, ‖x− y‖2 > d. This leads to the next result.

LEMMA 2.4.19. Let m ∈ N consider two open Cm
v -arcs fulfilling Assumption 2.2.

Then, if we write the pulled back solutions as

λ̂i =
∑

ain
Tn
w
,

for i 6= j, it holds

(L̂ij[κ]λ̂)l =
∑
n

bnlan,

with asymptotic decay rate:

bnl = O(min{n−m−1, l−m−1}).

Moreover, if the arcs Γ1,Γ2 and g are ρ−analytics we have that

bnl = O
(
ρmin{−m,−l}) .

PROOF. As the distance between two disjoint arcs is strictly positive, the kernelGκ(ri(t), rj(s))

belongs to Cm
v and the proof follows verbatim that of Lemma 2.4.6.

�
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LEMMA 2.4.20. Let m ∈ N with m ≥ 2, and λ be the only solution of Problem 2.3.3,

whose pullback is expanded as
∑

n≥N0
ajnw

−1Tn, it holds

ajn = O(n−m).

Moreover, for the ρ−analytic case we have that

ajn = O(nρ−n).

PROOF. The proof is similar to that of Lemma 2.4.16, now taking care of cross-

interaction terms by Lemma 2.4.19 and using the same arguments from Lemma 2.4.9. �

THEOREM 2.4.21. Let m ∈ N with m > 2, κ > 0, Γ ∈ Cm
v , g ∈ Cm

v (Γ), λ the only

solution of Problem 2.3.3 and λN approximation constructed from 2.4.1, then we have the

‖λ− λN‖H̃− 1
2 (Γ)
≤ C(Γ, κ)N−m+1,

and for the ρ−analytic case

‖λ− λN‖H̃− 1
2 (Γ)
≤ C(Γ, κ)ρ−N+2

√
N.

For κ = 0 we need to impose the condition g ∈ (H̃−
1
2

〈0〉 (Γ))∗.

PROOF. The proof follows that of Theorem 2.4.17 as the H̃− 1
2 (Γ)-norm is equivalent

to the Cartesian product of M times the space H̃−
1
2 (Γ̂) with corresponding bounds for the

coefficients established in Lemma 2.4.20. �

2.5. Matrix computations

We now explicitly describe numerically how to solve Problem 2.4.1 using the discrete

spaces defined in Section 2.4.1. By definition (2.8), the matrix entries are

(Lij[κ])ln =
〈
Lij[κ]qjn, q

i
l

〉
Γi
.
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In Remark 2.4.2, we showed that this can be computed as

(Lij[κ])ln =
〈
L̂ij[κ]w−1Tn, w

−1Tl

〉
Γ̂
.

First, we review how the integrals involving the functions w−1Tn can be approximated.

2.5.1. Fourier-Chebyshev expansions

Every function in C1([−1, 1]) can be expanded as a Chebyshev series (cf. (L. Tre-

fethen, 2013, Theorem 3.1)),

f(s) =
∞∑
n=0

fnTn(s), ∀ s ∈ [−1, 1] with fn := cn
〈
f, w−1Tn

〉
Γ̂
,

with c0 = π and cn = π/2 for n > 0. For a given N ∈ N, the Fourier-Chebyshev

coefficients {fn}n∈N0 can be approximated using the FFT as follows:

(i) Construct a vector vN ∈ CN+1 with entries f(sNn ), for n = 0, . . . , N , and where

the sNn = cos(nπ/N) correspond to the Chebyshev points of order N .

(ii) Apply the FFT to a periodic extension of the vector fN ,

f̃N := FFT (vNN , v
N
N−1, . . . , v

N
1 , v

N
0 , v

N
1 , . . . , v

N
N ).

(iii) Define the approximations as

fNn := f̃Nn, n = 1, . . . , N − 1, fN0 =
1

2
f̃N 0, fNN =

1

2
f̃NN .

REMARK 2.5.1. Notice that Fourier-Chebyshev expansions correspond to the expan-

sions of even functions in Fourier basis under a cosine change of variable.

Using aliasing properties of Chebyshev series, one can easily see that for f ∈ Cm
v (−1, 1),

|fn − fNn | = O(N−m−1),

while for ρ−analytic functions, it holds

|fn − fNn | = O(ρ−N).



46

For more details see (L. Trefethen, 2013, Chapter 4).

2.5.2. Kernel expansion

An expansion similar to the one above holds for the fundamental solution G0(x,y)

when κ = 0 over Γ̂. Specifically, for collinear vectors, i.e. x = (t, 0) and y = (s, 0),

(s, t) ∈ [−1, 1]2, it holds (cf. (Reade, 1979) and (Jerez-Hanckes & Nédélec, 2012, Theorem

4.4)):

G0(x,y) = − 1

2π
log |t− s| = 1

2π
log 2 +

∑
n≥1

1

πn
Tn(t)Tn(s), ∀ s 6= t. (2.14)

This series expansion converges point-wise for t 6= s as the fundamental solution is then

smooth.

2.5.3. Computations for i 6= j

We consider cross-interactions given by blocks Lij[κ]. The associated kernel is smooth,

and consequently, we can expand it as a Chebyshev series using the FFT. To this end, we

consider a bivariate version of the procedure presented in Section 2.5.1 :

(i) Evaluate the function F (t, s) := Gκ(ri(t), rj(s)) in a grid of Chebyshev points

(tNi , s
N
j ), obtaining a matrix F ∈ C(N+1)×(N+1).

(ii) For each row, we follow steps (i) and (ii) of the one-dimensional procedure de-

tailed in Section 2.5.1. This leads to the following expansion:

F (t, s) =
∑
n≥0

an(s)Tn(t),

where the coefficients of the matrix are approximations at the Chebyshev points,

i.e. Fjn ≈ an(xNj ), n = 0, . . . , N .

(iii) We repeat the last step but with the columns of the new matrix F, i.e. the same

one-dimensional procedure for the functions an(s), n = 0, . . . , N . The matrix F
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is updated such that Fln ≈ aln, where

F (t, s) =
∑
l≥0

∑
n≥0

alnTl(s)Tn(t).

Notice that this procedure requires 2(N + 1) FFTs. Once the expansion is obtained,

the integrals are computed directly using the orthogonality property of Chebyshev polyno-

mials.

2.5.4. Computations for i = j

In this setting, we extract singularities by subtracting the purely logarithmic term:

Ri
k(t, s) := − 1

2π
log |t− s|J0(κ ‖ri(t)− ri(s)‖2),

and obtain two families of integrals:

I1
ln :=

∫ 1

−1

∫ 1

−1

(Gκ(ri(t), ri(s))−Ri
k(t, s))w

−1Tn(t)w−1Tl(s)dtds,

I2
ln :=

∫ 1

−1

∫ 1

−1

Ri
k(t, s)w

−1Tn(t)w−1Tl(s)dtds.

Using the expansion (Abramowitz & Stegun, 1965, 9.1.13), we find that Gκ(ri(t), ri(s))−

Ri
k(t, s) has the same regularity of ri, and thus, we can compute I1

ln as in the case i 6= j.

For I2
ln, we notice that Ri

k(t, s) is a product of two functions: − 1
2π

log |t− s|, with known

Chebyshev expansion (2.14) and J0(κ ‖ri(t)− ri(s)‖2), which by (Abramowitz & Stegun,

1965, 9.1.12) has the same regularity of ri. Consequently, its Chebyshev expansion can be

computed using the FFT. Finally, the Chebyshev expansion of Ri
k(t, s) is computed using

the technique shown in Lemma 2.4.14.

REMARK 2.5.2. The evaluation of the Chebyshev expansion of Ri
k(t, s) can be accel-

erated by extrapolation techniques like de-aliasing (Hu, 1994).

2.6. Compression Algorithm

While the presented spectral algorithm reduces the number of dofs needed to obtain

a desired accuracy with respect the most common low order h-refinement schemes, we
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lack any form of matrix compression such as Fast Multipole Method or Hierarchical Ma-

trices (Sauter & Schwab, 2011, Chapter 7). In what follows, we present a compression

algorithm specially designed for problems with multiples arcs. The key idea is to recog-

nize that the entries of the matrix L[κ] correspond to Fourier-Chebyshev coefficients of the

kernel function. Hence, for smooth kernels, we observe fast decaying entries, and thus it

can be approximated by just considering the first coefficients and setting others to zero.

Specifically, the kernel function is smooth when we compute cross-interactions blocks.

Let the routine Quadrature(l,m) compute the term (l,m) of this interaction matrix

using a two-dimensional Gauss-Chebyshev quadrature 1. Given a tolerance ε, we reduce

the amount of computations needed by performing the following binary search:

ALGORITHM 2.6.1 (H). 1: INPUT: Tolerance ε, Max Level of search Lmax

2: OUTPUT: Number of columns to use Ncols

3: INITIALIZE: Ncols = N , level = 0, a = 0, b = N

4: while level < Lmax do

5: m = (a+ b)/2

6: Tleft = m− 1

7: Tcenter = m

8: Tright = m+ 1

9: Vleft = abs(Quadrature(0,Tleft))

10: Vcenter = abs(Quadrature(0,Tcenter))

11: Vright = abs(Quadrature(0,Tright))

12: if {Vright&Vcenter < 0.5 ∗ ε} or {Vleft&Vcenter < 0.5 ∗ ε} then

13: b = m

14: else

15: a = m

16: end if

1We make the following approximation
∫

Γi

∫
Γj
Gκ(x,y)qjm(x)qil(y)dxdy ≈∑Nq

p=1

∑Nq

r=1 ωpωrGκ(ri(xp), rj(xr))Tm(xr)Tl(xp), where ωp, xp denote the Gauss-Chebyshev quad-
rature weights and points respectively, and Nq is the number of points to use.
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17: level + +

18: end while

19: Ncols = b

The algorithm returns the minimum number of columns Ncols to be used, by searching

in the first row the minimum index such that the absolute value of the matrix entries is lower

than ε. The binary search is restricted to a depth Lmax ∈ N. The same procedure is used to

estimate the number of rows, Nrows, by executing a binary search in the first column. Once

Ncols and Nrows are selected, we define Nε := max{Nrows, Ncols} and compute the block

of size Nε ×Nε as in the full implementation.

Matrix compression also induces an extra error as it perturbs the original linear system

in Problem 2.4.1. We can bound this error using the standard theory of perturbed linear

systems, to that end denote by Lε[κ] the matrix generated by the compression algorithm

with tolerance ε, and define the matrix difference ∆Lε[κ] := Lε[κ] − L[κ]. We seek to

control the solution uε = u + ∆u of

(L[κ] + ∆Lε[κ])uε = g,

where u and g are the same as in Problem 2.4.1. In order to bound this error, we will

assume that, for every pair of indices (i, j) in the matrix L[κ], we have,

|(∆Lε[κ])ij| < ε. (2.15)

THEOREM 2.6.2. LetN ∈ N be such there is only one solution of Problem 2.4.1. Then,

there is a constant C(Γ, κ) > 0 such that

‖∆u‖2

‖u‖2

≤
∣∣∣∣ Nε

C(κ,Γ)−Nε

∣∣∣∣ .
PROOF. By (Saad, 1996, Section 1.13.2) we have that

‖∆u‖2

‖u‖2

≤ ‖∆Lε[κ]‖2

‖(L[κ])−1‖2 − ‖∆Lε[κ]‖2

,
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and thus, we need to estimate ‖∆Lε[κ]‖2 and ‖(L[κ])−1‖2. The bound for the first term can

be obtained as

‖∆Lε[κ]‖2 = sup
x 6=0

‖∆Lε[κ]x‖2

‖x‖2

= sup
x 6=0

(∑N
i=0(
∑N

j=0 ∆Lε[κ]ijxj)
2
)1/2

‖x‖2

≤ sup
x 6=0

(∑N
i=0 ‖x‖2

2Nε
2
)1/2

‖x‖2

≤ Nε.

To estimate ‖(L[κ])−1‖2, we have on one hand the classical result ‖(L[κ])−1‖2 ≥ ‖(L[κ])‖−1
2 .

On the other hand, by the operator continuity it is easy to see that

‖(L[κ])‖2 ≤ C(κ,Γ),

the results follows directly from the latter estimation. For κ = 0, the proof is analogous

with the corresponding change in the spaces. �

We can also estimate the error introduced by the compression algorithm in terms of

the energy norm. In order to do so, define (λεN)i :=
∑N

m=0(uεi)mq
i
m in Γi. By the same

arguments in the above proof, we obtain

‖λN − λεN‖H̃− 1
2 (Γ)
≤ C1(κ,Γ) ‖g‖

H(Γ)
1
2

εN3/2

C(κ,Γ)− εN
,

where g is the same that in Problem 2.3.3, C1 is the constant of Theorem 2.4.3, and an extra

factor N1/2 appears as ‖u‖2 ≤ N1/2 ‖λN‖H̃− 1
2 (Γ)
≤ C1N

1/2 ‖g‖
H

1
2 (Γ)

.

REMARK 2.6.3. We can use the compression algorithm to make a fast version of the

matrix-vector product, by splitting the product into blocks, and using the sparse represen-

tation for the cross interaction blocks.

REMARK 2.6.4. For the Laplace case κ = 0, it is also possible to obtain sparse ap-

proximations of the self-interaction blocks. We refer to (Jiang & Xu, 2010), for details, and

also for a more complete analysis of similar the compression algorithm.
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(b) Helmholtz κ = 10

FIGURE 2.1. H̃−
1
2 (Γ̂) errors, for g(t) = |t|p. Values m are slopes of

log10(Error) with respect to log10N . Errors are computed with respect to an
overkill solution with N = 440.

2.7. Numerical Results

2.7.1. Convergence Results

In what follows, we show experimental results confirming the convergence rates proven

in Theorem 2.4.21. Let us first consider the case of a single arc Γ̂ and an excitation g with

limited regularity. Figure 2.1 presents convergence results for different excitation func-

tions. The first three are of the form g(t) = |t|p, with p = 3, 5, 7. For these, g is in Cp
v (Γ̂).

Hence, by Theorem 2.4.21, we should observe the following error bounds:

Error := ‖λ− λN‖H̃− 1
2 (Γ̂)

= O(N−p).

Thus, we have that the error as a function of N has a slope of −p in logarithmic scale.

The fourth case has as right-hand side g(t) = t2, and, being an entire function, we observe

the corresponding super-algebraic convergence. Figure 2.2 shows convergence results for

geometries with limited regularity and smooth excitation. Just as in the case of source terms

of limited regularity, we obtain the convergence rates stated in Theorem 2.4.21. Lastly, we

consider the case of multiple arcs and where the excitation function and the geometry are

smooth (see Figure 2.3). We observe exponential error convergence in the polynomial
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(b) Helmholtz κ = 10

FIGURE 2.2. H̃−
1
2 (Γ) errors, for Γ given by r(t) = (t, |t|p) and g(t) = t2. Values

m are slopes of log10(Error) with respect to log10N . Errors are computed with
respect to an overkill solution with N = 440.

degree, which is the same for each arc, as predicted. We also observe that, as a function of

κ, the errors are increasingly bounded by below. Our experiments shows that this effect is

caused by errors in the solution of the linear system, which is currently solved by a direct

method (the residual ‖L[κ]λ − b‖2 dominates the convergence error, see Figure 2.3(C)).

For the sake of brevity, we will not attempt to solve this anomaly, as it is a common issue

when computing waves scattered by disjoint domains (cf. (Ganesh & Hawkins, 2011)). We

remark that the H̃−1/2 norms are computed using expression (2.9).

2.7.2. Compression Results

We considered the test cases presented in Figure 2.3. Tables 2.1, 2.2 showcase different

measurements of the performance of the compression algorithm. We denote by: % NNZ,

the percentage of non zero entries of the compressed matrix; Rel. Error, to the maximum

absolute value between of the difference of uncompressed and compressed matrices; GM-

RES Full, the time (in seconds) that takes to solve the full linear system using GMRES with

a tolerance of 1e − 8; and, GMRES Sparse, same as last but with compressed matrix and

an optimized version of the matrix vector product. For the sake of completeness, we have

also included the assembly times (in seconds) for the full matrix (Full Assembly), and the
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(c) Residuals: ‖Lλ− b‖2 (d) Condition Number.

FIGURE 2.3. In (a), a smooth geometry with M = 28 open arcs, each with a
parametrization (at, c sin(bt)) + d, where a ∈ [0.45, 0.50], b ∈ [1.0, 1.5], c ∈
[1.0, 1.3], d ∈ [2, 3.5] × [11, 25] ,and t ∈ [−1, 1]. In (b), convergence for the
corresponding geometry and different wavenumbers using as right-hand side the
trace of g(x) = exp(−iκ̂x · y), where κ̂ = κ for k > 0, 0̂ = 5, y = (cosα, sinα),
and α = π/4. The x-axis denotes the number of polynomials used per arc. Errors
are computed with respect to an overkill solution with N = 500 per arc. The
mean arc lengths in terms of the wavelength are 8λ, 16λ, 32λ for κ = 25, 50, 100
respectively. In (c) the error in the solution of the linear system for the different
cases, and in (d) the corresponding conditioning number (in norm 2) for the linear
systems.

compressed one (Sparse Assembly), and observe that they do not differ much as the most

expensive part for this relative small problems is the computation of the self-interaction

matrices.
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TABLE 2.1. Compression performance ε = 1e− 10, κ = 100

Order % NNZ Rel. Error GMRES Full GMRES Sparse Full Assembly Sparse Assembly

Lmax = 1

250 24 1e-10 25 12 109 96
300 24 1e-10 37 15 163 148
350 24 1e-10 48 19 215 198
400 24 1e-10 62 23 309 294

Lmax = 2

250 6 1e-10 25 8 109 95
300 6 1e-10 37 10 163 147
350 6 1e-10 48 12 215 198
400 6 1e-10 62 13 309 285

Lmax = 3

250 5 1e-10 25 7 109 95
300 3 1e-10 37 9 163 147
350 2 1e-10 48 9 215 196
400 1.7 1e-10 62 11 309 286

2.8. Concluding remarks

The present work presents a high-order discretization method for the wave scatter-

ing by multiple disjoint arcs based on weighted polynomials bases with proven conver-

gence rates similar to the classical interpolation theory of smooth functions. As an efficient

solver for the forward problem, our method could be easily used for solving optimization

or inverse problems, tasks which are currently under development. Still, for increasing fre-

quencies and numbers of arcs, we remark that the solution of the resulting linear system

can become a bottleneck, thus requiring further improvements.
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TABLE 2.2. Compression performance ε = 1e− 14, κ = 100

Order % NNZ Rel. Error GMRES Full GMRES Sparse Full Assembly Sparse Assembly

Lmax = 1

250 24 1e-14 25 12 109 96
300 24 1e-14 37 16 163 149
350 25 1e-14 48 20 215 199
400 25 1e-14 62 24 309 294

Lmax = 2

250 6 1e-14 25 8 109 96
300 6 1e-14 37 10 163 147
350 7 1e-14 48 12 215 199
400 7 1e-14 62 14 309 284

Lmax = 3

250 5 1e-14 25 8 109 96
300 4 1e-14 37 10 163 148
350 5 1e-14 48 11 215 196
400 4 1e-14 62 12 309 283
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Chapter 3. FAST SOLVER FOR QUASI-PERIODIC 2D-HELMHOLTZ SCATTER-

ING IN LAYERED MEDIA

3.1. Introduction

A vast number of scientific and engineering applications rely on harnessing acoustic

and electromagnetic wave diffraction by periodic and/or multilayered domains. Current

highly demanding operation conditions for such devices require solving thousands of spe-

cific settings for design optimization or the quantification of shape or parameter uncer-

tainties in the relevant quantities of interest, challenging the scientific computing commu-

nity to continuously develop ever more efficient, fast and robust solvers (cf. (Bao, 2004;

Y.-B. Chen & Zhang, 2007; E. G. Loewen & Popov, 2018; Silva-Oelker, Aylwin, Jerez-

Hanckes, & Fay, 2018; Silva, Jerez-Hanckes, & Fay, 2019) and references therein). As-

suming impinging time-harmonic plane waves, scattered and transmitted fields have been

solved by a myriad of mathematical formulations and associated solution schemes. These

range from volume variational formulations to various boundary integral representations

and equations (cf. (Ammari, 1998; Ammari & Nédélec, 2001; Bao & Dobson, 2000; Bar-

nett & Greengard, 2011; Dobson & Friedman, 1992; Nakata & Koshiba, 1990)), pure or

coupled implementations of finite and boundary element methods (cf. (Ammari & Bao,

2008; Ammari & Nédélec, 2001; Elschner & Schmidt, 1998; Nédélec & Starling, 1991;

Silva-Oelker, Aylwin, et al., 2018) or (Popov, 2012, Chapter 5)) and Nyström methods

(Bruno & Haslam, 2009; Bruno, Shipman, Turc, & Venakides, 2016; Cho & Barnett, 2015;

Greengard, Ho, & Lee, 2014; Liu & Barnett, 2016).

In this work, we build upon our theoretical review given in (Aylwin, Jerez-Hanckes, &

Pinto, 2020) and present a spectral Galerkin method for solving second-kind direct bound-

ary integral equations (BIEs) for the Helmholtz transmission problem for two-dimensional,

periodic multi-layered gratings with smooth interfaces. Contrary to the low-order local ba-

sis functions used in the standard boundary element method, spectral bases are composed

of high-order polynomials whose support lie on the whole scatterer boundary or on large

portions of it. Successfully employed on two- and three-dimensional scattering problems
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(Jerez-Hanckes & Pinto, 2018; Hu, 1995; Graham & Sloan, 2002), the main advantage of a

spectral discretization is the ability to converge at a super-algebraic rate whenever solutions

are smooth enough. Hence, our proposed method can in practice compete with Nyström

methods while simultaneously inheriting all of the theoretical aspects of classical Galerkin

methods.

In two dimensions, spectral methods are closely related to the theory of periodic

pseudo-differential operators (Saranen & Vainikko, 2013), since the discretization through

spectral elements can be interpreted as a truncation of the associated Fourier series where

the action of the operators is well understood. We show that wave scattering by periodic

domains is closely connected to the bounded domain case, making it possible to reuse al-

most all the pseudo-differential operator theory for our analysis. Key to our analysis are

the results in (Nédélec & Starling, 1991; Starling & Bonnet-Bendhia, 1994; Elschner &

Schmidt, 1998) regarding the unique solvability and eigenvalues of the associated volume

problem. From here, we deduce that our BIE is uniquely solvable except at a countable set

of wavenumbers composed of Rayleigh-Wood frequencies—wavenumbers for which the

sum defining the quasi-periodic Green’s function is not convergent—and of eigenvalues of

the Helmholtz transmission problem. Mindless of the several remedies developed to tackle

Rayleigh-Wood anomalies through BIEs (Cho & Barnett, 2015; Bruno & Delourme, 2014;

Bruno, Shipman, Turc, & Stephanos, 2017; Bruno & Fernandez-Lado, 2017), we choose

to avoid them as they are not captured by our previous analysis in (Aylwin, Jerez-Hanckes,

& Pinto, 2020).

Our discretization method employs a quasi-periodic basis so that techniques forcing the

quasi-periodicity of the discrete solutions are not necessary (cf. (Greengard et al., 2014;

Y. Zhang & Gillman, 2019)). Instead, an accurate approximation of the quasi-periodic

Green’s function is required in order to extract its Fourier coefficients through the fast

Fourier transform (FFT). Moreover, we prove that the chosen discretization basis enjoys

a super-algebraic convergence rate on the degrees of freedom, which we then confirm

through numerical experiments. In (Nguyen, 2012), a similar quasi-periodic exponential

basis was employed to approximate solutions of a volume integral formulation.
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The article is structured as follows. Section 3.2 presents the notation used throughout

as well as the required quasi-periodic Sobolev spaces setting following (Aylwin, Jerez-

Hanckes, & Pinto, 2020). In Section 3.3 we state the Helmholtz transmission problem

for a multi-layered grating and study its solvability. Section 3.4 is concerned with the

properties of quasi-periodic boundary integral operators (BIOs) along with an existence

and uniqueness result for our BIEs. Section 3.5 provides rigorous error convergence rates

of the spectral method and briefly describes the numerical algorithm used to compute the

matrix entries associated with each integral operator. Numerical results are discussed in

Section 3.6, followed by concluding remarks on Section B.5.

3.2. Notation and Functional Space Setting

3.2.1. General Notation

We denote the imaginary unit ı. Boldface symbols will denote vectorial quantities

and will use greek and roman letters for data over boundaries and volume, respectively.

Canonical vectors in R2 are denoted e1, e2 respectively. Also, we make use of the symbols

., & and ∼= to avoid specifying constants irrelevant for the corresponding analysis.

Let H be a given Banach space. We shall denote its norm as ‖·‖H and its dual space

by H ′ (set of antilinear functionals over H) with dual product denoted by 〈·, ·〉. If H is

a Hilbert space, the inner product between two of its elements, x and y, is denoted as

(x, y)H . Moreover, if H is a Hilbert space over the complex field, the inner product will be

understood in the anti-linear sense.

For an open domain Ω⊂R2, its boundary shall be denoted as ∂Ω. Moreover, for any

O⊂R2 such that Ω ⊆ O, we introduce the closure of Ω relative to O as Ω
O

:= Ω ∩ O and

the boundary of Ω relative to O as ∂OΩ := Ω
O \ Ω.

For n ∈ N0 := N ∪ {0}, we denote by Cn(Ω) the set of scalar functions over Ω

with complex values and continuous derivatives up to order n. C∞(Ω) refers to the space

of functions with infinite continuous derivatives over Ω. We shall also make use of the
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following subset of C∞(Ω):

D(Ω) := {u ∈ C∞(Ω) : supp u ⊂⊂ Ω}.

The space of p-integrable functions (for p ≥ 1) with complex values over Ω is denoted as

Lp(Ω).

We say that a one-dimensional Jordan curve Γ is of class Cr,1, for r ∈ N0, if it may be

parametrized by a function z : (0, 2π) → Γ which has r Lipschitz-continuous derivatives

and a non-vanishing tangential vector. The first derivative of the parametrization is denoted

as ż. Moreover, we say Γ is of class C∞ if it is of class Cr,1 for every r ∈ N0 (we will also

use the notation C∞,1 to refer to the same class).

Throughout the following sections, we will consider periodic geometries along e1 with

a fixed period of 2π. Moreover, we say that a continuous function f is a θ-quasi-periodic

function if,

f(x+ 2πe1) = eı2πθf(x) ∀x ∈ R2,

where the quasi-periodic shift θ is always assumed to be in [0, 1). Finally, we define the

canonic periodic cell on R2 as G := (0, 2π)× R.

3.2.2. Quasi-periodic Sobolev Spaces

We denote by Dθ(R2) the space of θ-quasi-periodic functions in C∞(R2) that vanish

for large |x2|, and denote by D′θ(R2) the space of θ-quasi-periodic distributions, which can

be seen as the dual space of Dθ(R2) (cf. (Aylwin, Jerez-Hanckes, & Pinto, 2020, Proposi-

tion 2.4)). For G as before, we introduce Dθ(G) the space of restrictions to G of elements

in Dθ(R2). Moreover, for any open domain Ω ⊂ G we define Dθ(Ω) as the set of ele-

ments of Dθ(G) with compact support on Ω and D′θ(Ω) as the space of elements of D′θ(G)

restricted to Dθ(Ω). In what follows, for all j ∈ Z we define jθ := j + θ.
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PROPOSITION 3.2.1 (Proposition 2.6 in (Aylwin, Jerez-Hanckes, & Pinto, 2020)). Ev-

ery u ∈ Dθ(R2) can be represented as a Fourier series, i.e.

u(x) =
∑
j∈Z

uj(x2)eıjθx1 with uj(x2) :=
1

2π

∫ 2π

0

e−ıjθx1u(x) dx1,

so that uj ∈ D(R). On the other hand, every element F ∈ D′θ(R2) can be identified with a

formal Fourier series given by

∑
j∈Z

Fje
ıjθx1 , with Fj :=

D(R) → C

v 7→ F (v(x2)eıjθx1)
,

where Fj ∈ D′(R) for all j ∈ Z and F (u) =
∑
j∈Z

Fj(uj).

Let s ∈ R. We define the θ-quasi-periodic Sobolev space of order s on G as follows,

Hs
θ (G) :=

{
F ∈ D′θ(R2)

∣∣∣∣ ∑
j∈Z

∫
R
(1 + j2

θ + |ξ|2)s
∣∣∣F̂j(ξ)∣∣∣2 dξ <∞

}
,

wherein F̂j is the Fourier transform (in distributional sense (Steinbach, 2007, Section 2.4))

of Fj , defined as in Proposition 3.2.1. Additionally, we introduce the common notation

L2
θ(G) := H0

θ (G) and note that, as in the standard case, Hs
θ (G) is a Hilbert space (Aylwin,

Jerez-Hanckes, & Pinto, 2020, Proposition 2.8). Furthermore, for an open proper subset

Ω of G, we define Hs
θ (Ω) as the Hilbert space of restrictions to Ω of elements of Hs

θ (G)

(see (Aylwin, Jerez-Hanckes, & Pinto, 2020, Section 2) and (McLean, 2000, Chapter 3.6)).

Finally, local Sobolev spaces on Ω are defined as

Hs
θ,loc(Ω) := {u ∈ D′θ(Ω) : u ∈ Hs

θ (Ω ∩ {x ∈ G : |x2| < R}) ∀ R > 0} .

3.2.3. Quasi-periodic Sobolev Spaces on Boundaries and Traces

We begin by considering spaces of periodic functions over R. As in (Kress, 2014,

Definition 8.1), (Saranen & Vainikko, 2013, Section 5.3), we define Sobolev spaces on
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[0, 2π] of order s ≥ 0 as follows,

Hs[0, 2π] :=

{
φ ∈ L2((0, 2π)) :

∑
j∈Z

(1 + j2)s |φj|2 <∞

}
,

where {φj}j∈Z are the Fourier coefficients of φ. Quasi-periodic spaces of order s ≥ 0 over

(0, 2π) are defined from Hs[0, 2π] straightforwardly, i.e.,

Hs
θ [0, 2π] :=

{
φ ∈ L2((0, 2π)) : e−ıθtφ(t) ∈ Hs[0, 2π]

}
.

BothHs[0, 2π] andHs
θ [0, 2π] are Hilbert spaces, as are their respective dual spaces, denoted

respectively H−s[0, 2π] and H−sθ [0, 2π] (see (Kress, 2014, Theorem 8.10) and (Aylwin,

Jerez-Hanckes, & Pinto, 2020, Theorem 2.20)). Moreover, for s ∈ R, the inner product

and norm of Hs
θ [0, 2π] are given by:

(u, v)Hs
θ [0,2π] :=

∑
j∈Z

(1 + j2
θ )
suj,θvj,θ and ‖u‖Hs

θ [0,2π] := (u, u)
1
2

Hs
θ [0,2π] ,

wherein, for positive s, we define

uj,θ :=
1

2π

(
u(t), eıjθt

)
L2((0,2π))

,

and the product is extended through duality to negative s (cf. (Aylwin, Jerez-Hanckes, &

Pinto, 2020, Theorems 2.16 and 2.20)).

We continue by considering boundaries which are constructed as the single period of a

x1−periodic Jordan curve of classC∞. Let Γ be one of such curves and let z : (0, 2π)→ Γ

be a parametrization of Γ. Then, for any s ≥ 0, we define the θ-quasi-periodic Sobolev

space of order s on Γ as

Hs
θ (Γ) :=

{
u ∈ L2

θ(Γ) | (u ◦ z)(t) ∈ Hs
θ [0, 2π]

}
.

We define H−sθ (Γ) as the completion of L2
θ(Γ) under the norm given by

‖u‖H−sθ (Γ) := ‖(u ◦ z) ‖ż‖R2 ‖H−sθ [0,2π].
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Norms and inner products for these spaces are given through their respective pullbacks to

Hs
θ [0, 2π] and H−sθ [0, 2π]. Moreover, H−sθ (Γ) is identified with the dual space of Hs

θ (Γ)

(Aylwin, Jerez-Hanckes, & Pinto, 2020, Theorem 2.26) where the duality is given by the

extension of the following anti-linear form:

〈λ, ϑ〉Γ := (λ, ϑ)L2
θ(Γ) , λ, ϑ ∈ L2

θ(Γ). (3.1)

We also define the following space of smooth functions over Γ,

Dθ(Γ) :=

{
φ : Γ→ C

∣∣∣∣ (φ ◦ z)(t) =
n∑

j=−n

φje
ıjθt, for some n ∈ N

}
,

which is dense in Hs
θ (Γ) for any s ∈ R. Finally, we introduce trace operators acting on

quasi-periodic Sobolev spaces. Let Ω be a proper open subset of G such that ∂GΩ = Γ, we

define the following operators for s > 1
2
:

γD : Hs
θ (Ω)→ H

s− 1
2

θ (Γ), γeD : Hs
θ (G \ Ω

G
)→ H

s− 1
2

θ (Γ),

that extend the notion of the restriction operator u 7→ u|Γ to quasi-periodic Sobolev spaces

(Aylwin, Jerez-Hanckes, & Pinto, 2020, Theorem 2.29). In this context, γD and γeD are,

respectively, the interior and exterior Dirichlet traces. Analogously, for s > 3
2
, we denote

the interior and exterior Neumann traces on Ω as

γN : Hs
θ (Ω)→ H

s− 3
2

θ (Γ), γeN : Hs
θ (G \ Ω

G
)→ H

s− 3
2

θ (Γ),

extending the normal derivative u 7→ ∇u|Γ · n, where n is—for both traces—the unitary

normal exterior to Ω. Moreover, introducing the subspace of elements of H1
θ (Ω) with

integrable Laplacian,

Hs
θ,∆(Ω) :=

{
u ∈ H1

θ (Ω) : ∆u ∈ L2
θ(Ω)

}
,

the Neumann trace may be extended as

γN : H1
θ,∆(Ω)→ H

− 1
2

θ (Γ), γeN : H1
θ,∆(G \ Ω

G
)→ H

− 1
2

θ (Γ),
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through integration by parts (cf. (Aylwin, Jerez-Hanckes, & Pinto, 2020, Section 2)). All

the previous results concerning trace operators follow analogously (with obvious modifi-

cations) for both local spaces—in the case that Ω is unbounded—and if Ω is the bounded

space between two non-intersecting periodic curves Γ1 and Γ2. Finally, we denote the

following vector operators

γu := (γDu, γNu)t, γeu := (γeDu, γ
e
Nu)t and [γu]Γ := γeu− γu,

as the interior, exterior and jump trace vectors on Γ, respectively.

3.3. Helmholtz problem in periodic layered media

3.3.1. Geometric Setting

We seek to establish a boundary integral representation for scattered and transmitted

acoustic or electromagnetic fields resulting from plane waves impinging a multi-layered

grating. The domain is described by M ∈ N finite non-intersecting periodic surfaces

{Γ̃i}Mi=1—ordered downwards—separating M + 1 periodic domains {Ω̃i}Mi=0 such that for

0 < i < M it holds ∂Ω̃i = Γ̃i ∪ Γ̃i+1, ∂Ω̃0 = Γ̃1 and ∂Ω̃M = Γ̃M (see Figure 3.1).

Moreover, while all domains {Ω̃i}Mi=0 are unbounded along e1—due to their periodicity—

only two of them, namely Ω̃0 and Ω̃M , are unbounded in the second spatial dimension

(along e2). The restrictions of the aforementioned domains and surfaces to the periodic

cell G are denoted by:

Ωi := Ω̃i ∩G ∀ i ∈ {0, . . . ,M}, Γj := Γ̃j ∩G ∀ j ∈ {1, . . . ,M}.

Additionally, we fix H > 0 so that

M−1⋃
i=1

Ω
G

i ⊂ {x ∈ G : |x2| < H}

holds. We will assume that the interfaces Γi , i ∈ {1, . . . ,M} are all Jordan curves of class

C∞. Furthermore, for each i ∈ {1, . . . ,M}, the exterior and interior trace operators on Γi
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Ω0

Ω1

Ω2

ΩM−1

ΩM

Γ1

Γ2

Γ3

ΓM−1

ΓM

G

FIGURE 3.1. Example of a multi-layered grating. G is highlighted and the dotted
lines represent its boundaries at 0 and 2π.

are understood as

γeD : H1
θ (Ωi−1)→ H

1
2
θ (Γi), γD : H1

θ (Ωi)→ H
1
2
θ (Γi),

γeN : H1
θ,∆(Ωi−1)→ H

− 1
2

θ (Γi) and γN : H1
θ,∆(Ωi)→ H

− 1
2

θ (Γi),

and the normal vector on Γi is chosen to point towards Ωi−1.

3.3.2. Helmholtz transmission problem on periodic media

For a time-dependence e−ıωt for some frequency ω > 0, let the grating described in the

previous subsection be illuminated by an incident plane wave,

u(inc)(x) := eık0·x = eı(k0,1x1+k0,2x2),

where k0 = (k0,1, k0,2) ∈ R2. Furthermore, we denote k0 := |k0|.

For i = 0, . . . ,M , the material filling each domain Ωi is assumed to be homogeneous

and isotropic with refraction index ηi –we assume η0 ≡ 1– and wavenumber ki := ωc−1
i =

ηik0, where ci is the wave speed in Ωi. Throughout this section, we fix θ as the unique real
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in [0, 1) such that θ = k0,1 + n for some integer n and, for all j ∈ Z, we define

β
(0)
j :=


√
k2

0 − j2
θ if k2

0 − j2
θ ≥ 0

ı
√
j2
θ − k2

0 if k2
0 − j2

θ < 0
, β

(M)
j :=


√
k2
M − j2

θ if k2
M − j2

θ ≥ 0

ı
√
j2
θ − k2

M if k2
M − j2

θ < 0
, (3.2)

where as before jθ = j + θ. With these definitions, we can state our volume problem as

follows.

PROBLEM 3.3.1 (Helmholtz transmission problem). We seek u(tot) defined as

u(tot) :=

u
(inc) + u0 in Ω0,

ui in Ωi for i ∈ {1, . . . ,M},

where u0 ∈ H1
θ,loc(Ω0), uM ∈ H1

θ,loc(ΩM) and ui ∈ H1
θ (Ωi) for all 1 ≤ i ≤ M − 1, such

that

− (∆ + k2
i )u

(tot) = 0 in Ωi ∩ {x ∈ G : |x2| ≤ H} , ∀ i ∈ {0, . . . ,M}, (3.3a)

[
γu(tot)]

Γi
= 0 on Γi, ∀ i ∈ {1, . . . ,M}, (3.3b)

u0(x) =
∑
j∈Z

u
(0)
j e

ı
(
β
(0)
j (x2−H)+jθx1

)
for x2 ≥ H, (3.3c)

um(x) =
∑
j∈Z

u
(M)
j e

ı
(
β
(M)
j (x2+H)+jθx1

)
for x2 ≤ −H. (3.3d)

Equation (3.3b) represents the continuity of Dirichlet and Neumann traces across each

interface. This condition can be generalized to include different transmission coefficients

without much effort. The last two conditions, namely (3.3c) and (3.3d), correspond to radi-

ation conditions for u0 and um, also known as the Rayleigh-Bloch expansions (cf. (Nédélec

& Starling, 1991) for a detailed discussion), where {u(0)
j }j∈Z and {u(M)

j }j∈Z are the corre-

sponding Rayleigh coefficients.
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Through an analogous analysis to that presented in (Elschner & Schmidt, 1998, Section

3), one finds that—for a fixed choice of geometries {Γi}Mi=1 and refraction indices {ηi}Mi=1—

Problem 3.3.1 has a unique solution for all but a countable number of wavenumbers k0 as

all wavenumbers ki for i ∈ {1, . . . ,M} depend on k0.

ASSUMPTION 3.1. The wavenumber k0 is such that Problem 3.3.1 has a unique solu-

tion.

