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Interaction-induced oscillations in correlated electron transport
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The correlated motion of electrons in a one-dimensional system with an externally applied longitudinal
electric field is discussed. Within the tight-binding model we show that in addition to the well-known Bloch
oscillations, the electron-electron interaction induces time-dependent oscillations of the mobility whose period
depends on the strength and range of the coupling only. The oscillations involve transitions between bands of
bound and unbound states. The case of two electrons is solved in detail and an extension of the results to more
particles is discussed.
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There has been much interest recently in nanostructuredubbard interactionvV(l—m)=U§, ,, are easily found for
containing very few electrons, the entrance or exit of whichthis problem. To obtain the solution, we make in Et).the
can be controlled by a gate voltab®hile transport proper-  substitution
ties in these devices have been well studied and understood A
within independent electron approximations or mean-field C =g mkaf(| —m) )

theories, the effect of correlations is still largely j, yormg of new amplitudesthat depend on the distance
unresolved:® An important question concerns the effect of —|—m to the interface only. It is found thdtobeys a one-

the electron-electron interaction on the localization induce%imensional equation, with hopping amplitude2\ coska)
by disorder, a subject of recent controvetsy. The usual and a chain of defects of local potentidlalong the linel

apprqach to degl with this problem is to look for approximatezm, separating two identical media. The eigenstates
solutions or estimates of unperturbed properties of the SYSsounded to this interface, which we shall call paired states
tem, such as the decay rate of the ground-state Iocahze??e then given by ’ '

wave functions. We here take a different route, and trea

explicitly the time-dependent response of the ensemble to an f(l—m)y=Ae al-m 3
external uniform electric field, in order to judge the ability to

conduct through a study of the mobility. Our main finding is E=sgr(U)\U?+ 167 2cog(ka),

that this quantity oscillates in time with a period solely de-

termined by the strength and range of the interaction. with A a normalizing constant, and «

The simplest case to treat is that of just two interacting= —arcsinfiU/4x coska)]. The rangew/2<ka<3w/2 de-
electrons. We consider first such a pair, constrained to a ondines an energy band covering the interval<E
dimensional chain of lattice parametar with an electric ~ <\/U?+ 162 for U>0, while a symmetric band of negative
field F applied along the wire. In the tight-binding model, the energies appears f& <0 and — 7/2<ka< /2. Note that
amplitudesC, , for having one particle at siteand the other the interaction gives more weight to configurations for which

at sitem at timet obey the equation the electrons lie one on top of the othér(m), regardless of
the sign of the interaction. Notice also thatdiverges at the
“MCii1m+Cro1mtCimi1+Cim 1)+ EimCim lower edge of théJ >0 band(upper edge of th& <0 band,
leading to extreme localization with finite amplitudes along
:iﬁdcl,m 5 the interfacel=m only. The wave function is symmetric
dt ’ under exchange of particles and is therefore appropriate to a

singlet state. Together with this band of paired states there is
where E| ,= ¢+ e+ V(I—m)—eFa(l+m), with ¢ the also aband of pure plane-wave solutions covering the inter-
energy at sité andV(l —m) the two-body interaction poten- val (—4\,4\), which correspond to traveling waves that
tial. \ is the usual hopping energy. In this model either of thescatter off the defect line=m. The two bands giving paired
two charges can hop to its nearest-neighbor site. Disordeand extended states overlap exceptdor 4.
may be included by making the site energgsandom. In discussing transport we consider the time-dependent

The two-electron problem described above is equivalenaverage position(z)==, ,P(I,m)(I+m)a in the linear

to that of a single particle moving in a square lattice withchain, whereP(l,m)=Cf{C, ., is the probability of finding
sites on the plane labeled by the phim. The interaction one electron at siteand the other at siten. We then take the
acts like an interface potential, symmetric about the diagonaime derivative of this expression to find the velocity. After
I =m where the boundary is located, and the applied externadome algebraic manipulation we arrive with the use of Eq.
field is parallel to this line. The spectrum and eigenstates ofl) at the following expression for the average velocity, rig-
the system with no electric field, no disorder, and a contacbrous for the infinite chain,
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Exact results may be obtained in special cases with nc
disorder. For the paired stat&®) in the absence of an exter- /
nal field the average velocity along the chain is a constant, of
2\a sin(ka)
(V)= Cosha - Ay
Note that the velocity is reduced by the interaction through
the denominator in this expression. In the presence of thex
field but this time with no interaction the result is 8
2o0.02
2\a . —
(v)=——sin(ka+eFat'h), 6 £
h a
giving the well-known Bloch oscillations of periodg 0
=h/eFa.'*° The combined case with external field and
interactions may be solved far<eFa by noting that in this
limit -0.02 + .
Cim(t)=Cy m(0)e” /MEm+ O(N), (7 , , ,