We shall make no further analysis of the volume problem as stated above, and limit

ourselves to (Bao, 1997; Bao, Dobson, & Cox, 1995; Kirsch, 1993; Nédélec & Starling,

1991; Starling & Bonnet-Bendhia, 1994; B. Zhang & Chandler-Wilde, 1998; Elschner &

Schmidt, 1998) and references therein for more detailed analyses of the radiation condition

of similar problems.

3.4. Boundary integral equations

Following our previous work (Aylwin, Jerez-Hanckes, & Pinto, 2020), we introduce

the quasi-periodic Green’s function and recall some relevant properties. We then define

the quasi-periodic single and double layer potentials and BIOs spanning from taking their

respective traces on the periodic boundaries {Γi}Mi=1. To conclude this section, we present

an integral representation for the fields {ui}Mi=0 and a proof of unisolvency for the corre-

sponding BIE. As before, θ will denote the quasi-periodic shift, which is assumed to be in

[0, 1).

3.4.1. Quasi-Periodic Fundamental Solution

Consider a positive wavenumber k ∈ R, we recall the definition of the Rayleigh-Wood

frequencies.

DEFINITION 3.4.1. We say k > 0 is a Rayleigh-Wood frequency, if there is j ∈ Z,

such that

|j + θ| = k, (3.4)
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where θ is the previously fixed quasi-periodic shift.

These frequencies correspond to values where the quasi-periodic Green’s function can

not be represented in a traditional manner. While a number of alternatives have been devel-

oped to circumvent this issue (e.g., (Bruno & Fernandez-Lado, 2017; Bruno et al., 2017;

Cho & Barnett, 2015)) their analysis is out of the scope of our current work. Hence, in

what follows, we will work under the following assumption over the wavenumber k.

ASSUMPTION 3.2. The wavenumber k > 0 is not a Rayleigh-Wood frequency for the

given θ ∈ [0, 1) .

Under Assumption 3.2 we can define the θ-quasi-periodic Green’s function as (cf. (Nédélec

& Starling, 1991; Linton, 1998) and references therein)

Gk
θ(x,y) := lim

m→∞

m∑
n=−m

e−ı2πnθGk(x+ 2πne1,y), (3.5)

for all x, y in R2 such that x − y 6= 2πne1 for all n ∈ Z, wherein Gk(x,y) is the

fundamental solution for the Helmholtz equation with wavenumber k, namely,

Gk(x,y) =
ı

4
H

(1)
0 (k‖x− y‖R2),

where H(1)
0 (·) denotes the zeroth-order first kind Hankel function. Moreover, the quasi-

periodic Green’s function is a fundamental solution of the Helmholtz equation in the fol-

lowing sense:

−(∆y+k2)Gk
θ(x,y) =

∑
n∈Z

δ(x+ 2πne1)eı2πnθ

for all x ∈ R2 and satisfies the radiation condition specified in the preceding section

(cf. (Nédélec & Starling, 1991, Proposition 3.1)).

REMARK 3.4.2. If Assumption 3.2 is not met, the sum in (3.5) fails to converge for

any pair of x, y ∈ R2.
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3.4.2. Layer Potentials and Boundary Integral Operators

In this section, we will assume a given boundary Γ satisfying the following assumption.

ASSUMPTION 3.3. Given r ∈ [0,∞], the interface Γ is a Jordan curve of class Cr,1.

Moreover, given Gamma as before, we denote by Ω the part of G below Γ (see Figure

3.1). For φ ∈ Dθ(Γ) we define the single and double layer potentials as

SLkθ,Γφ(x) :=

∫
Γ

Gk
θ(x,y)φ(y) dy, DLkθ,Γφ(x) :=

∫
Γ

γn,yG
k
θ(x,y)φ(y) dy, (3.6)

where γn,y denotes the interior (with respect to Ω) Neumann trace operator acting on func-

tions with argument y.

LEMMA 3.4.3 (Theorems 4.7 and 4.10 in (Aylwin, Jerez-Hanckes, & Pinto, 2020)).

Let k and Γ be as in Assumptions 3.2 and 3.3 with r ≥ 0, respectively. Then, the single and

double layer potentials can be extended as continuous operators acting on Sobolev spaces

as follows,

SLkθ,Γ : H
s− 1

2
θ (Γ)→ Hs+1

θ,loc(G) and DLkθ,Γ : H
s+ 1

2
θ (Γ)→ Hs+1

θ,loc(G \ Γ), for |s| < 1

2
.

We then define BIOs by taking traces of the layer potentials as follows

Vkθ,Γ := γDSLθ,Γ K′kθ,Γ := γNSLθ,Γ +
1

2
I,

Wk
θ,Γ := −γNDLθ,Γ Kkθ,Γ := γDDLθ,Γ −

1

2
I.

(3.7)

Moreover, due to the jump properties of the layer potentials (Aylwin, Jerez-Hanckes, &

Pinto, 2020, Lemma 4.11), the following relations hold:

Vkθ,Γ = γeDSLθ,Γ, K′kθ,Γ = γeNSLθ,Γ −
1

2
I,

Wk
θ,Γ = −γeNDLθ,Γ, Kkθ,Γ = γeDDLθ,Γ +

1

2
I.

(3.8)

REMARK 3.4.4. When considering interior and exterior traces acting on layer poten-

tials, note that the normal vector on Γ is to be fixed so that the only difference between

exterior and interior traces is the direction from which we approach Γ. Additionally, note
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that, having fixed the normal vector to Γ, the choice of trace taken in the definition of Wk
θ,Γ

is arbitrary and makes no difference.

LEMMA 3.4.5 (Theorem 4.10 in (Aylwin, Jerez-Hanckes, & Pinto, 2020)). Let k and

Γ be as in Assumptions 3.2 and 3.3 with r ≥ 0, respectively, and let |s| < 1
2
. Then, the

BIOs satisfy the following continuity conditions

Vkθ,Γ : H
s− 1

2
θ (Γ)→ H

s+ 1
2

θ (Γ), Wk
θ,Γ : H

s+ 1
2

θ (Γ)→ H
s− 1

2
θ (Γ),

K′kθ,Γ : H
s− 1

2
θ (Γ)→ H

s− 1
2

θ (Γ), Kkθ,Γ : H
s+ 1

2
θ (Γ)→ H

s+ 1
2

θ (Γ).

3.4.2.1. Compacteness Properties

Until this point, we have established continuity properties of the four BIOs defined

in (3.7). However, the BIEs we consider in the coming section require the subtraction of

two instances of the same BIO with different wavenumbers. This will require a number of

results from pseudo-differential operator theory (Saranen & Vainikko, 2013) as well as a

version of the Rellich theorem on quasi-periodic Sobolev spaces on boundaries. After our

analysis, we will see that the difference between any two of the operators in (3.7)—with

different wavenumbers—will result in a compact operator.

THEOREM 3.4.6 (Rellich Theorem for quasi-periodic Sobolev spaces). Let s1, s2 be

real numbers such that s1 < s2 and θ ∈ [0, 1). Then, Hs2
θ (Γ) is compactly embedded in

Hs1
θ (Γ).

PROOF. Follows directly from the definition of the quasi-periodic spaces and the result

for standard Sobolev spaces (see (Kress, 2014, Theorem 8.3)). �

REMARK 3.4.7. No smoothness assumptions are needed for the proof of the previous

theorem. Thus, it can be extended to Lipchitz boundaries for any pair of real numbers s1,

s2 < 1, and potentially less regular cases if we restrict s1, s2 to be non-negative.

THEOREM 3.4.8 (Theorem 6.1.1 in (Saranen & Vainikko, 2013)). Let a : R×R→ C

be a bi-periodic function of class C∞ and S be a 2π−periodic distribution in R. Consider
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the following formal operator acting on a periodic smooth function u ∈ C∞(R):

Au(s) =

∫ 2π

0

S(s− t)a(s, t)u(t)dt ∀ s ∈ R, (3.9)

where integration is to be understood as a duality pairing. Furthermore, let us assume the

Fourier coefficients of S to behave as

|Sn| . |n|p,

for some p ∈ R. Then, for any s ∈ R, A in (3.9) may be continuously extended as an

operator mapping from Hs[0, 2π] to Hs−p[0, 2π], i.e.,

A : Hs[0, 2π]→ Hs−p[0, 2π].

We also recall a classical result from Fourier analysis (c.f. (Taibleson, 1967)).

LEMMA 3.4.9. Let m ∈ N, f : R → C be a periodic Cm-class function such that its

distributional derivative of orderm+1 belongs toL1((0, 2π)). Then, its Fourier coefficients

{fn}n∈Z are such that

|fn| . |n|−m−1.

In order to employ Theorem 3.4.8 we will need to express the quasi-periodic BIOs in

a convenient way: with periodic functions as kernels. Let k and Γ be as in Assumptions

3.2 and 3.3, respectively. We begin by considering a periodic version of the fundamental

solution in (B.26) and its derivatives on Γ as

Ĝk
θ(s, t) := e−ıθ(s−t)Gk

θ(z(s), z(t)), (3.10)

which may be expressed as

Ĝk
θ(s, t) = S(t− s)Jkθ (s, t) +Rk

θ(s, t), (3.11)
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with

S(t) := − 1

2π
log

∣∣∣∣2 sin
|t|
2

∣∣∣∣ , (3.12)

Jkθ (s, t) := e−ıθ(s−t)
∞∑

j=−∞

J0(k‖z(s) + 2πje1 − z(t)‖)e−ı2πjθχε(s− t+ 2πj),

where J0(·) is the zeroth-first kind Bessel function, ε ∈ (0, 2π) and χε(·) is a smooth

function satisfying

χε(s) = 0 if |s| > ε and χε(s) = 1 if |s| < 1

2
ε,

and

Rk
θ(s, t) = Ĝk

θ(s, t)− S(t− s)Jkθ (s, t).

Using known expansions of the Hankel functions (see (Abramowitz & Stegun, 1965, 9.1.12-

9.1.13)) one can check that Rk
θ belongs to C∞(R× R).

Before we proceed any further, it is necessary to introduce a second wavenumber.

We will denote k̃ > 0 a wavenumber (not necessarily different from k) that also satisfies

Assumption 3.2.

PROPOSITION 3.4.10. Let k and k̃ satisfy Assumption 3.2, and let Γ satisfy Assumption

3.3 with r = ∞. Consider Vkθ and Vk̃θ the weakly singular BIOs on Γ defined in (3.7) and

where we have dropped the Γ subscript for brevity. Both operators may be considered as

pseudo-differential operators of order −1, whence

Vkθ : Hs
θ (Γ)→ Hs+1

θ (Γ), Vk̃θ : Hs
θ (Γ)→ Hs+1

θ (Γ).

Moreover, the operator Vk,k̃θ := Vkθ − Vk̃θ can be extended to

Vk,k̃θ : Hs
θ (Γ)→ Hs+3

θ (Γ),

as a bounded linear operator for every s ∈ R.
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PROOF. That Vkθ (and Vk̃θ ) may be extended as claimed follows directly from Theorem

3.4.8, the kernel representation (3.11) and the decay of the Fourier coefficients of S(t) in

(3.12) (cf. (Saranen & Vainikko, 2013, Example 5.6.1)). Take µ ∈ Dθ(Γ), we have that(
Vk,k̃θ (µ) ◦ z

)
(s) = eıθs

∫ 2π

0

(
Ĝk
θ(s, t)− Ĝk̃

θ(s, t)
)
e−ıθt(µ ◦ z)(t)‖z′(t)‖dt

as a Lebesgue integral. Moreover,

Ĝk
θ(s, t)− Ĝk̃

θ(s, t) = S(t− s)
(
Jkθ (s, t)− J k̃θ (s, t)

)
+
(
Rk
θ(s, t)−Rk̃

θ(s, t)
)
. (3.13)

Employing Lemma 3.4.9, Theorem 3.4.8 and (Abramowitz & Stegun, 1965, Equation

9.1.13) we see that the second term of the right-hand side of (3.13) gives rise to a bounded

operator from Hs[0, 2π] to Hs+p[0, 2π] for any p > 0. On the other hand, the first term in

the right-hand side of (3.13) may be decomposed as

S(t− s)
(
Jkθ (s, t)− J k̃θ (s, t)

)
=
(
|sin(t− s)|2 S(t− s)

)(Jkθ (s, t)− J k̃θ (s, t)

|sin(t− s)|2

)
.

One can see (cf. (Abramowitz & Stegun, 1965, Equation 9.1.12)) that the term

(Jkθ (s, t)− J k̃θ (s, t)) |sin(t− s)|−2 ,

belongs to C∞(R× R), whereas the term |sin(t− s)|2 S(t− s) give rise to an operator of

order −3. In fact, its Fourier transform is

− 1

2π

∫ 2π

0

sin(t)2 log

∣∣∣∣2 sin
t

2

∣∣∣∣ eıntdt =

− 1

2π

∫ 2π

0

log

∣∣∣∣2 sin
t

2

∣∣∣∣ (eı(n+2)t + eı(n−2)t − 2eı(n)t)dt = O(n−3),

where the last equality follows from (Saranen & Vainikko, 2013, Example 5.6.1). Finally,

define

V̂k,k̃θ (µ)(s) := e−ıθsVk,k̃θ (µ) ◦ z(s).
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Then,

‖Vk,k̃θ (µ)‖Hs
θ (Γ)
∼= ‖Vk,k̃θ (µ) ◦ z‖Hs

θ [0,2π] = ‖V̂k,k̃θ (µ)(s)‖Hs[0,2π]. (3.14)

We may now bound the last term in (3.14) by Theorem 3.4.8:

‖V̂k,k̃θ (µ)‖Hs+3[0,2π] . ‖µ‖Hs
θ (Γ).

The proof is completed by the density of Dθ(Γ) in the corresponding Sobolev space. �

For the hyper-singular BIO, a similar result requires a technical lemma. To this end,

let us define the tangential curl operator:

curlΓ ϕ :=
1

‖ż(t)‖R2

d
dt

(ϕ ◦ z)(t).

for any ϕ ∈ Dθ(Γ) and where z is a suitable (arbitrary) parametrization of Γ.

LEMMA 3.4.11. Let k and Γ satisfy Assumptions 3.2 and 3.3 for r = 0, respectively,

and let λ and ϕ belong to Dθ(Γ). Then,

〈Wk
θ(λ), ϕ〉Γ = 〈Vkθ(curlΓ λ), curlΓ ϕ〉Γ + 〈qVkθ(λ), ϕ〉Γ,

where 〈·, ·〉Γ represents the duality product between Hs
θ (Γ) and H−sθ (Γ) for any s > 0 and

qVkθ is the extension by density of the operator given by

〈qVkθ(λ), ϕ〉Γ := −k2

∫
Γ

∫
Γ

n(x) · n(y)Gk
θ(x,y)λ(y)ϕ(x) dy dx.

PROOF. Notice that for λ, ϕ in Dθ(Γ), it holds that

〈curlΓ λ, ϕ〉Γ =

∫ 2π

0

d(λ ◦ z)(t)

dt
(ϕ ◦ z)(t) dt = −

∫ 2π

0

d(ϕ ◦ z)(t)

dt
(λ ◦ z)(t) dt,

where the border terms cancel each other out due to the quasi-periodicity of λ and ϕ.

Hence, the result for quasi-periodic functions follows verbatim from the standard case (see,

for instance, (Steinbach, 2007, Theorem 6.15)). �
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COROLLARY 3.4.12. Under the assumptions of Proposition 3.4.10, consider Wk
θ , and

Wk̃
θ , the hyper-singular operators defined as in (3.7) and where we drop the Γ subscript.

The operator Wk,k̃
θ := Wk

θ −Wk̃
θ can be extended to

Wk,k̃
θ : Hs

θ (Γ)→ Hs+1
θ (Γ),

as a bounded linear operator for every s ∈ R.

PROOF. Let λ, ϕ in Dθ(Γ). By Lemma 3.4.11, we have that

〈Wk,k̃
θ (λ), ϕ〉Γ = 〈Vk,k̃θ (curlΓ λ), curlΓ ϕ〉Γ + 〈(qVkθ − qVk̃θ)(λ), ϕ〉Γ.

Using Proposition 3.4.10, one obtains∣∣∣〈Wk,k̃
θ (λ), ϕ〉Γ

∣∣∣ . ‖ curlΓ λ‖Hs−1
θ (Γ)‖ curlΓ ϕ‖H−s−2

θ (Γ) + ‖λ‖Hs
θ (Γ)‖ϕ‖H−s−1

θ (Γ).

Where the inequality for the second term of the right-hand side is obtained using that

both (qVkθ ,
qVk̃θ) are operators of order −1 (this follow from Theorem 3.4.8 and (Saranen &

Vainikko, 2013, Example 5.6.1). Then, since the curlΓ operator is a first-order differential

operator, it holds that

|〈Wk,k̃
θ (λ), ϕ〉Γ| . ‖λ‖Hs

θ (Γ)‖ϕ‖H−s−1
θ (Γ),

and the result follows by a duality argument and recalling the density of Dθ(Γ) in our

quasi-periodic Sobolev spaces. �

We now consider the Dirichlet traces of the double layer potential and its adjoint,

defined in Section B.4 as the principal value integrals,

(K′kθ (µ) ◦ r)(s) = −
∫ 2π

0

K′k
θ(s, t)(µ ◦ z)(t)‖ż(t)‖ dt,

(Kkθ(λ) ◦ r)(s) = −
∫ 2π

0

Kk
θ (s, t)(λ ◦ z)(t)‖ż(t)‖ dt,
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for which we have dropped the Γ index momentarily, and where the kernels are given by

(Bruno & Delourme, 2014, Section 3):

K′k
θ(s, t) := − ık

4

∞∑
j=−∞

(
H

(1)
1 (k‖z(s) + 2πje1 − z(t)‖)
‖z(s) + 2πje1 − z(t)‖

e−ı2πjθ ×

(z(s) + 2πje1 − z(t)) · n(z(s))

)
,

Kk
θ (s, t) :=

ık

4

∞∑
j=−∞

(
H

(1)
1 (k‖z(s) + 2πje1 − z(t)‖)
‖z(s) + 2πje1 − z(t)‖

e−ı2πjθ ×

(z(s) + 2πje1 − z(t)) · n(z(t))

)
.

where n denotes the unitary normal vector exterior to Ω (recall Γ := ∂GΩ). These can be

written as (Abramowitz & Stegun, 1965, Equation 9.1.11)

K′k
θ(s, t) = S1(t− s)Jk1,θ(s, t) +Rk

1,θ(s, t)

Kk
θ (s, t) = S1(t− s)Jk2,θ(s, t) +Rk

2,θ(s, t),
(3.15)

wherein

S1(t− s) := − 1

2π
log

(
2 sin

(
1

2
|t− s|

))
| sin(t− s)|2,

Jk1,θ(s, t) := −k
∞∑

j=−∞

(
J1(k‖z(s) + 2πje1 − z(t)‖)
‖z(s) + 2πje1 − z(t)‖

e−ı2πjθ×

(z(s) + 2πje1 − z(t)) · n(z(s))

| sin(t− s)|2
χε(t− 2πj − s)

)
,

Jk2,θ(s, t) := k
∞∑

j=−∞

(
J1(k‖z(s) + 2πje1 − z(t)‖)
‖z(s) + 2πje1 − z(t)‖

e−ı2πjθ×

(z(s) + 2πje1 − z(t)) · n(z(t))

| sin(t− s)|2
χε(t− 2πj − s)

)
,
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and

Rk
1,θ(s, t) := K′k

θ(s, t)− S1(t− s)Jk1,θ(s, t),

Rk
2,θ(s, t) := Kk

θ (s, t)− S1(t− s)Jk2,θ(s, t).

As in the proof of Proposition 3.4.10, we have that |S1,n| . n−3, whence, arguing as in

Proposition 3.4.10, we have the following result.

PROPOSITION 3.4.13. For k and Γ as in Assumptions 3.2 and 3.3 with r =∞, respec-

tively, and for any s ∈ R, it holds that

K′kθ : Hs
θ (Γ)→ Hs+3

θ (Γ), Kkθ : Hs
θ (Γ)→ Hs+3

θ (Γ),

are bounded and linear operators.

As in the case of the weakly and hyper-singular operator, we define:

K′
k,k̃
θ := K′

k
θ − K′

k̃
θ , Kk,k̃θ := Kkθ − Kk̃θ .

Finally, we obtain our compactness result.

PROPOSITION 3.4.14. Let k and k̃ satisfy Assumption 3.2, let Γ be as in Assumption

3.3 with r =∞. Then, for s ∈ R, the following operators

Vk,k̃θ : Hs
θ (Γ)→ Hs+3−ε

θ (Γ), Wk,k̃
θ : Hs

θ (Γ)→ Hs+1−ε
θ (Γ),

Kk,k̃θ : Hs
θ (Γ)→ Hs+3−ε

θ (Γ), K′
k,k̃
θ : Hs

θ (Γ)→ Hs+3−ε
θ (Γ),

are compact for every ε > 0.

PROOF. The result is direct from the mapping properties shown and Theorem 3.4.6.

�

Lastly, we require the compactness of the operator resulting from taking traces of the

single and double layer operators acting on densities lying on a boundary Γ1 over another
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x1-periodic curve, say Γ2, that does not intersect with Γ1. Let us denote by γ2
d , γ

2
n Dirich-

let and Neumann traces over Γ2, respectively. Then, by an application of Lemma 3.4.9,

Theorem 3.4.6 and Theorem 3.4.8, we obtain the following result.

PROPOSITION 3.4.15. Let k satisfy Assumption 3.2. If Γ1 and Γ2 are x1-periodic C∞-

Jordan curves then the application of the following traces to the layer potentials:

γ2
DSL

k
θ,Γ1

: Hs1
θ (Γ1)→ Hs2

θ (Γ2), γ2
NSL

k
θ,Γ1

: Hs1
θ (Γ1)→ Hs2

θ (Γ2),

γ2
DDL

k
θ,Γ1

: Hs1
θ (Γ1)→ Hs2

θ (Γ2), γ2
NDL

k
θ,Γ1

: Hs1
θ (Γ1)→ Hs2

θ (Γ2),

are compact operators for any choice of s1, s2 ∈ R. The result holds regardless of the

direction from which the traces are taken.

REMARK 3.4.16. For the main results in this section, we have assumed the interfaces

to be of class C∞. While this simplifies the analysis, we could obtain similar results with

less stringent regularity requirements. Consider k and k̃ satisfying Assumption 3.2 and Γ

as in Assumption 3.3 with r ∈ [1,∞), and the weakly-singular operator V k
θ (where we

have omitted the Γ sub-index momentarily). The expression in (3.11) still holds for the

kernel of V k
θ , but Rk

θ and Jkθ would be only of class Cr,1, instead of arbitrarily smooth.

Corollary 6.1.1 and Lemma 6.1.3 in (Saranen & Vainikko, 2013) imply the same results of

Propositions 3.4.10 and 3.4.14 for s in a range limited by r.

REMARK 3.4.17. As previously mentioned, we have limited ourselves to extend the

classical mapping results of the boundary integral operators to the context of quasi-periodic

spaces. For the classical result see, for example, (Boubendir, Dominguez, & Turc, 2014,

Theorem 2.1).

3.4.3. Boundary Integral Formulation

We recall the notation and geometry configuration introduced in Section 3.3, that is:

(i) u(inc) denotes a plane incident wave with wavenumber k0, which is assumed to

be quasi-periodic with shift θ ∈ [0, 1).
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(ii) {Γi}Mi=1 denotes a set of M ∈ N non-intersecting Cr,1-Jordan curves, with r ∈

[1,∞], ordered downwards.

(iii) {Ωi}Mi=0 denotes a set of M + 1 open domains, ordered downwards with bound-

aries

∂GΩ0 = Γ1, ∂GΩi = Γi ∪ Γi+1 ∀ i ∈ {1, . . . ,M − 1}, ∂GΩM = ΓM .

(iv) {ηi}Mi=1 denotes a parameter set such that the wavenumber in Ωi is given by

ki = ηik0 for i ∈ {1, . . . ,M}.

ASSUMPTION 3.4. For the given shift, θ, the wavenumber k0 and the parameters

{ηi}Mi=1 are such that neither k0 nor the wavenumbers ki = ηik0 are Rayleigh-Wood fre-

quencies.

Following the notation of Problem 3.3.1, the scattered field—defined as the total field

u(tot) minus the incident field u(inc)—is written as

u(sc) := ui in Ωi, for i ∈ {0, . . . ,M}.

Under Assumption 3.4, we make the following representation Ansatz for the scattered field:

u(sc) =



SLk0θ,Γ1
(µ1)− DLk0θ,Γ1

(λ1) in Ω0,

SLkiθ,Γi(µi)− DLkiθ,Γi(λi)+

SLkiθ,Γi+1
(µi+1)− DLkiθ,Γi+1

(λi+1)
in Ωi, for i ∈ {1, . . . ,M − 1}

SLkMθ,Γm(µm)− DLkMθ,Γm(λm) in Ωm,

,

where, for each i ∈ {1, . . . ,M}, the boundary data λi and µi are assumed to belong to

Hs
θ (Γi) for some possibly different values of s ∈ R, i.e., s may be different for each

boundary datum. SLkjθ,Γi and DL
kj
θ,Γi

are, respectively, the single and double layer potentials

of wavenumber kj on Γi.

As shorthand, in what follows, we denote, for each i ∈ {1, . . . ,M},

Λi := (λi, µi)
t, Lkθ,ΓiΛi := SLkθ,Γi(µi)− DLkθ,Γi(λi), (3.16)
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where λi and µi are defined over Γi. For s1, s2 ∈ R, we define the Cartesian product spaces:

V
s1,s2
θ,Γi

:= Hs1
θ (Γi)×Hs2

θ (Γi) for i = 0, . . . ,M and V
s1,s2
θ :=

M∏
i=1

V
s1,s2
θ,Γi

,

where all of these spaces are equipped with their natural graph inner products. For each

i ∈ {1, . . . ,M} let us define the following operators:

AiΛi :=

−Kki−1,ki
θ,Γi

(λi) + V
ki−1,ki
θ,Γi

(µi)

W
ki−1,ki
θ,Γi

(λi) + K′
ki−1,ki
θ,Γi

(µi)

 , (3.17)

corresponding to self-interactions between the potentials defined over each Γi with them-

selves. Analogously, for i, j ∈ {1, . . . ,M}, we define the following operators:

Bi,jΛj :=



−γiDDLkmin{i,j}
θ,Γj

(λj) + γiDSL
kmin{i,j}
θ,Γj

(µj)

−γiNDL
kmin{i,j}
θ,Γj

(λj) + γiNSL
kmin{i,j}
θ,Γj

(µj)

 if |i− j| = 1

0 a.o.c.

(3.18)

corresponding to interactions between potentials defined over Γi with those defined over

Γj .

PROPOSITION 3.4.18. Let Assumption 3.4 hold and let interfaces {Γi}Mi=1 be of class

C∞. Then, the self-interaction operators defined in (3.17)

Ai : Vs1,s2
θ,Γi

→V
s1,s2
θ,Γi

are compact operators for any s1, s2 ∈ R with s2 < s1 < s2 + 2. Furthermore, the

cross-interaction operators (3.18)

Bi,j :Vs1,s2
θ,Γj

→V
s1,s2
θ,Γi

,

are compact for any choice of s1, s2 ∈ R.

PROOF. The first result is directly found using Proposition 3.4.14, whereas the second

one follows from Proposition 3.4.15. �
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With the above definitions and using the jump properties of the BIOs, it holds that[
γu(sc)]

Γi
= Bi,i−1Λi−1 + (Ai − Ii)Λi − Bi,i+1Λi+1, (3.19)

for each i ∈ {1, . . . ,M}, where Ii corresponds to the identity map over Vs1,s2
θ,Γj

, with s1,

s2 ∈ R. We now introduce the following operator matrix over Vs1,s2
θ ,

M :=



A1 − I1 −B1,2 0 0 0 . . . 0

B2,1 A2 − I2 −B2,3 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 BM−1,M−2 AM−1 − IM−1 BM−1,M

0 0 . . . 0 0 BM,M−1 AM − IM


. (3.20)

Imposing the boundary conditions of Problem 3.3.1 to u(sc) leads to the following system

of BIEs.

PROBLEM 3.4.19. Let Assumption 3.4 hold and let s ∈ R. Define s1 := s + 1
2

and

s2 := s− 1
2
. We seek Λ ∈V

s1,s2
θ such that

MΛ =


−γe,1u(inc)

0
...

0


where M corresponds to the operator matrix in (3.20) and γe,1 corresponds to the exterior

trace vector on Γ1.

In order to ensure the well-posedness of Problem 3.4.19, we introduce the following

set of auxiliary problems.
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PROBLEM 3.4.20 (Auxiliary problems). We seek {vi}Mi=1 such that vi ∈ H1
θ,loc(G \ Γi)

− (∆ + k2
i )vi(x) = 0 in

(
Ωi−1 ∪

i−2⋃
j=0

Ωj
G

)
∩{x ∈ G : |x2| < H},

− (∆ + k2
i−1)vi(x) = 0 in Ωi ∪

(
M⋃

j=i+1

Ωj
G

)
∩{x ∈ G : |x2| < H},

[γvi]Γi = 0 on Γi ,

vi(x) =
∑
j∈Z

v
(i)
j e

ı
(
β
(0)
j (x2−H)+jθx1

)
for all x2 ≥ H,

vi(x) =
∑
j∈Z

v
(i)
j e

ı
(
β
(M)
j (x2+H)+jθx1

)
for all x2 ≤ −H,

(3.21)

for each i ∈ {1, . . . ,M}, whereH > 0 is as in Section 3.3.1, and {ki}Mi=0 are the wavenum-

bers in each {Ωi}Mi=0, as introduced in Section 3.3.

By the same analysis as that presented in (Starling & Bonnet-Bendhia, 1994, Section

3.4), each interface Γi, i ∈ {1, . . . ,M}, potentially adds a countable set of wavenumbers,

k0, such that Problem 3.4.20 is unsolvable. This justifies the following Assumption (recall

ki = ηik0 for all i ∈ {1, . . . ,M}).

ASSUMPTION 3.5. Given {ηi}Mi=1, the wavenumber k0 is such that the auxiliary Prob-

lem 3.4.20 has only one solution {vi}Mi=1 given by vi := 0 for all i ∈ {1, . . . ,M}.

Assumption 3.5 will force us to discard yet more wavenumbers, but the set of wavenum-

bers neglected by Assumptions 3.1 and 3.5 is still countable.

THEOREM 3.4.21. Let the parameters k0 and {ηi}Mi=1 satisfy Assumption 3.4 and let

the interfaces {Γi}Mi=1 be C∞ periodic Jordan arcs. Further assume Assumptions 3.1 and

3.5 to be satisfied. Then, Problem 3.4.19 is well posed for any s ∈ R.
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PROOF. Note that the operator matrix M may be written as

M =



A1 −B1,2 0 0 . . . 0

B2,1 A2 −B2,3 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 AM−1 BM−1,M

0 0 . . . 0 0 BM,M−1 AM


−



I1 0 0 0 . . . 0

0 I2 0 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 IM−1 0

0 0 . . . 0 0 IM


.

Then, by the Fredhom alternative, we need only show uniqueness of Problem 3.4.19, as the

above tridiagonal block is compact by Proposition 3.4.18. The proof is very similar to that

for the classical scattering problem of a bounded object in free space (cf. (Colton & Kress,

2013, Theorem 3.41)).

Let Λ ∈V
s1,s2
θ , with s1 = s+ 1

2
and s2 = s− 1

2
, be such that MΛ = 0. We define

ũ0(x) :=
(
Lk0θ,Γ1

(Λ1)
)

(x) ∀ x ∈ G \ Γ1,

ũi(x) :=
(
Lkiθ,Γi(Λi)

)
(x) +

(
Lkiθ,Γi(Λi+1)

)
(x) ∀ x ∈ G \ (Γi ∪ Γi+1), ∀ i ∈ {1, . . . ,M − 1},

ũm(x) :=
(
LkMθ,Γm(Λm)

)
(x) ∀ x ∈ G \ Γm,

where the representation L is defined as in (3.16). We further define

ũ(x) := ũi(x) ∀ x ∈ Ωi, ∀ i ∈ {0, . . . ,M},

which is well defined in each Ωi, but could potentially have non-zero jumps across each

interface Γi. Moreover, ũ solves the Helmholtz equation with wavenumber ki in each

Ωi and satisfies the appropriate radiation conditions at infinity (Aylwin, Jerez-Hanckes, &

Pinto, 2020, Section 4). Hence, ũ solves Problem 3.3.1, and Assumption 3.1 implies ũ ≡ 0.

We continue by defining the following auxiliary functions

vi(x) :=


ũi(x) ∀x ∈ Ωi−1 ∪

(
i−2⋃
j=0

Ωj
G

)

−ũi−1(x) ∀x ∈ Ωi ∪

(
M⋃

j=i+1

Ωj
G

) , ∀ i ∈ {1, . . . ,M}.
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It is clear from this definition that

(−∆− k2
i )vi(x) = 0, in Ωi−1 ∪

(
i−2⋃
j=0

Ωj
G

)
,

(−∆− k2
i−1)vi(x) = 0, in Ωi ∪

(
M⋃

j=i+1

Ωj
G

)
.

Furthermore, each vi satisfies the appropriate radiation conditions at infinity. Using the

jump relationships of BIOs (see (Aylwin, Jerez-Hanckes, & Pinto, 2020, Lemma 4.11)),

we have that

γi,evi − γiũ = Λi, γi,eũ+ γivi = Λi. (3.22)

Since ũ ≡ 0, we have that

[γvi]Γi = γi,evi − γivi = γi,evi − γiũ− (γi,eũ+ γivi) = 0,

from where it follows that {vi}Mi=1 solves Problem 3.4.20. Assumption 3.5 implies that

vi ≡ 0, for all i in {1, . . . ,M}. Finally, (3.22) implies Λ ≡ 0 as stated. �

REMARK 3.4.22. Theorem 3.4.21 states that if all the interfaces are of arbitrary smooth-

ness, the solution Λ is also arbitrarily smooth. This result can be generalized to geometries

of limited regularity by following the ideas presented in Remark 3.4.16, obtaining a solu-

tion which is also of limited regularity.

3.5. Spectral Galerkin Method

We now provide a numerical method to approximate solutions of Problem 3.4.19, along

with its corresponding error estimates. We restrict ourselves to cases where the interfaces

{Γi}Mi=1 are C∞-Jordan curves. By Theorem 3.4.21, the solution is of arbitrary smoothness,

and a spectral method should converge at a super-algebraic rate (cf. (Saranen & Vainikko,

2013, Chapter 9) and (Hu, 1995; Jerez-Hanckes & Pinto, 2018)).
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3.5.1. Discrete Spaces

Let us define a suitable family of finite dimensional subspaces of Vs1,s2
θ . From the

definition of quasi-periodic Sobolev spaces, it is natural to consider the following finite

dimensional functional spaces over (0, 2π)

ÊN
θ := span{ênθ (t) := eı(n+θ)t : n ∈ {−N, . . . , N}}.

It is clear that ÊN ⊂ ÊN+1 for all N ∈ N and that
⋃
N∈N Ê

N is dense in Hs
θ [0, 2π] for any

s ∈ R. Denoting zi : (0, 2π)→ Γi a parametrization of Γi, we define

ẼN
θ,Γi

:= span{ẽnθ,i := ênθ ◦ z−1
i , : n ∈ {−N, . . . , N}}, (3.23)

EN
θ,Γi

:= span{enθ,i :=
∥∥żi ◦ z−1

i

∥∥−1

R2 ẽ
n
θ,i : n ∈ {−N, . . . , N}}. (3.24)

We can see that ẼN
θ,Γi

is the space spanned by finite Fourier basis parametrized on Γi and

that EN
θ,Γi

is constructed from the previous space by dividing the basis by the norm of the

tangential vector of the corresponding interface. As before, it is clear that both
⋃
N∈NE

N
θ,Γi

and
⋃
N∈N Ẽ

N
θ,Γi

are dense subspaces of Hs
θ (Γi) for s ∈ R. Finally, we define the Cartesian

product of discrete spaces

EN
θ,Γi

:= ẼN
θ,Γi
×EN

θ,Γi
,

whose infinite union on N forms a dense subspace of Vs1,s2
θ,Γi

for any pair s1, s2 ∈ R.

3.5.2. Discrete Problem

We now consider the Galerkin discretization of Problem 3.4.19 on the finite dimen-

sional product space

EN
θ :=

M∏
i=1

ENi
θ,Γi
⊂V

s1,s2
θ forN = {Ni}Mi=1 ⊂ N, s1, s2 ∈ R.

PROBLEM 3.5.1 (Discrete BIEs). Let the parameters k0 and {ηi}Mi=1 satisfy Assump-

tion 3.4 and let the interfaces {Γi}Mi=1 be of class C∞. For some N = {Ni}Mi=1 ⊂ N, we
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seek ΛN ∈ EN
θ such that

〈MΛN ,ΞN〉Γ = 〈%,ΞN〉Γ, ∀ ΞN ∈ EN
θ , (3.25)

where the duality product

〈Ψ,Ξ〉Γ :=
M∑
i=1

〈Ψi,Ξi〉Γi ∀Ψ, Ξ ∈V
s1,s2
θ ,

denotes the sum of two standard duality pairings in H
1
2
θ (Γi) and H

− 1
2

θ (Γi), and % accounts

for the right-hand side of Problem 3.4.19.

Since this is a second-kind BIE, we can deduce a quasi-optimality approximation result

for the Galerkin discretization (cf. (Sauter & Schwab, 2011, Theorem 4.2.9)), i.e. there

exists N ? = {N?
i }Mi=1 such that for all N = {Ni}Mi=1 such that Ni > N?

i for all i ∈

{1, . . . ,M}, it holds that∥∥Λ−ΛN
∥∥
V
s1,s2
θ

. inf
ΞN∈EN

θ

∥∥Λ−ΞN
∥∥
V
s1,s2
θ

. (3.26)

From (3.26) we see that, in order to establish error convergence rates for the discrete solu-

tion, we need to bound those of the best approximation. From the definition of our discrete

and continuous spaces, the problem of bounding the best approximation on V
s1,s2
θ is equiv-

alent to that of establishing bounds for the best approximation of an element of Hs[0, 2π]

when approximated by elements of ÊN
θ̃

with θ̃ = 0. This issue was already addressed,

for example, in (Saranen & Vainikko, 2013, Theorem 8.2.1). Specifically, for any pair r1,

r2 ∈ R with r2 > r1 and f ∈ Hr2 [0, 2π], there holds

inf
q∈ÊN

θ̃

‖f − q‖Hr1 [0,2π] . N r1−r2‖f‖Hr2 [0,2π]. (3.27)

THEOREM 3.5.2. Let the parameters k0 and {ηi}Mi=1 satisfy Assumption 3.4 and let the

interfaces {Γi}Mi=1 be of class C∞. Further assume Assumptions 3.1 and 3.5 to be satisfied

and let s ≥ 0, s1 = s+ 1
2

and s2 = s− 1
2
. Then, there existsN ? = {N?

i }Mi=1 ⊂ N such that
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for anyN = {Ni}Mi=1 ⊂ N with Ni > N?
i for all i ∈ {1, . . . ,M}, it holds∥∥Λ−ΛN

∥∥
V

1
2 ,−

1
2

θ

.

(
max

i∈{1,...,M}
N−si

)
‖%‖Vs1,s2

θ
,

where Λ and ΛN are the solutions to Problems 3.4.19 and 3.5.1, respectively.

PROOF. For any ΞN ∈ EN
θ , we denote ΞNi

i = (ξNii , ζNii )t for all i ∈ {1, . . . ,M}, so

that

∥∥Λ−ΞN
∥∥2

V
1
2 ,−

1
2

θ

=
M∑
i=1

∥∥λi − ξNii ∥∥2

H
1
2
θ (Γi)

+
∥∥µi − ζNii ∥∥2

H
− 1

2
θ (Γi)

.

By definition of our continuous and discrete spaces together with (3.27), we see that for all

i ∈ {1, . . . ,M}, one deduces∥∥λi − ξNii ∥∥2

H
1
2
θ (Γi)

. N−2s
i ‖λi‖2

H
s+1

2
θ (Γi)

,
∥∥µi − ζNii ∥∥2

H
− 1

2
θ (Γi)

. N−2s
i ‖µi‖2

H
s− 1

2
θ (Γi)

,

where the unspecified constant depends only on Γi. Hence,∥∥Λ−ΞN
∥∥2

V
1
2 ,−

1
2

θ

.

(
max

i∈{1,...,M}
N−2s
i

)
‖Λ‖2

V
s1,s2
θ

.

Since the problem is well posed, we obtain∥∥Λ−ΞN
∥∥2

V
1
2 ,−

1
2

θ

.

(
max

i∈{1,...,M}
N−2s
i

)
‖%‖2

V
s1,s2
θ

,

where the unspecified constant now also depends on the wavenumbers {ki}Mi=0. �

REMARK 3.5.3. Theorem 3.5.2 states that the proposed spectral Galerkin method

has a similar performance to the Nyström method, since if interfaces belong to C∞ then

one obtains super-algebraic convergence (commonly observed with the Nyström method

(Y. Zhang & Gillman, 2019)). The super-algebraic convergence rate of the Nyström method

for the transmission problem on a bounded object in two dimension was rigorously proved

in (Boubendir et al., 2014). Similar convergence results for quasi-periodic problems using

the Nyström scheme are, to the best of our knowledge, not available.
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REMARK 3.5.4. It follows from Remark 3.4.22 that we can obtain convergence of

limited order if the interfaces are of class Cr,1 with r ∈ [1,∞).

3.5.3. Implementation

We continue with an overview of the procedure employed to compute the approxima-

tion ΛN . For a given N ∈ N and l, m ∈ Z such that −N ≤ |l| , |m| ≤ N , integrals

I1
l :=

∫ 2π

0

f(t)e−ılt dt and I2
l,m :=

∫ 2π

0

∫ 2π

0

F (s, t)e−ılseımt dt ds, (3.28)

where f and F are smooth periodic and bi-periodic functions, respectively, can be com-

puted to exponential accuracy through the FFT to construct trigonometric interpolations

of the corresponding functions (cf. (Saranen & Vainikko, 2013, Theorem 8.4.1)). Since

the associated kernels correspond to smooth bi-periodic functions, the computation of the

block matrices Bi,j on (3.20) is performed in this way.

In terms of computational cost, the set of integrals {I1
l }Nl=−N involves 2N + 1 evalua-

tions of the function f and one FFT aplication to a vector of length 2N+1, whence the total

computational cost isO ((2N + 1) log(2N + 1))1 arithmetic operations –plus 2N+1 func-

tion evaluations– to compute the 2N + 1 integrals. For the set of integrals {I2
l,m}Nl,m=−N ,

we require (2N + 1)2 evaluations of the function F , and 2(2N + 1) FFTs for vectors of

length 2N + 1, yielding a cost of O (2(2N + 1) log(2N + 1)) arithmetic operations (plus

(2N + 1)2 function evaluations).

On the other hand, the block matrices Ai in (3.20) consist of differences of the self-

interaction operators on Γi for the four BIOs. While the difference of two operators is

compact—the resulting kernel is smoother than that associated to a single evaluation of the

same operator—the kernel is not arbitrarily smooth, even if the geometry is. Consequently,

a deeper analysis is required before applying classical algorithms for the computation of

Fourier transforms.

1This is the classical estimation of the computational cost for the FFT.
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Let us consider, as an illustrative example, the weakly singular operator. We are re-

quired to compute integrals such as∫ 2π

0

∫ 2π

0

Ĝk
θ(s, t)e

−ılseımt dt ds,

where Ĝk
θ is as in (3.10). Decomposing Ĝk

θ as shown in (3.11), we obtain two integrals,

ISl,m :=

∫ 2π

0

∫ 2π

0

S(t− s)Jkθ (s, t)e−ılseımt dt ds, IRl,m :=

∫ 2π

0

∫ 2π

0

Rk
θ(s, t)e

−ılseımt dt ds.

Since Rk
θ(s, t) is smooth and periodic (see Section 3.4.2.1), IRl,m may be computed via the

FFT. To compute ISl,m, we use the expansion (c.f. (Hu, 1995, Equation 12)):

S(t− s) =
∞∑

n=−∞
n6=0

1

4πn
eın(t−s).

Thus,

ISl,m =
∞∑

n=−∞
n 6=0

1

4πn

∫ 2π

0

∫ 2π

0

Jkθ (s, t)e−ı(l+n)seı(m+n)t dt ds. (3.29)

Since Jkθ (s, t) is smooth and periodic, each of the integrals of the right-hand side is easy

to compute. Moreover, the terms in the series in (3.29) decay exponentially and the series

may be truncated at the cost of a small approximation error. Furthermore, the sum in (3.29)

may be understood as a discrete convolution, allowing it to be computed by multiplying the

corresponding Fourier transforms (see (Hu, 1995) for details).

The computational cost of computing {ISl,m}Nl,m=−N and {IRl,m}Nl,m=−N is dominated

by the latter set of integrals, since it involves 2(N + 1)2 evaluations of the quasi-periodic

Green’s function, which is done following (Bruno & Delourme, 2014). The evaluation

cost of the quasi-periodic Green’s function corresponds to (2N + 1)2(2N ′+ 1) evaluations

of the Hankel function, with N ′ > N is a truncation parameter for the series in (B.26)2.

Meanwhile, the total cost for ISl,m is proportional to (2N + 1) log(2N + 1).

2The value of N ′ has to be chosen depending of k0, but typically one can assume that it need not be greater
than 2N , for N large enough to ensure convergence.
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For the operators Kkθ and K′kθ , a similar technique can be applied using (3.15). The

integrals corresponding to the hyper-singular BIO are approximated by first using the

integration-by-parts formula in Lemma 3.4.11, reducing it to two different integrals which

are then approximated as those corresponding to the weakly-singular BIO.

Considering M > 1 interfaces, 2N + 1 degrees of freedom on each interface and

N ′ proportional to N the total cost of the matrix assembly process can be estimated as

O(N3M) Hankel function evaluations andO(MN2 logN) arithmetic operations. We point

out that the cost could be reduced drastically by constructing an accurate algorithm to

approximate the Hankel functions by pre-computing some values.

REMARK 3.5.5. We have restricted ourselves to the analysis of the semi-discrete case,

that is, we do not take into consideration the error coming from the approximation of the

integrals for the error bound in Theorem 3.5.2. However, it is not difficult to incorporate

it. Assuming that the parametrizations {zi}Mi=1 correspond to Jordan curves of class C∞

and using the aliasing proprieties of the Fourier basis (L. N. Trefethen, 2000, Chapter 4)

and Lemma 3.4.9 we have that the approximation error for the computation of the required

integrals is O(N−`−1), with 2N + 1 being the number of degrees of freedom per interface

and ` an arbitrarily large integer. Then, the fully discrete error can be obtained by an appli-

cation of Strang’s lemma (Sauter & Schwab, 2011, Section 4.2.4), from where it follows

that the behaviour of the fully discrete error, with respect to N , is the same as in Theorem

3.5.2.

3.6. Numerical Examples

We now showcase computational experiments verifying the convergence estimates

found in Theorem 3.5.2. The implementation of the aforementioned algorithms was car-

ried through a C++ cpu-only library. All the experiments ran on a Intel I7-4770@3.4GHZ

processor with 8 threads. The code was compiled with gcc 4.9.4, openmp and O2 flags on.
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3.6.1. Code Validation

We begin by considering the simple case of a grating with two media separated by a

single horizontal line segment acting as its layer. Hence, using the following expansion of

the Green’s function (Aylwin, Jerez-Hanckes, & Pinto, 2020, Proposition 4.2):

Gk
θ(x,y) =

ı

4π

∑
j∈Z

1

βj
eıβj |x2−y2|−ıjθ(y1−x1) for all x,y ∈ R2,

βj :=


√
k2 − j2

θ if k2 − j2
θ ≥ 0

i
√
j2
θ − k2 if k2 − j2

θ < 0
,

it is possible to assemble the matrix analytically. The matrix M is then composed of only

block diagonal terms. Since the right-hand side only has two non-null components3, only

the corresponding components for the solution are non-zero, yielding a closed form for the

solution.

In order to test the implementation, we consider an artificial (harder) problem by in-

cluding ghost domains, i.e., we add extra smooth (ghost) layers that separate domains with

the same refraction index. Hence, the solution is the same as if these additional domains

did not exist and has a closed form, as before. The results for different ghost layers are

reported in Figure 3.2.

We also display the convergence behaviour of the method for interfaces with limited

regularity by repeating the previous experiment (same incident field) with one ghost domain

and an interface given by

z3(t) = (t, a| sin(t)|p + b),

where a, b are real numbers that scale the interface, and p is an odd integer that determines

the smoothness degree of the interface. In particular, z3 is in Cp−2,1 or, more precisely,

Cp−1 with an integrable p-th derivative. Results are reported in Figure 3.3.

3One for the Dirichlet trace of the incident wave and another for the Neumann trace.
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η0 = 1

η1 = 5

η2 = 3

η3 = 3

η4 = 3

η5 = 3

(a) Geometry (b) Convergence Plot

FIGURE 3.2. Subfigure (a) shows the problem geometry. Subfigure (b) shows the

error in the V
1
2
,− 1

2
θ norm with respect to the analytic solution. We have included

results for different numbers ghost layers (1,2 and 3, respectively), i.e., the first
experiment considers only the first 3 layers (counting downwards), the second one
considers the first 4 layers and the third considers all 5 layers.

For all experiments in this section, the frequency is chosen as k0 = 1 and the incidence

angle is 0.47 radians.

3.6.2. Convergence results

We now consider a smooth geometry composed of the 12 layers and varying refraction

indices. Two different scenarios for the choice of indices are employed, reported in Table

3.1 (η1
i and η2

i for the first and second cases, respectively). We also consider three different

wavenumbers for the incident wave, k0 = 2.8, 14 and 28. Convergence results in the

energy norm for the solution of Problem 3.5.1 for the different cases of parameters and

wavenumbers are reported in Figure 3.4, where exponential convergence is observed for

all considered scenarios, as expected. All errors were computed with respect to an overkill

solution, with approximately 50 more bases per interface than the last plotted point for each

curve. The incidence angle is, again, 0.47 radians. While is not an easy task to establish

the number of basis needed, for a desire accuracy, in terms of the frequency k0 and the

refraction indices ηi, it seems from the presented experiments that they should be chosed

proportional to the maximum value ki = ηik0.
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1 2 3 4 5 6 7 8 9 10 11 12
η1
i 4.7 4.2 4.8 3.6 1.1 4.4 4.7 3.7 4.0 3.9 2.6 3.6
η2
i 4.7 8.4 4.8 7.2 1.1 8.8 4.7 7.4 4.0 7.8 2.6 7.2

TABLE 3.1. Value of the refraction indices {η1
i }12
i=1 and {η2

i }12
i=1 (corresponding

to the two considered cases) for the grating in Figure 3.5 (counting downwards).

Finally, in Figure 3.5 we present an illustration of the total field corresponding to the

refraction indices given in Table 3.1.

3.7. Conclusions

We have proposed a fast spectral method for the efficient representation, through sur-

face potentials based on the quasi-periodic Green’s function, for the solution of the Helmholtz

equation with transmission boundary conditions on a periodic domain. In Theorem 3.5.2,

we obtained convergence estimates for the discrete approximation of the corresponding

boundary data, and found that discrete solutions converge at a super-algebraic rate to con-

tinuous solutions of the considered boundary integral equation. Though, we focused on the

FIGURE 3.3. Error in the V
1
2
,− 1

2
θ norm with respect to the analytic solution. The

legend indicates an estimate of the slope of the error convergence curves for differ-
ent values of p (degrees of smoothness). Classically, error convergence estimates
for spectral methods indicate the slope to be at least equal to p. We also consider
the case p = 2, where the extra layer is C∞ and the super-algebraic convergence
rate is observed.
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Helmholtz transmission problem, our approximation results and convergence estimates can

be easily extended to other boundary integral equations on quasi-periodic Sobolev spaces

whenever the formulation is well posed. We avoided Rayleigh-Wood anomalies from our

analysis since the series in (B.26) fails to converge for said frequencies and, for the same

(a) Geometry (b) k0 = 2.8

(c) k0 = 14 (d) k0 = 28

FIGURE 3.4. Subfigure (a) shows the problem geometry (with 12 layers). Subfig-
ures (b), (c) and (d) display the errors (in the corresponding energy norm) for the
different values of k0, i.e., 2.8, 14 and 28, respectively. Each of these subfigures
present error convergence curves for the two scenarios of refraction indices con-
sidered and specified in Table 3.1. Notice that the curves in red—corresponding
to parameters η2

i in Table 3.1, with higher discrepancy between layers—display
a longer preasymptotic regime before convergence is observed for all considered
values of k0.
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reason, our previous results from (Aylwin, Jerez-Hanckes, & Pinto, 2020) exclude them as

well.

Though similar numerical results are known for the Nyström Method, theoretical re-

sults confirming the observed convergence rates are scarce (Boubendir et al., 2014), which

is an advantage of Galerkin discretizations such as that presented in this article. Moreover,

the convergence rate for the proposed discretization is equal to that expected of Nyström

methods, so that it is numerically competitive with them while inheriting the theoretical

benefits of a Galerkin discretization.

Future work considers: (i) including Rayleigh-Wood anomalies to our analysis, (ii) ex-

tending our results to three dimensional Helmholtz equations and Maxwell’s equations on

periodic domains and (iii) applications in uncertainty quantification (Silva-Oelker, Aylwin,

et al., 2018) and shape optimization (Aylwin, Silva-Oelker, Jerez-Hanckes, & Fay, 2020).
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(a) k0 = 2.8.
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(b) k0 = 14.

(c) k0 = 28.

FIGURE 3.5. Real part of the total wave (u(tot) = u(sc) + u(inc)) for each different
value of k0, namely 2.8, 14 and 28. The refraction indices on each layer are those
indicated on Table 3.1. The incidence angle is again 0.47.
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Chapter 4. FAST GALERKIN METHOD FOR SOLVING HELMHOLTZ BOUND-

ARY INTEGRAL EQUATIONS ON SCREENS

4.1. Introduction

We study the solution of the Helmoltz and Laplace problems with Dirichlet or Neu-

mann conditions posed on an open orientable bounded surface Γ ⊂ R3. These can be

summarized as follows:

PROBLEM 4.1. Let k ≥ 0, find u defined in R3, such that

−∆u− k2u = 0, on R3 \ Γ,

u = gd or ∂nu = gn in Γ,

condition at infinity(k),

where ∂nu is the normal derivative of u with the normal defined via the parametrization

used1, gd and gn are suitable Dirichlet and Neumann data, respectively, and the condition

at infinity reads lim‖x‖→∞ ‖x‖
(
∂‖x‖u− iku

)
= 0, k > 0,

u(x) = O(‖x‖−1), as ‖x‖ → ∞, k = 0,

For a detailed discussion of these conditions see (McLean, 2000, Chap. 8 and 9). The

Laplace case occurs when k = 0.

Problem 4.1 and associated boundary integral equations (BIEs) have been extensively

studied (E. P. Stephan, 1987, 1986; Costabel & Dauge, 2002; Ha-Duong, 1990; Hipt-

mair, Jerez-Hanckes, & Urzúa-Torres, 2018; S. K. Lintner & Bruno, 2015; Ramaciotti &

Nédélec, 2017; Hiptmair, Jerez-Hanckes, & Urzúa-Torres, 2020). Indeed, BIEs rigorously

recast the volume problem onto the screen while taking into account the corresponding

1A fixed orientation for the normal vector is required, and one can choose either of the two orientations that
yield continuous normal vectors without loss of generality.
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condition at infinity. By meshing the open surface Γ, standard local low-order approxima-

tions can be built and solved by today’s compression algorithms (Bebendorf, 2008; Yijun,

2009) to accelerate computations. However, solving Problem 4.1 remains far from trivial

as standard boundary element implementations converge at the worst rate possible due to

the solution’s singular behavior near the screen boundary. Thus, one has to resort to special

meshing techniques (von Petersdorff & Stephan, 1990; Heuer et al., 1999) or to increase

the polynomial degree of the underlying discretization in a suitable manner (Heuer, Mel-

lado, & Stephan, 2002; Bespalov & Heuer, 2007) so as to recover better error convergence

rates. This however is a tedious procedure when solving for multiple configurations as in

uncertainty quantification or inverse problems.

In two-dimensional space, i.e. when Γ is an open arc, an alternative discretization of

BIEs can be performed by means of weighted Chebyshev polynomials (spectral discretiza-

tion), which explicitly capture the edge singularity and allow for super-algebraic conver-

gence whenever gd and gn are smooth functions (Saranen & Vainikko, 2013; Jerez-Hanckes

& Nédélec, 2012; Jerez-Hanckes & Pinto, 2020). Opposingly, for screens in R3, to the best

of our knowledge, no such equivalent discretization exists. Moreover, though for closed

surfaces a spectral BIE method was presented by Sloan et al. (Graham & Sloan, 2002), the

presence of extra singularities around the surface edges and the structure of the underly-

ing fundamental solution renders impossible the extension of this method to the context of

open surfaces directly.

Our main contribution is the derivation and analysis of spectral Galerkin-Bubnov meth-

ods to tackle Laplace and Helmholtz BIEs on open surfaces in three-dimensional space. In

contrast to the Nyström approach (Bruno & Lintner, 2013), our spectral Galerkin method

preserves all the theoretical properties of a Galerkin method and its implementation relies

on suitable quadrature rules and change of variables without the need of special window

functions, while maintaining the convergence rate for smooth geometries. On the other

hand, while special p- and hp-discretizations (see (Heuer et al., 1999, 2002; Bespalov &

Heuer, 2007)) could also achieve super-algebraic convergence rates, and being more flex-

ible for non-smooths geometries, they need a mesh which in practice could slowdown the
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implementation when solutions for different geometries are needed as in uncertainty quan-

tification or inverse problem (Kress, 1995).

Our work is structured as follows. In Section 4.2.3 we define a family of finite-

dimensional functional spaces by projecting the spherical harmonics into the unitary disk

and consider their linear span. We then define the trial and test spaces for the Galerkin

method by mapping the functions to the screen in consideration. From the definition of our

trial space, we construct adequate auxiliary functional spaces which allow for the associ-

ated error analysis, and we describe how theses spaces are related to the standard Sobolev

one. This fact, in conjunction with standard Galerkin properties for the variational versions

of the BIEs (Section 4.3.1), lead to a semi-discrete a priori error bound in Theorem 4.3.

Then, in Section 4.5.1, we detail the quadrature procedure used to approximate the action

of the weakly- and hyper-singular boundary integral operators (BIOs) on the trial space,

and provide a full error analysis which incorporate the quadrature error. Finally, in Sec-

tion 4.6 we show some numerical examples that exhibit the super-algebraic convergence

method.

4.2. Mathematical Tools

This section introduces general definitions needed for the analysis of Problem 4.1 and

of the proposed Galerkin spectral method.

Given x,x′ ∈ Cd, d ∈ N, the standard dot product is denoted by x · x′ =
∑d

j=1 xjx
′
j ,

and the Euclidean norm satisfies ‖x‖2 = x ·x. For d = 3 and real vectors, we denote x×x′

the cross-product –vectorial product. For a, b ∈ R we will make use of the notation a . b

whenever there is a positive number C such that a ≤ Cb, typically C is a constant not

relevant for the underlying analysis. Also, we will denote by L2(A) the classical Lebesgue

space of square-integrable functions over a measurable set A ⊂ Rd, d = 2, 3.
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4.2.1. Geometry

Throughout, we denote Γ ⊂ R3 a smooth orientable connected surface with boundary,

also called smooth screen or simply screen. We assume that the screen is contained on a

smooth orientable closed surface which will be denoted Γ̃. The canonical disk and spheres

are given, respectively, by

D := {x ∈ R2 : ‖x‖ ≤ 1}, S := {x ∈ R3 : ‖x‖ = 1}.

On S, we will often consider spherical coordinates characterized by two angles (θ, ϕ) ∈

[0, 2π] × [0, π] . We will always assume that θ corresponds to the polar angle of a given

point when projected to the x3 = 0 plane, and ϕ denotes the angle measured from the

x3−axis. Similarly, in D we use polar coordinates (r, θ) ∈ [0, 1]× [−π
2
, 3π

2
].

For any given screen, we assume that there is a parametrization r : D → Γ, being

a smooth injective function such that in every argument and coordinate can be extended

to an analytic function on a Bernstein ellipse in the complex plane of parameter2 ρ > 1.

The class of functions portraying the regularity previously described are referred to as

ρ−analytic. Furthermore, we impose that the gradients of r (as a matrix) have full rank for

any point, and the Jacobian, Jr(x) = ‖∂rr × ∂θr‖ is such that Jr(x)/‖x‖ is bounded and

nowhere null.

The direction of the unitary normal vector of Γ is selected to be equal to ∂rr×∂θr. This

imply that, rigorously speaking, a screen is characterized by the particular parametrization

r and no by the set of points that represent the physical domain Γ.

4.2.2. Classical Functional Spaces

Given a set O ⊂ Rd, d ∈ {2, 3}, we denote by D(O) the space of smooth functions

with compact support inO with topological dual D(O)′. IfO is open then D(O) are smooth

functions whose extension by zero is also smooth. If O is compact then D(O) are the set

of infinity differentiable functions. We will require Sobolev spaces defined on open and

2Given and interval [a, b] ⊂ R, the Bernstein ellipse of parameter ρ, corresponds to an ellipse on the complex
plane with foci at a, b, semi-major axis (b−a)(ρ+ρ−1)

4 , and semi-minor axis (b−a)(ρ−ρ−1)
4 .
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closed surfaces. For Γ an open surface, the Sobolev spaces Hs(Γ̃), s ∈ R, are defined

by using local parametrizations and a partition of unity (McLean, 2000, Chap. 2). Spaces

Hs(Γ), and H̃s(Γ) , with s ∈ R, are also standard and can be defined as

Hs(Γ) := {u ∈ D′(Γ) : ∃ U ∈ Hs(Γ̃), u = U |Γ},

H̃s(Γ) := {u ∈ Hs(Γ̃) : supp(u) ⊂ Γ},

where the support and restriction have to be understood in the context of distributions. One

can identify the dual space of Hs(Γ) with H̃−s(Γ), the corresponding duality product is

denoted 〈·, ·〉Γ. The duality product is an extension of the L2(Γ) inner product as we work

under the identification, H0(Γ) = H̃0(Γ) = L2(Γ). The following Lemma is useful to

retain control over the norms of functions defined on an arbitrary screen.

Lemma 4.1 (Theorem 3.23 in (McLean, 2000)). Let s ∈ R, if u ∈ Hs(Γ), we can

define an equivalent norm as

‖u ◦ r‖Hs(D)
∼= ‖u‖Hs(Γ),

where the unspecified constant depends on Γ only. The same result holds true when we

change Hs(Γ) for H̃s(Γ) and Hs(D) for H̃s(D), accordingly.

REMARK 4.1. Lemma 4.1 can be generalized to screens of restricted regularity by

limiting the range of s depending on the regularity (cf. (McLean, 2000, Theorem 3.2.3) for

details).

Customarily, we extend the definitions of restrictions and normal derivatives over Γ

to linear bounded maps in appropriate Sobolev spaces. In particular, following (McLean,

2000, Chapter 2), we define the Dirichlet traces as the maps γ±d : Hs(R3 \ Γ)→ Hs− 1
2 (Γ)

that extend the following operator:

γ±d u(x) = lim
ε↓0

u(x± εn̂(x)), x ∈ Γ,



101

for s > 1
2
, and where n̂ denotes the unitary normal vector whose direction depends on the

parametrization r of Γ. The Neumann trace γn is defined as the extension of the normal

derivative:

γ±n u(x) = lim
ε↓0
∇u(x± εn̂(x)) · n̂(x), x ∈ Γ,

where the extension can be done from Hs(R3 \Γ)→ Hs− 1
2 (Γ) for s > 3

2
, or from H1(R3 \

Γ)→ H−
1
2 (Γ) for functions such that ∆u is locally in L2(R3 \Γ) (McLean, 2000, Chapter

4). Whenever γ+
d = γ−d (resp. γ+

n = γ−n ) we denote γd = γ±d (resp. γn = γ±n ).

4.2.3. Spherical Harmonics and Projected Basis

The standard spherical harmonics functions consist of a family of smooth functions

defined in S given by

Y l
m(θ, ϕ) := cm

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
Pl
|m|(cosϕ)eimθ,

where cm = (−1)m if m < 0 or cm = 1 otherwise, with (θ, ϕ) ∈ [0, 2π] × [0, π] are the

spherical coordinates on S, Pl
m denotes the associated Legendre function, and the indices

l ∈ N, m ∈ Z : |m| ≤ l. We will write Y l
m(x) to denote the corresponding spherical

harmonic evaluated at a point x ∈ S. The spherical harmonics form an orthonormal basis

of L2(S) (cf. (MacRobert, 1948) for more details).

Functions Y l
m can be projected onto D, this fact being key ingredient of our approxi-

mation basis. Let us start by defining two lifting operators on D(D), the first is the even

lifting

Le : D(D)→ D(S),

Le(f)(x) = f(x1, x2), x ∈ S ⊂ R3,

using polar-spherical coordinates we see that Le(g)(θ, ϕ) = g(sinϕ, θ), where the argu-

ments of g are the distance to the origin and the polar angle on the plane x3 = 0. The odd

lifting has to be defined on D0(D) the space of smooth functions on D which vanish on the
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unitary circle in the plane x3 = 0.

Lo : D0(D)→ D(S),

Lo(f)(x) =

f(x1, x2) x3 ≥ 0

−f(x1, x2) x3 ≤ 0
, x ∈ S ⊂ R3,

Notice that every function in the image of Le (resp. Lo) is a even (resp. odd) function on

the x3 variable. In particular, the spherical harmonic Y l
m is even (resp. odd) when m + l is

even (resp. odd). The definition of the lifting operators can be extended to distributions by

duality. In parallel, one can define a projection operator as

ΠS : D(S)→ D(D),

ΠS(f)(x) := f

(
x,
√

1− x2
1 − x2

2

)
x ∈ D ⊂ R2,

which is the inverse Le (resp. Lo) when restricted to the functions with the correspond-

ing symmetries on S. Finally, following (Wolfe, 1971; Ramaciotti Morales, 2016), the

projected basis are defined as

plm(x) :=
√

2ΠS(Y
l
m)(x), qlm(x) :=

plm(x)√
1− ‖x‖2

,

where x ∈ D. From the orthogonality property of spherical harmonics, it holds that∫
D
plm(x)ql

′
m′(x)dx = δm,m′δl,l′ . (4.1)

From the recurrence relations of the associated Legendre functions it can be shown that if

m + l is even, then plm is a smooth function, while, if m + l is odd, then qlm is smooth, we

refer to (Arfken, Weber, & Harris, 2013, Chapter 15), for details.

An explicit formula for the projected basis is given by:

plm(r, θ) = C l
mPl
|m|(
√

1− r2)eimθ, (4.2)

where C l
m =

√
(2l+1)(l−|m|)!

2π(l+|m|)! if m ≥ 0 and C l
m = (−1)mC l

−m if m < 0.
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To simplify notations, we sporadically use only one sub-index for the projected basis.

For m+ l even, we can reorder the basis with a one-dimensional index defined as

Ie(l,m) :=
l(l + 1) + (l +m)

2
.

The even function indexed in this way will be denoted peIe(l,m) (resp. qeIe(l,m)) whereas for

m+ l odd, we set

Io(l,m) =
(l − 1)l +m+ l − 1

2
,

with functions denoted poIo(l,m) (resp. qoIo(l,m)). For example, this leads to

pe0 = p0
0, pe1 = p1

−1, pe2 = p1
1, pe3 = p2

−2,

qo0 = q1
0 qo1 = q2

−1 qo2 = q2
1 qo3 = q3

−2.

Lemma 4.2 (Proposition 2.1.20 in (Urzúa-Torres, 2018)). The following inclusions are

dense in the corresponding Sobolev spaces:

span{pel }l∈N ⊂ H
1
2 (D), span{pol }l∈N ⊂ H̃

1
2 (D),

span{qel }l∈N ⊂ H̃−
1
2 (D), span{qol }l∈N ⊂ H−

1
2 (D).

4.2.4. Auxiliary Functional Spaces

Classically, Sobolev spaces on S can be defined in terms of functions expressed as an

expansion of spherical harmonics in the following way (cf. (Pham, Tran, & Chernov, 2011)

or (K. Atkinson & Han, 2001, Chapter 7)):

Hs(S) :=

{
u ∈ D′(S) : ‖u‖2

Hs(S) :=
∞∑
l=0

(l + 1)2s

l∑
m=−l

|〈u, Y l
m〉|2 <∞

}
, s ∈ R,

where 〈u, Y l
m〉 is the extension by duality of the L2(S)-inner product. From this definition,

given u ∈ Hs(S) and N ∈ N, we can define a finite-dimensional projection of u as

ΠNu =
N∑
l=0

l∑
m=−l

〈u, Y l
m〉Y l

m.
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and using elementary properties we can bound the error of this projection as:

‖u− uN‖Hs(S) ≤ (N + 1)s−r‖u‖Hr(S),

for any reals s, r such that s < r. The space Hs
e (S) (resp. Hs

o(S)) is defined as the

completion of the even (resp. odd) functions in the x3 variable in D(S), with the same

norm. For these cases, the norms can be written as

‖u‖2
Hs
e (S) =

∞∑
l=0

(l + 1)2s

l∑
m=−l
m+l even

|〈u, Y l
m〉|2,

‖u‖2
Hs
o(S) =

∞∑
l=0

(l + 1)2s

l∑
m=−l
m+l odd

|〈u, Y l
m〉|2.

We will also consider the special function wS :=
√

1− x2
1 − x2

2 defined in S. In spherical

coordinates can be written as wS = | cosϕ|.

REMARK 4.2. As the function wS do not depend on the x3 coordinate, it holds that

wSLe(u) = Le(wDu), wSLo(u) = Lo(wDu),

where wD(x) =
√

1− ‖x‖2, for x ∈ D.

Let us introduce two families of auxiliary spaces on D associated with even functions:

P s
e (D) := {u ∈ D′(D) : Le(u) ∈ Hs

e (S)}

Qs
e(D) := {u ∈ D′(D) : wSLe(u) ∈ Hs

e (S)},
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with norms given by:

‖u‖P se (D) := ‖Le(u)‖Hs
e (S) =

 ∞∑
l=0

(l + 1)2s

l∑
m=−l
m+l even

|〈u, qlm〉D|2


1
2

,

‖u‖Qse(D) := ‖wSLe(u)‖Hs
e (S) =

 ∞∑
l=0

(l + 1)2s

l∑
m=−l
m+l even

|〈u, plm〉D|2


1
2

.

Odd function spaces P s
o (D), Qs

o(D) are defined in a similar fashion. While the connection

with standard spaces is not as direct as the definition suggests, the next Lemma will be

useful.3

Lemma 4.3. The following relations between auxiliary and classical spaces on D

holds:

P 0
e (D) = L2

1/wD
(D) :=

{
u :

∫
D

uu

wD
dx <∞

}
(4.3)

Q
− 1

4
e (D) ⊂ H̃−

1
2 (D) ⊂ Q

− 1
2

e (D) (4.4)

P
1
2
o (D) ⊂ H̃

1
2 (D) ⊂ P

1
4
o (D). (4.5)

with continuous inclusions.

Corollary 4.1. The following inclusions are continuous:

Q
− 1

4
o (D) ⊂ H−

1
2 (D) ⊂ Q

− 1
2

o (D) (4.6)

P
1
2
e (D) ⊂ H

1
2 (D) ⊂ P

1
4
e (D). (4.7)

PROOF. Both results are immediate consequences of the duality relation between clas-

sical Sobolev spaces and Lemma 4.3. �

3The proof is given in Appendix C.1.
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By definition of the auxiliary spaces as well the projector ΠN , we can introduce four

projectors onto the disk. Namely,

Πe,p
N :

∞∑
l=0

ulp
e
l 7→

I(N)∑
l=0

ulp
e
l , Πo,p

N :
∞∑
l=0

ulp
o
l 7→

I(N)∑
l=0

ulp
o
l ,

Πe,q
N :

∞∑
l=0

ulq
e
l 7→

I(N)∑
l=0

ulq
e
l , Πo,q

N :
∞∑
l=0

ulq
o
l 7→

I(N)∑
l=0

ulq
o
l ,

where I(N) = Ie(N,N) = N(N+1)
2

+N . Using the norm definitions on the corresponding

spaces, it holds that

‖Πe,p
N u− u‖P se (D) ≤ (N + 1)s−r‖u‖P re (D), (4.8)

‖Πo,p
N u− u‖P so (D) ≤ (N + 1)s−r‖u‖P ro (D), (4.9)

‖Πe,q
N u− u‖Qse(D) ≤ (N + 1)s−r‖u‖Qre(D), (4.10)

‖Πo,q
N u− u‖Qse(D) ≤ (N + 1)s−r‖u‖Qro(D), (4.11)

for any reals s, r such that s < r.

4.3. Boundary Integral Formulation

We now reduce the original problem to the screen.

4.3.1. Boundary Integral Operators

Let us recall the definitions of the single and double layer potentials:

(SΓ[k]λ)(x) :=

∫
Γ

Gk(x,x
′)λ(x′)dx′, x ∈ R3 \ Γ,

(DΓ[k]ν)(x) :=

∫
Γ

γn,x′Gk(x,x
′)ν(x′)dx′, x ∈ R3 \ Γ,

respectively, where

Gk(x,x
′) =

eik‖x−x′‖

4π‖x− x′‖
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denotes the Helmholtz fundamental solution and γn,x′ corresponds to the Neumann trace in

the specified variable.

Following the classical formulation of Dirichlet (resp. Neumann) problems, we seek

for solutions of the form u(x) = (SΓ[k]λ)(x) (resp. u(x) = (DΓ[k]ν)(x)), where λ

(resp. ν) is an unknown density defined on Γ. By taking traces, one naturally defines the

weakly- and hyper-singular boundary integral operators (BIOs),

(VΓ[k]λ)(x) := γd(SΓ[k]λ)(x) =

∫
Γ

Gk(x,x
′)λ(x′)dx′, x ∈ Γ,

(WΓ[k]ν)(x) := −γn(DΓ[k]ν)(x) = −γn
∫

Γ

γn,x′Gk(x,x
′)ν(x′)dx′, x ∈ Γ,

where first BIO is defined as a Lebesgue integral, while the second one is understood as a

principal value (McLean, 2000, Chapter 5).

4.3.2. Boundary Integral Equations

With the above definitions, Problem 4.1 can be reduced to

PROBLEM 4.2 (BIEs). For k ≥ 0, find λ, ν ∈ H̃−1/2(Γ)× H̃1/2(Γ) such that

VΓ[k]λ = gd, (Dirichlet BIE), (4.12)

WΓ[k]ν = gn, (Neumann BIE). (4.13)

The equivalence between these BIEs and their corresponding original problems is es-

tablished in (E. P. Stephan, 1987).

Theorem 4.1 (Theorem 2.7, Lemma 2.8, in (E. P. Stephan, 1987), Theorem 2.1.60 in

(Sauter & Schwab, 2011)). For any k ≥ 0, gd ∈ H
1
2 (Γ) (resp. gn ∈ H−

1
2 (Γ)), there exists

one solution λ ∈ H̃−
1
2 (Γ) (resp. ν ∈ H̃

1
2 (Γ)) for Problem 4.2. Moreover, the solution

operators are bounded:

‖λ‖
H̃−

1
2 (Γ)
. ‖gd‖H 1

2 (Γ)
, ‖ν‖

H̃
1
2 (Γ)
. ‖gn‖H− 1

2 (Γ)
,

with unspecified constants depending on Γ and k.
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Theorem 4.2 (Corollary A.4 in (Costabel, Dauge, & Duduchava, 2003)). Given gd, gn

smooth functions on Γ, the pulled-back solutions multiplied by the corresponding weight

functions, (λ ◦ r)wD and (ν ◦ r)(wD)−1, are as smooth as gd ◦ r, and gn ◦ r, respectively.

REMARK 4.3. The last theorem is far from trivial. In the two-dimensional case –open

arcs– solutions are also singular at the arc endpoints, which is proven straightforwardly

for any k and arc as a perturbation of the simpler case k = 0, Γ = (−1, 1)× {0}. On the

other hand, for screens in three-dimensional space a careful analysis of the BIO symbols

is needed (cf. (Costabel et al., 2003) and references therein).

4.4. Spectral Discretizations

From the definition of auxiliary spaces Lemma 4.2, it is natural to consider a collection

of finite-dimensional spaces spanned by elements qel (resp. pol ) for the discretization of the

Dirichlet (resp. Neumann) BIEs.

For N ∈ N, we set the following spaces defined over the disk:

QN
e (D) := span{qel }

I(N)
l=0 =

u : u =
N∑
l=0

l∑
m=−l
m+l even

ulmq
l
m, u

l
m ∈ C

 ⊂ H̃−
1
2 (D),

PNo (D) := span{pol }
I(N)
l=0 =

u : u =
N+1∑
l=0

l∑
m=−l
m+l odd

ulmp
l
m, u

l
m ∈ C

 ⊂ H̃
1
2 (D),

where again I(N) = N(N+1)
2

+N . For an arbitrary smooth screen, we define corresponding

spaces through pullbacks as follows

QN
e (Γ) :=

{
u : =

(v ◦ r−1)‖r−1‖
Jr ◦ r−1

, v ∈ QN
e (D)

}
⊂ H̃−

1
2 (Γ),

PNo (Γ) :=
{
u : = v ◦ r−1, v ∈ PNo (D)

}
⊂ H̃

1
2 (Γ).

where the inclusions can be easily shown. These spaces are spanned by the basis functions:

qe,rn :=
(qen ◦ r−1)‖r−1‖

Jr ◦ r−1
, po,rn := pon ◦ r−1,
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respectively, and where n = 0, . . . , I(N).

4.4.1. Discrete Problem

Before we introduce discrete versions of Problem 4.2, we set forth the following no-

tation. Given N ∈ N, vectors on CI(N)+1 are written in bold symbols and superindex N .

Associated to every vector, there are two functions which are denoted with the same symbol

(not in bold) and superindex N , and an extra sub-index e if the function is to be understood

in QN
e (Γ), and o if in PNo (Γ). For example, given λN ∈ CI(N)+1, one can write

λNe =

I(N)∑
m=0

λNmq
e,r
m , λNo =

I(N)∑
m=0

λNmp
o,r
m .

Given N ∈ N, the Galerkin discretization of the BIE formulation (4.12) reads as

PROBLEM 4.3. Seek λN ∈ CI(N)+1 (resp. νN ∈ CI(N)+1) such that

V N
Γ [k]λN = gNd , (discrete Dirichlet BIE).

WN
Γ [k]νN = gNn , (discrete Neumann BIE),

where the respective discretization matrices elements are defined as

(V N
Γ [k])l,m = 〈VΓ[k]qe,rm , qe,rl 〉Γ, (WN

Γ [k])l,n = 〈WΓ[k]po,rm , po,rl 〉Γ,

and the corresponding discrete right-hand sides are, for l,m = 0, . . . , I(N),

(gNd )l = 〈gd, qe,rl 〉Γ, (gNn )l = 〈gn, po,rl 〉Γ.