1
time

0.5 1.5

so that owing to the presence of the external field, to the
lowest order of approximation, the sites in the two-
dimensional (2D) lattice acquire different time-dependent  FIG. 1. Center-of-mass drift velocity for a pair of electrons in an
phases. From Eq$3), (4), and(7), one then obtains for the electric field, withouia and with(b) disorder. The dotte¢ull) line
paired states the following result, @(\): is the evolution withiwithout) a contact interaction. The dashed line
includes a contact potential as well as a Coulomb tail. For details
see text.

Ut
_ _a2a\gin?
oFar | 172(1-e )S|n22h

h

ka+

2\a
TSII’]

(v)= Next we consider disorder. From Eqggl) and (7) it is

®) easy to see that the contribution of a disordered distribution
of site energies appears through phase factors of the form

Note that the drift velocity is again decreased by the interacexdi(e ., — €)t/4], so that the average over disorder yields an

tion through the denominator in this expression, tending tQverall factor (cog (e ,1—€)t/A]) in the drift velocity (4),

zero as one approaches the bottom of the b&wae=(7r/2 for  which at all times is less than 1. Thus, disorder decreases the

U>0, ka=0 for U<0). The result also shows that the cou- drift velocity of the pair without affecting the period of the

cosha

pling introduces an oscillation of periof =h/U. Although
the amplitude of this interaction induced oscillatidNINO)
depends on the hopping amplitutle its period is indepen-

interaction-induced oscillation discussed above.
Up to now our results rely on approximatién) that holds
whenA <eFa. We have performed numerical calculations to

dent of this quantity and depends only on the interactionest all ranges of parameters. A sample of our results is

strengthU.
A more general result for any form of the interaction po-

shown in Figs. 1 and 2. The units of distance and timeaare
and#/\, respectively. In Fig. 1 we plot the time evolution of

tential may be obtained if one assumes that the system is ifhe center-of-mass drift velocity faFa=4\ without [Fig.

a plane-wavegBloch) state att=0. Using Eqgs.(4) and(7)
and ignoring disorder one then gets,Qg\),

o

Here N is the number of sites andV, ,,=V(l+1—m)
—=V(I—=m). The sum in this expression is bounded from
above toN? adding evidence that the interaction in general
reduces the drift velocity. Also, for the contact-interaction
model only 6V, ,=U occurs in the argument of the cosine
when finite, so that, as in E@8), there is an oscillation of
period T,=h/U. For a long-range interaction several fre-
guencies may be present, however.
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1(a)] and with [Fig. 1(b)] disorder, the latter included
through a random diagonal energy distribution in the interval
—5N<¢<5\N. The solid line represents the Bloch oscilla-
tion with no electron-electron interaction, while the dotted
curve is for the contact-interaction model with=100\.

The dashed line adds to the same contact interaction a Cou-
lomb tail Vo /|l —m| with Vo=U/4. Note first that, as exhib-
ited by Eq.(8), the interaction reduces the velocity. Note also
that the ININO’s are clearly exhibited. They have a regular
period, and as anticipated in the above discussion, more than
one frequency is present in the long-range interaction model.
A Fourier analysis of the data shows a strong ININO com-
ponent redshifted by a factor of about 0.8. The initial condi-
tions for this data were finite uniform amplitudes in the
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FIG. 2. Drift velocity for an interacting pair initially in a finite E
square on thé,m plane, with 11 sites on the sidgull line labeled = ,ML ]
a=0). The casex=3.9116 has initial amplitudes as given by Eq. g 0 Aas
(3). The dashed line is the noninteracting case. 5 H .
g 1 -
square —M<l+m<M with M=3, and zero amplitude é ’ ()
elsewhere. The sample was a square lattice with up to 15( _
sites on each side, enough to avoid significant reflections 1
from the edges within the time of computation. Increasing
the size ofM alters the relative amplitude of the oscillations ]l 7]
without modifying the period. Note that disorder does not j | Y . | . |
destroy entirely the ININO'’s although there is an overall re- 0 10 20 30 40
duction in the velocity that becomes more severe as time Frequency
progresses.