The discrete approximations for λ, ν (solutions of Problem 4.2) are λNe , ν
N
o respec-

tively. From standard Galerkin properties we have the following result:

Lemma 4.4 (Theorem 4.29 in (Sauter & Schwab, 2011)). There exists N0 ∈ N0 –

potentially different for the weakly- and hyper-singular BIEs– such that, for any N ∈ N

with N > N0, the solutions λN , and νN of Problem 4.3 exist, are unique and also we
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obtain quasi-optimality:

‖λ− λNe ‖H̃− 1
2 (Γ)
. inf

v∈QeN (Γ)
‖λ− v‖

H̃−
1
2 (Γ)

, ‖ν − νNo ‖H̃ 1
2 (Γ)
. inf

v∈PoN (Γ)
‖ν − v‖

H̃
1
2 (Γ)

.

From these last estimates we obtain the rate of convergence.

Theorem 4.3. Given gd, gn ∈ D(Γ), then for any regularity indices sd > −1
4
, sn > 1

2
,

it holds that

‖λ− λNe ‖H̃− 1
2 (Γ)
. N−

1
4
−sd‖λ ◦ r‖Qsde (D), (4.14)

‖ν − νNo ‖H̃ 1
2 (Γ)
. N

1
2
−sn‖ν ◦ r‖P sno (D). (4.15)

PROOF. We prove only the Dirichlet case as the Neumann follows similar arguments.

Denote by R a smooth non-zero function R(x) :=
‖x‖
Jr(x)

. By using Lemmas 4.1 and 4.4

one finds that

‖λ− λNe ‖H̃− 1
2 (Γ)
. inf

v∈QeN (Γ)
‖λ− v‖

H̃−
1
2 (Γ)
. inf

v∈QeN (D)
‖λ ◦ r−Rv‖

H̃−
1
2 (D)

.

We can use the relation between Sobolev and auxiliary spaces (Lemma 4.3) to obtain

‖λ− λNe ‖H̃− 1
2 (Γ)
. inf

v∈QeN (D)
‖λ ◦ r−Rv‖

Q
− 1

4
e (D)

. inf
v∈QeN (D)

∥∥∥∥ λR − v
∥∥∥∥
Q
− 1

4
e (D)

.

Since R−1 is smooth, the results follow by selecting v = Πe,q
N

λ
R

and estimation (4.10) with

s = −1/4, r = sd. �

REMARK 4.4. Notice that the right-hand side in (4.14) is indeed finite for any sd >

−1
4
, sn > 1

2
. This follows from the norm definitions as

‖λ ◦ r‖Qsde (D) = ‖Le(wDλ ◦ r)‖Hsd (S),

and by Theorem 4.2, which ensures that wDλ ◦ r is smooth. Thus, implying a smooth lifting

to the sphere. Using definitions of the Sobolev spaces (McLean, 2000, Chapter 2), any

Sobolev norm is finite. The same is true for the Neumann case.
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One concludes from Theorem 4.3 that the spectral method converges super algebraically,

i.e. faster than any fixed negative power of N .

4.4.2. Matrix Computation

We now describe how matrix entries are computed. We start by detailing the approxi-

mation of weakly-singular integrals that appear in the corresponding matrix, namely

Vl,m[k] = 〈VΓ[k]qe,rm , qe,rl 〉Γ.

Then, we briefly discuss how integrals for the hyper-singular BIO are obtained using the

same techniques, and also how regular entries are computed. Before we proceed, we recall

some notions of numerical quadrature and convergence.

4.4.2.1. Numerical Quadrature

Let a < b two real numbers, and f : (a, b)→ C. The Gauss-Legendre quadrature rule

approximate the integral of f as a weighted sum of point evaluations of f , the approxima-

tion is constructed as ∫ b

a

f(x)dx ≈
Nq∑
i=1

wLi f(xLi ),

where Nq is the order of the quadrature, and ({wLi }
Nq
i=1 ,{xLi }

Nq
i=1) are the weights and points

4 of the quadrature respectively. When f is smooth, the quadrature converges with a rate

bounded as a function of Nq. In particular, by using the fact that the quadrature rule is

constructed to be exact for every polynomial up to some degree and classical bounds for

polynomial interpolation (L. Trefethen, 2013, Chap. 7 and 8), one can establish that for f

with (m+ 1) continuous derivatives5:∣∣∣∣∣
∫ b

a

f(x)dx−
Nq∑
i=1

wLi f(xLi )

∣∣∣∣∣ . N−mq .

4Notice that the points and weights depend on a, b, but once given for a fixed interval they can be translated
using a linear change of variable. Consequently, we omit this dependence in notation.
5Better convergence rates can be achieved for Gaussian quadrature rules (Stoer & Bulirsch, 1980, Theorem
3.6.24).
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Moreover, if f admits an analytic extension to a Bernstein ellipse of parameter ρ in the

complex plane, one can show6 that∣∣∣∣∣
∫ b

a

f(x)dx−
Nq∑
i=1

wLi f(xLi )

∣∣∣∣∣ . ρ−Nq .

Whenever an integral of a function can be approximated with the same rates as the last

two, we say that the approximation is optimal. In particular, Gauss-Legendre quadrature

rules are optimal for any smooth function integral. Jacobi quadrature rules are built as an

approximation of the following family of integrals:∫ b

a

f(x)(x− a)α(b− x)βdx ≈
Nq∑
i=1

wα,βi f(xα,βi ),

where, again, Nq is the quadrature order, ({wα,βi }
Nq
i=1 ,{xα,βi }

Nq
i=1) are the pair of weights and

points, and α, β > −1. This rule is also optimal, i.e. that the rate of convergence is again

N−mq when f has (m+ 1) continuous derivative and ρ−Nq when f is ρ−analytic.

4.4.2.2. Approximation of weakly-singular integrals

Given a screen Γ para-metrized by a function r, we consider the computation of inte-

grals of the form:

Im,l[k] =

∫
Γ

∫
Γ

cos(k‖x− x′‖)
4π‖x− x′‖

qe,rm (x′)qe,rl (x)dxdx′.

These integrals are associated with the real part of the weakly-singular BIO. Its imaginary

part is regular since the function sin(k‖x−x′‖)/‖x−x′‖ is smooth. Moreover, the cosine

factor is smooth so from here onwards, we assume that k = 0 and denote Im,l[0], as Im,l.

By performing a change of variable, this integral becomes

Im,l =

∫
D

∫
D

1

4π‖r(x)− r(x′)‖
qem(x′)qel (x)dxdx′.

6see (L. Trefethen, 2013, Chapter 8)
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FIGURE 4.1. Polar change of variables performed in (4.16).

The first step is to take care of the kernel singularity, i.e. when x = x′. To this end, we

make the following parametrization:

x = reθ, x′ = x + λA(r, β)eθ+β, (4.16)

where

eθ = (cos θ, sin θ), A(r, β) :=

√
1− r2 sin2 β − r cos β, (4.17)

the latter represents the length of the segment whose direction is θ+β, and goes from point

x to the boundary of the disk (see Figure 4.4.2.2). The integral can be expressed as

Im,l =

∫ 3π
2

−π
2

∫ 1

0

∫ 3π
2

−π
2

∫ 1

0

Gm,l(θ, r, λ, β)dλdβdrdθ,

Gm,l(θ, r, λ, β) :=
λA2(r, β)

4π‖r(x)− r(x + λA(r, β)eθ+β)‖
rpem(x)pel (x

′)√
1− r2

√
1− ‖x + λA(r, β)eθ+β‖2

.

Since r is smooth, injective and its gradient has full rank, the factor

λA2(r, β)

4π‖r(x)− r(x + λA(r, β)eθ+β)‖
,

is at least bounded. The term (1 − r2)−
1
2 while singular can be tackled with the Jacobi

rule. However, this is not enough since A(r, β) and
√

1− ‖x + λA(r, β)eθ+β‖2 also have

singularities that prevent an optimal rate of convergence. The following results characterize

the behavior of these functions.

Lemma 4.5. The function A : [0, 1]× [−π
2
, 3π

2
]→ [0, 2] has the following properties:
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(i) A(r, β) ≥ 0.

(ii) Partial derivatives discontinuities ofA(r, β) are located at {r = 1, β = −π
2
, π

2
, 3π

2
}.

(iii) For |β| ≤ π
2
, A(r, β) cos β ≤ 1− r.

PROOF. The first item is immediate by definition. For the second one, notice that the

discontinuities occur when the square-root parts vanish, i.e.

(1− r2) + r2 cos2 β = 0.

As a sum of two non negative terms, the singularities occurs when both terms vanish, thus

leading to our result directly. The last item is obtained by direct evaluation at extreme

points β = ±π
2

and critical values of β such that
∂A(r, β) cos β

∂β
= 0, or by directly using

elementary geometrical proprieties. �

Lemma 4.6. Discontinuities of any partial derivative of the term√
1− ‖x + λA(r, β)eθ+β‖2,

occur at {λ = 1} ∪ {r = 1, λ = 0} ∪ {r = 1, β = ±π
2
, 3π

2
}.

PROOF. Again, critical points occur only when the term inside the square-root van-

ishes. This term can be expressed as

1− ‖x + λA(r, β)eθ+β‖2 = (1− λ)
[
(1 + λ)(1− r2)− 2λr cos(β)A(r, β)

]
, (4.18)

for which all previously listed points are critical. Hence, we are left to check that no other

critical points exist.

First, let us consider the case π
2
≤ β ≤ 3π

2
so that −2λr cos βA(r, β) ≥ 0. Thus, the

singularities are characterized by λ = 1 –because of the first factor–, and also the points

where

(1 + λ)(1− r2) = 0,

2λr cos βA(r, β) = 0.
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From this condition and Lemma 4.5 it is easy to see that no further critical points take place.

Now, if |β| ≤ π
2
, by the third item of Lemma 4.5 we have that

((1 + λ)(1− r2)− 2λr cos βA(r, β)) ≥ (1 + λ)(1− r2)− 2λr(1− r)),

which implies that the singularities can only occur if λ = 1 –because of the first term–, or

r = 1, and the result follows. �

Based on the above considerations, we split the integrals Im,l according to the singu-

larities and critical points as follows. The detailed analysis for the last three types is given

in the Appendix C.2.

(a) The first type is

Iam,l :=

∫ 3π
2

−π
2

∫ √
3

2

0

∫ 3π
2

−π
2

∫ 1

0

Gm,l(θ, r, λ, β)dλdβdrdθ,

for which only a singularity of the form (1− λ)−
1
2 occurs. This can numerically

be treated using the corresponding Jacobi rule when integrating in λ and Gauss-

Legendre for the integrals in θ, r, β, resulting in an optimal approximation.

(b) The second type is

Ibm,l :=

∫ 3π
2

−π
2

∫ 1

√
3

2

∫
(−π

3
,π
3

)∪( 2π
3
, 4π
3

)

∫ 1

1
2

Gm,l(θ, r, λ, β)dλdβdrdθ,

which has singularities of the form (1− r)− 1
2 , and (1−λ)−

1
2 , so we use a Jacobi

rule in these two variables and Gauss-Legendre for θ and β.

(c) The third one has critical points occurring as a combination of variables:

Icm,l :=

∫ 3π
2

−π
2

∫ 1

√
3

2

∫
(−π

2
,−π

3
)∪(π

3
,π
2

)∪(π
2
, 2π
3

)∪( 4π
3
, 3π
2

)

∫ 1
2

0

Gm,l(θ, r, λ, β)dλdβdrdθ, (4.19)

Here, critical points lie in (λ, r, β) = (0, 1, β), and (λ, r, β) = (λ, 1, β0), β0 ∈

{±π
2
, 3π

2
}. To tackle this, we will use two polar change of variables (see C.2.2).
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(d) The fourth one is of the form

Idm,l :=

∫ 3π
2

−π
2

∫ 1

√
3

2

∫
(−π

3
,π
3

)∪( 2π
3
, 4π
3

)

∫ 1
2

0

Gm,l(θ, r, λ, β)dλdβdrdθ, (4.20)

being sightly simpler that the previous case and only requiring one polar change

of variable in λ and r variables.

(e) Finally, the last integral type is given by

Iem,l :=

∫ 3π
2

−π
2

∫ 1

√
3

2

∫
(−π

2
,−π

3
)∪(π

3
,π
2

)∪(π
2
, 2π
3

)∪( 4π
3
, 3π
2

)

∫ 1

1
2

Gm,l(θ, r, λ, β)dλdβdrdθ, (4.21)

which needs one polar change of variable in (r, cos β) and application of a Jacobi

rule for the integral in the λ variable.

4.4.2.3. Approximation of smooth integrals

Smooth integrals can be of two forms:

Ifm,l :=

∫
Γ

∫
Γ

Greg(x,x
′)qe,rm (x′)qe,rl (x)dxdx′, Igm,l :=

∫
Γ

g(x)qe,rl (x)dx,

where Greg, and g are smooth functions. The former comes from the imaginary part of the

fundamental solution, whereas the latter from testing the right-hand side. We focus only in

the second case, as the first one is just a tensorisation. By using the screen parametrization,

we obtain

Igm,l =

∫ 3π
2

−π
2

∫ 1

0

g(r(x))
pel (x)√
1− r2

rdrdθ,

where x = reθ. Using the Gauss-Legendre rule when integrating in θ and Jacobi for r we

obtain optimal rates of convergence.

4.4.2.4. Approximation of hyper-singular Integrals

As it was pointed out, the discretization basis for the hyper-singular operator BIO (po,rm )

vanishes on the boundary ∂Γ, and consequently, the entries of the corresponding matrix can

be computed using the integration-by-parts formula (Sauter & Schwab, 2011, Corollary
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3.3.24):

〈WΓ[k]po,rm , po,rl 〉 =

∫
Γ

∫
Γ

eik‖x−x′‖

4π‖x− x′‖
curlΓp

o,r
m (x′) · curlΓpo,rl (x)dx′dx

−k2

∫
Γ

∫
Γ

eik‖x−x′‖

4π‖x− x′‖
n̂(x) · n̂(x′)po,rm (x′)po,rl (x)dx′dx,

(4.22)

where n̂ denote the unitary normal vector to Γ (with a fixed orientation) and curlΓf =

n̂×∇f , whenever f can be extended to a neighborhood of Γ. We start by considering the

second integral on the right-hand side, we reduce the computations to D and obtain

k2

∫
D

∫
D

eik‖r(x)−r(x′)‖

4π‖r(x)− r(x′)‖
n̂(r(x)) · n̂(r(x′))pom(x′)pol (x)

Jr(x)

‖x‖
Jr(x

′)

‖x′‖
dx′dx,

Since functions pol can be characterized as the product between a smooth function and the

weight function wD the same change of variables used for the weakly-singular case works

for this integral7. For the first integral in the right-hand side in (4.22), we compute the

surface curl operators. Using the parametrization of Γ, the explicit expression

(curlΓf)(r) =
1

Jr

(∂x2r∂x1(f ◦ r)− ∂x1r∂x2(f ◦ r))

arises, where ∂x1 , ∂x2 denote the partial derivatives with respect to the arguments of the

parametrization r. In our implementation, r is given in polar coordinates and so x1 and

x2 are the radial and angular variables, respectively. The function f ◦ r corresponds to pom
for some m,and thus, we require their partial derivatives. Moreover, using the two-indices

representation we can write pom = plm, for a pair of integers l,m such that m + l is odd.

The angular derivative is given by

∂θp
l
m = ∂θ

(
Cl

mPl
|m|(
√

1− r2)eimθ
)

= imCl
mPl
|m|(
√

1− r2)eimθ = implm,

where the first equality is the explicit definition of the projected basis (4.2). We can express

this in terms of the basis used for the discretization of the weakly-singular BIO as we have

7It is necessary to change the parameters of the Jacobi quadrature rule, as now the singularity is of the form√
1− x2, instead of 1/

√
1− x2.
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the following recursive relation (see (Arfken et al., 2013, 15.87)):

Pl
m(x) =

−
√

1− x2

2mx

(
Pl
m+1(x) + (l + m)(l −m + 1)Pl

m−1(x)
)
, m 6= 0

so we conclude that

∂θp
l
m =

−ir
2

(
almq

l
m+1 + blmq

l
m−1

)
, (4.23)

where

alm := e−iθ


√

(l − |m|)(l + |m|+ 1), m ≥ 0

−
√

(l + |m|)(l − |m|+ 1), m < 0
(4.24)

blm := eiθ


√

(l + |m|)(l − |m|+ 1), m ≥ 0

−
√

(l − |m|)(l + |m|+ 1), m < 0
(4.25)

Notice that, for m = 0, the derivative is zero and this is also true for expression (4.23).

Since m + l is odd, we have that qlm+1 and qlm−1 are even functions. For the derivative

with respect to r, we need the derivative of the associated Legendre functions, given by the

following recursion (see (Arfken et al., 2013, 15.91)):

dPl
m(x)

dx
=

1

2
√

1− x2

(
−Pl

m+1(x) + (l + m)(l −m + 1)Pl
m−1(x)

)
,

Hence, we obtain

∂rp
l
m =

1

2

(
almq

l
m+1 − blmqlm−1

)
,

where alm, b
l
m are defined as in (4.24). Again, we have expressed the derivative in terms of

the basis of the weakly-singular case. We conclude that for the computation of the hyper-

singular BIO only minor modifications respect to the weakly-singular one are needed.

These modifications are the change of the parameter of the respective Jacobi rule, the in-

clusion of the product of the normal vectors, and the extra smooth factors e±ıθ, ∂xjr · ∂x′jr

(j, j′ = 1, 2) that have to be included in the kernel function. We have omitted the details

of smooth integrals associated with the hyper-singular BIO as they do no present any extra

challenge.
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4.4.3. Numerical Implementation

Throughout this section we denote by N̂ = I(N) + 1 = N + N(N+1)
2

+ 1, the number

of degrees of freedom when using the spaces QN
e (Γ), PNo (Γ) for the discretization of the

underlying integral equations. Every integral needed to assembly the matrix discretization

of the weakly-singular BIO (Ia, Ib, Ic, Id, Ie, If ) is a four-dimensional integral. The

total number of these integral computations can be reduced using the matrix symmetries8.

Consequently, only N̂(N̂+1)
2

combinations are needed instead of N̂2. Furthermore, since

pl−m = (−1)mplm the actual number of interactions needed to compute the weakly-singular

BIO is 1
4

(
N̂ + N+2

2

)(
3
2
N̂ − N−2

4

)
, assuming N even9.

A four-dimensional integral computed by tensorized 1D-quadrature rules, with param-

eters N1
q , N

2
q , N3

q , N
4
q , has a computational cost of O(Π4

j=1N
j
q ) operations and evaluations.

To compute integrals arising from the weakly singular BIO Iα, α ∈ {b, c, d, e}, we denote

by N θ
q the number of points for the θ variable, and Nα

q the number of points for the other

three variables depending on α. For α = a, we use N θ
q for variables θ and β, and Na

q for

the rest. For the hyper-singular case, same rules apply.

For the smooth integrals α ∈ {f, g} we could use N θ
q for the θ and θ′ variables, and

Nα
q , α ∈ {f, g} for r, and r′. However, in practice it is better to reformulate the integrals

onto the sphere, where the basis correspond to spherical harmonics, and approximate the

integrals using the spherical harmonics transforms. In particular we use the implementation

detailed in (Schaeffer, 2013).

4.5. Full Discretizaton Error Analysis

The rate of convergence of the spectral Galerkin discretization method was already

established in Theorem 4.3. Yet, this does not illustrate the performance of the fully discrete

method as extra error terms appears as consequence of the quadrature approximation of

8The matrix associated with the real part of the fundamental solution (Iα, α ∈ {a, b, c, d, e}) is Hermitian,
while the imaginary one (If ) is anti-Hermitian.
9If N is odd, the computational cost is 1

4

(
N̂ + N+1

2

)(
3
2N̂ −

N−3
4

)
.
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integral terms. Thus, we first measure the perturbation in error convergence rates due to

quadrature error.

4.5.1. Quadrature Error

For the sake of brevity, we denote Qα the quadrature approximation of Iα, α ∈

{a, b, c, d, e, f, g}, defined in Section 4.4.2.2. Since we assume that the screen is parametrized

by a ρ−analytic function, and the approximation is optimal, we have that

|Iα −Qα| . ρ−N
θ
q + ρ−N

α
q . (4.26)

While this bound is precise in terms of how the quadrature error decreases with increasing

number of quadrature points, the unspecified constant depends on the trial and test basis

indices. Hence, since the rate of convergence depends on the number of trial functions, we

need a more detailed quadrature error analysis considering the exact index of the trial and

test basis. For this, let us consider the canonical integral

I lm =

∫ 1

0

∫ 3π
2

−π
2

g(x)plm(x)rdθdr,

where x = reθ, g is ρ−analytic in (r, θ) and l + m is even. It is enough to consider this

case, as all integrals discussed in Section 4.4.2.2 can be reduced to this form by means

of analytic change of variables to tensorization of integral. Denote by Ql
m the quadrature

approximation of I lm obtained by a Gauss-Legendre rule in both variables, with N θ
q points

in the θ variable, and Nq points in the r variable.

We denote byEρ[a, b] the region enclosed by the Bernstein ellipse in the complex plane

with foci in a, b and parameter ρ. Now, we recall the classical error bound for analytic

integrands.

Theorem 4.4 (Theorem 5.3.13 in (Sauter & Schwab, 2011)). If m + l is even, for g

ρ-analytic in [0, 1] in the radial variable and ρ-analytic in [−π
2
, 3π

2
] for the angular one, it
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holds that

|I lm −Ql
m| . (2ρ)−2Nθ

q max
r∈[0,1]

max
z∈∂Eρ[−π

2
, 3π
2

]
|g(r, z)plm(r, z)|

+(2ρ)−2Nq max
θ∈[−π

2
, 3π
2

]
max

z∈∂Eρ[0,1]
|g(z, θ)plm(z, θ)|

where the unspecified constant does not depend on the integrand of I lm.

Since g is assumed to be known, we can further simplify the error bound as

|I lm −Ql
m| . (2ρ)−2Nθ

q max
r∈[0,1]

max
z∈∂Eρ[−π

2
, 3π
2

]
|plm(r, z)|

+(2ρ)−2Nq max
θ∈[−π

2
, 3π
2

]
max

z∈∂Eρ[0,1]
|plm(z, θ)|,

with a constant that now depends on g.

Corollary 4.2. Under hypothesis of Theorem 4.4, for the integral

Ĩ lm :=

∫ 1

0

∫ 3π
2

−π
2

g(x)qlm(x)rdθdr,

it holds that

|Ĩ lm − Q̃l
m| . (2ρ)−2Nθ

q max
r∈[0,1]

max
z∈∂Eρ[−π

2
, 3π
2

]
|plm(r, z)|

+(2ρ)−2Nq max
θ∈[−π

2
, 3π
2

]
max

z∈∂Eρ[0,1]
|plm(z, θ)|,

where Q̃l
m denotes the quadrature approximation using a Gauss-Legendre rule with N θ

q

points in θ, and a Jacobi rule with Nq points in the r variable.

We now proceed to estimate maxima of analytic extensions for the functions plm. Re-

member that the explicit definition (4.2) (see Section 4.2.3):

plm(r, θ) = C l
mPl
|m|(
√

1− r2)eimθ,
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where |C l
m| =

√
(2l+1)(l−|m|)!

2π(l+|m|)! , with Pl
|m|(
√

1− r2) smooth in the r variable. By using

(Lohöfer, 1991, Theorem 3), one deduces that

max
r∈[0,1]

max
z∈∂Eρ[−π

2
, 3π
2

]
|plm(r, z)| .

√
2l + 1e|m|

π
2

(ρ−ρ−1) .
√

2l + 1elπρ,

where the last inequality follows for |m| ≤ l and ρ > 1. On the other hand, the second

term can be bounded as

max
θ∈[−π

2
, 3π
2

]
max

z∈∂Eρ[0,1]
|plm(z, θ)| ≤ |C l

m| max
z∈∂Eρ[0,1]

|Pl
|m|(
√

1− z2)|.

We can use the Rodríguez formula to express the associated Legendre function in terms of

Legendre polynomials:

|Pl
|m|(
√

1− z2)| = |zm|
∣∣∣∣( dm

dxm
Pl(x)

)
|x=
√

1−z2

∣∣∣∣ ,
where Pl denotes the lth Legendre polynomial. Obviously, |z| < ρ+ρ−1

2
, for every z ∈

∂Eρ[0, 1]. Moreover,

max
z∈∂Eρ[0,1]

∣∣∣∣( dm

dxm
Pl(x)

) ∣∣∣
x=
√

1−z2

∣∣∣∣ = max
z∈Aρ

∣∣∣∣( dm

dxm
Pl(x)

) ∣∣∣
x=z

∣∣∣∣ ,
where Aρ is the image of ∂Eρ[0, 1] under the transformation (1 − x2)

1
2 , where the square

root has to be understood as the pre-image of the square function. Since Pl are polynomials

and using the maximum modulus principle, there exists ρ̂ > 1 such that

max
z∈Aρ

∣∣∣∣( dm

dxm
Pl(x)

) ∣∣∣
x=z

∣∣∣∣ ≤ max
z∈∂Eρ̂[−1,1]

∣∣∣∣( dm

dxm
Pl(x)

) ∣∣∣
x=z

∣∣∣∣ .
Furthermore, using the Cauchy integral formula we have that

dm

dzm
Pl(z) =

m!

2iπ

∫
∂Ecρ̂[−1,1]

Pl(x)

(z − x)m+1
dx, ∀z ∈ ∂Eρ̂[−1, 1], c > 1.



123

Hence, by using (Wang & Zhang, 2018)[Theorem 4.1] we have

max
z∈∂Eρ̂[−1,1]

∣∣∣∣( dm

dxm
Pl(x)

)
|x=z

∣∣∣∣ ≤ m!

2π
L(∂Ecρ̂[−1, 1])Pl

(
cρ̂+ (cρ̂)−1

2

)
max

x∈∂Ecρ̂[−1,1]

1

|z − x|m+1
, c > 1

where L(∂Ecρ̂[−1, 1]) is the length of the corresponding ellipse, and as such, it can be

estimated as L(∂Ecρ̂[−1, 1]) . (cρ̂ + (cρ̂)−1). Also, notice that the minimum distance

between ∂Ecρ̂[−1, 1] and ∂Eρ̂[−1, 1] is larger10 than 1
2
(c− 1)

(
ρ− 1

cρ

)
. Thus, one has

max
z∈∂Eρ̂[−1,1]

∣∣∣∣( dm

dxm
Pl(x)

)
|x=z

∣∣∣∣ .
m!(cρ̂+ (cρ̂)−1)

(
2

(c− 1)(ρ̂− (cρ̂)−1)

)m+1

Pl

(
cρ̂+ (cρ̂)−1

2

)
.

m!

(
2

(c− 1)(ρ̂− (cρ̂)−1)

)m+1

(cρ̂+ (cρ̂)−1)l+1,

wherein the last inequality follows for l is large as the polynomial is dominated by the

monomial of greatest degree. Using some basic bound, selecting c < ρ and also that l is

large enough we can write the previous equation as

max
z∈∂Eρ̂[−1,1]

∣∣∣∣( dm

dxm
Pl(x)

)
|x=z

∣∣∣∣ . m!cl
(

2

c− 1

)m+1

ρ̂l−m,

Finally we redefine ρ̂, (based in the last expression) such that,

max
θ∈[−π

2
, 3π
2

]
max

z∈∂Eρ[0,1]
|plm(z, θ)| . |C l

|m||m!ρ̂l .
√

2l + 1ρ̂l,

and the quadrature error is then bounded as

|I lm −Ql
m| .

√
2l + 1

[
(2ρ)−2Nθ

q eπlρ + (2ρ)−2Nq ρ̂l
]
.

This bound be further simplified to

|I lm −Ql
m| .

√
2l + 1

[
(2ρ)−2Nθ

q + (2ρ)−2Nq
]
ρ̃l

10This can be shown using elementary geometrical computations.
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where ρ̃ > 1. We can summarize quadrature error bound in the following result:

Lemma 4.7. There is N0 ∈ N such that given integers m, l, |m| < l and l > N0, and

g : [0, 1]× [−π
2
, 3π

2
]→ C ρ−analytic in both variables. For the integral

I lm :=

∫ 1

0

∫ 3π
2

−π
2

g(x)plm(x)rdθdr,

we have the error bound

|I lm −Ql
m| .

√
2l + 1

(
(2ρ)−2Nθ

q + (2ρ)−2Nq
)
ρ̃l

where Ql
m denotes the approximation by Gauss-Legendre of order Nq, N

θ
q , for both vari-

ables accordingly, ρ̃ > 1, and the unspecified constant does not depend on l,m.

Corollary 4.3. Under the hypothesis and notations of Lemma 4.7, given another pair

of integers l′,m′ such that |m′| < l′ and l′ > N0, and G(x,x′) :
(
[0, 1]× [−π

2
, 3π

2
]
)2 → C,

for the integral

I l,l
′

m,m′ :=

∫ 1

0

∫ 3π
2

−π
2

∫ 1

0

∫ 3π
2

−π
2

G(x,x′)plm(x)pl
′

m′(x
′)rr′dθdrdθ′dr′,

it holds that

|I l,l
′

m,m′ −Q
l,l′

m,m′ | .
√

(2l + 1)(2l′ + 1)
(

(2ρ)−2Nθ
q + (2ρ)−2Nq

)
ρ̃lρ̃′l

′

where Ql,l′

m,m′ denotes the Gauss-Legendre quadrature of orders Nq in r, r′ and N θ
q for θ, θ′,

ρ̃ > 1 and ρ̃′ > 1, and the unspecified constant does not depend of l,m, l′,m′.

4.5.2. Fully Discrete Error Analysis:

Recall Problem 4.3, where the unknowns are vectors of dimension I(N) = N(N+1)
2

+

N . Let us now consider the same problem where the corresponding matrices and right-hand

sides are approximated with the quadrature method detailed in Section 4.4.2.
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PROBLEM 4.4. Find λN,q,νN,q ∈ CI(N)+1 such that

V N,q[k]λN,q = gN,qd , (Fully discrete Dirichlet BIE), (4.27)

WN,q[k]νN,q = gN,qn , (Fully discrete Neumann BIE), (4.28)

where V N,q[k] (resp.WN,q[k], gN,qd , gN,qn ) is the quadrature approximation to V N [k] (resp.WN [k],

gNd , gNn ) constructed as described in Section 4.4.2.

The approximations obtained from the fully discrete problems are written

λN,qe =

I(N)∑
m=0

λN,qm qe,rm , νN,qo =

I(N)∑
m=0

νN,qm po,rm .

We refer to Problem 4.4 as fully discrete problems. For their analysis, we detail the Dirich-

let case as the Neumann case follows similar ideas. Results for both cases are reported at

the end of the section.

We first estimate the quadrature error between matrices V N [k] − V N,q[k]. Recall the

notation introduced at beginning of Section 4.4.1. For simplicity, the number of quadrature

points is determined by only two variables N θ
q and Nq. Following the notation in Section

4.4.3, this corresponds to the simpler case Nα
q = Nq for every α ∈ {a, b, c, d, e, f}. For

different values of Nα
q , the results are essentially the similar but we forgo this analysis for

the sake of brevity.

Lemma 4.8. There is N0 ∈ N, such that for N > N0, given vectors µN , ψN ∈

CI(N)+1, we have that∣∣ψN ·
(
V N [k]− V N,q[k]

)
µN
∣∣ . ρ̃2NN4

[
(2ρ)−2Nq + (2ρ)−2Nθ

q

]
×‖µNe ‖H̃− 1

2 (Γ)
‖ψNe ‖H̃− 1

2 (Γ)
,

where, as before, ρ > 1, ρ̃ > 1.
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PROOF. Expanding matrix products yields∣∣ψN ·
(
V N [k]− V N,q[k]

)
µN
∣∣ =∣∣∣∣∣∣∣∣

N∑
l′=0

l′∑
m′=−l′
m′+l′ even

ψNIe(l′,m′)

N∑
l=0

l∑
m=−l
m+l even

(
V N [k]− V N,q[k]

)
Ie(l′,m′),Ie(l,m)

µNIe(l,m)

∣∣∣∣∣∣∣∣ ,
where the index Ie(l,m) = l(l+1)+(l+m)

2
was defined in Section 4.2.3. Now, V N [k] (see Sec-

tion 4.4.1) is a matrix whose entries can be written as the sum of integrals Ia, Ib, Ic, Id, Ie, If ,

and V N,q[k] is the sum corresponding to quadratures approximationsQa, Qb, Qc, Qd, Qe, Qf

as described in Section 4.4.2.2. By construction, we can use11 Corollary 4.3 and obtain∣∣ψN ·
(
V N [k]− V N,q[k]

)
µN
∣∣ . [(2ρ)−2Nθ

q + (2ρ)−2Nq
]

×

∣∣∣∣∣∣∣∣
N∑
l′=0

l′∑
m′=−l′
m′+l′ even

N∑
l=0

l∑
m=−l
m+l even

√
(2l + 1)(2l′ + 1)

(
ρ̃
′l′ ρ̃l
)
ψNIe(l′,m′)µ

N
Ie(l,m)

∣∣∣∣∣∣∣∣
.

Redefining ρ̃ := max{ρ̃′, ρ̃} leads to

|ψN ·
(
V N [k]− V N,q[k]

)
µN | . ρ̃2N

[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]

×

∣∣∣∣∣∣∣∣
N∑
l′=0

l′∑
m′=−l′
m′+l′ even

N∑
l=0

l∑
m=−l
m+l even

√
(2l + 1)(2l′ + 1)ψNIe(l′,m′)µ

N
Ie(l,m)

∣∣∣∣∣∣∣∣ .
Applying the Cauchy-Schwartz inequality one obtains

|ψN ·
(
V N [k]− V N,q[k]

)
µN | . ρ̃2N

[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]

×N4

 N∑
l′=0

l′∑
m′=−l′
m′+l′ even

(ψNIe(l′,m′))
2

l′ + 1


1
2  N∑

l=0

l∑
m=−l
m+l even

(µNIe(l,m))
2

l + 1


1
2 ,

11Each of the integrals Iα, α ∈ {a, b, c, d, e, f} have different integration domain but they could be fixed
using smooth window functions that extend the integrands to the required domain to apply the Corollary
directly.
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and by the auxiliary spaces norms definitions, it holds that

|ψN ·
(
V N [k]− V N,q[k]

)
µN | . ρ̃2N

[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]

×N4‖ψN ◦ r‖
Q
− 1

2
e (D)

‖µN ◦ r‖
Q
− 1

2
e (D)

.

The results follows directly from Lemmas 4.3 and 4.1. �

We notice that for any fixed value of N the error term

ρ̃2N
[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N4

goes to zero as the quadrature order increases. Thus, we can use the standard Strang’s

Lemma to bound the fully discrete error.

Theorem 4.5 (Theorem 4.2.11 in (Sauter & Schwab, 2011)). There existsN0 > 0 such

that for every N > N0, there is a Nq,0 that depends on N such that, if N θ
q , Nq are both

greater than Nq,0, the fully discrete Dirichlet problem 4.4 has a unique solution, and the

following error estimate follows for s > −1
4
:

‖λ− λN,qe ‖H̃− 1
2 (Γ)
. N−

1
4
−s‖λ ◦ r‖Qse(D)

+ ρ̃2N
[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N4‖λ‖

H̃−
1
2 (Γ)

+ ρ̃N
[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N2,

(4.29)

where λ denotes the continuous solution of the Dirichlet BIE (4.12).

PROOF. Existence and uniqueness are obtained following (Sauter & Schwab, 2011,

Theorem 4.2.11). Moreover from the same reference, it holds that

‖λ− λN,qe ‖H̃− 1
2 (Γ)
. inf

vN∈QeN (Γ)

(
‖λ− vN‖

H̃−
1
2 (Γ)

+ c(Nq, N)‖vN‖
H̃−

1
2 (Γ)

)
+ sup

vN∈QeN (Γ)

vN · (gNd − gN,qd )

‖vN‖
H̃−

1
2 (Γ)

,
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where c(Nq, N):=ρ̃2N
[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N4. The second term on the right-hand

side can be estimated following the same ideas of Lemma 4.8, and we obtain:

sup
vN∈QeN (Γ)

vN · (gNd − gN,qd )

‖vN‖
H̃−

1
2 (Γ)

. ρ̃N
[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N2.

With this, the result is obtained following Theorem 4.3. �

REMARK 4.5. In the right-hand side of (4.29), the last term grows as ρ̃NN2 due a to

single numeric quadrature whereas the second term does at rate of ρ̃2NN4 as it arises from

the tensorization of two quadrature rules.

In a similar fashion, we obtain the equivalent result for the Neumann problem.

Theorem 4.6. There exists N0 > 0 such that for every N > N0, there is a Nq,0 that

depends on N such that, if N θ
q , Nq are both greater than Nq,0, the fully discrete Neumann

Problem 4.4 has a unique solution, and the following error estimate follows for s > 1
2
:

‖ν − νN,qo ‖H̃ 1
2 (Γ)
. N

1
2
−s‖ν ◦ r‖P so (D) + ρ̃2N

[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N2‖ν‖

H̃
1
2 (Γ)

+ ρ̃N
[
(2ρ)−2Nθ

q + (2ρ)−2Nq)
]
N.

(4.30)

REMARK 4.6. The differences between the second (resp. third) terms in the right hand-

sides of (4.29) and (4.30) are caused by the norm used to measure the error in each case.

REMARK 4.7. From the fully discrete error analysis, one concludes that the number

of quadrature points should be a linear function of the parameter N so as to obtain good

approximations of the BIOs.

4.6. Numerical Results

In what follows, we conduct a series of numerical experiments to verify our claims,

showcase insights and show limitations of the provided results. These computational results

were carried out on a desktop PC I7-4790k with 8Gb of RAM.
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(a) Ia, Ib, Ic (b) Id, Ie

FIGURE 4.2. Quadrature errors for k = 2.8, computed against an overkill with
Nq = 76. The error is computed by taking the 2-norm (‖A‖2 = supv 6=0

v·Av
‖v‖ ) we

fix N = 8, (45 degrees of freedom).

4.6.1. Quadrature Results

Before studying the accuracy of the full spectral Galerkin method, we consider the per-

formance of the quadrature procedure detailed in Section 4.4.2.2. To this end, we consider

the screen Γ given by the following parametrization:

r(r, θ) = r(cos θ, 2.8 sin θ,−0.56r).

We compute the integrals Iα, α ∈ {a, b, c, d, e} for an increasing number of quadrature

points. In particular, we only select the variable Nα
q and fix N θ

q = Nα
q + 12. Results

reported in Figure 4.2 show that quadrature errors decay linearly in the log-linear scale

–exponential decay– as described in (4.26).

As a second test, we consider the same screen and wavenumber for an increasing

number of functions and quadrature points. As before, we only modify the variable Nα
q ,

α ∈ a, b, c, d, e, f and fixN θ
q = Nα

q +12. The results are presented in Table 4.1. In contrast

to the previous experiment, we show the error for the consolidated variable V N [k]−V N,q[k]

and observe that the quadrature error is almost constant when the quadrature points increase

linearly with N as stated in Remark 4.7.
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TABLE 4.1. Quadrature error for the weakly-singular operator with k = 2.8 com-
puted against an overkill with Nq = 92, N = 24. The rule for increasing the
quadrature points with N is Nq(N) = 1.75N + 50. The error again is computed
as the 2-norm of the approximation of the weakly-singular operator matrix.

N 2 6 14 16 18 20
Nq 18 25 39 42 46 49
Error 6.20e-15 4.89e-15 8.88e-15 9.60e-15 7.14e-15 8.39e-15

4.6.2. Code Validation

We now show that our method is correctly implemented for the case of the Laplace

Dirichlet and Neumann problem for the disk D. Recall the closed form of the matrix entries

in (C.2). We consider gd (resp. gn) as the Dirichlet (resp. Neumann) traces of a plane wave:

exp(ık0x · d)

where d is an unitary vector which can be characterized in terms of two angles:

d = (cos θ0 cosϕ0, sin θ0 cosϕ0, sinϕ0),

and k0 is the wavenumber of the plane wave. In Figure 4.3 we show the error of the

approximated solution with respect to the semi-analytic solution –the one obtained using

(C.2) for the matrix computations and a fixed value of N . Notice that the super-algebraic

convergence rate is achieved, i.e. linear behavior in log-linear scale.

As in the two-dimensional case (Jerez-Hanckes & Pinto, 2020), Figure 4.3 suggests

that one could deduce the decaying behavior of solution coefficients from the right-hand

side coefficients. For the Laplace case on a disk, this comes directly from (C.2) but for

more general cases, to the best of our knowledge, this has not been done. One could prove

results in this context by establishing a complete theory of pseudo-differential operators on

screens acting in the auxiliary spaces, in a similar fashion to (Alouges & Averseng, 2019)

presented for the two-dimensional case.
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(a) Γ1 (b) right hand-side

FIGURE 4.3. (a) Convergence curves for the Laplace problems on the disk. Pa-
rameters for the plane wave are k0 = 2.8, θ0 = π/3, ϕ0 = π

4 . Running times for
N = 14 are 181s, 730s for Dirichlet and Neumann cases, respectively. (b) Max-
imum of the absolute values in the right-hand side for each of the corresponding
levels N , i.e. for N = 4 are the maximum value between the terms m =

−4,−2, 0, 2, 4.

4.6.3. More complex screens

We fix the wave-numbers k = 2.8, and for right-hand side we use a plane wave with

k0 = k, θ0 = π
3
, ϕ0 = π

4
. Let us first consider two distinct geometries: Γ1 an elliptic screen

given by

r1(r, θ) = r(cos θ, 2.8 sin θ, 0)

and Γ2 a truncated paraboloid,

r2(r, θ) = r(cos θ, 2.8 sin θ,−0.56r).

Results for Γ1,Γ2 are presented in Figure 4.4, wherein we obtain super-algebraic con-

vergence –linear convergence in log-linear scale– as stated in Theorems 4.5, 4.6.

Next, we show the impact of critical points through the following screens. Γ3, de-

scribed by

r3(r, θ) = r(1− 0.2r3 cos(3θ))(cos θ, sin θ, 0),

and Γ4, with parametrization

r4(r, θ) = r(1− 0.3r3 cos(3θ))(cos θ, sin θ, 0).
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(a) Γ1 (b) Γ2

FIGURE 4.4. Error in the Q
− 1

2
e -Norm for the Dirichlet problems, and P

1
2
o for the

Neumann problems. Overkill solutions are computed usingN = 20. Run times for
Dirichlet and Neumann problems (with N = 20) are 749s, 2087s respectively.

graphical presentations of these two screens are presented in Figure 4.5. The case k = 2.8

is depicted in Figure 4.6. While these last two screens are similar, one can see that the error

convergence for Γ4 is worse than for the other cases. This is explained by the Jacobians’

behavior: for Γ3, one has

|r(1− 0.2r3 cos(3θ))(1− 0.8r3 cos θ)|,

which is no-where null, whereas for Γ4

|r(1− 0.3r3 cos(3θ))(1− 1.2r3 cos θ)|,

is zero on the curve 1− 1.2r3 cos θ = 0.

Finally, and for illustration purposes, we consider a highly complex screen, Γ5, along

with error convergence and volume solution plots (see Figures 4.7(a)–(d)). The screen is

given by the parametrization:

r5(r, θ) = (x5(r, θ), y5(r, θ), z5(r, θ)),
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(a) Γ3 (b) Γ4

FIGURE 4.5. Geometry of Γ3, and Γ4.

(a) Γ3 (b) Γ4

FIGURE 4.6. Error in the Q
− 1

2
e -Norm for the Dirichlet problems, and P

1
2
o for the

Neumann. Overkill solutions are computed using N = 28. Run times for Dirichlet
and Neumann problem (with N = 28) are 2800s, 6198s respectively.

where (x5(r, θ), y5(r, θ)) := r(1−0.2r3 cos(3θ))(cos θ, sin θ) and z5(r, θ) := 0.2r cos(7y5(r, θ)).

4.7. Concluding Remarks

The present work presents a high-order discretization method for open screens based

on weighted projections of the spherical harmonics functions. We have proved that the
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(a) Γ5 (b) Γ5

(c) Convergence (d) Volume solution

FIGURE 4.7. (a)-(b) Screen Γ5 profiles. (c) Convergence plots for Dirichlet and
Neumann problems computed against an overkill solution computed with N = 28,
for k = 2.8, k0 = k, θ0 = π

2 , and φ0 = 0. (d) Plot of the volume solution for the
Dirichlet problem.

method converges super-algebraically and also described implementation details. As an ef-

ficient solver for the forward problem, future efforts are directed towards using our method

to solve shape optimization or inverse problems.

While the analysis presented here describes how approximation errors behave as a

function of the number of degrees of freedom, it does not provide any insight on how to

choose this number in terms of the problem parameters, in particular, the wavenumber k.

We refer to (Chandler-Wilde et al., 2012) for a general review on this topic and (Chandler-

Wilde & Hewett, 2015) for results related to screens.
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Chapter 5. FINAL CONCLUSIONS

Throughout this thesis, we have presented and analyzed Galerkin-Spectral methods

for three different boundary-integral formulations. For each of these situations, adequate

spectral bases have been selected. These bases reflect any special characteristic of the un-

derlying solution, hence they are well suited to approximate the aforementioned solutions.

In particular, the special features for the different problems are,

(i) For problems presented in Chapters 2, 4 the solution exhibit singular behavior

near the edges of the geometry.

(ii) For Chapter 3 the solution is quasi-periodic.

In all the presented cases we have rigorously proved that in terms of rate of convergence

the corresponding methods are at least super-algebraically convergent whenever the data is

smooth enough. In contrast, commonly used low-order discretization methods converge as

a low power of the characteristic size of the underlying mesh.

We notice that for two-dimensional problems the convergence is super-algebraic in

terms of the number of functions used (or low power when low-order local bases are used).

However, for three-dimensional problems, the convergence is with respect to the maximum

levels of functions used, which is a quadratic function of the number of functions used.

While this could suggest that for higher dimension spectral method perform comparatively

worse than low-order alternatives, if fact low order methods suffer from the same phenom-

ena as the characteristic size of the associated mesh, in three-dimensions, is a quadratic

function of the number of functions used, in three dimensions (boundaries of two dimen-

sions).

We have detailed efficient implementations for all of the three cases. We put special

care in the handling of the kernel singularity reducing the integration of singular functions

to the integration of analytic functions that converge exponentially respect to the corre-

sponding quadrature parameters.
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An important conclusion that arises when we compare the integration procedure, is that

while for two-dimensional problems (Chapter 2, 3) the kernel singularity can be completely

subtracted by using a singular function (which are independent of the geometry that is then

integrated using analytic expressions). For the three-dimensional problem presented in

Chapter 4 the kernel singularity could not be subtracted and an adequate change of variables

had to be used.

It is not clear for us at the moment if this would hold true for other problems in three

dimensions. For example for problems arising from smooth deformation of the sphere, as

are presented in (Graham & Sloan, 2002), a procedure that resembles the two-dimensional

singularity extraction is possible.

Finally, we want to remark once again that spectral methods are specialty attractive for

situations in which many direct problems defined on different but smooth geometries have

to be solved. This situation is fairly common in optimization procedures where each itera-

tion of the optimization method implies the solution of a direct problem, inverse problemes

where a non-linear equation has to be solved and again these are done using an iterative

method, in which each iteration implies a solution of the direct problem, or in uncertainty-

quantification problems where a realization also implies the solution of a direct problem.
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APPENDIX A. TECHNICAL RESULTS FOR MULTIPLE OPEN ARCS PROB-

LEMS.

A.1. Laplace Uniqueness Result

We define the energy space of homogeneous boundary condition as

W0(Ω) :=
{
U ∈ W (Ω) : γ±i U = 0, for i = 1, . . . ,M

}
.

We also will need the traces over the complementary arcs Γci := ∂Ωi \ Γi that we denote

them as γ±ic and γ±N,ic respectively. The following technical results will be needed, we omit

the proofs as they can be found in the given references.

LEMMA A.1.1 (Lemma 2.2, (Jerez-Hanckes & Nédélec, 2012)). The semi-norm |U |W (Ω) :=

‖∇U‖L2(Ω) bounds the W (Ω)-norm for functions in W0(Ω), i.e. there exists a constant

c > 0 such that

‖U‖W (Ω) ≤ c |U |W (Ω) , ∀ U ∈ W0(Ω).

LEMMA A.1.2 (Proposition 2.6, (Jerez-Hanckes & Nédélec, 2012)). Let U belong to

W (Ω) such that −∆U ∈ L2
loc(Ω). For R > 0, denote the ball of radius R centered at the

origin by BR := {x ∈ R2 : ‖x‖2 < R}. Then,

lim
R→∞

〈
γ−N,RU, γ

−
RV
〉
∂BR

= 0, ∀ V ∈ W (Ω),

where γ−R and γ−N,R denote interior Dirichlet and Neumann traces on ∂BR, respectively, the

latter being equivalent to the radial derivative on the boundary.

LEMMA A.1.3 (Theorem 1.7.1, (Grisvard, 2011)). Let V ∈ W0(Ω). Then it holds

γ+
icV = γ−icV i{1, . . . ,M}.

Hence, we can denote indistinctly by γic the trace defined over Γci on W0(Ω).

LEMMA A.1.4 (Section 2.6.1, (Jerez-Hanckes & Nédélec, 2012)). Let a function U ∈

W0(Ω) such that −∆U = 0 in Ω. Then, the normal jump on Γci is null, i.e. γ+
N,icU −

γ−N,icU = 0.
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LEMMA A.1.5. If U ∈ W0(Ω), is such that ∆U = 0, then U = 0.

PROOF. Let Ω∗ :=
⋃M
j=1 Ωj , where the collection is disjoint by Assumption 2.2, and

choose R > 0 such that Ω∗ ⊂ BR. Set Ω0(R) := BR ∩ Ω
c

∗. We have that ∇U,∇V ∈

L2(BR) (as they are in L2(Ω)), hence

〈∇U,∇V 〉BR =
M∑
i=1

〈∇U,∇V 〉Ωi + 〈∇U,∇V 〉Ω0(R) .

Using the Green formulas, and the null condition of V in Γ we obtain that

〈∇U,∇V 〉Ωi = 〈−∆U, V 〉Ωi +
〈
γ+
N,icU, γicV

〉
Γci

〈∇U,∇V 〉Ω0(R) = 〈−∆U, V 〉Ω0(R) + 〈γN,RU, γRV 〉∂BR −
M∑
i=1

〈
γ−N,icU, γicV

〉
Γci

Finally adding the two terms and using Lemma A.1.4, and the condition −∆U = 0 in Ω

we have that

〈∇U,∇V 〉BR = 〈γN,RU, γRV 〉∂BR

The results follows directly from this last equation, and Lemmas A.1.1 and A.1.2. �

A.2. Technical Lemmas

A.2.1. Proof of Lemma 2.2.1

We only prove for H1/2 as the H̃−1/2 case is obtained by duality arguments. By defi-

nition, it holds

‖ζ ◦ ri‖2

H
1
2 (Γ̂)

=

∫ 1

−1

|ζ ◦ ri(t)|2dt+

∫ 1

−1

∫ 1

−1

|ζ ◦ ri(t)− ζ ◦ ri(s)|2

|t− s|2
dtds. (A.1)

For the first integral on the right-hand side, we deduce∫ 1

−1

|ζ ◦ ri(t)|2dt =

∫ 1

−1

|ζ ◦ ri|2
‖r′i(t)‖2

‖r′i(t)‖2

dt =

∫
Γi

|ζ|2∥∥r′i ◦ r−1
i

∥∥
2

dΓi

≤
∥∥∥∥∥r′i ◦ r−1

i

∥∥−1

2

∥∥∥
L∞(Γi)

∫
Γi

|ζ|2dΓi.

(A.2)
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Similarly, by changing variables, the second term in (A.1) becomes∫
Γi

∫
Γi

|ζ(x)− ζ(y)|2

‖x− y‖2
2

(
‖x− y‖2

2∥∥r−1
i (x)− r−1

i (y)
∥∥2

2

)
dΓi(x)dΓi(y)∥∥r′i ◦ r−1

i (x)
∥∥

2

∥∥r′i ◦ r−1
i (y)

∥∥
2

.

Using the mean value theorem for r−1
i , we arrive at∫ 1

−1

∫ 1

−1

|ζ ◦ ri(t)− ζ ◦ ri(s)|2

|t− s|2
dtds ≤ Ci

∫
Γi

∫
Γi

|ζ(x)− ζ(y)|2

‖x− y‖2
2

dΓi(x)dΓi(y), (A.3)

where

Ci =
∥∥∥∥∥r′i ◦ r−1

i

∥∥−1

2

∥∥∥4

L∞(Γi)

Using (A.2), and (A.3) to define C we obtain the following inequality

‖ζ ◦ ri‖H 1
2 (Γ̂)
≤ C ‖ζ‖

H
1
2 (Γ̂i)

.

The second equivalence inequality is obtained using the same arguments.

A.2.2. Proof of Lemma 2.4.6

For any s ∈ [−1, 1], we can write the univariate Fourier-Chebyshev expansion in t:

h(t, s) =
∞∑
n=0

an(s)Tn(t), ∀ t ∈ [−1, 1].

In fact, the regularity of h(t, ·) implies that the functions an(s) belong to Cm(−1, 1), and

consequently, one can write down expansions:

an(s) =
∞∑
k=0

bnkTk(s), ∀ s ∈ [−1, 1], ∀ n ∈ N0.

If m < ∞, by (L. Trefethen, 2013, Theorem 7.1), we have that bnk . k−m, where the

constant depends on the m-th derivative of an(s), which is bounded by the m-th derivative

of h in s.
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For the ρ−analytic case we have by (L. Trefethen, 2013, Theorem 8.1) that bnk . ρ−kn ,

with ρn > 1. However, the coefficients an(s) are given by

an(s) = cn

∫ 1

−1

h(t, s)w−1(t)Tn(t)dt,

where c0 = π−1, and cn = 2π−1, for n ∈ N. Hence, since h(t, ·) is ρ−analytic, we have

that, for every z in the corresponding ellipse we can write

an(z) =
∑
p≥0

zp
∫ 1

−1

Ap(t)w
−1(t)Tn(t)dt,

where Ap(t) are the coefficients of the power series of h(t, ·). From this last expression,

we have that an is analytic in the ellipse of parameter ρ for every n, and thus, we can take

ρn = ρ for every n ∈ N ∪ {0}.

The final result is obtained by repeating the above arguments inverting the roles of n

and k.

A.2.3. Proof of Lemma 2.4.7

Consider f =
∑

n≥0 anw
−1Tn(t), by Lemma 2.4.6, we expand h(t, s) as the series∑∞

n=0

∑∞
k=0 bnkTn(t)Tk(s). Hence, by the Chebyshev polynomials’ orthogonality prop-

erty, we can write

vl =
π2

4

∞∑
n=1

bnlan +
π2

2
b0la0, ∀ l > 0.

Thus, by definition of constants dn (2.9) and the series expression for H̃−1/2(Γ̂)-norm, we

obtain the following bound:

|vl|2 . ‖f‖2
H̃−1/2(Γ̂)

∞∑
n=0

|bnl|2d−1
n .

From here the result is direct if h is bivariate ρ−analytic function. For m ∈ N, using

Lemma 2.4.6, it holds

|bnl|2 . l−2(m+1)µn−2(m+1)(1−µ), ∀ µ ∈ (0, 1).
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With the above bound and the estimate dn ∼ n−1, we arrive to

|vl|2 . ‖f‖2
H̃−1/2(Γ̂)

l−2(m+1)µ

∞∑
n=1

n−2(m+1)(1−µ)+1,

by choosing µ = 1 − 1
m+1
− ε, the series in the right-hand side converges and we get the

stated result.

A.3. Basic Approximation properties

LEMMA A.3.1. The discretization is conforming, i.e. QN(Γi) ⊂ H̃−
1
2 (Γi)

(resp. QN,〈0〉(Γi) ⊂ H̃
− 1

2

〈0〉 (Γi)).

PROOF. For any ζ i ∈ QN(Γi) the representation:

ζ i =
p̂ ◦ r−1

i

wi
∥∥r′i ◦ r−1

i

∥∥
2

,

holds, where p̂ is a polynomial in (−1, 1). By definition of dual norms, one can write

∥∥ζ i∥∥
H̃−

1
2 (Γi)

= sup
ϑ∈H

1
2 (Γi)

〈ζ i, ϑ〉
H

1
2 (Γi)

‖ϑ‖
H

1
2 (Γi)

.

At the same time, it holds〈
ζ i, ϑ

〉
Γi

=

∫ 1

−1

p̂(t)√
1− t2

(ϑ ◦ ri)(t)dt ≤ ‖p̂‖L∞(−1,1)

∫ 1

−1

(ϑ ◦ ri)(t)

w(t)
dt

≤ ‖p̂‖L∞(−1,1)

∥∥w−1
∥∥
H̃−

1
2 (Γ̂)
‖ϑ ◦ ri‖H 1

2 (Γ̂)
,

where w(t) :=
√

1− t2. Applying Lemma 2.2.1, we only need to check that the H̃−
1
2 (Γ̂)-

norm of w−1 is finite, which was already proved in (Jerez-Hanckes, 2008, Lemma 6.1.19).

The inclusion for the mean-zero spaces is immediate from the Chebyshev polynomials’

orthogonality property. �

LEMMA A.3.2. The family {QN(Γi)}N∈N is dense in H̃−
1
2 (Γi), while the family

{
QN,〈0〉(Γi)

}
N∈N

is dense in H̃
− 1

2

〈0〉 (Γi).
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PROOF. We only need to prove that there is a fixed constant C such that, for a given

ε > 0 and φ ∈ D(Γi), there exists ζ i ∈ QN(Γi) satisfying∥∥ζ i − φ∥∥
H̃−

1
2 (Γi)

≤ Cε.

By (Jerez-Hanckes, 2008, Lemma 6.1.20), there exists a polynomial p̂ ∈ PN(−1, 1) satis-

fying ∥∥w−1p̂− ‖r′i‖2 (φ ◦ ri)
∥∥
H̃−

1
2 (Γ̂)

< ε.

Let ζ i =
p̂ ◦ ri

wi
∥∥r′i ◦ r−1

i

∥∥
2

. Again, we take the dual norm

∥∥ζ i − φ∥∥
H̃−

1
2 (Γi)

= sup
ϑ∈H

1
2 (Γi)

〈ζ i − φ, ϑ〉Γi
‖ϑ‖

H
1
2 (Γi)

.

We can write〈
ζ i − φ, ϑ

〉
Γi

=

∫
Γi

(ζ i − φ)(x)ϑ(x)dΓi(x)

=

∫ 1

−1

(
w−1(t)p̂(t)− ‖r′i‖2 (t)(φ ◦ ri)(t)

)
(ϑ ◦ ri)(t)dt.

By Lemma 2.2.1, there exists a constant C independent of ε such that〈
ζ i − φ, ϑ

〉
Γi
≤ C ‖ϑ‖

H
1
2 (Γi)

∥∥w−1p̂− ‖r′i‖2 (φ ◦ ri)
∥∥
H̃−

1
2 (Γ̂)
≤ Cε ‖ϑ‖

H
1
2 (Γi)

,

and thus ‖ζ i − φ‖Hi ≤ Cε as stated.

For the family
{
QN,〈0〉(Γi)

}
N∈N, by the previous result, we observe that, given φ ∈

H̃
− 1

2

〈0〉 (Γi) and ε > 0. there exists N ∈ N and ζ i ∈ QN(Γi), such that∥∥ζ i − φ∥∥
H̃−

1
2 (Γi)

≤ ε.

Thus, by the definition of the norm in H̃−
1
2 (Γi), it holds〈

ζ i, 1
〉

Γi
=
〈
ζ i − φ, 1

〉
Γi
≤
∥∥ζ i − φ∥∥

H̃−
1
2 (Γi)

,
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Hence, we can define ζ i0 := ζ i−|Γi|−1 〈ζ i, 1〉Γi , where |Γi| is the length of the arc Γi. Now,

it is direct that ζ i0 ∈ QN,〈0〉(Γi) and∥∥ζ i0 − φ∥∥H̃− 1
2 (Γi)

≤ 2ε,

which gives the desired density. �

A.3.1. Proof of Lemma 2.4.14

We proceed as in the one-dimensional case and assume, for simplicity, that the Cheby-

shev polynomials are normalized, thus omitting constants cn. The coefficients Cp
ij are given

by

Cp
ij =

∫ 1

−1

∫ 1

−1

Rp(t, s)|t− s|2p log |t− s|Ti(t)
w(t)

Tj(s)

w(s)
dtds

=
∞∑
n=0

∞∑
l=0

bpnl

∫ 1

−1

∫ 1

−1

Rp(t, s)
1

4

Tn+i(t) + T|n−i|(t)

w(t)

Tl+j(s) + T|l−j|(s)

w(s)
dtds

=
∞∑
n=0

∞∑
l=0

bpnl
4

(rn+i,l+j + rn+i,|l−j| + r|n−i|,l+j + r|n−i|,|l−j|).

Now, we have to find the decay order for the different terms. Define the index set Ip(l) :=

{l, l ± 2, l ± 4, . . . , l ± 2p}. By Lemma 2.4.11, we have the estimate:

Cp
ij ∼

∞∑
l=1

∑
n∈Ip(l)

l−2p−1(rn+i,l+j + rn+i,|l−j| + r|n−i|,l+j + r|n−i|,|l−j|). (A.4)

By Lemma 2.4.6, it holds

rν,µ = O
(
min{ν−m−1, µ−m−1}

)
, for ν, µ ∈ N,

and we can estimate each term in Cp
ij as follows, we provide details for the first two.

Define K1 :=
∑∞

l=1

∑
n∈Ip(l) l

−2p−1rn+i,l+j . Assume that rn+i,l+j = O((l + j)−m−1),

then

K1 . 2p
∞∑
l=1

l−2p−1(l + j)−m−1 = O(j−m−1).
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Alternatively, we can use that rn+i,l+j = O((n+ i)−m−1) so that

K1 .
∞∑
l=1

∑
n∈Ip(l)

l−2p−1(n+ i)−m−1 = O(i−m−1).

Thus, we then conclude that

K1 = O
(
min{i−m−1, j−m−1}

)
Now set K2 :=

∑∞
l=1

∑
n∈Ip(l) l

−2p−1rn+i,|l−j|. Let rn+i,|l−j| = O((|l − j| + 1)−m−1), we

obtain

K2 .
∞∑
l=1

l−2p−1(|l − j|+ 1)−m−1,

where we added one to avoid infinity. Thus, we can split this last sum into two terms

K2 .
j/2∑
l=1

l−2p−1(j − l)−m−1 +
∑
l>j/2

l−2p−1(|l − j|+ 1)−m−1.

The first one is bounded as

j/2∑
l=0

l−2p−1(j − l)−m−1 . j−m−1

j/2∑
l=0

l−2p−1 . j−m−1,

whereas the second one ∑
l>j/2

l−2p−1(|l − j|+ 1)−m−1 . j−2p−1.

Hence, we have

K2 = O(j−m−1) +O(j−2p−1) = O
(
j−min{m,2p+1}) .

If alternatively we use rn+i,|l−j| = O((n+ i)−m−1), then

K2 .
∞∑
l=0

l−2p−1(n+ i)−m−1 = O(i−m−1).

Combining both results yields

K2 = O
(
min{i−m−1, j−min{m+1,2p+1}) .
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TABLE A.1. Coefficients used in Lemma A.4.1.

β
(−1)
n β

(0)
n

n = 0 1
4
a0 a0 − 1

2
a1

n = 1 −a0 + 1
4
a1 −a0 + 5

4
a1 − 1

2
a2

n = 2 1
2
a0 − 1

2
a1 + 1

4
a2 −1

2
a1 + a2 − 1

2
a3

n ≥ 3 1
4
an−2 − 1

2
an−1 + 1

4
an −1

2
an−1 + an − 1

2
an+1

The remaining two terms in (A.4) are bounded in a similar manner so that

K3 :=
∞∑
l=0

∑
n∈Ip(l)

l−2p−1r|n−i|,l+j = O
(
min{j−m−1, i−min{m+1,2p+1})

K4 :=
∞∑
l=0

∑
n∈Ip(l)

l−2p−1r|n−i|,|l−j| = O
(
min{j−min{m+1,2p+1}, i−min{m+1,2p+1})

Finally, considering all the bounds yields the stated result. The ρ−analytic case follows

from the same arguments.

A.4. Some properties of Chebyshev polynomials

The next two identities follow directly from the explicit definition of Chebyshev poly-

nomials as Tn(t) = cos(n arccos(t)).

LEMMA A.4.1. For n, k ∈ N0, let Tn and Tk denote two Chebyshev polynomials of

first kind. Then,

TnTk =
1

2
(Tn+k + T|n−k|).

Moreover, for (t, s) ∈ [−1, 1]2, it holds

|t− s|2 = 1 +
1

2
(T2(t) + T2(s))− 2T1(t)T1(s).

LEMMA A.4.2. Consider a function of the form:

U(t, s) =
∞∑
n=0

anTn(t)T|n−k|(s).
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Then,

|t− s|2U(t, s) =
∑

j∈{−1,0,1}

∞∑
n=0

β(j)
n Tn(t)T|n−k+2j|(s),

wherein

β(1)
n :=

1

4
an −

1

2
an+1 +

1

4
an+2,

and coefficients β(−1)
n and β(0)

n are given in Table A.1 for n ∈ N0.

PROOF. Using Lemma A.4.1, we have that

|t− s|2U(t, s) =
∞∑
n=0

an(Tn(t)T|n−k|(s) +
1

4
Tn+2(t)T|n−k|(s) +

1

4
T|n−2|(t)T|n−k|(s)

+
1

4
Tn(t)T||n−k|+2| +

1

4
Tn(t)T|n−k−2|

−1

2
[T||n−k|+1|(s) + T||n−k|−1|(s)][T|n−1|(t) + Tn+1])

Observe that, for i ∈ {1, 2}, the index sums

|n− k|+ i =

|n− k + i| n ≥ k,

|n− k − i| n < k,
||n− k| − i| =

|n− k − i| n ≥ k,

|n− k + i| n < k.

Employing this in writing |t − s|2U(t, s) as a series expansion, we find expressions for

different un(s):

u0 =
a0

4
T|k+2|(s) +

(
a0 −

a1

2

)
T|k|(s) +

(a0

4
− a1

2
+
a2

4

)
T|k−2|(s)

u1 =
(
−a0 +

a1

4

)
T|k+1|(s)−

(
a0 +

5a1

4
+
a2

2

)
T|1−k|(s) +

(a1

4
− a2

2
+
a3

4

)
T|k−3|(s)

u2 =
(a0

2
− a1

2
+
a2

4

)
T|k|(s)−

(a1

2
− a2 +

a3

2

)
T|k−2|(s) +

(a2

4
− a3

2
+
a4

4

)
T|k−4|(s)

un =
(an−2

4
− an−1

2
+
an
4

)
T|n−k−2|(s) +

(
−an−1

2
+ an −

an+1

2

)
T|n−k|(s)

+
(an

4
− an+1

2
+
an+2

4

)
T|n−k+2|(s)

for n ≥ 3, yielding the stated result. �
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APPENDIX B. ON THE PROPERTIES OF QUASI-PERIODIC BOUNDARY IN-

TEGRAL OPERATORS FOR THE HELMHOLTZ EQUATION

The following Annex is a transcription of a publication with the same title which is

refereed in Chapter 3. It is not included in the body of the thesis as some polices of the

school prevent a publication to appear in two different thesis.

B.1. Introduction

Due to its multiple applications in engineering and technology, considerable attention

has been devoted to the mathematical modeling and computational simulation of acoustic

and electromagnetic wave diffraction by periodic or bi-periodic structures in unbounded

domains (cf. (Bao, 2004; Lechleiter & Zhang, 2016; Pestourie et al., 2018; Oughstun,

1982; Shiraishi, Higuchi, Muraki, & Yoda, 2016; Silva-Oelker, Aylwin, et al., 2018; Silva-

Oelker, Jerez-Hanckes, & Fay, 2018) and references therein). Among the various numerical

methods devised to tackle the forward problem of finding the scattered field, one finds (i)

homogenization techniques for periodic gratings with periods much smaller than the in-

coming wave’s wavelength (Ammari & He, 1997); (ii) volume formulations in truncated

domains with Dirichlet-to-Neumann (DtN) maps imposing suitable radiation conditions at

infinity (Bao & Dobson, 2000; Bao et al., 1995; Dobson, 1994; Starling & Bonnet-Bendhia,

1994); (iii) boundary integral methods based on the integral representation formula to con-

dense the problem to the grating surface (Barnett & Greengard, 2011; Cho & Barnett,

2015; Dobson & Cox, 1991; Dobson & Friedman, 1992; Liu & Barnett, 2016; Nédélec

& Starling, 1991); and, (iv) hybrid methods coupling finite and boundary element methods

(Ammari & Bao, 2008; Ammari & Nédélec, 2001). In this note, we are primarily concerned

with theoretical aspects linked to the last two techniques as these hinge on the properties

of the boundary integral operators (BIOs) built upon the quasi-periodic Green’s function

(Bruno & Fernandez-Lado, 2017; X. Chen & Friedman, 1991; Cho & Barnett, 2015; Lin-

ton, 1998; Nédélec & Starling, 1991). We will not consider the case of Rayleigh-Wood

frequencies –frequencies for which the sum defining the quasi-periodic Green’s function
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ceases to converge– since their analysis lies beyond the scope of this article and several of

the aforementioned references address this case.

Classically, the unique solvability of boundary integral equations (BIEs) for the two-

dimensional scattering of time-harmonic waves by periodic structures is commonly estab-

lished via Fredholm operator theory. This is achieved by acknowledging that the quasi-

periodic Green’s function and the fundamental solution for the Helmholtz operator have

the same singularity order. However, this approach requires the scatterer surface to be

at least twice continuously differentiable, which makes the strategy inadequate for Lips-

chitz continuous scatterers (see, for example, the geometric restrictions enforced to derive

existence and uniqueness results in (Bruno & Fernandez-Lado, 2017; Lai, Kobayashi, &

Barnett, 2015; Nédélec & Starling, 1991; Schmidt, 2009, 2011)). In this work, we present

an alternative strategy based on the mapping properties of BIOs, which relies on suitable

definitions of quasi-periodic Sobolev spaces for arbitrary order s ∈ R. This allows for

an analysis similar to that presented by Costabel (Costabel, 1988) in the case of bounded

obstacles. An equivalent space definition was already introduced in (Alber, 1979; Nédélec

& Starling, 1991; Starling & Bonnet-Bendhia, 1994) for the particular case of s = 1.

Moreover, we study properties of quasi-periodic BIOs that have, to our knowledge, not

been presented before, such as the coercivity of the weakly-singular and hyper-singular

quasi-periodic BIOs.

Existence and uniqueness results will play a critical role in our analysis, since the gen-

eral definition of BIOs require the use of the so-called solution operators that map boundary

conditions to the solution of the scattering problem. Dirichlet, Neumann and transmission

problems are known to possess unique solutions for all but a countable set of wavenum-

bers (Elschner & Schmidt, 1998; Nédélec & Starling, 1991; Starling & Bonnet-Bendhia,

1994) and, under more stringent geometrical assumptions, uniqueness is ensured for all

wavenumbers for the Dirichlet problem (Alber, 1979; Kirsch, 1993, 1994). We could not

find similar results for the Neumann problem. Thus, our main contributions are the deriva-

tion of continuity and coercivity results for the relevant quasi-periodic BIOs (Theorems

B.12 and B.13), as well as existence and uniqueness results for first-kind BIEs (Theorems
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B.14 and B.15). In particular, we rigorously extend the Dirichlet trace to quasi-periodic

Sobolev spaces of order s > 1
2
, thereby improving the proof in (Nédélec & Starling, 1991;

Starling & Bonnet-Bendhia, 1994) holding only for s = 1.

This article is structured as follows. In Section B.2 we introduce conventions used

throughout as well as the definition of quasi-periodic Sobolev spaces. Section B.3 is de-

voted to the analysis of the volume problem following (Bao, 1995; Elschner & Schmidt,

1998; Nédélec & Starling, 1991; Starling & Bonnet-Bendhia, 1994) in order to build ap-

propriate radiation conditions to guarantee well-posedness. Novel properties of the arising

quasi-periodic BIOs are provided in Section B.4 and are deduced after generalizing tools

given in (Costabel, 1988; Kress, 2014) to the quasi-periodic setting. Finally, concluding

remarks are found in Section B.5 along with appendices containing technical results.

B.2. Functional space framework

B.2.1. General notation

Let B be a Banach space. We denote its norm as ‖·‖B and its dual space by B′, where

we consider elements of B′ as antilinear rather than linear forms over B. If B is Hilbert,

we shall denote the inner product between two elements x, y ∈ B as (x, y)B, unless stated

otherwise. For the special caseB = R2 or C2, we write the inner product betweenx,y ∈ B

as x · y, where the bar represents complex conjugation.

For d = 1, 2, let Ω ⊂ Rd be an open domain and denote its boundary ∂Ω. For any

Υ ⊂ Rd such that Ω ⊆ Υ, we define Ω
Υ

:= Ω ∩Υ and ∂ΥΩ := Ω
Υ \ Ω. We denote the set

of continuous scalar functions in Ω with complex values as C(Ω) and define, for n ∈ N0,
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the following spaces of continuous functions:

Cn(Ω) := {u ∈ C(Ω) | ∂βu ∈ C(Ω) ∀ β ∈ Nd, with |β| ≤ n},

Cn
0 (Ω) := {u ∈ Cn(Ω) | supp u ⊂⊂ Ω},

C∞(Ω) := {u ∈ C(Ω) | ∂βu ∈ C(Ω) ∀ β ∈ Nd},

D(Ω) := {u ∈ C∞(Ω) | supp u ⊂⊂ Ω},

where the multi-index β = (β1, β2) ∈ N2 with |β| = β1 + β2.

We say that a one-dimensional curve Γ is of class Cr,1, for r ∈ N0, if it may be

parametrized by a continuous function z : (0, 2π)→ Γ so that z has continuous derivatives

up to order r and its derivatives of order r are Lipschitz continuous.

The space of antilinear distributions on Ω is referred to as D′(Ω), and its duality pairing

with D(Ω) is written as

f(u) = 〈f, u〉Ω,

for any f ∈ D′(Ω) and u ∈ D(Ω). As usual, we can identify f ∈ L1
loc(Rd) with an element

of D′(Rd), denoted f , as:

〈f, u〉Rd :=

∫
Rd
f(x)u(x) dx, u ∈ D(Rd).

For s ≥ 0 and p ≥ 1, W s,p(Ω) denotes standard Sobolev spaces on Ω (McLean, 2000,

Chapter 3.5). For s ∈ R, we also introduce the spaces Hs(Ω), Hs
0(Ω) and H̃s(Ω) as the

second family of Sobolev spaces of order s defined in (McLean, 2000, Chapter 3.6). Recall

the equivalence W s,2(Ω) ≡ Hs(Ω) (assuming Ω is a Lipschitz domain). We shall also

make use of the Sobolev space Hs[0, 2π] given in (Kress, 2014, Chapter 8).

Finally, we shall use the symbols ., &, and ∼= to avoid specifying constants, which do

not depend on values relevant to the corresponding analysis.
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B.2.2. Quasi-periodic functions and distributions

The definitions and results in the present subsection extend the notions presented in

(Saranen & Vainikko, 2013, Chapter 5.2), dealing with periodic distributions, to the quasi-

periodic setting. Set {ei}2
i=1 as the canonical orthonormal basis of R2. Let θ ≥ 0 and

` > 0.

Definition B.1 (Quasi-periodic function). A function ψ : R2 → C is said to be quasi-

periodic with shift θ and period ` if

ψ(x+ `e1) = ei`θψ(x) ∀ x ∈ R2.

For any n ∈ Z and for all x ∈ R2, it holds

ψ(x+ n`e1) = ei`θnψ(x),

and e−ix2θψ(x) is x2-periodic with period `. Following (Alber, 1979; Nédélec & Starling,

1991), we define Dθ,`(R2) as the set of C∞(R2)-functions vanishing for large |x2| and that

are quasi-periodic with shift θ and period ` in the direction of e1. In order to properly define

quasi-periodic distributions, we introduce the next operator.

Definition B.2 (Translation operator). Let s ∈ R, j ∈ N. We define the translation

operator:

τs :=

D(R2) → D(R2)

ψ(x) 7→ ψ(x+ se1)
.

It follows that τs1 ◦ τs2 = τs1+s2 . Let now n ∈ Z and ψ ∈ D(R2). We say that

f ∈ L1
loc(R2) is quasi-periodic with shift θ and period ` if, for all n ∈ Z,∫

R2

f(x)τn`ψ(x) dx =

∫
R2

f(x− n`e1)ψ(x) dx = e−in`θ
∫
R2

f(x)ψ(x) dx.
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Definition B.3 (Quasi-periodic distribution). We say that a distribution f ∈ D′(R2) is

quasi-periodic with shift θ and period ` if, for all n ∈ Z and ψ ∈ D(R2), there holds

〈f, τn`ψ〉R2 = e−in`θ〈f, ψ〉R2 .

We write D′θ,`(R2) for the space of quasi-periodic distributions with shift θ and period

`. Their action on elements of Dθ,`(R2) is understood as

〈u, v〉θ,` := 〈u,Θ`v〉R2 , ∀ u ∈ D′θ,`(R2) ∀ v ∈ Dθ,`(R2),

where Θ` ∈ D(R) is a one-dimensional periodic function such that (cf. (Jerez-Hanckes,

2008, Section 3.2.1) or (Saranen & Vainikko, 2013, Equation 5.11))∑
j∈Z

Θ` (x1 + j`) = 1, ∀ x1 ∈ R.

Furthermore, one can check that D′θ,`(R2) is indeed the dual space of Dθ,`(R2).

PROPOSITION B.1. Let T be an element of the dual space of Dθ,`(R2), then the distri-

bution FT defined, for all φ in D(R2), as

〈FT , φ〉R2 = T

(∑
j∈Z

exp (−ıθj`)τj`φ

)
,

is such that FT ∈ D′θ,`(R2) and 〈FT , ϕ〉θ,` = T (ϕ) for all ϕ ∈ Dθ,`(R2).

PROOF. Given ϕ ∈ Dθ,`(R2), it is easy to see that∑
j∈Z

exp (−ıjθ`)τj` (Θ`(x1)ϕ(x)) = ϕ(x),

so that 〈FT , ϕ〉θ,` = T (ϕ). For any element φ ∈ D(R2) and m ∈ Z, we have

〈FT , τm`φ〉R2 = T

(∑
j∈Z

exp (−ıθj`)τ(j+m)`φ

)

= T

(
eıθm`

∑
j∈Z

exp (−ıθj`)τj`φ

)
= e−ıθm`〈FT , φ〉R2 .
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Thus, FT ∈ D′θ,`(R2) by Definition B.3. �

Equivalent results hold for spaces defined over open bounded and unbounded subsets

of Rd, d = 1, 2. We also introduce the quasi-periodic train of δ-distributions as it will be of

later use.

Definition B.4 (Quasi-periodic train of δ-distributions). We define the quasi-periodic

train of δ-distributions, δ̂θ,` as:

δ̂θ,` :=
∑
j∈Z

δ (x+ j`e1) exp (ıθj`), (B.1)

which converges in D′(R2) and belongs to D′θ,`(R2).

For the remainder of this article, we restrict ourselves to quasi-periodic functions with

period 2π in x1, which shall be henceforth referred to simply as quasi-periodic with shift

θ, or θ-quasi-periodic. Thus, we employ the equivalences Dθ(R2) ≡ Dθ,2π(R2) as well as

〈·, ·〉θ ≡ 〈·, ·〉θ,2π. Furthermore, it is clear that elements of both Dθ(R2) and D′θ(R2) may

formally be written as Fourier series.