FIG. 3. Drift velocity (), and spectral density for three interact-

Figure 2 shows the low-field caseFa=0.1\, M=10, ing particles with finite initial amplitudes around the oridin) and
and same value dfl as above. Note that for these values Of%[ound the poinf0,0,20 (c). Parameters are as in Figal

parameters in one Bloch oscillation one expects a thousan
ININO periods, only the first few of which are shown. The
almost perfectly straightdashed line is the noninteracting defect planes meet. Besides the band of extended states there
result, bounding from above the correlated case obtained faare now two additional bands, one an energy) away,
a uniform initial distribution, marked ag=0. The curve associated with interface statémur so-called paired stafes
labeleda=3.9116 was obtained with an initial paired state the other coming from states bound to the diagonal, an en-
as given by Eq(3) with ka=0. A different choice ok just  ergy ~2U away (which we call tripled statgs Figure 3a)
introduces a phase shift and decreases the amplitude of tis®ows the center-of-mass velocity for this case using the
modulation, without affecting the period. The results exhib-same parameters as Figallwith contact interaction only.
ited show that, as apparent from E8), for this rather large Initially, the amplitudes are set finite only within a cube of
value of the parameter the state is dominated by the sideM =3 around the origir{0,0,0. The ININO oscillations
ININO and motion is relatively slow. In this figure we chose are clearly present and, as shown in Figb)3where the
to display a case with small external field in order to illus- spectral density is exhibited, include three main frequencies:
trate our finding that the ININO’s exist away from the limit eFa/%, U/A, and AJ/%, representing the Bloch oscillations
in which Egs.(8) and(9) hold as well. Note that in spite of and transitions between the three bands. Notice that the
the diversity of initial conditions tested the oscillations areweakest frequency is for oscillations involving the highest
always present. band. This is an important consequence of the reduced num-
The above results are for two electrons. The spectrunber of states in the interaction-induced upper bands. Figure
then includes two relevant bands, one of extended states ai®c) shows the spectral density for finite initial amplitudes
one of bound states an energyaway, in which the electrons over a similar cube as for Fig(3 but surrounding the point
tend to be on top of each other as described by(Bq.The  (0,0,20. Notice that this point is far from the diagonad
general case ofl electrons may be treated in a similar way =1=n near which tripled states are localized so that no com-
as we did for two particles, resorting now to the equivalentponent in the highest band is expected. Indeed, the spectral
problem of a single electron i dimensions with planar density of the highest frequencyUz# is negligible as is
interfaces representing the interaction. For instance if apparent in the figure. In the general caséNgfarticles in a
=3 one treats an electron in three dimensiom$,n, with string of L sites the number of extended states equal about
uniform defect sheets along the plan@s=1, m=n, n=|I LN, while the paired states number equAi~?, the tripled
and an electric field along the diagomal=1=n where the statesLN"2, the cuadrupledd N3, and so on. Thus the
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amplitude of their contribution decreases in the same ratigions will respond to an external field purely through Bloch
and only the lowest of such bands is important. Then, a sysescillations in a band of extended states, &j). The defect
tem with more than two particles will still exhibit the oscil- boundary introduced by the coupling gives rise to separate
lations described. The equivalence of the 1D wire withpands of surface states localized along the line perpendicular
N electrons and the motion of a single particleNrdimen- o the surface, such that electrons may exhibit oscillations
sions emphasized above may also be useful in checkingetween the free- and bound-state bands. This interpretation
the effect we are reporting. For instance, the experimentgk sypported by our numerical results showing that the INI-
probe could be either a 1D system with three electronsyo's dissapear if one starts with a state with finite ampli-
or one .electron moving in a 3D lattice hosting a thin sheet ok,qes far from the defect line only. In fact, as the square
impurities. _around the origin in which amplitudes are initially finite in

In summary, we have shown that the electron-electron ingjg 2 is enlarged, the oscillation of the upper curve is flat-
teraction mduc.es a kind of osm!lanons in the drift velocity of taned due to the larger component in the lower extended-
electrons moving along a chain and subject to an externaliates energy band of the initial state, while the oscillation in
electric field, with a period determined solely by the interac-ine |ower curve remains. If is negative so that the band of

tion range and strength. Thé-particle problem is identical 5ireq states becomes the lowest in energy, then this latter
to that of a single particle moving in ad-dimensional lat-  qcillation is the one damped out.

tice, with defect surfaces dividing the space in symmetric

domains. One can take advantage of the equivalence of the This research was carried out with the support of & Ca
two cases to understand the physical origin of the oscillaedra Presidencial en Cienci@sC,) and FONDECYT, Grant
tions. With no interactions the single particle Mdimen-  Nos. 1020829 and 1010776.
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