PROPOSITION B.2 (Fourier expansion). Let jθ := j + θ for all j ∈ Z. Every u ∈

Dθ(R2) and F ∈ D′θ(R2) may be represented as a Fourier series, i.e.

u(x1, x2) =
∑
j∈Z

uj(x2)eıjθx1 , F (x1, x2) =
∑
j∈Z

Fj(x2)eıjθx1 ,

where the coefficients uj and Fj belong to D(R) and D′(R), respectively.

PROOF. Let u ∈ Dθ(R2), F ∈ D′θ(R2) and define, for j ∈ Z,

uj(x2) :=
1

2π

〈
eıjθ(·), u(·, x2)

〉
θ

=
1

2π

∫ 2π

0

e−ıjθx1u(x1, x2) dx1.

Consequently, uj ∈ D(R). Then, it holds

u(x) =
∑
j∈Z

uj(x2)eıjθx1 , 〈F, u〉θ =
∑
j∈Z

〈F, uj(x2)eıjθx1〉θ.
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For each j ∈ Z, let us introduce

Fj(x2) :=

D(R) → C

v 7→ 〈F, v(x2)eıjθx1〉θ
.

Clearly, Fj ∈ D′(R) and 〈F, u〉θ =
∑

j∈Z〈Fj, uj〉R, from where F may be represented as

F (x1, x2) =
∑

j∈Z Fj(x2)eıjθx1 . �

To avoid redundancies, we limit the range of θ to [0, 1). Indeed, notice that θ and θ+n

define the same quasi-periodic spaces for any integer n.

B.2.3. Quasi-periodic Sobolev spaces

Let G := {x ∈ R2 | 0 < x1 < 2π} (see Figure B.3). We define Dθ(G) as the set of

restrictions to G of elements of Dθ(R2). For any open set O ⊂ G, we say that u ∈ Dθ(O)

if u = U |O for some U ∈ Dθ(G) such that suppU
G ⊂ O. We define the restriction of

F ∈ D′θ(R2) to O, denoted F |O, as an antilinear map acting on u ∈ Dθ(O) in the following

manner

〈F |O, u〉O,θ := 〈F,U〉θ,

where U is an extension by zero of u toG, which may then be easily extended to an element

of Dθ(R2). Furthermore, we introduce D′θ(O) as the space of these restrictions.

Definition B.5 (Quasi-periodic Sobolev spaces). Set s ∈ R and let jθ := j + θ for all

j ∈ Z. Recall that uj denotes the j-th Fourier coefficient of u (cf. Proposition B.2). Let us

introduce the quasi-periodic Bessel potential

Js
θ (u)(ξ1, ξ2) :=

∑
j∈Z

(1 + j2
θ + |ξ2|2)

s
2 ûj(ξ2)eıξ1jθ , ∀ ξ1, ξ2 ∈ G,
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wherein ûj(ξ2) are the Fourier transforms of uj(x2) in distributional sense. We define the

quasi-periodic Sobolev space Hs
θ (G) as

Hs
θ (G) :=

{
u ∈ D′θ(R2) : u =

∑
j∈Z

uje
ıjθx1 , uj ∈ Hs(R) and Js

θ (u) ∈ L2
θ(G)

}
,

with

L2
θ(G) ≡ H0

θ (G) :=

{
u ∈ D′θ(R2) :

∑
j∈Z

‖uj‖2
L2(R) <∞

}
.

Furthermore, we shall identify elements of Hs
θ (G) with their restrictions to G. Notice

that L2
θ(G) is a Hilbert space with inner product given by

(u, v)L2
θ(G) :=

∑
j∈Z

(uj, vj)L2(R).

It is natural, then, to consider the following norm on Hs
θ (G):

‖u‖Hs
θ (G) := ‖Js

θ (u)‖L2
θ(G) , ∀ u ∈ Hs

θ (G),

from where it follows directly that the quasi-periodic Bessel potential, as an operator Js
θ :

Hs
θ (G) → L2

θ(G) is an isometric isomorphism. This last statement can be verified by

proceeding analogously to the construction of the usual Sobolev spaces Hs(Rn) for n ∈ N

(McLean, 2000, Chapter 3.6). The same is true for the following proposition and we omit

its proof.

PROPOSITION B.3. Let s ∈ R. Then, Dθ(G) is dense inHs
θ (G) andHs

θ (G) is a Hilbert

space with inner product and norm respectively defined as

(u, v)Hs
θ (G) := (Js

θ u,J
s
θ v)L2

θ(G), ‖u‖Hs
θ (G) := (u, u)

1
2

Hs
θ (G).

From the density of trigonometric polynomials in L2([0, 2π]), it holds L2
θ(G) ≡ L2(G),

so that we can identify the dual space of L2
θ(G) with itself. Then, we can characterize the

dual of Hs
θ (G) by an isometric isomorphic space to H−sθ (G) and introduce the Gelfand

triple Hs
θ (G) ⊆ L2

θ(G) ⊆ H−sθ (G) for positive s ∈ R. Proposition B.3 and its form for
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Hs
θ (O) may be proved using analogous arguments as for the construction of usual Sobolev

spaces of order s ∈ R (McLean, 2000, Chapter 3).

One can easily check that the spaces defined as the closure of Dθ(G) for positive

s ∈ Z, i.e. Dθ(G)
‖·‖Hs(G) , introduced in (Alber, 1979) and revisited in (Ammari & Bao,

2008; Nédélec & Starling, 1991; Starling & Bonnet-Bendhia, 1994), are equivalent to the

spaces Hs
θ (G) in Definition B.5. For spaces of non-integer order, the result follows by

direct application of interpolation theory.

Theorem B.1. For any 0 ≤ s <∞, the norms ‖·‖Hs
θ (G) and ‖·‖Hs(G) are equivalent in

Hs
θ (G). Hence, Hs

θ (G) may be equivalently defined as Dθ(G)
‖·‖Hs(G) .

PROOF. Take s ∈ N0, then Hs(G) = W s,2(G). For u ∈ Dθ(G) and for a multi-index

α = (α1, α2) ∈ N2
0, it holds

‖u‖2
Hs(G) =

∑
|α|≤s

‖Dαu‖2
L2(G) =

∑
|α|≤s

∥∥∥∥∥Dα
∑
j∈Z

uj(x2)eıjθx1

∥∥∥∥∥
2

L2(G)

=
∑

α1+α2≤s

∥∥∥∥∥∑
j∈Z

Dα2uj(x2)(ıjθ)
α1eıjθx1

∥∥∥∥∥
2

L2(G)

=
∑

α1+α2≤s

∑
j∈Z

j2α1
θ ‖Dα2uj(x2)‖2

L2(R)

∼=
∑
j∈Z

∑
α1+α2≤s

j2α1
θ ‖ξα2

2 ûj(ξ2)‖2
L2(R)

=
∑
j∈Z

∑
α1+α2≤s

‖jα1
θ ξ

α2
2 ûj(ξ2)‖2

L2(R)

∼=
∑
j∈Z

∥∥(1 + j2
θ + ξ2

2)
s
2 ûj(ξ2)

∥∥2

L2(R)
= ‖u‖2

Hs
θ (G) .

The extension to u ∈ Hs
θ (G) follows by a density argument. An interpolation argument via

the K-method yields the same result for positive s ∈ R (see (McLean, 2000, Appendix B)

or (Tartar, 2007)). �
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Definition B.6. Let s ∈ R. For open subsets of G, i.e. O ⊂ G, we define Hs
θ (O) as

restrictions of elements of Hs
θ (G) to O, i.e.

Hs
θ (O) := {u ∈ D′θ(O) : u = U |Ω and U ∈ Hs

θ (G)}.

As in the standard case, we may construct a unitary isomorphism Ps,θ,O mapping a

closed subspace ofHs
θ (G) ontoHs

θ (O), whereby an inner product may be defined onHs
θ (O)

as

(u, v)Hs
θ (O) :=

(
P−1
s,θ,O(u), P−1

s,θ,O(v)
)
Hs
θ (G)

.

Moreover, the same isomorphism allows us to verify that Hs
θ (O) is a Hilbert space with

the aforementioned inner product. The complete argument is the same than for classical

Sobolev spaces (see (McLean, 2000, Chapter 3.6)).

Let O ⊂ G be open and s ∈ R. That Hs
θ (O) is a Hilbert space is easily verified through

the same procedure as in (McLean, 2000, Chapter 3.6) for the usual Sobolev spaces of

order s ∈ R.

Corollary B.1. Let O be an open set such that O ⊂ G, then

Hs
θ (O) = Hs(O) ∀ s ∈ R.

PROOF. Notice that D(O) = Dθ(G)|O. Then, the result follows from the equivalence

of norms given in Theorem B.1 and corresponding densities of D(O) in Hs(O) (McLean,

2000, Chapter 3), and Dθ(G)|O in Hs
θ (O). �

Definition B.7. We introduce the Sobolev space of quasi-periodic functions

H̃s
θ (O) := Dθ(O)

‖·‖Hs
θ
(G) .

Just as with classical Sobolev spaces, it is possible to show that (Hs
θ (O))′ and H̃−sθ (O)

are isometric and isomorphic under some assumptions on the regularity of O. We shall also

introduce local Sobolev spaces of quasi-periodic functions as they play a key role in the

formulation of problems in unbounded domains. Let the θ-quasi-periodic local Sobolev
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space of order s ∈ R be defined as follows

Hs
θ,loc(O) := {u ∈ D′θ(O) | u ∈ Hs

θ (O
R) ∀ R > 0}, (B.2)

where OR := O ∩ {|x2| < R}. An operator with range in Hs
θ,loc(O) is said to be bounded if

it is bounded on Hs
θ (O

R) for all R > 0.

We now characterize quasi-periodic Sobolev spaces on one-dimensional boundaries to

be used when introducing trace spaces.

Definition B.8 (Definition 8.1 in (Kress, 2014)). Let 0 ≤ s <∞. We define Hs[0, 2π]

as

Hs[0, 2π] :=

{
ϕ ∈ L2 ((0, 2π))

∣∣∣∣∣ ∑
j∈Z

(1 + j2)s |ϕj|2 <∞

}
,

where {ϕj}j∈Z are the Fourier coefficients for ϕ ∈ L2((0, 2π)).

Though we choose to follow the presentation in (Kress, 2014, Chapters 8.1 and 8.2)

throughout this subsection, similar results forHs[0, 2π] may be found in (Saranen & Vainikko,

2013, Chapter 5.3), including a definition analogous to Definition B.8.

Theorem B.2 (Theorem 8.2 in (Kress, 2014)). For 0 ≤ s <∞, Hs[0, 2π] is a Hilbert

space with inner product and induced norm given by

(u, v)Hs[0,2π] :=
∑
j∈Z

(1 + j2)sujvj, ‖u‖Hs[0,2π] := (u, u)
1
2

Hs[0,2π].

Definition B.9. Let 0 ≤ s <∞. We define Hs
θ [0, 2π] as

Hs
θ [0, 2π] := {ϕ ∈ L2 ((0, 2π)) | e−ıθxϕ(x) ∈ Hs[0, 2π]}.

Theorem B.3. For 0 ≤ s < ∞, Hs
θ [0, 2π] is a Hilbert space with inner product and

induced norm given by

(u, v)Hs
θ [0,2π] :=

∑
j∈Z

(1 + j2
θ )
suj,θvj,θ, ‖u‖Hs

θ [0,2π] := (u, u)
1
2

Hs
θ [0,2π],
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respectively, wherein

uj,θ =
1

2π

∫ 2π

0

e−ıjxe−ıθxu(x) dx.

PROOF. Let

i :

H
s
θ [0, 2π] → Hs[0, 2π]

u 7→ e−ıθxu
.

Then, Hs
θ [0, 2π] equipped with the product and norm

(u, v)i := (iu, iv)Hs[0,2π], ‖u‖i := ‖iu‖Hs[0,2π] ,

is a Hilbert space. It is easy to see that (·, ·)Hs
θ [0,2π] is an inner product onHs

θ [0, 2π] and that,

therefore, ‖·‖Hs
θ [0,2π] is a norm. Completeness follows from noticing that, since θ ∈ [0, 1),

(1 + j2
θ ) = (1 + j2 + 2jθ + θ2) < (1 + 2θ)(1 + j2),

so that, for all u ∈ Hs
θ [0, 2π], it holds

‖u‖2
Hs
θ [0,2π] < (1 + 2θ)s ‖u‖2

i .

Similarly,

(1 + j2) = (1 + j2
θ + θ2 − 2θjθ) ≤ (1 + j2

θ + θ + 2θ |jθ|)

≤
(

1 + j2
θ + θ + 2θ

j2
θ

1− θ

)
≤
(

1 + 2
θ

1− θ

)
(1 + j2

θ ),

so that

‖u‖2
i ≤

(
1 + 2

θ

1− θ

)s
‖u‖2

Hs
θ [0,2π] .

Hence, both norms are equivalent and the statement holds. �

Definition B.10 (Definition 8.9 in (Kress, 2014)). For 0 ≤ s <∞, we defineH−s[0, 2π]

as the dual space of Hs[0, 2π].



179

Theorem B.4 (Theorem 8.10 in (Kress, 2014)). For 0 ≤ s <∞, the norm and product

for F , L ∈ H−s[0, 2π] are given by

(F,L)H−s[0,2π] :=
∑
j∈Z

(1 + j2)sFjLj, ‖F‖H−s[0,2π] := (F, F )
1
2

H−s[0,2π],

where Fj := 1
2π
F (eıjx) and analogously for Lj .

Definition B.11. For 0 ≤ s <∞, H−sθ [0, 2π] is the dual space of Hs
θ [0, 2π].

Theorem B.5. For 0 ≤ s < ∞, H−sθ [0, 2π] is isomorphic to H−s[0, 2π]. Moreover,

F ∈ H−sθ [0, 2π] may be represented as

F =
∑
j∈Z

Fj,θe
ıjθx,

with Fj,θ :=
1

2π
F (eıjθx), and its action on u ∈ Hs

θ [0, 2π] is given by

F (u) =
∑
j∈Z

Fj,θuj,θ.

Also, H−sθ [0, 2π] is a Hilbert space when equipped with inner product and norm

(F,L)H−sθ [0,2π] :=
∑
j∈Z

(1 + j2
θ )
−sFj,θLj,θ, ‖F‖H−sθ [0,2π] := (F, F )

1
2

H−sθ [0,2π]
,

with L ∈ H−sθ [0, 2π].

PROOF. Follows arguments similar to those of the proof of Theorem B.3. �

ASSUMPTION B.1. Henceforth, we assume Γ ⊂ G to be a single period of a periodic

curve parametrized by a Lipschitz continuous function z so that

Γ := {z(t), t ∈ (0, 2π)},

where z may be continuously extended to all R, with

z(t) = (z1(t), z2(t)), z1(t+ 2πn) = z1(t) + 2πn, z2(t+ 2πn) = z2(t),

for all n ∈ Z and t ∈ [0, 2π).
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Γ

G := (0; 2π)× R

FIGURE B.1. Sinusoidal grating

Γ

G := (0; 2π)× R

FIGURE B.2. Square grating

FIGURE B.3. Example of possible curves. Dotted lines represent periodic boundaries.
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Definition B.12. For any periodic curve Γ, Consider an open neighborhood O of Γ,

we define Dθ(Γ) as the restictions to Γ of functions in Dθ(O).

We introduce quasi-periodic Sobolev spaces on arbitrary curves as in (Kress, 2014,

Chapter 8.2).

Definition B.13. Let 0 ≤ s < r, with r ∈ N such that Γ is a periodic curve of class

Cr−1,1. We define the quasi-periodic Sobolev space of order s over Γ as

Hs
θ (Γ) := {u ∈ L2(Γ) | (u ◦ z)(t) ∈ Hs

θ [0, 2π]},

and equip it with the inner product

(u, v)Hs
θ (Γ) := (u ◦ z, v ◦ z)Hs

θ [0,2π],

where z : (0, 2π)→ Γ is a parametrization of Γ.

The following result follows easily from (Kress, 2014, Chapter 8.2).

PROPOSITION B.4. Let 0 ≤ s < ∞. The space Hs
θ (Γ), along with the inner product

(·, ·)Hs
θ (Γ) is a Hilbert space. Moreover, Dθ(Γ) is dense in Hs

θ (Γ) and these spaces are

independent of the chosen parametrization of Γ.

Definition B.14. For 0 ≤ s < ∞, we define H−sθ (Γ) as the completion of H0
θ (Γ) ≡

L2
θ(Γ) with respect to the norm:

‖u‖H−sθ (Γ) := ‖(u ◦ z) ‖ż‖R2‖H−sθ [0,2π],

with ż(t) := (ż1(t), ż2(t)) and z as in Assumption B.1.

Theorem B.6. For 0 ≤ s < ∞, H−sθ (Γ) is a realization of the dual space of Hs
θ (Γ).

Furthermore, Dθ(Γ) is dense in H−sθ (Γ).

PROOF. Follows directly from the definition of standard Sobolev spaces over closed

curves (cf. (Kress, 2014, Chapter 8.2) and (McLean, 2000, Chapter 3.11)) and the duality
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between Hs
θ [0, 2π] and H−sθ [0, 2π] (cf. Definition B.11) is understood as in Theorem B.5.

�

For all h ∈ R, we set Γh := {x ∈ G | x2 = h}. Quasi-periodic Sobolev spaces

on boundaries have already been considered for straight segments such as Γh but only for

s = ±1
2

(cf. (Ammari, 1998; Ammari & Bao, 2008; Nédélec & Starling, 1991; Starling &

Bonnet-Bendhia, 1994) and references therein).

Lemma B.1. Let h ∈ R and u ∈ Dθ(G). Then, the restriction operator

u(x) 7→ u(x1, h)

can be extended uniquely to a continuous functional (Dirichlet trace)

γ0 : Hs
θ (G)→ H

s− 1
2

θ (Γh),

for all 1
2
< s <∞, with continuous right-inverse

ηh : H
s− 1

2
θ (Γh)→ Hs

θ (G).

PROOF. The proof is very similar to that of (McLean, 2000, Lemma 3.35). We focus

on the special case h = 0, since the generalization to h 6= 0 is trivial. Let u ∈ Dθ(G), then

u(x) =
∑
j∈Z

uj(x2)e−ıjθx1 ,

and its restriction to x2 = 0 is

u(x1, 0) =
∑
j∈Z

uj(0)e−ıjθx1 .

For j ∈ N, we bound each coefficient uj(0) as follows. If ûj denotes the Fourier transform

of uj , then

uj(x2) =

∫
R
eı2πξx2ûj(ξ) dξ and uj(0) =

∫
R
ûj(ξ) dξ.
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Then, it holds

uj(0) =

∫
R

(1 + j2
θ + |ξ|2)

s
2

(1 + j2
θ + |ξ|2)

s
2

ûj(ξ) dξ

≤
∥∥(1 + j2

θ + |ξ|2)
s
2 ûj(ξ)

∥∥
L2(R)

∥∥(1 + j2
θ + |ξ|2)−

s
2

∥∥
L2(R)

. (B.3)

The second term in (B.3) becomes∫
R

1

(1 + j2
θ + |ξ|2)s

dξ = (1 + j2
θ )
−s
∫
R

1(
1 + |ξ|2

1+j2θ

)s dξ

= (1 + j2
θ )

1
2
−s
∫
R

1

(1 + t2)s
dt, (B.4)

where the integral in (B.4) is finite for s > 1
2
. Setting Cs :=

∥∥(1 + t2)−
s
2

∥∥
L2(R)

and

considering both (B.3) and (B.4), leads to

|uj(0)|2 ≤ C2
s (1 + j2

θ )
1
2
−s ∥∥(1 + j2

θ + |ξ|2)
s
2 ûj(ξ)

∥∥2

L2(R)

(1 + j2
θ )
s− 1

2 |uj(0)|2 ≤ C2
s

∥∥(1 + j2
θ + |ξ|2)

s
2 ûj(ξ)

∥∥2

L2(R)
.

Taking the sum over j ∈ Z yields

‖u(x1, 0)‖
H
s− 1

2
θ (Γ0)

≤ Cs ‖u(x)‖Hs
θ (G) .

With this, the proof follows from the density of Dθ(G) in Hs
θ (G) (cf. Proposition B.3). For

the inverse operator, we consider ψ ∈ D(R) such that ψ(0) = 1. Hence, for w(x1) =∑
j∈Zwje

ıjθx1 , we define

η0w(x) :=
∑
j∈Z

wjψ(x2)eıjθx1 ∀ x ∈ R2.
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It is clear that γh0 η0w = w. Moreover,

‖η0w‖2
Hs
θ (G)

=
∑
j∈Z

∫
R
(1 + j2

θ + |ξ|2)s |wj|2
∣∣∣ψ̂(ξ)

∣∣∣2 dξ

=
∑
j∈Z

|wj|2
∫
R
(1 + j2

θ + |ξ|2)s
∣∣∣ψ̂(ξ)

∣∣∣2 dξ

=
∑
j∈Z

|wj|2 (1 + j2
θ )
s− 1

2

∫
R
(1 + |t|2)s(1 + j2

θ )
∣∣∣ψ̂ (t (1 + j2

θ

) 1
2

)∣∣∣2 dt

≤ C
∑
j∈Z

|wj|2 (1 + j2
θ )
s− 1

2 = C ‖w‖2

H
s− 1

2
θ (Γh)

,

where C depends only on ψ and s (cf. (McLean, 2000, Lemma 3.36)). �

REMARK B.1. A proof for the case s = 1 is given in (Nédélec & Starling, 1991,

Section 2.2). However, the strategy does not admit a generalization to arbitrary s > 1
2

since it relies on properties specific to H1
θ (G).

Theorem B.7. For 1
2
< s < r, the restriction operator u 7→ u|Γ can be extended

uniquely to a continuous functional (Dirichlet trace):

γ0 : Hs
θ (G)→ H

s− 1
2

θ (Γ),

which may also be extended to subsets O of G such that Γ ⊂ O. In both cases, the operator

has a continuous right-inverse, denoted γ−1
0 .

PROOF. Take u ∈ Dθ(G). Since by Assumption B.1 there is a real function z ∈

[Cr−1,1(0, 2π)]2 such that it holds Γ = {x | x = z(t), t ∈ (0, 2π)}, there exists a periodic

isomorphism R ∈ [Cr−1,1(G)]2 satisfying

R : G→ G, R((0, 2π)× {0}) = Γ, supp(R− I) ⊂⊂ G,

where I is the R2 identity operator, i.e. I(x) = x. Then, uR(x) = u ◦ R(x) is at least

Cr−1,1 and remains quasi-periodic and compactly supported in G. From Theorem B.1 and

the invariance of regular Sobolev spaces of order 1− r ≤ s ≤ r (McLean, 2000, Theorem
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3.23), it follows that

‖u|Γ‖
H
s− 1

2
θ (Γ)

= ‖u ◦ R(·, 0)‖
H
s− 1

2
θ [0,2π]

≤ Cs ‖uR‖Hs
θ (G)
∼= Cs ‖u‖Hs

θ (G) ,

for a positive constant Cs depending on s. The density of Dθ(G) in Hs
θ (G) (cf. Proposition

B.3) yields the first result. The case for O follows directly from considering extensions

in Hs
θ (G) of elements of Hs

θ (O). The inverse is constructed using the isomorphism R and

Lemma B.1. �

As in the non-periodic case, it is possible to extend the regularity range of the Dirichlet

trace on Lipschitz domains to 1
2
< s < 3

2
. The result follows from modifying the proof of

(Costabel, 1988, Lemma 3.6) –also available in (McLean, 2000, Theorem 3.38)– similarly

to how the proof for Lemma B.1 was adapted from (McLean, 2000, Lemma 3.35).

Lemma B.2. For 1
2
< s < 3

2
, the Dirichlet trace operator γ0 : Hs

θ (G) → H
s− 1

2
θ (Γ) is

bounded.

Let O ⊂ G be the open subset above Γ, so that ∂GO = Γ. We define interior and

exterior Dirichlet trace operators for 1
2
< s < r, and 1

2
< s < 3

2
for r = 1, respectively

denoted

γi0 : Hs
θ (O)→ H

s− 1
2

θ (Γ), γe0 : Hs
θ

(
G \OG

)
→ H

s− 1
2

θ (Γ) .

Both operators can be built by observing that the elements of the corresponding Sobolev

spaces are restrictions of elements of Hs
θ (G). Moreover, by construction, these operators

also have right-inverses denoted (γi0) and (γe0)−1, respectively.

We also require an operator that extends the notion of normal derivative on the bound-

ary. This operator (Neumann trace) may be seen as an extension of the mapping u 7→

∇u|Γ · n, where n denotes the unit normal exterior to O –the open domain above or be-

low Γ. Then, for u ∈ Hs
θ (O) with s > 3

2
, we define interior and exterior Neumann trace
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operators:

γi1 := γi0(∇u) · n, γe1 := γe0(∇u) · n.

From the mapping properties of the Dirichlet trace (Theorem B.7), we obtain continuity of

the Neumann traces

γi1 : Hs
θ (O)→ H

s− 3
2

θ (Γ), γe1 : Hs
θ (G \O

G
)→ H

s− 3
2

θ (Γ),

for s > 3
2
. By the use of integration-by-parts formulas, the Neumann trace may also be

defined on a subspace of H1
θ (O). With this, we state Green’s formulas for quasi-periodic

smooth functions, which we shall later extend to Sobolev spaces (cf. (Nédélec & Starling,

1991; Starling & Bonnet-Bendhia, 1994)).

Lemma B.3. Consider O ⊂ G an open subset whose boundary ∂GO is a finite number

of periodic curves of class C0,1 and set n its unit exterior normal. If u, v ∈ Dθ(G), the

following formulas hold:∫
O

(
∆u(x)v(x) +∇u(x) · ∇v(x)

)
dx =

∫
∂GO

(∇u(x) · n(x))v(x) dSx, (B.5)∫
O

(
∆u(x)v(x)− u(x)∆v(x)

)
dx =∫

∂GO

(∇u(x) · n(x))v(x) dSx −
∫
∂GO

(∇v(x) · n(x))u(x) dSx.

(B.6)

PROOF. Take u and v in Dθ(G). IfO is bounded then, by the classical Green’s formula,

we obtain ∫
O

(
∆u(x)v(x) +∇u(x) · ∇v(x)

)
dx =∫

∂OG

(∇u(x) · n(x))v(x) dSx +

∫
∂O\∂OG

(∇u(x) · n(x))v(x) dSx,

where the last term is null by the quasi-periodicity of the functions. IfO is unbounded, then

the statement still holds, upon noticing that both u and v have bounded support. Finally,

(B.6) follows trivially from (B.5). �
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By using (B.5), we can extend the definition of the Neumann trace. For s ∈ R, let

Hs
θ,∆(O) := {u ∈ Hs

θ (O) : ∆u ∈ L2
θ(O)}.

Then, for u ∈ H1
θ,∆(O), we define the functional γi1u as

〈γi1u, v|Γ〉∂GO :=

∫
O

∆u(x)(γi0)−1 (v|Γ) (x)dx (B.7)

+

∫
O

∇u(x) · ∇(γi0)−1 (v|Γ) (x)dx, (B.8)

where v ∈ Dθ(G). Clearly, the functional continuously depends only on the boundary

values of v, and thus it is well defined. Using the density of Dθ(G) in H1
θ (O) and since

the Dirichlet trace has a continuous right-inverse, we can define the Neumann trace as an

element of H
− 1

2
θ (Γ). Analogously, we can define the exterior Neumann trace, denoted γe1,

by integrating over G \OG
as follows

〈γe1u, v|Γ〉Γ :=−
∫
G\OG

∆u(x)(γe0)−1 (v|Γ)(x) dx (B.9)

−
∫
G\OG
∇u(x) · ∇(γe0)−1 (v|Γ)(x) dx. (B.10)

From their definitions, it is clear that these operators extend the normal derivative toH1
θ,∆(O).

REMARK B.2. We consider the definition of γe1 with a sign difference with respect

to that of γi1 to ensure (γi1 − γe1)u = 0 for u ∈ H1
θ,∆(O) for a bounded neighborhood

containing the boundary Γ. Furthermore, these operators can be extended to local Sobolev

spaces (B.2) since their definitions depend only on the behavior of u near the boundary Γ.

Now, one can extend Green’s formulas to quasi-periodic Sobolev spaces.

Lemma B.4. Consider O ⊂ G as an open subset whose boundary ∂GO is a finite

number of periodic curves of class C0,1 and set n its unit exterior normal. If u ∈ H1
θ,∆(O)

and v ∈ H1
θ (O), then∫

O

(
∆u(x)v(x) +∇u(x) · ∇v(x)

)
dx = 〈γi1u, γi0v〉∂GO. (B.11)
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If u and v ∈ H1
θ,∆(O), then∫

O

(
∆u(x)v(x)− u(x)∆v(x)

)
dx = 〈γi1u, γi0v〉∂GO − 〈γi1v, γi0u〉∂GO (B.12)

also holds.

PROOF. Follows from the density of Dθ(O) on H1
θ (O), Lemma B.3 and continuity of

Dirichlet and Neumann traces (cf. Lemma B.1, (B.7) and (B.10)). �

B.3. Time-Harmonic wave scattering by periodic surfaces in R2

We focus now on finding the field scattered by a grating described by an infinite surface

Γ̃, with Γ = Γ̃ ∩ G satisfying Assumption B.1. Following (Elschner & Schmidt, 1998;

Nédélec & Starling, 1991; Starling & Bonnet-Bendhia, 1994), this leads to quasi-periodic

BIOs. We begin by introducing the Helmholtz equation in periodic domains, stating the

appropriate radiation conditions at infinity for such a problem, and finish with an existence

and uniqueness result previously found.

We shall only concern ourselves with the half-space above the infinite grating, denoted

Ω̃. We also introduce the periodic cell Ω := Ω̃ ∩G, with boundary Γ = ∂GΩ. Let H ∈ R

be such that H > maxt∈[0,2π] |z2(t)|, where z is as in Assumption B.1, and let

ΩH := {x ∈ Ω | x2 < H}, ΓH := {x ∈ G | x2 = H}.

B.3.1. Unbounded wave scattering

We consider the scattering induced by an incident plane wave:

u(inc)(x) = u0e
i(k1x1+k2x2), u0 ∈ C, (B.13)

by a grating described by Γ̃, where the material above the grating is assumed to be homo-

geneous and isotropic with wavenumber k = (k2
1 + k2

2)
1
2 > 0. Here, we have assumed a
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Ω n ΩH

Ω
H

Γ
H

Γ

FIGURE B.4. Periodic cell. Dotted and dashed lines represent periodic and fic-
titious boundaries Γ and ΓH , respectively. ΩH is domain enclosed by Γ and ΓH
whereas Ω lies above Γ.

time dependence as e−iωt for some frequency ω > 0, where k := ωc−1 and c is the wave

speed in the medium above the grating surface.

In this setting, we consider two different sets of scalar boundary value problems:

(TM)

 (−∆− k2)u(tot) = 0 on Ω̃,

γi0u
(tot) = 0 on Γ̃.

(B.14)

(TE)

 (−∆− k2)u(tot) = 0 on Ω̃,

γi1u
(tot) = 0 on Γ̃.

(B.15)

In both (B.14) and (B.15), the total wave is split by linearity into incident and scattered

waves, i.e. u(tot) = u(sc) + u(inc). In electromagnetics, they correspond to transverse mag-

netic (TM) and transverse electric (TE) modes, whereas in acoustics they model sound-soft

and -hard problems, respectively.

B.3.2. Quasi-periodicity of the solution and radiation condition

Throughout this section, we fix θ as the only number in [0, 1) such that (cf. (Starling &

Bonnet-Bendhia, 1994))

θ = k1 + n, for some n ∈ Z.
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By a translation argument, solutions of (B.14) and (B.15) are not unique. Indeed, if

u ∈ H1
loc(Ω) is the scattered solution of either (B.14) or (B.15), then we can consider

the following modification:

ũ(x) := e−ı2πθu(x+ 2πe1)

and build a new solution for either (B.14) or (B.15). In order to ensure uniqueness, we

search only for θ-quasi-periodic solutions of (B.14) and (B.15), so that

u(x+ 2πe1) = eı2πθu(x). (B.16)

We proceed by studying the behaviour of u(sc) for x2 ≥ H . The following analysis is

performed also in (Bao, 1997; Nédélec & Starling, 1991; Starling & Bonnet-Bendhia,

1994), among others. For u(sc) ∈ H1
θ,loc(Ω) and x2 ≥ H , we may write

u(sc)(x) =
∑
j∈Z

u
(sc)
j (x2)eıjθx1 , (B.17)

where each coefficient u(sc)
j ∈ H1

loc((H,∞)) solves

− ∂2

∂x2
2

u
(sc)
j (x2)−

(
k2 − j2

θ

)
u

(sc)
j (x2) = 0, ∀ x2 > H, ∀ j ∈ Z. (B.18)

Since each one of these equations has two independent solutions, we are forced to choose

between them as follows:

(i) if (k2 − j2
θ ) < 0, we select the decaying solution:

u
(sc)
j (x2) = u

(sc)
j (H)e−

√
j2θ−k2(x2−H),

(ii) if (k2 − j2
θ ) = 0, we opt for the constant:

u
(sc)
j (x2) = u

(sc)
j (H),

(iii) if (k2 − j2
θ ) > 0, one chooses the solution corresponding to an outgoing wave:

u
(sc)
j (x2) = u

(sc)
j (H)eı

√
k2−j2θ (x2−H).
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Then, the scattered field has the following form for x2 ≥ H

u(sc)(x) =
∑
j∈Z

u
(sc)
j (H)eıβj(x2−H)eıjθx1 , (B.19)

wherein

βj :=


√
k2 − j2

θ if k2 − j2
θ ≥ 0

ı
√
j2
θ − k2 if k2 − j2

θ < 0
. (B.20)

REMARK B.3. Analogous conditions may be constructed as x2 → −∞ if we were

considering transmission conditions at the boundary Γ and the wave transmitted into the

grating were non-trivial.

Inspired by the previous analysis, we are now able to introduce an appropriate radiation

condition to be satisfied by the scattered field (cf. (Bao et al., 1995; Kirsch, 1993; B. Zhang

& Chandler-Wilde, 1998) and references therein).

Definition B.15 (Radiation Condition). We say that u ∈ H1
θ,loc(G) satisfies radiation

conditions at infinity if there exists h > 0 large enough such that, for all |x2| ≥ h, there

holds

u(sc)(x) =


∑

j∈Z u
+
j e

ıβj(x2−h)eıjθx1 if x2 ≥ h,∑
j∈Z u

−
j e

ıβj(x2+h)eıjθx1 if x2 ≤ −h,

with u+
j and u−j ∈ C for all j ∈ Z and βj as in (B.20).
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We may now state the TM and TE equations –including radiation and quasi-periodicity

conditions– over the periodic cell:

(TMθ)



(−∆− k2)u(tot) = 0 on Ω,

γi0u
(tot) = 0 on Γ,

u(sc) is θ-quasi-periodic,

u(sc) satisfies radiation conditions at infinity.

(B.21)

(TEθ)



(−∆− k2)u(tot) = 0 on Ω,

γi1u
(tot) = 0 on Γ,

u(sc) is θ-quasi-periodic,

u(sc)satisfies radiation conditions at infinity.

(B.22)

We can now state both problems on local Sobolev spaces:

PROBLEM B.3.1 (Unbounded TM problem). Find u(sc) ∈ H1
θ,loc(Ω) such that u(sc)

satisfies (B.21).

PROBLEM B.3.2 (Unbounded TE problem). Find u(sc) ∈ H1
θ,loc(Ω) such that u(sc) sat-

isfies (B.22).

We also introduce an adjoint radiation condition as it will be useful to establish prop-

erties of the resulting BIOs later on.

Definition B.16 (Adjoint Radiation Condition). We say that u ∈ H1
θ,loc(G) satisfies

adjoint radiation conditions at infinity if there exists h > 0 large enough such that, for all

|x2| ≥ h, there holds

u(sc)(x) =


∑

j∈Z u
+
j e

ıβ̃j(x2−h)eijθx1 , if x2 ≥ h,∑
j∈Z u

−
j e

ıβ̃j(x2+h)eijθx1 , if x2 ≤ −h,
,
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with u+
j and u−j ∈ C for all j ∈ Z and

β̃j :=

−
√
k2 − j2

θ if k2 − j2
θ ≥ 0,

ı
√
j2
θ − k2 if k2 − j2

θ < 0.
(B.23)

This condition will only be used in the proofs found in Section B.7. In fact, given the

time dependence e−iωt, the adjoint radiation condition corresponds to admitting incoming

waves from infinity rather than outgoing waves, as with the radiation condition in Definition

B.15.

B.3.3. Dirichlet-to-Neumann (DtN) maps

The standard procedure to solve Problems B.3.1 and B.3.2 requires the use of an ap-

propriate DtN operator at the fictitious boundary ΓH (cf. (Ammari & Bao, 2008; Nédélec

& Starling, 1991; Starling & Bonnet-Bendhia, 1994)).

Definition B.17. Taking the cue from the radiation condition from Definition B.15, we

define the DtN operator T(k, θ) as

T(k, θ) :=

H
1
2
θ (ΓH) → H

− 1
2

θ (ΓH)∑
j∈Z vj(H)eıjθx1 7→

∑
j∈Z ıβjvj(H)eıjθx1

.

Definitions of H
1
2
θ (ΓH) and H

− 1
2

θ (ΓH) are given in Section B.2.3.

Lemma B.5. The operator T(k, θ) : H
1
2
θ (ΓH)→ H

− 1
2

θ (ΓH) is continuous.

PROOF. By straightforward computation, it holds

‖T(k, θ)v‖2

H
− 1

2
θ (ΓH)

=
∑
j∈Z

(1 + j2)−
1
2 |βj|2 |vj|2 ≤ sup

j∈Z

|βj|2

1 + j2
‖v‖2

H
1
2
θ (ΓH)

.

By definition of βj ,
|βj|2

1 + j2
=
|k2 − j2 − 2jθ − θ2|

1 + j2
is bounded in j. �

Lemma B.6 (Proposition 3.1 in (Starling & Bonnet-Bendhia, 1994)). If u is a solution

of either Problem B.3.1 or B.3.2, then the following are equivalent:
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(i) u satisfies (B.19) (radiation condition at infinity),

(ii) γi1u = T(k, θ)γi0u on ΓH .

PROOF. (i) ⇒ (ii) can be proved directly from (B.19) considering that the normal

derivative in ΓH is the derivative in x2. Conversely, if u is a solution of any of the Helmholtz

problems (TM) or (TE), by (B.18) we have that the coefficients uj have, for x2 > H , the

general expression:

uj(x2) = c1e
ıβj(x2−H) + c2e

−ıβj(x2−H),

with βj as in (B.20). By incorporating (ii) as a boundary condition we have that c2 = 0,

c1 = uj(H). �

Then, we consider the following modified versions of (TEθ) and (TMθ):

(TMH
θ )



(−∆− k2)u(tot) = 0 on ΩH ,

γi0u
(tot) = 0 on Γ,

γi1u
(sc) = T(k1, k)γi0u

(sc) on ΓH ,

u(sc) is θ-quasi-periodic.

(B.24)

(TEHθ )



(−∆− k2)u(tot) = 0 on ΩH ,

γi1u
(tot) = 0 on Γ,

γi1u
(sc) = T(k1, k)γi0u

(sc) on ΓH ,

u(sc) is θ-quasi-periodic.

(B.25)

PROBLEM B.3.3 (Bounded TM problem). Find u(sc) ∈ H1
θ (ΩH) such that u(sc) satisfies

(B.24).

PROBLEM B.3.4 (Bounded TE problem). Find u(sc) ∈ H1
θ (ΩH) such that u(sc) satisfies

(B.25).
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By Lemma B.6, Problems B.3.3 and B.3.4 are equivalent to Problems B.3.1 and B.3.2,

respectively. Lastly, we conclude this chapter by stating an existence and uniqueness result

for Problems B.3.3 and B.3.4 proved in (Nédélec & Starling, 1991; Starling & Bonnet-

Bendhia, 1994).

Let K(TM)
sing and K

(TE)
sing be countable sets of wavenumbers (growing towards infin-

ity) for which non-unique solutions for Problems B.3.3 and B.3.4 may exist, respectively

(cf. (Starling & Bonnet-Bendhia, 1994, Section 3.4) and references therein).

Theorem B.8 (Theorems 3.3 and 3.4 in (Starling & Bonnet-Bendhia, 1994) and The-

orem 3.3 in (Elschner & Schmidt, 1998)). There exist solutions for Problems B.3.3 and

B.3.4 for every real wavenumber k. However, these may not be unique for k ∈ K(TE)
sing or

k ∈ K(TM)
sing , respectively.

Actually, a uniqueness result for the Dirichlet problem is available in (Kirsch, 1993)

when the grating surface Γ is of class C2 for all wavenumbers k ∈ R. Also see (Alber,

1979; Kirsch, 1993, 1994) and references therein. Moreover, the results in (Elschner &

Schmidt, 1998) include the more general transmission problem and a more detailed de-

scription of the sets K(TE)
sing and K(TM)

sing in terms of the frequency and incidence angle. We

also highlight Theorem 3.2 in (Elschner & Schmidt, 1998), which gives a uniqueness result

for any small enough frequency ω. The authors are not aware of similar uniqueness results

for the Neumann problem, or for the Dirichlet problem under weaker assumptions such as

Lipschitz regularity.

B.4. Boundary integral operators

We now establish the properties of BIOs acting on quasi-periodic Sobolev spaces. We

begin by introducing an appropriate Green’s function and follow by defining the corre-

sponding operators that arise from it. We shall resume the notation used in Section B.2 for

the quasi-periodic shift, i.e. θ ∈ [0, 1). Recall that fixing θ as the unique real number in

[0, 1) such that

θ = k1 + n, for some n ∈ Z,
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will yield BIOs corresponding to the problems considered in the previous section.

Definition B.18 (Quasi-periodic Green’s function). Let θ ∈ [0, 1), k > 0 such that

|j + θ| 6= k, for all j ∈ Z, and denote by Gk(x,y) the fundamental solution for the

two-dimensional Helmholtz equation with wavenumber k. For x and y on A := {x,y ∈

R2 | x − y 6= 2πne1, ∀ n ∈ Z}, we define the θ-quasi-periodic Green’s function for the

Helmholtz problem on a periodic surface as (cf. (Cho & Barnett, 2015; Nédélec & Starling,

1991; Linton, 1998; Liu & Barnett, 2016)):

Gk
θ(x,y) := lim

m→∞

m∑
n=−m

e−ı2πnθGk
n(x,y), ∀ (x,y) ∈ A, (B.26)

where Gk
n(x,y) denotes the displaced kernel function:

Gk
n(x,y) := Gk(x+ 2πne1,y).

We make a special mention to the work of C. M. Linton (Linton, 1998), focused on the

description of several analytic techniques that allow for a more efficient computation of the

quasi-periodic Green’s function in comparison to truncating the series in (B.26). Moreover,

the series in (B.26) does not converge absolutely but rather as an alternating series.

For the remainder of the article, we assume that |j + θ| 6= k for all j ∈ Z. Otherwise,

we would be unable to build the θ-quasi-periodic Green’s function, as the sum in (B.26)

fails to converge (Nédélec & Starling, 1991). Values of k such that |j + θ| = k for some

integer j are known as Rayleigh-Wood frequencies and, while different strategies have

been developed to circumvent this issue (e.g. (Bruno & Fernandez-Lado, 2017; Bruno

et al., 2017; Cho & Barnett, 2015)), we shall simply avoid them as their treatment lies

beyond the scope of this article. We emphasize that Rayleigh-Wood frequencies are not to

be mistaken with singular values of Problems B.3.3 and B.3.4.

PROPOSITION B.5. The following relations hold:

(i) Gk
θ(x,y) = ı

4π

∑
j∈Z

1
βj
eıβj |x2−y2|−ıjθ(y1−x1) for all x, y in R2,

(ii) (−∆y − k2)Gk
θ(x,y) = δ̂2π,θ(x− y) in D′θ(R2) for x ∈ R2,
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(iii) (−∆y − k2)Gk
θ(x,y) = δ̂(x− y) in D′θ(G) for x ∈ G,

(iv) Gk
θ(x,y) is C∞ in A, and

(v) Gk
θ(x,y) is θ-quasi-periodic in x, (1 − θ)-quasi-periodic in y and satisfies the

radiation condition in Definition B.15 on both variables.

PROOF. Item (i) is proved in (X. Chen & Friedman, 1991, Section 3). The rest follow

from (i) and (Nédélec & Starling, 1991, Proposition 3.1). �

We now introduce the quasi-periodic Newton potential for f ∈ Dθ(O).

Definition B.19. For a given f ∈ Dθ(G), we define its quasi-periodic Newton potential

Nk
θ (f)(x), for all x ∈ G, as

Nk
θ (f)(x) :=

∫
G

Gk
θ(x,y)f(y) dy.

Theorem B.9. The quasi-periodic Newton potential may be extended to a continuous

operator from Hs
θ (G) to Hs+2

θ,loc(G), for s ∈ R.

PROOF. See Section B.6. �

We point out that the proof of Theorem B.9 is nothing but the characterization of the

Newton potential order when considered as a pseudo-differential operator on the previ-

ously defined Sobolev spaces. This result was also previously established in (Lechleiter &

Nguyen, 2013, Proposition 4).

Corollary B.2. Let O ⊆ G. The mapping Nk
θ : H̃s

θ (O)→ Hs+2
θ,loc(G) is bounded.

PROOF. Let f ∈ H̃s
θ (O). By definition, ‖f‖H̃s

θ (O) = ‖f̃‖Hs
θ (G), where f̃ is the extension

by zero of f (cf. Definition B.7). The results follows directly from Theorem B.9. �

From the integration-by-parts formula (B.12) and the series representation in Proposi-

tion B.5, one can show that, for f ∈ H̃−1
θ (O), the quasi-periodic Newton potential Nk

θ f(x)
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satisfies

(−∆− k2)Nk
θ f = f̃ in G, (B.27)

where (B.27) is to be understood in the sense of H−1
θ (G). Similarly, one can see that

Nk
θ f satisfies the appropriate radiation condition at infinity specified in Definition B.15

as |x2| → ∞. Indeed, consider H so that supp f ⊂ [0, 2π] × [−H,H] and x such that

x2 > H . Then,

Nk
θ (f)(x) =

∫
O

Gk
θ(x,y)f(y) dy =

∫
O ∩ supp f

Gk
θ(x,y)f(y) dy

=
ı

4π

∫
O ∩ supp f

∞∑
j=−∞

eıβj |x2−y2|e−ıjθ(y1−x1)

βj
f(y) dy

=
ı

4π

∫
O ∩ supp f

∞∑
j=−∞

eıβj(x2−H)eıβj(H−y2)e−ıjθ(y1−x1)

βj
f(y) dy

=
∞∑

j=−∞

ı

4π

eıβj(x2−H)eıjθx1

βj

∫
O

eıβj(H−y2)e−ıjθy1f(y) dy.

Integration is to be understood as a duality pairing since we consider f ∈ H̃s
θ (O). We recall

that Γ is assumed to be a periodic curve of class Cr−1,1 for some r ∈ N (cf. Assumption

B.1) and Ω is the open set above Γ (Figure B.4).

Definition B.20 (Single layer potential). We define the single layer potential on Γ as

SLkθ := Nk
θ ◦ (γi0)′,

where (γi0)′ denotes the adjoint operator of γi0 such that, for 1
2
< s < ∞, u ∈ Hs

θ (Ω) and

v ∈ H−s+
1
2

θ (Γ)

〈γi0u, v〉s− 1
2
,Γ = 〈u, (γi0)′v〉s,Ω.

Therein 〈·, ·〉s− 1
2
,Γ denotes the duality between H

s− 1
2

θ (Γ) and H
−s+ 1

2
θ (Γ), and 〈·, ·〉s,Ω de-

notes the duality between Hs
θ (Ω) and H̃−sθ (Ω).
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Theorem B.10. Let Γ be of class Cr−1,1 with r ∈ N and s ∈ R be such that

• 1− r < s < 1
2

if r > 1 or

• |s| < 1
2

if r = 1.

Then, it holds SLkθ : H
s− 1

2
θ (Γ) → Hs+1

θ,loc(G), is a continuous operator. Moreover, for

f ∈ Dθ(Γ) we have the representation:

SLkθ(f)(x) =

∫
Γ

Gk
θ(x,y)f(y) dy, ∀ x ∈ G \ Γ. (B.28)

PROOF. The continuity of the single layer potential follows by Definition B.20 as both

the Newton potential and the Dirichlet trace are themselves continuous (cf. Corollary B.2,

Theorem B.7 and Lemma B.2). For the representation (B.28), we refer to (McLean, 2000,

Section 6.3), specifically to (6.16). �

Definition B.21 (Double layer potential). We define the double layer potential on Γ as

DLkθ := Nk
θ ◦ (γi1)′,

where (γi1)′ denotes the interior adjoint of the Neumann trace.

If f ∈ Dθ(Γ), we have the representation

DLkθ(f)(x) =

∫
Γ

γi1,yG
k
θ(x,y)f(y) dy, ∀ x ∈ G \ Γ,

wherein γi1,y refers to the interior Neumann trace γi1 acting on Gk
θ(x,y) as a function of y,

for fixed x. Further properties of DLkθ will be studied in the following section.

Theorem B.11 (Integral representation formula). Let f satisfy

f |Ω ∈ H̃−1
θ (Ω), f |

G\ΩG ∈ H̃−1
θ (G \ Ω

G
).

Also, let u ∈ L2
θ,loc(G) be such that u|Ω ∈ H1

θ (Ω), u|
G\ΩG ∈ H1

θ (G \ Ω
G

) and

(−∆− k2)u = f in G \ Γ,
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along with the radiation condition (B.19). Then, the following representation formula holds

u(x) = Nk
θ (f)(x) + DLkθ([γ0u]Γ)(x)− SLkθ([γ1u]Γ)(x), ∀ x ∈ G \ Γ,

with [γu]Γ := γiu− γeu for any of the trace operators.

PROOF. The proof resembles that for the standard representation formula (cf. (McLean,

2000, Chapter 7) and (Nédélec & Starling, 1991, Section 3.2)). The proof follows from

Proposition B.5, the integration-by-parts formulas in Lemma B.4 and the density of Dθ(G)

in the considered Sobolev spaces. �

In particular, for any given g ∈ H
1
2
θ (Γ) consider u ∈ H1

θ,loc(Ω) such that
(−∆− k2)u = 0 on Ω,

γi0u = g on Γ,

u satisfies radiation conditions at infinity,

and its extension by zero to the exterior of Ω as

ũ(x) =

u(x) if x ∈ Ω,

0 if x ∈ G \ Ω
G
.

By Theorem B.11, we obtain

DLkθg = SLkθγ
i
1u− ũ, on Ω.

Hence, by the Fredholm alternative and the continuities of the single layer potential and of

the interior Neumann trace, one derives∥∥DLkθg∥∥H1
θ (ΩH)

≤ C(H) ‖g‖
H

1
2
θ (Γ)

,

for all H > 0, where ΩH := {x ∈ Ω | x2 < H}. Thus,

DLkθ : H
1
2
θ (Γ)→ H1

θ,loc(Ω),
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is continuous.

Theorem B.12 (Properties of the BIOs). Let Γ be a Cr−1,1-periodic curve with r ∈ N.

Then, the layer potentials

SLkθ : H
s− 1

2
θ (Γ)→ Hs+1

θ,loc(G),

DLkθ : H
s+ 1

2
θ (Γ)→ Hs+1

θ,loc(G \ Γ),

as well as the BIOs

Vkθ := γi0SL
k
θ : H

s− 1
2

θ (Γ)→ H
s+ 1

2
θ (Γ),

Wk
θ := γi1DL

k
θ : H

s+ 1
2

θ (Γ)→ H
s− 1

2
θ (Γ),

Kkθ := γi1SL
k
θ : H

s− 1
2

θ (Γ)→ H
s− 1

2
θ (Γ),

Kkθ
′
:= γi0DL

k
θ : H

s+ 1
2

θ (Γ)→ H
s+ 1

2
θ (Γ),

are continuous for |s| < 1
2

if r = 1 and for 1− r < s < 1
2

for r ∈ N \ {1}.

PROOF. See Section B.7. The proof follows by adapting the procedure in (McLean,

2000, Chapters 4 and 6) to the periodic setting. �

Notice that in the above definitions, trace operators may be taken from either side of

Γ giving rise to interior and exterior BIOs in contrast to the standard definitions (McLean,

2000). By Theorem B.12 and their equivalents in (Costabel, 1988), one can show the next

results.

Lemma B.7. Let φ ∈ H
1
2
θ (Γ) and ψ ∈ H−

1
2

θ (Γ). Then, the following relations hold

[γ0SL
k
θψ]Γ = 0, [γ1SL

k
θψ]Γ = ψ, [γ0DL

k
θφ]Γ = φ, [γ1DL

k
θφ]Γ = 0.

Theorem B.13. The BIOs Vkθ and Wk
θ are coercive on H

− 1
2

θ (Γ) and H
1
2
θ (Γ), respec-

tively.
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The coercivity of Vkθ was already established in (Ammari & Bao, 2008) for the three

dimensional (3D) case. However, the proof presented depends on the smoothness proper-

ties of Gk
θ − G0 and, as such, requires the boundary Γ to be of class C2. A proof for the

two dimensional case for Lipschitz curves is, to our knowledge, new. Similarly, the map-

ping properties of the BIOs were studied in (Schmidt, 2009, 2011), arriving at very similar

results to those in Theorem B.12 in the cases that: (i) Γ be infinitely smooth or (ii) Γ be

C2-piecewise and such that the angles between adjacent tangents at its corners are strictly

between 0 and 2π.

We finish this section by stating uniqueness and existence results for variational prob-

lems on the boundary Γ when formulated using BIEs.

Theorem B.14. Let k ∈ R and consider the following set of equations:

(−∆− k2)u = 0 on Ω,

(−∆− k2)u = 0 on G \ Ω
G
,

γi0u = γe0u = 0 on Γ,

u satisfies radiation conditions at infinity,

(B.29)

where interior traces are considered from within Ω and exterior traces from G \Ω
G

. Then,

for any given g ∈ H
1
2
θ (Γ), there exists a unique ψ ∈ H−

1
2

θ (Γ) such that

Vkθψ = g,

if and only if the only u ∈ H1
θ,loc(G \ Γ) that satisfies the system (B.29) is u = 0. Further-

more, it holds 

(−∆− k2)SLkθψ = 0 on Ω,

(−∆− k2)SLkθψ = 0 on G \ Ω
G
,

γi0SL
k
θψ = γe0SL

k
θψ = g on Γ,

SLkθψ satisfies radiation conditions at infinity.
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Theorem B.15. Let k ∈ R and consider the following set of equations:

(−∆− k2)u = 0 on Ω,

(−∆− k2)u = 0 on G \ Ω
G
,

γi1u = γe1u = 0 on Γ,

u satisfies radiation conditions at infinity,

(B.30)

where interior traces are considered from within Ω and exterior traces from G \Ω
G

. Then,

for any given q ∈ H−
1
2

θ (Γ), there exists a unique φ ∈ H
1
2
θ (Γ) such that

Wk
θφ = q,

if and only if the only u ∈ H1
θ,loc(G\Γ) satisfying the system (B.30) is u = 0. Furthermore,

(−∆− k2)DLkθψ = 0 on Ω,

(−∆− k2)DLkθψ = 0 on G \ Ω
G
,

γi1DL
k
θψ = γe1DL

k
θψ = q on Γ,

DLkθψ satisfies radiation conditions at infinity.

The proofs of Theorems B.14 and B.15 follow from considering the jump relations of

the respective layer potentials, as well as the uniqueness and existence of the volume prob-

lems. We emphasize that the equivalence between volume problems and boundary integral

equations only hold while assuming that the wavenumber k is not a singular frequency for

the volume problem formulated on either domain, Ω or G \ Ω
G

.

B.5. Concluding remarks

The previous results allow for an analogous extension of the classical theory of BIOs

on bounded domains to periodic ones, acting on quasi-periodic Sobolev spaces. It is quite

noteworthy that most of the results follow from the definition of the quasi-periodic Sobolev
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spaces, the trace theorem for these spaces, and by directly modifying previously estab-

lished results for the classical integral operators (Costabel, 1988; McLean, 2000; Stein-

bach, 2007). Future work includes extensions to three dimensional (3D) geometries as

well as numerical implementations and analysis of Galerkin low and high order boundary

element methods for BIEs as those in Theorems B.14 and B.15.

B.6. Proof of Theorem B.9

In order to prove the boundedness of the quasi-periodic Newton potential, we shall

make use of the following lemma.

Lemma B.8. Let g ∈ D(R), and ξ ∈ R, |ξ| > 0. Then, for some C > 0, it holds that∣∣∣∣∫ ∞
0

g(x) sin (ξx)dx

∣∣∣∣ ≤ C
1

|ξ|
,

∣∣∣∣∫ ∞
0

g(x) cos (ξx)dx

∣∣∣∣ ≤ C
1

|ξ|2
. (B.31)

PROOF. Let R > 0 be so that the support of g(x) is contained in [−R,R]. Then,∫ ∞
0

g(x) sin (ξx)dx =
1

ξ

∫ ∞
0

g

(
t

ξ

)
sin (t) dt

=
1

ξ

(
g

(
t

ξ

)
cos (t)

∣∣∣∣∞
0

+

∫ ∞
0

d
dt

(
g

(
t

ξ

))
cos (t) dt

)
=

1

ξ

(
g(0) +

1

ξ

∫ ∞
0

g′
(
t

ξ

)
cos (t) dt

)
,∣∣∣∣∫ ∞

0

g(x) sin (ξx)dx

∣∣∣∣ =
1

|ξ|

∣∣∣∣g(0) +
1

ξ

∫ Rξ

0

g′
(
t

ξ

)
cos (t) dt

∣∣∣∣
≤ 1

|ξ|

(
|g(0)|+R max

t∈[0,R]
|g′(t)|

)
.

Also, the second inequality follows by integration-by-parts:∫ ∞
0

g(x) cos (ξx)dx = g(x) sin (ξx)|∞0 −
1

ξ

∫ ∞
0

g′(x) sin (ξx)dx,

= −1

ξ

∫ ∞
0

g′(x) sin (ξx)dx. �

We now prove Theorem B.9 by adapting a strategy similar to that used in (Steinbach,

2007, Theorem 6.1).
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PROOF OF THEOREM B.9. First, consider f ∈ Dθ(G) for which the expression

f(x) =
∑
j∈Z

fj(x2)eıjθx1

holds. Since f has compact support in the x2-direction, there exists some positive r ∈ R

such that fj(x2) = 0 if |x2| > r, for all j ∈ Z. Fix R > 0 and set u := Nk
θ f . Then, u is

a quasi-periodic function on G by the quasi-periodicity of the Green’s function. Consider

µ ∈ D(R) such that µ(t) = 1, for all t ∈ [0, r +R]. We define a modified version of u as

uµ(x) :=

∫
G

Gk
θ(x,y)µ(|x2 − y2|)f(y)dy.

Notice that for x ∈ GR := G ∩ {|x2| < R}, uµ(x) = u(x). Hence, uµ is an extension of u

and, from the norm definition for Hs
θ

(
GR
)
, we find that ‖u‖Hs

θ (GR) ≤ ‖uµ‖Hs
θ (G). We now

prove the boundedness of ‖uµ‖Hs
θ (G). Since uµ is also θ-quasi-periodic, it holds

uµ,j(x2) =

∫ 2π

0

uµ(x1, x2)e−ıjθx1 dx1,

ûµ,j(ξ) =

∫
R
e−ı2πx2ξ

∫ 2π

0

uµ(x1, x2)e−ıjθx1 dx1dx2

=

∫
R

∫ 2π

0

∫
R

∫ 2π

0

e−ı2πx2ξe−ıjθx1Gk
θ(x,y)µ(|x2 − y2|)f(y) dy1dy2dx1dx2.

Since µ and f have compact support, we can exchange the integration order so as to write

ûµ,j(ξ)

=

∫
R

∫ 2π

0

∫
R

∫ 2π

0

e−ı2πx2ξe−ıjθx1Gk
θ(x,y)µ(|x2 − y2|)f(y) dx1dx2dy1dy2

=

∫
R

∫ 2π

0

∫
R

∫ 2π−y1

−y1
e−ı2π(z2+y2)ξe−ijθ(z1+y1)Gk

θ(z,0)µ(|z2|)f(y) dz1dz2dy1dy2

=

∫
R

∫ 2π

0

∫
R

∫ 2π

0

e−ı2π(z2+y2)ξe−ıjθ(z1+y1)Gk
θ(z,0)µ(|z2|)f(y) dz1dz2dy1dy2,
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and where we used the periodicity of e−ıjθz1Gk
θ(z, 0). Then, replacing Gk

θ by its expansion

(Proposition B.5) yields

ûµ,j(ξ) = f̂j(ξ)
1

iβj

∫
R
e−ı2πz2ξeıβj |z2|µ(|z2|) dz2.

Observe that

1

ıβj

∫
R
e−ı2πz2ξeiβj |z2|µ(|z2|) dz2 =

2

ıβj

∫ ∞
0

eıβjz2µ(z2) cos (2πξz2) dz2

and consider jθ such that βj ∈ R, i.e. j2
θ < k2. From Lemma B.8, we get∣∣∣∣ 2

ıβj

∫ ∞
0

eıβj |z2|µ(|z2|) cos (2πξz2) dz2

∣∣∣∣ ≤ Ck
1

|ξ|2 + 1
.

Furthermore, since βj is real for a finite number of j, depending only on k and θ, then for

all j ∈ Z such that jθ < k2, yields∣∣∣∣ 2

ıβj

∫ ∞
0

eıβj |z2|µ(z2) cos (2πξz2) dz2

∣∣∣∣ ≤ Ck,θ
1

1 + |ξ2|+ j2
θ

.

Now, let us take j2
θ > k2 so that βj is imaginary and eıβj |z2| decays as |z2| increases. Since

d
dz2

(
eıβjz2

ξ sin (ξz2) + ıβj cos (ξz2)

ξ2 + β2
j

)
= eıβjz2 cos (2πξz2),

integration-by-parts gives

2

ıβj

∫ ∞
0

eıβjz2µ(z2) cos (2πξz2) dz2

=
2

ıβj

(
µ(z2)eıβjz2

ξ sin (ξz2) + ıβj cos (ξz2)

ξ2 + β2
j

)∣∣∣∣∞
0

− 2

ıβj

∫ ∞
0

µ′(z2)eıβjz2
ξ sin (ξz2) + ıβj cos (ξz2)

ξ2 + β2
j

dz2

=
2

ξ2 + β2
j

(
1− 1

ıβj

∫ ∞
0

µ′(z2)eıβjz2 (ξ sin (ξz2) + ıβj cos (ξz2)) dz2

)
.

By Lemma B.8, we deduce that

1

ıβj

∫ ∞
0

µ′(z2)eıβjz2 (ξ sin (ξz2) + ıβj cos (ξz2)) dz2
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is bounded for all ξ ∈ R, j ∈ Z. Hence,∣∣∣∣ 2

ξ2 + β2
j

(
1−

∫ ∞
0

µ′(z2)eıβjz2 (ξ sin (ξz2) + ıβj cos (ξz2)) dz2

)∣∣∣∣ (B.32)

≤ C
1∣∣|ξ|2 + j2
θ − k2

∣∣ ≤ C
1

1 + |ξ|2 + j2
θ

, (B.33)

where C depends only on k and µ. Thus, there exists C > 0 depending only on k, k1, and

µ such that for all s ∈ R,

(1 + j2
θ + |ξ|2)

s
2 |ûµ,j(ξ)| ≤ C|f̂j(ξ)|(1 + j2

θ + |ξ|2)
s
2
−1. (B.34)

Taking the squared L2-norm of both sides of (B.34) and adding over j ∈ Z, we obtain

‖uµ‖2
Hs
θ (G) ≤ C ‖f‖2

Hs−2
θ (G) ∀ s ∈ R.

Since Dθ(G) is dense in Hs−2
θ (G) (cf. Proposition B.3), the result is proven. �

B.7. Regularity of solutions and continuity of BIOs

We extend the main results in (McLean, 2000, Chapter 4), introduced by Nečas (Necas,

2011), to the periodic case. We highlight changes needed to replicate the arguments. Our

starting point is the result presented in Section B.3. Recall that θ ∈ [0, 1), Γ a periodic

curve in G := [0, 2π]× R and Ω as the open domain above Γ (see Figure B.4).

Lemma B.9 (Lemma 2.3 in (Nédélec & Starling, 1991), and 3.2 in (Starling & Bon-

net-Bendhia, 1994)). Let u ∈ H1
θ (ΩH) be such that
(−∆− k2)u = 0 on ΩH ,

γi0u = 0 or γi1u = 0 on Γ,

γi1u = T(k1, k)γi0u, on ΓH ,

with T(k1, k) being the DtN operator from Definition B.17. Then, the Fourier coefficients

uj = 0 for all j in J−k1 := {j ∈ Z | k2 > j2
θ}.
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PROOF. We proceed as in (Nédélec & Starling, 1991, Lemma 2.3),

0 =

∫
ΩH

(∆uu − u∆u) dx =

∫
Γ∪ΓH

(γi1u γ
i
0u− γi1u γi0u) dSx.

The integral over Γ vanishes due to either condition: γi0u = 0 or γi1u = 0. Hence, we only

need to consider the integration on ΓH ,

0 =

∫
ΓH

(γi1u γ
i
0u− γi1u γi0u) dSx

=

∫
ΓH

(T(k1, k)γi0u γ
i
0u−T(k1, k)γi0u γ

i
0u) dSx. (B.35)

Recall the Fourier series for u and the DtN operator,

u(x1, H) =
∑
j∈Z

uj(H)eıjθx1 , T(k1, k)u(x1, H) =
∑
j∈Z

ıβjuj(H)eıjθx1 .

Hence, ∫
ΓH

(T(k1, k)γi0u γ
i
0u) dSx =

∑
j∈Z

ıβj |uj(H)|2 ,

and (B.35) becomes,∫
ΓH

(T(k1, k)γi0u γ
i
0u−T(k1, k)γi0u γ

i
0u) dSx =

∑
j∈Z

(
ıβj − ıβj

)
|uj(H)|2 = 0.

For j 6∈ J−k1 , we have ıβj ∈ R and ıβj − ıβj = 0. Thus,

0 =
∑
j∈J−k1

(
ıβj − ıβj

)
|uj(H)|2 =

∑
j∈J−k1

2βj |uj(H)|2 .

Since βj > 0 for all j ∈ J−k1 , |uj(H)| = 0, for all j ∈ J−k1 . �

PROPOSITION B.6. Let k > 0 and f ∈ H̃−1
θ (Ω) with compact support.
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(i) Let g ∈ H
1
2
θ (Γ) and k /∈ K

(TM)
sing . Then, there is a unique u ∈ H1

θ,loc(Ω) that

satisfies 
(−∆− k2)u(x) = f(x) on Ω,

γi0u = g on Γ,

u satisfies radiation conditions at infinity.

Moreover, the solution depends continuously on the data

‖u‖H1
θ (ΩR) . ‖f‖H̃−1

θ (Ω) + ‖g‖
H

1
2
θ (Γ)

.

(ii) Let w ∈ H
− 1

2
θ (Γ) and k /∈ K

(TE)
sing . Then, there is a unique u ∈ H1

θ,loc(Ω) that

satisfies 
(−∆− k2)u(x) = f(x) on Ω,

γi1u = w on Γ,

u satisfies radiation conditions at infinity.

Also, it holds

‖u‖H1
θ (ΩR) . ‖f‖H̃−1

θ (Ω) + ‖w‖
H
− 1

2
θ (Γ)

.

(iii) Let g ∈ H
1
2
θ (Γ) and k /∈ K

(TM)
sing . Then, there is a unique u ∈ H1

θ,loc(Ω) that

satisfies
(−∆− k2)u(x) = f(x) on Ω,

γi0u = g on Γ,

u satisfies the adjoint radiation condition at infinity.

The next bound holds

‖u‖H1
θ (ΩR) . ‖f‖H̃−1

θ (Ω) + ‖g‖
H

1
2
θ (Γ)

.
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(iv) Let w ∈ H−
1
2

θ (Γ). If k /∈ K(TE)
sing , there is a unique u ∈ H1

θ,loc(Ω) that satisfies
(−∆− k2)u(x) = f(x) on Ω,

γi1u = w on Γ,

u satisfies the adjoint radiation condition at infinity.

Moreover, the solution is bounded by the data

‖u‖H1
θ (ΩR) . ‖f‖H̃−1

θ (Ω) + ‖w‖
H
− 1

2
θ (Γ)

.

PROOF. For the standard radiation condition (Definition B.15), items (i) and (ii) follow

from the Fredholm alternative and Theorem B.8 (see (Starling & Bonnet-Bendhia, 1994,

Theorems 3.3 and 3.4)). The same strategy holds if the adjoint radiation condition (see

Definition B.16) is used: we just need to show that the equations in items (iii) and (iv) have

the same eigenvalues as those in (i) and (ii), which follows from noticing that one can build

solutions of the equations with one radiation condition from the other. �

The last proposition motivates the definition of solution operators. We consider two

different cases. Let k /∈ K(TM)
sing and g ∈ H

1
2
θ (Γ), we set

Uk :=

H
1
2
θ (Γ) → H1

θ,loc(Ω)

g 7→ u
,

where u is the only element in H1
θ,loc(Ω) that satisfies

(−∆− k2)u(x) = 0 on Ω,

γi0u = g on Γ,

u satisfies radiation conditions at infinity.
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The corresponding adjoint version is

Vk :=

H
1
2
θ (Γ) → H1

θ,loc(Ω)

g 7→ v
,

where v is the only element in H1
θ,loc(Ω) that satisfies

(−∆− k2)v(x) = 0 on Ω,

γi0v = g on Γ,

v satisfies the adjoint radiation condition at infinity.

We also consider Steklov-Poincaré operators defined as

γi1Uk : H
1
2
θ (Γ)→ H

− 1
2

θ (Γ), γi1Vk : H
1
2
θ (Γ)→ H

− 1
2

θ (Γ).

For a given domain O ⊂ G, k > 0 and a pair of functions u, v ∈ H1
θ (O), we define the

following sesquilinear form:

Φk
O(u, v) :=

∫
O

(∇u(x) · ∇v(x)− k2u(x)v(x)) dx. (B.36)

Lemma B.10. For g1, g2 ∈ H
1
2
θ (Γ) we have that

〈γi1Ukg1, g2〉Γ = 〈g1, γ
i
1Vkg2〉Γ.

PROOF. From the radiation conditions, there is anR > 0 such that for x2 ≥ R, it holds

Ukg1(x) =
∑
j∈Z

aje
ıβj(x2−R)eijθx1 , Vkg2(x) =

∑
j∈Z

bje
ıβ̃j(x2−R)eijθx1 ,

with βj and β̃j as in (B.20) and (B.23), respectively. Using Lemma B.4 and the definitions

of Uk and Vk leads to

Φk
ΩR(Ukg1,Vkg2) = 〈γi1Ukg1, γ

i
0Vkg2〉Γ∪ΓR ,

Φk
ΩR(Ukg1,Vkg2) = 〈γi0Ukg1, γ

i
1Vkg2〉Γ∪ΓR ,
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with Φk
ΩR as in (B.36) and ΓR := {x ∈ G | x2 = R}. Subtracting these last equations, we

get

〈γi1Ukg1, g2〉Γ = 〈g1, γ
i
1Vkg2〉Γ + 〈γi0Ukg1, γ

i
1Vkg2〉ΓR − 〈γi1Ukg1, γ

i
0Vkg2〉ΓR .

In ΓR we can use the expansions given by the radiation conditions:

〈γi0Ug1, γ
i
1Vkg2〉ΓR − 〈γi1Ukg1, γ

i
0Vg2〉ΓR = −

∑
j∈Z

ajbj(ıβ̃j + ıβj).

Then, for j such that βj is a real number we have that β̃j = −βj . Hence, (ıβ̃j + ıβj) =

ı(−βj + βj) = 0. On the other hand, if βj is pure imaginary we have that β̃j = βj and

(ıβ̃j + ıβj) = ı(−βj + βj) = 0. Thus, the duality products over ΓR cancel each other out,

yielding

〈γi1Ukg1, g2〉Γ = 〈g1, γ
i
1Vkg2〉Γ, 〈γi1Ukg1, g2〉ΓR = 〈g1, γ

i
1Vkg2〉ΓR . �

Following (McLean, 2000, Chapter 4), we now focus on establishing regularity prop-

erties of solutions in Ω. If u is a θ-quasi-periodic function defined in Ω, we denote by up

its θ-quasi-periodic extension. For h ∈ R with |h| < π, we define the following estimators

for the partial derivatives

∆1
hu(x) := h−1 (up(x+ he1)− up(x)) , ∆2

hu(x) := h−1 (u(x+ he2)− u(x)) .

The properties of ∆2
h are established in (McLean, 2000, Lemmas 4.13 to 4.15), where

L2(Rd)m and D(Rd)m have to be replaced by L2
θ(G), and Dθ(G), respectively. There are,

however, slight differences in the proofs for ∆1
h, which are exposed when proving Lemmas

B.11 and B.12.

Lemma B.11 (Lemma 4.13 in (McLean, 2000)). For θ ∈ [0, 1), let u be a θ-quasi-

periodic function. Then, for i = 1, 2, it holds

(a) If ∂iu ∈ L2
θ(G), then ‖∆i

hu‖L2
θ(G) ≤ ‖∂iu‖L2

θ(G) and ‖∆i
hu− ∂iu‖L2

θ(G) → 0 as

h→ 0.
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(b) If there is a constant M such that ‖∆i
hu‖L2

θ(G) ≤ M , then, for h small, we have

that ∂iu ∈ L2
θ(G), and ‖∂iu‖L2

θ(G) ≤M .

PROOF. The proof for (b) follows Lemma 4.13 in (McLean, 2000). Similarly for (a)

for i = 2 whereas for i = 1, we observe that∣∣∆1
hu(x)

∣∣2 ≤ ∫ 1

0

|∂1u
p(x+ the1)|2 dt.

Integrating over G yields,

∥∥∆1
hu(x)

∥∥2

L2
θ(G)
≤
∫
G

(∫ 1

0

|∂1u
p(x+ the1)|2 dt

)
dx

=

∫ 1

0

(∫
G

|∂1u
p(x+ the1)|2 dx

)
dt =

∫ 1

0

(∫
G+e1(th)

|∂1u
p(y)|2 dy

)
dt

=

∫ 1

0

(∫
{G+e1(th)}∩G

|∂1u(y)|2 dy +

∫
{G+e1(th)}\G

|∂1u
p(y)|2 dy

)
dt

=

∫ 1

0

(∫
{G+e1(th)}∩G

|∂1u(y)|2 dy +

∫
G\{G+e1(th)}

|∂1u(y)|2 dy
)

dt (B.37)

=

∫ 1

0

(∫
G

|∂1u(y)|2 dy
)

dt = ‖∂1u‖2
L2(G) ,

where (B.37) follows from the periodicity of |∂1u(y)|. �

Lemma B.12 (Lemma 4.15 in (McLean, 2000)). Let u and v belong to L2
θ(G), h ∈ R

such that |h| < π. Moreover, let k > 0 andO ⊂ G be an open bounded set whose boundary

is given by two disjoint periodic curves. Assume further that suppu ⊂ O ∩ (O − he2) and

supp v ⊂ O ∩ (O + he2). Then,

(a) if u, v ∈ L2
θ(O), then (∆i

hu, v)L2
θ(O) = −

(
u,∆i

−hv
)
L2
θ(O)

, i = 1, 2.

(b) if u, v ∈ H1
θ (O), then Φk

O (∆i
hu, v) = −Φk

O

(
u,∆i

−hv
)
, i = 1, 2.

PROOF. For i = 2 the result follows verbatim from (McLean, 2000) whereas for i = 1,

this is deduced directly from the definition of ∆1
h and the quasi-periodicity property. �

Theorem B.16 (Thm. 4.16 in (McLean, 2000)). Let O ⊂ Ω be a bounded open set,

whose boundary is given by two periodic curves and such that O
G ⊂ Ω. For r ≥ 0 and
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k > 0, let f ∈ Hr
θ (Ω) and u ∈ H1

θ,loc(Ω) be such that

(−∆− k2)u = f in Ω.

Then, u ∈ Hr+2
θ (O) and for any R > 0 such that O

G ⊂ ΩR, we have that

‖u‖Hr+2
θ (O) . ‖u‖H1

θ (ΩR) + ‖f‖Hr
θ (Ω).

PROOF. We take similar steps to those in the proof of Theorem 4.16 in (McLean,

2000). Set r = 0 and consider a function χ ∈ Dθ(Ω
R) such that χ = 1 in O. Define

f1 := (−∆− k2)(χu).

By direct computation, we obtain that ‖f1‖L2
θ(ΩR) . ‖u‖H1

θ (ΩR) + ‖f‖L2
θ(ΩR), so f1 ∈

L2
θ(Ω

R). Let v ∈ H1
θ,loc(Ω) with null trace in ∂GΩR. Using (B.11), we have that

Φk
ΩR(χu, v) = (f1, v)L2

θ(ΩR).

Also, by Lemma B.12, we have that for i = 1, 2, if supp vG ⊂ ΩR and h is sufficiently

small, it holds

|Φk
ΩR(∆i

h(χu), v)| = |Φk
ΩR(χu,∆i

−hv)|.

Hence,

|Φk
ΩR(∆i

h(χu), v)| = |(f1,∆
i
−hv)|.

By Lemma B.11 and norm definitions, we have that

|Φk
ΩR(∆i

h(χu), v)| . ‖f1‖L2
θ(ΩR)‖v‖H1

θ (ΩR). (B.38)

On the other hand, by the coercivity of the Helmholtz operator, we get∥∥∆i
h(χu)

∥∥2

H1
θ (ΩR)

.
∥∥∆i

h(χu)
∥∥2

L2
θ(ΩR)

+ Φk
ΩR(∆i

h(χu),∆i
h(χu)).
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Taking v = ∆i
h(χu) in (B.38) leads to

‖∆i
h(χu)‖2

H1
θ (ΩR) . ‖∆

i
h(χu)‖2

L2
θ(ΩR) + ‖f1‖L2

θ(ΩR)‖∆i
h(χu)‖H1

θ (ΩR).

Here, we use the inequality ab ≤ 1
2
(εa+ ε−1b2) for a small ε to obtain

‖∆i
h(χu)‖2

H1
θ (ΩR) . ‖∆

i
h(χu)‖2

L2
θ(ΩR) + ‖f1‖2

L2
θ(ΩR).

Again, by Lemma B.11, ‖∆i
h(χu)‖L2

θ(ΩR) . ‖u‖H1
θ (ΩR) and, by the bound for the norm of

f1, we retrieve ∥∥∆i
h(χu)

∥∥2

H1
θ (ΩR)

. ‖u‖2
H1
θ (ΩR) + ‖f‖2

L2
θ(ΩR) .

Finally, by recalling the norm definition on a subset O ⊂ ΩR and Lemma B.11, it holds

‖u‖2
H2
θ (O) . ‖u‖

2
H1
θ (ΩR) + ‖f‖2

L2
θ(ΩR) .

The proof is then achieved by induction, analogously to that of Theorem 4.16 in (McLean,

2000). �

Now, we establish regularity results up to the boundary.

Theorem B.17 (Thm. 4.18 (McLean, 2000)). Assume Ω to be a Cr−1,1-domain, with

r ≥ 2. Let O ⊂ Ω be a bounded subset whose boundary is composed of two periodic

curves, one of them being Γ = ∂GΩ. Moreover, let the wavenumber k > 0, f ∈ Hr−2
θ (Ω)

and u ∈ H1
θ,loc(Ω) be such that

(−∆− k2)u = f on Ω.

Then, the following bounds hold

(i) If γi0u ∈ H
r− 1

2
θ (Γ), then u ∈ Hr

θ (O) and

‖u‖Hr
θ (O) . ‖u‖H1

θ (ΩR) +
∥∥γi0u∥∥

H
r− 1

2
θ (Γ)

+ ‖f‖Hr−2
θ (ΩR) .
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(ii) If γi1u ∈ H
r− 3

2
θ (Γ), then u ∈ Hr

θ (O) and

‖u‖Hr
θ (O) . ‖u‖H1

θ (ΩR) +
∥∥γi1u∥∥

H
r− 3

2
θ (Γ)

+ ‖f‖Hr−2
θ (ΩR) .

for all R > 0 such that O ⊂ ΩR.

PROOF. We bound the derivative ∂1u as in Theorem B.16 while bounds for ∂2u may

be obtained from the boundary value problem:

−∂2
2u = f + k2u+ ∂2

1u.

The remainder of the proof follows that of (McLean, 2000, Theorem 4.18), requiring only

minor modifications to the periodic setting. �

Corollary B.3 (Thm. 4.21 (McLean, 2000)). Assume that Ω is a Cr−1,1-domain and

r ≥ 2. Then, for k /∈ K(TM)
sing , we have that

(i) For 0 ≤ s ≤ r − 1,

Uk : H
s+ 1

2
θ (Γ)→ Hs+1

θ,loc(Ω), Vk : H
s+ 1

2
θ (Γ)→ Hs+1

θ,loc(Ω).

(ii) For −r + 1 ≤ s ≤ r − 1,

γi1Uk : H
s+ 1

2
θ (Γ)→ H

s− 1
2

θ (Γ), γi1Vk : H
s+ 1

2
θ (Γ)→ H

s− 1
2

θ (Γ).

PROOF. We begin by proving (i). The case s = 0 is direct from Proposition B.6, while

the result for s = r + 1 follows from Theorem B.17. For 0 < s < r − 1, the result

is derived by interpolation (McLean, 2000, Appendix B) –interpolation of quasi-periodic

spaces in the boundary Γ follows from their definition, inducing an isomorphism to regular

Sobolev spaces on closed boundaries (Kress, 2014, Chapter 8)). For (ii), the result for

positive s is deduced by similar arguments as those used for (i) whereas the result for s < 0

is due to the duality pairing in Lemma B.10. �
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Theorem B.18 (Theorem 4.24 in (McLean, 2000)). Assume Ω to be Lipschitz. Let

k > 0, f ∈ L2
θ(Ω) and u ∈ H1

θ,loc(Ω) such that

(−∆− k2)u = f on Ω.

If γi0u ∈ H1
θ (Γ) then γi1u ∈ L2

θ(Γ) and, for R such that Γ ⊂ GR, we have that

‖γi1u‖L2
θ(Γ) . ‖γi0u‖H1

θ (Γ) + ‖u‖H1
θ (ΩR) + ‖f‖L2

θ(Ω).

PROOF. First, we assume that u ∈ H2
θ,loc(Ω) and, following the proof for (McLean,

2000, Theorem 4.24), it can be shown that

‖γi1u‖L2
θ(Γ∪ΓR) . ‖γi0u‖H1

θ (Γ∪ΓR) + ‖u‖H1
θ (ΩR) + ‖f‖L2

θ(Ω).

Now consider a bounded open set O ⊂ ΩR such that O
G ⊂ ΩR, with ∂GO composed of two

periodic curves, one of them being ΓR. By Theorem B.7 and the definition of the Neumann

trace for smooth functions, we have that

‖γi0u‖H1
θ (ΓR) . ‖u‖

H
3
2
θ (O)
≤ ‖u‖H2

θ (O) ,

and, for 0 < ε < 1
2
, it holds

‖γi1u‖L2
θ(ΓR) ≤

∥∥γi1u∥∥Hε
θ(ΓR)

. ‖u‖
H

3
2+ε

θ (O)
≤ ‖u‖H2

θ (O) .

Then, by Theorem B.16, we derive

‖u‖H2
θ (O) . ‖u‖H1

θ (ΩR) + ‖f‖L2
θ(Ω).

We now take u ∈ H1
θ,loc(Ω) and assume that Γ can be parametrized as (x, ζ(x)) with

x ∈ (0, 2π). Consider a sequence of smooth functions {ζn}n∈N such that

ζn → ζ in L∞((0, 2π)), ∇ζn → ∇ζ in Lp((0, 2π)) for 1 ≤ p <∞,

∇ζn is uniformly bounded, ζn(x) ≥ ζ(x) for x ∈ (0, 2π).
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Then, Ω = {x ∈ G | x2 > ζ(x)}. Define

Ωn := {x ∈ G | x2 > ζn(x1)}, Γn := {x ∈ G | x2 = ζn(x1)} = ∂GΩn.

Following the proof of (McLean, 2000, Theorem 4.24), let us define g(x) := γi0u(x1, ζ(x1)),

where the trace is taken over Γ. Finally, we consider λ > k2, R > 0 such that Γ ⊂ GR and

a sequence {un}n∈N where each un ∈ H1
θ (Ωn) satisfies

(−∆− k2 + λ)un = f + λu on ΩR
n ,

γi0un = γ0g on Γn,

γi0un = γ0u on ΓR.

The elements of the sequence {un}n∈N are well defined in H1
θ (ΩR

n ) since the domain is

bounded and the associated operator is elliptic. Since Γn is smooth, by Theorem B.17, we

have that each un belongs to H2
θ (ΩR

n ) for all n ∈ N. Hence, we can use the result for ele-

ments of H2
θ,loc(Ω). To conclude, we need to show that a proper extension of un converges

to u in H1
θ (ΩR), which is done in (McLean, 2000, Theorem 4.24) for regular Sobolev

spaces and extended to quasi-periodic Sobolev spaces with only minor modifications. �

Corollary B.4 (Theorem 4.25 in (McLean, 2000)). Assume Ω to be Lipschitz. Let

k /∈ K(TM)
sing . For |s| ≤ 1

2
, it holds

γi1Uk : H
s+ 1

2
θ (Γ)→ H

s− 1
2

θ (Γ), γi1Vk : H
s+ 1

2
θ (Γ)→ H

s− 1
2

θ (Γ).

PROOF. The case s = 0 is given by Proposition B.6, s = 1
2

is given by Theorem B.18,

and s = −1
2

is obtained by the duality relation in Lemma B.10. For all other |s| < 1
2
, the

result follows by interpolation. �

In order to prove the mapping properties of the double layer potential, we need one

more auxiliary result. For k > 0, we denote by U−k the solution operator in Ω− := G \Ω
G

,

and U+
k := Uk. Given λ ∈ R such that k2 − λ > 0, we set U±k,λ := U±√

k2−λ.
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Lemma B.13. Let Ω be Lipschitz and set k > 0. Then, there exists λ ∈ R such that

k2 − λ > 0 and U+
k,λ as well as U−k,λ are well defined in H

1
2
θ (Γ). For |s| < 1

2
, we also have

that

U+
k,λ : H

s+ 1
2

θ (Γ)→ Hs+1
θ,loc(Ω).

PROOF. Since the eigenvalues of the problem in Ω and Ω− are numerable we can find

λ such that k2 − λ > 0 and |θ + j| 6=
√
k2 − λ, for every j ∈ Z. Then, the following sets

of equations 
(−∆− k2 + λ)u = 0 on Ω,

γi0u = g on Γ,

u satisfies radiation conditions at infinity,
(−∆− k2 + λ)u = 0 on Ω−,

γi0u = g on Γ,

u satisfies radiation conditions at infinity,

are satisfied by only one element of H1
θ,loc(Ω) and H1

θ,loc(Ω
−), respectively. Then, consider

w defined as

w :=

U+
k,λg on Ω,

U−k,λg on Ω−.

Thanks to the properties of the solution operators, we have

w|Ω ∈ H1
θ,loc(Ω), w|Ω− ∈ H1

θ,loc(Ω
−), w ∈ L2

θ,loc(G).

By Theorem B.11, it holds

w = −SL
√
k2−λ

θ ([γ1w]),
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with [γ1w] := γi1w−γe1w. Then, by the continuity of the single layer potential and Corollary

B.4, it holds ∥∥∥SL√k2−λθ [γ1w]
∥∥∥
Hs+1
θ (ΩR)

. ‖[γ1w]‖
H
s− 1

2
θ (Γ)

. ‖g‖
H
s+1

2
θ (Γ)

.

Thus, we can conclude that

‖U+
k,λg‖Hs+1

θ (ΩR) = ‖w‖Hs+1
θ (ΩR) . ‖g‖

H
s+1

2
θ (Γ)

,

from where the result follows. �

We define operators V±k,λ in a similar fashion to U±k,λ by using the adjoint radiation

condition (cf. Definition B.16) and repeating the steps presented above. It is easy to check

that both operators have the same properties.

PROOF OF THEOREM B.12. Results for SLkθ and Vkθ can be established directly from

their definitions and Theorems B.7 and B.10. Now, consider η, µ ∈ Dθ(Γ) and let λ ∈ R

be such that k2 − λ > 0 and V+
k,λ is well defined. By the mapping properties of SLkθ , we

have that (
(−∆− k2 + λ)SLkθη,V

+
k,λµ

)
L2
θ(ΩR)

=
(
λSLkθη,V

+
k,λµ

)
L2
θ(ΩR)

.

Applying Lemma B.4 leads to

Φ
√
k2−λ

ΩR

(
SLkθη,V

+
k,λµ

)
= 〈γi1SLkθη, γi0V+

k,λµ〉Γ∪ΓR +
(
λSLkθη,V

+
k,λµ

)
L2
θ(ΩR)

.

On the other hand, since (−∆− k2 + λ)V+
k,λµ = 0 in ΩR, Green’s formula yields

Φ
√
k2−λ

ΩR
(SLkθη,V

+
k,λµ) = 〈γi0SLkθη, γi1V+

k,λµ〉Γ∪ΓR .

As the single layer potential satisfies the radiation condition in Definition B.15 (cf. Propo-

sition B.5) and V+
k,λµ the adjoint version (Definition B.16), we get

〈γi1SLkθη, γi0V+
k,λµ〉ΓR = 〈γi0SLkθη, γi1V+

k,λµ〉ΓR
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by the same arguments as in the proof of Lemma B.10. Then,

〈γi1SLkθη, γi0V+
k,λµ〉Γ = 〈γi0SLkθη, γi1V+

k,λµ〉Γ − (λSLkθη,V
+
k,λµ)L2

θ(ΩR).

The first term in the right-hand side can be bounded as∣∣〈γi0SLkθη, γi1V+
k,λµ〉Γ

∣∣ ≤ ‖γi0SLkθη‖
H
s+1

2
θ (Γ)

‖γi1V+
k,λµ‖

H
−s− 1

2
θ (Γ)

. ‖η‖
H
s− 1

2
θ (Γ)

‖µ‖
H−s+

1
2 (Γ)

,

where the last inequality follows from the continuity of γi0SL
k
θ = Vkθ and Corollaries B.4 or

B.3 depending on whether Γ is Lipschitz or smoother, respectively. For the second term, it

holds ∣∣∣(λSLkθη,V+
k,λµ)L2

θ(ΩR)

∣∣∣ . ∥∥SLkθη∥∥L2
θ(ΩR)

∥∥V+
k,λµ

∥∥
L2
θ(ΩR)

. ‖η‖
H
s− 1

2
θ (Γ)

‖µ‖
H
−s+1

2
θ (Γ)

,

where the last inequality is due to the continuity of SLkθ , and Lemma B.13. Mapping prop-

erties for γi1SL
k
θ = Kkθ

′ are obtained by density arguments.

For the double layer potential and its traces, pick g ∈ Dθ(Γ) and use the representation

formula in Theorem B.11 –with U+
k,λg extended by zero to Ω−– to obtain

DLkθg = U+
k,λg + SLkθ(γ

i
1U

+
k,λg)−Nk

θ (−λU+
k,λg).

Thus, we obtain the estimate

‖DLkθg‖Hs+1(ΩR)

. ‖U+
k,λg‖Hs+1(ΩR) + ‖SLkθ(γi1U+

k,λg)‖Hs+1(ΩR) + ‖Nk
θ (U+

k,λg)‖H2(ΩR).

By Lemma B.13, the mapping properties of SLkθ and Theorem B.9, we obtain

‖DLkθg‖Hs+1(ΩR) . ‖g‖
H
s+1

2
θ (Γ)

+ ‖γi1U+
k,λg‖

H
s− 1

2
θ (Γ)

+ ‖U+
k,λg‖L2

θ(ΩR).
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Finally, by using Corollary B.4, we have that

‖DLkθg‖Hs+1(ΩR) . ‖g‖
H
s+1

2
θ (Γ)

.

Bounds for the norms inG\ΩG
are derived by using U−k,λ and repeating the same procedure.

The continuity of γi0DL
θ
k = Kkθ is direct from the trace continuity in Theorem B.7. The

Neumann trace can be estimated as follows∥∥γi1DLkθg∥∥
H
s− 1

2
θ (Γ)

.
∥∥γi1U+

k,λg
∥∥
H
s− 1

2
θ (Γ)

+
∥∥γi1SLkθ(γi1U+

k,λg)
∥∥
H
s− 1

2
θ (Γ)

+
∥∥γi1Nk

θ (U+
k,λg)

∥∥
L2
θ(Γ)

.

The first term on the right-hand side is bounded by Corollary B.4 whereas the second one

is bounded by the continuity of Kkθ
′. The last term is bounded by the continuity of the

Neumann trace, that of the Newton potential and Corollary B.4. �
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APPENDIX C. TECHNICAL RESULTS FOR 3D-SCREEN PROBLEMS.

C.1. Proof of Lemma 4.3

Recall the weakly- and hyper-singular BIOs defined in Section 4.3.1. For k = 0 and

Γ = D, we write

VDu(x) :=

∫
D

1

4π‖x− x′‖2

u(x′)dx′,

WDu(x) := −γn,x
∫
D
γn,x′

1

4π‖x− x′‖2

u(x′)dx′,

These operators have two key properties. First, they are continuous and elliptic so they can

be used to define equivalent norms. In fact, by (Sauter & Schwab, 2011, Theorem 3.5.9)

we have that

‖u‖2

H̃−
1
2 (D)

∼= 〈VDu, u〉D, ‖u‖2

H̃
1
2 (D)

∼= 〈WDu, u〉D. (C.1)

Secondly, we have a characterization of the eigenvalues of these two operators1:

VDq
l
m =

1

4
Λl,mp

l
m, l +m even, WDp

l
m =

1

Λl,m

qlm, l +m odd, (C.2)

where

Λl,m =
Γ
(
l+|m|+1

2

)
Γ
(
l−|m|+1

2

)
Γ
(
l+|m|+2

2

)
Γ
(
l−|m|+2

2

) ,
here Γ denotes the Gamma function and not an screen. Using Gautschi’s inequality (Gautschi,

1959), it holds that

1

l + 1
. Λl,m .

1√
l + 1

. (C.3)

With these elements, we proceed with the proof of Lemma 4.3. Pick any smooth

function u on D and consider its even lifting to S. Since spherical harmonics are dense on

smooth functions defined on the sphere, we can approximate the lifting u by even spherical
1See (Wolfe, 1971) for the original proof of the weakly-singular BIO and (Ramaciotti & Nédélec, 2017,
Theorem 2.7.1) for the hyper-singular case
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harmonics. Thus, u can be expanded as

u =
∞∑
l=0

l∑
m=−l
m+l even

〈u, qlm〉plm,

now (4.3) follows from the orthogonality relation (4.1). To prove (4.4), we use the density

of functions qel in H̃−
1
2 (D), i.e.

u =
∞∑
l=0

l∑
m=−l
m+l even

ulmq
l
m,

wherein, by orthogonality it holds that ulm = 〈u, plm〉. Hence, computing the norm of u

using the equivalence (C.1), the relation (C.2) and the estimate (C.3) yields

‖u‖
Q
− 1

2
e (D)

. ‖u‖
H̃−

1
2 (D)
. ‖u‖

Q
− 1

4
e (D)

,

which implies the result. Similar ideas are used to show (4.5). �

C.2. Singular Integrals Analysis

We consider the integrals Ic, Id, Ie defined in Section 4.4.2.2. These integrals have in

common that the singularities occur in specifics points in three- or two-dimensional spaces,

i.e. when three or two variables take a specific value. In contrast, Ia, Ib, singularities occur

when one variable takes a specific value regardless of the other.

C.2.1. General idea

Let us start with the simpler case of an integral which has a singularity in 2D:

I :=

∫ 1

0

∫ 1

0

1√
x+ y

dydx,

the integrand has a singularity at (x, y) = (0, 0). Performing the polar change of variables

x = ρ cosα, y = ρ sinα, we have that

I =

∫ π
4

0

∫ 1
cosα

0

√
ρ

√
cosα + sinα

dρdα +

∫ π
2

π
4

∫ 1
sinα

0

√
ρ

√
cosα + sinα

dρdα.
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Moreover, one can fix the integration domain for the ρ variable by doing a linear change of

variable

I =

∫ π
4

0

∫ 1

0

√
t

(cosα)3/2
√

cosα + sinα
dtdα+∫ π

2

π
4

∫ 1

0

√
t

(sinα)3/2
√

cosα + sinα
dtdα.

These last two integrals can be straightforwardly computed by using a Jacobi rule in t

and Gauss-Legendre in α, resulting in an optimal convergence rate –exponential in this

particular case. The idea is in fact very simple: use polar coordinates with the origin in

the point where the singularity occurs, transferring the multidimensional singularity to the

radial coordinate only. The rest of this section gives the detail on each change of variable

that is needed and also proving that the resulting integrals are computed with optimal rates.

C.2.2. Integral Ic

Consider the integral of the form

J c :=

∫ 1

√
3

2

∫ −π
3

−π
2

∫ 1
2

0

λA2(r, β)

4π‖r(x)− r(x + λA(r, β)eθ+β)‖
rdλdβdr√

1− r2
√

1− ‖x + λA(r, β)eθ+β‖2
,

(C.4)

where in comparison to (4.19), we restrict to the first interval for the β variable as the other

cases follows similarly, and we have omitted the integral in the θ variable as it is not relevant

to the singularity analysis and can be treated with Gauss-Legendre quadrature having not

effect on the rate of convergence. Since trial and test polynomials are smooth functions

they have also been neglected in the ensuing singularity analysis. Consider the following

change of variables: u2 = 1− r2, cos β = v. Define d := 4π‖r(x)− r(x+λA(r, β)eθ+β)‖

and use expansion (4.18) so that (C.4) becomes

J c =

∫ 1
2

0

∫ 1
2

0

∫ 1
2

0

λd−1A2dudvdλ
√

1− λ
√

1− v2

√
u2(1 + λ)− 2λ

√
1− u2vA

,
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wherein by definition of A(r, β) (see (4.17)), we have that

A =
(√

u2 + (1− u2)v2 −
√

1− u2v
)
.

Apply the first polar change of variables u = ρ cosα, v = ρ sinα so that

A = ρ

(√
1− ρ2 cos2 α sin2 α− sinα

√
1− ρ2 cos2 α

)
=: ρÃ,

and we obtain two integrals

J c1 :=

∫ 1
2

0

λ√
1− λ

∫ π
4

0

∫ 1
2 cosα

0

(1− ρ2 sin2 α)−1ρ2d−1Ã2dρdαdλ√
cos2 α(1 + λ)− 2λ

√
1− ρ2 cos2 α sinαÃ

, (C.5)

J c2 :=

∫ 1
2

0

λ√
1− λ

∫ π
2

π
4

∫ 1
2 sinα

0

(1− ρ2 sin2 α)−1ρ2d−1Ã2dρdαdλ√
cos2 α(1 + λ)− 2λ

√
1− ρ2 cos2 α sinαÃ

. (C.6)

We apply a linear change of variables to fix the integration domain of the ρ variable. For

the first integral, it holds that

J c1 =

∫ 1
2

0

λ√
1− λ

∫ π
4

0

∫ 1
2

0

t2d−1Ã2 cosα−3dtdαdλ
√

1− t2 tan2 α

√
cos2 α(1 + λ)− 2λ

√
1− t2 sinαÃ

,

wherein Ã =
(√

1− t2 sin2 α− sinα
√

1− t2
)

. One can see that this integral converges

at the optimal rate when we use the Gauss-Legendre rule for all the variables as neither of

the terms inside the square roots vanish in the integration domain. For the second integral

we have

J c2 =

∫ 1
2

0

λ√
1− λ

∫ π
2

π
4

∫ 1
2

0

t2d−1Ã2 sinα−3dtdαdλ
√

1− t2
√

cos2 α(1 + λ)− 2λ
√

1− t2 cot2 α sinαÃ
,

and where Ã =
(√

1− t2 cos2 α− sinα
√

1− t2 cot2 α
)

. In contrast to J c1 , one can easily

verify that the integrated has one singularity in (λ, α) = (0, π
2
), so further transformations

are needed. In particular, we use z = cosα, x2 = λ. Thus, we have that

J c2 =

∫ 1/
√

2

0

2x3

√
1− x2

∫ 1/
√

2

0

∫ 1
2

0

t2d−1Ã2(1− z2)−2dtdzdx
√

1− t2
√
z2(1 + x2)− 2x2

√
1− z2 − t2z2Ã

,
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with Ã =
(√

1− t2z2 −
√

1− z2 − t2z2
)
. Once again we make a polar change of vari-

ables x = σ cos(φ), z = σ sin(φ), and we obtain two integrals

J c2,1 :=

∫ 1
2

0

∫ π
4

0

∫ 1/(
√

2 cosφ)

0

2(σ cosφ)3t2d−1Ã2(1− (σ sinφ)2)−2√
1− (σ cosφ)2

√
1− t2

× dσdφdt√
sin2 φ(1 + (σ cosφ)2)− 2 cos2 φ

√
1− (σ sinφ)2(1 + t2)Ã

,

J c2,2 :=

∫ 1
2

0

∫ π
2

π
4

∫ 1/(
√

2 sinφ)

0

2(σ cosφ)3t2d−1Ã2(1− (σ sinφ)2)−2√
1− (σ cosφ)2

√
1− t2

× dσdφdt√
sin2 φ(1 + (σ cosφ)2)− 2 cos2 φ

√
1− (σ sinφ)2(1 + t2)Ã

,

where Ã =
(√

1− t2(σ sinφ)2 −
√

1− (σ sinφ)2(1 + t2)
)

. Finally, we take the corre-

sponding change of variables needed to fix the integration domain for the σ variable, and

we obtain

J c2,1 =

∫ 1
2

0

∫ π
4

0

∫ 1/
√

2

0

2s3t2d−1Ã2(1− (s tanφ)2)−2

cosφ
√

1− s2
√

1− t2

× dsdφdt√
sin2 φ(1 + s2)− 2 cos2 φ

√
1− (s tan2 φ)(1 + t2)Ã

,

with Ã =
(√

1− t2(s tanφ))2 −
√

1− (s tanφ)2(1 + t2)
)
. It is easy to see that the in-

tegrand has not singularities and as so it can be integrated with optimum rate using a ten-

sorization of the Gauss-Legendre rule. For the second integral we have

J c2,2 =

∫ 1
2

0

∫ π
2

π
4

∫ 1/
√

2

0

2(s cotφ)3t2d−1Ã2(1− s2)−2

sinφ
√

1− (s cotφ)2
√

1− t2

× dsdφdt√
sin2 φ(1 + (s cotφ)2)− 2 cos2 φ

√
1− s2(1 + t2)Ã

,

where Ã =
(√

1− t2s2 −
√

1− s2(1 + t2)
)

. Once again the integrand does not has sin-

gularities and the optimum rate of convergence is retrieved.
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C.2.3. Integral Id

As in the previous case we simplify the Integral Id in (4.20) to the following integral

Jd :=

∫ 1

√
3

2

∫ π
3

−π
3

∫ 1
2

0

λA2(r, β)

4π‖r(x)− r(x + λA(r, β)eθ+β)‖
(1− r2)−

1
2 rdλdβdr√

1− ‖x + λA(r, β)eθ+β‖2
,

(C.7)

where we have only take the first interval for the β variable as the other case is similar. We

have to make a transformation in λ, r: start by fixing the singularity (λ, r) = (0, 1) to the

origin of the new variables r2 = 1− u2, v2 = λ, by doing so we obtain

Jd :=

∫ 1
2

0

∫ π
3

−π
3

∫ 1/
√

2

0

2v3d−1A2dvdβdr
√

1− v2

√
(u2(1 + v2)− 2v2

√
1− u2 cos βA

,

where A =
√
u2 + (1− u2) cos2 β −

√
1− u2 cos β. Now, we make the polar change of

variables u = ρ cosα, v = ρ sinα, which leads to

Jd1 :=

∫ π
3

−π
3

∫ arctan(
√

2)

0

∫ 1/(2 cosα)

0

d−12(ρ sinα)3A2√
1− (ρ sinα)2

× dρdαdβ√
cos2 α(1 + (ρ sinα)2)− 2 sin2 α

√
1− (ρ cosα)2 cos βA

,

Jd2 :=

∫ π
3

−π
3

∫ π
2

arctan(
√

2)

∫ 1/(
√

2 sinα)

0

d−12(ρ sinα)3A2√
1− (ρ sinα)2

× dρdαdβ√
cos2 α(1 + (ρ sinα)2)− 2 sin2 α

√
1− (ρ cosα)2 cos βA

,

with A =
√

(ρ cosα)2 + (1− (ρ cosα)2) cos2 β −
√

1− (ρ cosα)2 cos β.
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Finally we apply the corresponding linear transformation to fix the ρ integration do-

main,

Jd1 :=

∫ π
3

−π
3

∫ arctan(
√

2)

0

∫ 1
2

0

d−12(t tanα)3A2

cosα
√

1− (t tanα)2

× dtdαdβ√
cos2 α(1 + (t tanα)2)− 2 sin2 α

√
1− t2 cos βA

,

whereA =
√
t2 + (1− t2) cos2 β−

√
1− t2 cos β. This integrand is smooth: only possible

singularities can occur when ρ = 0 but are eliminated by the numerator, and so the rate of

convergence is optimal. Similarly for the second part as

Jd2 :=

∫ π
3

−π
3

∫ π
2

arctan(
√

2)

∫ 1/
√

2

0

d−12t3A2

sinα
√

1− t2

× dρdαdβ√
cos2 α(1 + t2)− 2 sin2 α

√
1− (t cotα)2 cos βA

,

where the new change of variables leads to

A =
√

(t cotα)2 + (1− (t cotα)2) cos2 β −
√

1− (t cotα)2 cos β.

Once again the integrand is smooth and the optimal convergence rate is retrieved.

C.2.4. Integral Ie

Finally, we consider the simplification of Ie defined as in (4.21):

Je :=

∫ 1

√
3

2

∫ −π
3

−π
2

∫ 1

1
2

λA2(r, β)

4π‖r(x)− r(x + λA(r, β)eθ+β)‖
rdλdβdr√

1− r2
√

1− ‖x + λA(r, β)eθ+β‖2
,

we have again fixed the value of β to the first interval as other cases are similar. The

analysis here follows that of the first part of J1 (up until the first polar change of variables).

We obtain two integrals, the first one being

Je1 =

∫ 1

1
2

λ√
1− λ

∫ π
4

0

∫ 1
2

0

t2d−1Ã2 cos−3 αdtdαdλ
√

1− t2 tan2 α

√
cos2 α(1 + λ)− 2λ

√
1− t2 sinαÃ

,
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with Ã =
(√

1− t2 sin2 α− sinα
√

1− t2
)

, and the second one

Je2 =

∫ 1

1
2

λ√
1− λ

∫ π
2

π
4

∫ 1
2

0

t2d−1Ã2 sinα−3dtdαdλ
√

1− t2
√

cos2 α(1 + λ)− 2λ
√

1− t2 cot2 α sinαÃ
,

where Ã =
(√

1− t2 cos2 α− sinα
√

1− t2 cot2 α
)

. Contrary to the first case, these inte-

grands are not smooth due to the term (1− λ)−1. However, by using a Jacobi rule in λ one

recovers the optimal convergence rate.



231

APPENDIX D. IMPLEMENTATION DETAILS FOR 3D SPECTRAL SCREEN

SOLVER

We have already described a basic implementation of the spectral algorithm for 3d

screens explained in Section 4.4.2. However many details were left off and will be ex-

plained in the present Appendix. In particular, we will explain some optimizations that

were used, and also the overall structure of the associated computer library. This section

complements the general description of the algorithm given in Section 4.4.2, is not intended

to be self-contained as no details of the underlying mathematical algorithm are explained

here.

The implementation was done in c++, the target machines were desktop x64 pcs. In

more detail, we will consider that we have at our disposal a multicore processor (CPU),

with three cache levels of memory typically around 32kb (L1, per core), 256kb (L2, per

core), and 8Mb (L3 shared), working memory (ram) between 8 and 32Gb, and a graphical

processor (GPU) with dedicated memory between 1 and 4Gb. We have explicitly detailed

the memory available as it is a restriction to our algorithm 1. We have also considered the

option of using single or double-precision arithmetic, as more operations can be carried in

parallel in single-precision mode, at cost of lower accuracy.

Now we proceed to detail the main sections of the library, they are described as separate

classes of c++.

D.0.1. Screen Class

This class describes the geometry of the problem as a surface parametrized by polar

coordinates r ∈ [0, 1], θ ∈ [0, 2π]. The main method returns the coordinates (in three-

dimensional space) of the corresponding point given its r, θ-parameters. This method is

callable from the CPU and GPU.

Also included in this class are auxiliary functions that are used for the computation of the

hyper-singular operator.

1If we have more memory available, we could in theory reduce the number of computations by storing results
and re-use them. However, this will obviously reduce the size of the problems that can be solved.
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D.0.2. Green Function Class

This class implements the Helmholtz fundamental solution (Gk(x,y)). For the weakly-

singular operator, the function is separated into a regular part (Rk(x,y)), and a singular part

(Sk(x,y)), which are defined as

Rk(x,y) =
sin(k‖x− y‖)

4π‖x− y‖
,

Sk(x,y) =
cos(k‖x− y‖)

4π‖x− y‖
,

Gk(x,y) = Rk(x,y) + iSk(x,y).

For the hyper-singular operator, the same functions are used, but they are multiplied by

extra factors coming from the expression of the derivatives of the trial and test functions.

As the screen class this one can also be instantiated from the cpu or gpu.

D.0.3. Disk Function Class

The Disk Function class is tasked to compute the functions pol , p
e
l , q

o
l , q

e
l defined in

4.2.3. The main part of these functions can be characterized in polar coordinates as the

following product

Pl
|m|(
√

1− r2)eimθ,

where Pl
|m| are the associated Legendre functions. The implementation of the latter is

based on the code of the Wigner identities by Hidekazu Ikeno (Ikeno, 2016), which use a

two-term recursion formula for the computation.

It is important to mention that the evaluation of the Legendre functions by the recursive

formula could potentially lead to overflows. To deal with this, a small factor can be used

to scale the terms, then make an iteration of the recursion, and finally re-scale the result.

While for our ranges we do not observe this behavior we have included the scale factor

(their current value is 1, but commented is the small factor in the case is needed).
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As in the geometry and fundamental solution class, the disk functions can be instanti-

ated from the CPU and GPU.

To increase the performance of the evaluation, since the square root of the first few

integer values is repetitively used. We have declared a static variable that stores the square

root of the first 259 integer values.

D.0.4. Quadratures

The Quadrature file contains a set of auxiliary functions that compute the weights and

points of various Gaussian quadratures. The implementations are just an adaptation of John

Burkardt codes (Burkardt, 2010).

D.0.5. Integration and Inside Integrator Class

Now we will explain how the integral operators are implemented using the tools pro-

vided by the classes that we previously presented. We will focus in the implementation of

the weakly-singular operator, as for the hyper-singular only minor modifications are needed

(see Section 4.4.2.4 for details). There are two groups of integrals that need to be computed

for the implementation of the weakly-singular namely,

(IS)l
′,l
m′,m :=

∫
D

∫
D
qlm(x)Sk(r(x′), r(x))ql

′
m′(x

′)dxdx′,

(IR)l
′,l
m′,m :=

∫
D

∫
D
qlm(x)Rk(r(x), r(x′))ql

′
m′(x

′)dxdx′,

where (l,m) and (l′,m′) are the index of trials and test functions, defined as in 4.2.3, D is

the unitary disk, and r is the parametrization of the underlying open surface. For the second

integral (regular case) the strategy is to split it into two 2-dimensional integrals as,

(IR)l
′,l
m′,m =

∫ 2π

0

∫ 1

0

r′ql
′
m′(r

′, θ′)

∫ 2π

0

∫ 1

0

Rk(r(x), r(x′))rqlm(r, θ)drdθdr′dθ′,
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where x = (r cos θ, r sin θ). We implemented this as a two level integration. The lower

level is the inside integrator class, which compute the following general integrals:

(I1
R)lm =

∫ 2π

0

∫ 1

0

f(r, θ)rqlm(x)drdθ,

(I2
R)lm =

∫ 2π

0

∫ 1

0

f(r, θ)rqlm(x)drdθ,

where f is smooth given function. This inside integrator returns a vector for all the combi-

nations m + l even such that 0 ≤ l ≤ N , 0 ≤ m ≤ l for a given integer N , the negatives

values of m are obtained using the symmetry

ql−m = (−1)mqlm,

and the fact that Rk(·, ·) is a real function. The integrals are computed using a tensorization

of one dimensional quadrature rules. Notice that our inside integration class requires the

evaluation of the functions rqlm(x) on the tensorization of the quadrature points regardless

of the integrand f(r, θ). Consequently, we only make this computation one time and stored

them, then they can be used for different integrands. To be more precise, we store the

multiplication of the previous functions by the quadrature weights, thus the inside integrator

class store the following variables

(Ql
m)i,j = w1

iw
2
jx

1
i q
l
m(x1

i , x
2
j), 1 ≤ i ≤ Nq, 1 ≤ j ≤ N θ

q .

whereNq,N θ
q are the number of points for the quadrature rules (x1

i , w
1
i )
Nq
i=1, and (x2

i , w
2
i )
Nθ
q

i=1

respectably. The storage of this evaluations is done in the cpu memory, as typically the gpu

memory would not be enough. The higher level is the integrator class, which has two

stages. In the first one, we iterate on the quadrature points and call the inside integrator

for the function f(r, θ) = Rk(r(x), r(x′)), where x′ is fixed for each iteration in the loop

and x is determined by the polar coordinates r, θ, which are the integration variable for the

inside integrator. We notice that the computations for different x′ are independent, hence

the external lop is done in parallel with a combination of CPU and GPU threads.
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Once the first stage is finished we use the results as the input for a second call of the

inside integrator and obtain the full integral. Again, this results in independent calls to the

inside integrator that are done in parallel.

The computation of the singular integrals is more complicated as it involves number

of cases and sub-cases with different changes of variables, the details are in Section 4.4.2.

In general terms, using the structure of the test functions we can split each singular integral

into a one dimensional integration of a three dimension integral as follows,

(IS)l
′,l
m′,m =

∫ 2π

0

e−im
′θ′N l′,l

m′,m(θ′)dθ′,

where,

N l′,l
m′,m(θ′) :=

∫ ∫ ∫
eimθ(x1,x2,x3,θ

′)q̃lm(r(x1, x2, x3))

F (x1, x2, x3, θ
′)q̃l

′
m′(r

′(x1, x2, x3))dx1dx2dx3,

where the exact range of variables x1, x2, x3 depends of the particular change of variable.

The functions q̃lm are the associated Legendre part of the trial (test) functions, they only

depend of the radial coordinate and are real, the exact expression for them are

q̃lm(r) =

√
(2l + 1)(l − |m|)!

2π(l + |m|)!
Pl
|m|(
√

1− r2)
√

1− r2
,

where again, Pl
|m| denotes the corresponding associated Legendre function. The function

F (x1, x2, x3, θ
′) is real and smooth and is obtained from the singular part of the fundamen-

tal solution multiplied by the factors that comes from the corresponding change of variables

of the particular case and sub-case, we again refer to 4.4.2, and C.2 for the details. As in

the regular case we use a two level strategy. The inside integrator computes the function

N l′,l
m′,m(θ′) and the outer integration only iterates in the θ′ variable (in parallel).

We remark that the matrix with entries (IS)l
′,l
m′,m is Hermitian, thus only one of the

triangular parts has to be computed. Consequently, for a fixed θ′ we only need a triangular
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part of the function N l′,l
m′,m(θ′). Moreover using that F is a real function and the symmetry

q̃l−m = (−1)mq̃lm

we can further reduce the total computations needed. To be more precise, if a maximum

level N is selected. The total number of entries of the function N l′,l
m′,m(θ′) is:

(N+2)2((N+2)2+4)
32

, N even,

(N+1)(N+3)((N+1)(N+3)+4)
32

, N odd.

In contrast the total entries of the matrix (IS)l
′,l
m′,m is

(N + 1)2(N + 2)2

4
.

This means that our implementation is approximately 8 times faster that a direct computa-

tion of all the entries. Another important observation is that the functions r and r′, that are

the norm of x and x′ after the regularization produced by the change of variables, do not

depend of θ′. Hence, as in the case of the regular integrator, for every case and sub case

we can store the evaluations of the functions q̃lm and q̃l′m′ for all the quadrature points on the

x1, x2, x3 variables.

When using Nq quadrature points for x1, x2, x3 variables, the most computational in-

tense part of the inside integrator consist of

N3
q ×


(N+2)2((N+2)2+4)

32
, N even,

(N+1)(N+3)((N+1)(N+3)+4)
32

, N odd.
,

multiplications. In half of the cases this can be reduces since radial coordinate of x′ only

depends on x1, and not of the three quadrature variables x1, x2, x3. For these cases the
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TABLE D.1. Computational cost in terms of number of multiplications.

Number of
Cases

Inside Integrator
(CI)

Total Operations

Regular
Integrator 1 (N θ

qNq)
(N+2)2

4
2 CI

Singular
Integrator 1 14 N3

q
(N+2)2

4
+Nq

(N+22)((N+2)2+4)
32

N θ
qCI

Singular
Integrator 2 14 N3

q
(N+22)((N+2)2+4)

32
N θ
qCI

inside integrator split the computations as

N l′,l
m′,m(θ′) :=

∫
q̃l
′
m′(r

′(x1))Ñ l
m(x1)dx1,

Ñ l
m(x1) :=

∫ ∫
eimθ(x1,x2,x3,θ

′)q̃lm(r(x1, x2, x3))F (x1, x2, x3, θ
′)dx2dx3.

And now the most computational intense part of the inside integrator consist of

N3
q ×


(N+2)2

4
, N even,

(N+1)(N+3)
4

, N odd.
,

multiplications.

Assuming again that we use Nq quadrature points for x1, x2, x3 variables, and N θ
q

quadrature points for the variable θ′, in the singular case, and Nq, N θ
q for the corresponding

variables x1, x2. If the maximum level of functions, N , is even, the computational cost

is summarized in Table D.1. If N is odd we need to replace (N+2)2

4
for (N+1)(N+3)

4
in the

Inside Integrator column.

The implementation of the Inside Integrator class, for both regular and singular inte-

grator, has two different implementations, one for CPU execution and another for GPU

execution (both can be used in parallel). To achieve the best performance possible, the

CPU implementation was written in x86-assembly using AVX2 SIMD instructions2.

2We have implementations for SSE4 and AVX2, in our current test machine (intel i7-4790K) the first perform
better which suggest that the bottleneck is caused by memory operations.


