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Interaction-induced oscillations in correlated electron transport
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The correlated motion of electrons in a one-dimensional system with an externally applied longitudinal
electric field is discussed. Within the tight-binding model we show that in addition to the well-known Bloch
oscillations, the electron-electron interaction induces time-dependent oscillations of the mobility whose period
depends on the strength and range of the coupling only. The oscillations involve transitions between bands of
bound and unbound states. The case of two electrons is solved in detail and an extension of the results to more
particles is discussed.
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There has been much interest recently in nanostruct
containing very few electrons, the entrance or exit of wh
can be controlled by a gate voltage.1 While transport proper-
ties in these devices have been well studied and unders
within independent electron approximations or mean-fi
theories, the effect of correlations is still large
unresolved.2,3 An important question concerns the effect
the electron-electron interaction on the localization induc
by disorder, a subject of recent controversy.4–12 The usual
approach to deal with this problem is to look for approxima
solutions or estimates of unperturbed properties of the
tem, such as the decay rate of the ground-state local
wave functions. We here take a different route, and tr
explicitly the time-dependent response of the ensemble t
external uniform electric field, in order to judge the ability
conduct through a study of the mobility. Our main finding
that this quantity oscillates in time with a period solely d
termined by the strength and range of the interaction.

The simplest case to treat is that of just two interact
electrons. We consider first such a pair, constrained to a
dimensional chain of lattice parametera, with an electric
field F applied along the wire. In the tight-binding model, th
amplitudesCl ,m for having one particle at sitel and the other
at sitem at time t obey the equation

2l~Cl 11,m1Cl 21,m1Cl ,m111Cl ,m21!1El ,mCl ,m

5 i\
dCl ,m

dt
, ~1!

where El ,m5e l1em1V( l 2m)2eFa( l 1m), with e l the
energy at sitel andV( l 2m) the two-body interaction poten
tial. l is the usual hopping energy. In this model either of t
two charges can hop to its nearest-neighbor site. Diso
may be included by making the site energiese l random.

The two-electron problem described above is equiva
to that of a single particle moving in a square lattice w
sites on the plane labeled by the pairl ,m. The interaction
acts like an interface potential, symmetric about the diago
l 5m where the boundary is located, and the applied exte
field is parallel to this line. The spectrum and eigenstates
the system with no electric field, no disorder, and a con
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Hubbard interactionV( l 2m)5Ud l ,m are easily found for
this problem. To obtain the solution, we make in Eq.~1! the
substitution

Cl ,m5ei ( l 1m)kaf ~ l 2m! ~2!

in terms of new amplitudesf that depend on the distanceu
5 l 2m to the interface only. It is found thatf obeys a one-
dimensional equation, with hopping amplitude22l cos(ka)
and a chain of defects of local potentialU along the linel
5m, separating two identical media. The eigensta
bounded to this interface, which we shall call paired sta
are then given by

f ~ l 2m!5Ae2au l 2mu, ~3!

E5sgn~U !AU2116l2cos2~ka!,

with A a normalizing constant, and a
52arcsinh@U/4l cos(ka)#. The rangep/2,ka,3p/2 de-
fines an energy band covering the intervalU<E
<AU2116l2 for U.0, while a symmetric band of negativ
energies appears forU,0 and2p/2,ka,p/2. Note that
the interaction gives more weight to configurations for whi
the electrons lie one on top of the other (l'm), regardless of
the sign of the interaction. Notice also thata diverges at the
lower edge of theU.0 band~upper edge of theU,0 band!,
leading to extreme localization with finite amplitudes alo
the interfacel 5m only. The wave function is symmetric
under exchange of particles and is therefore appropriate
singlet state. Together with this band of paired states ther
also a band of pure plane-wave solutions covering the in
val (24l,4l), which correspond to traveling waves th
scatter off the defect linel 5m. The two bands giving paired
and extended states overlap except forU.4l.

In discussing transport we consider the time-depend
average position^z&5( l ,mP( l ,m)( l 1m)a in the linear
chain, whereP( l ,m)5Cl ,m* Cl ,m is the probability of finding
one electron at sitel and the other at sitem. We then take the
time derivative of this expression to find the velocity. Aft
some algebraic manipulation we arrive with the use of E
~1! at the following expression for the average velocity, ri
orous for the infinite chain,
©2003 The American Physical Society01-1
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^v&52
2la

\
Im(

l ,m
Cl ,m~Cl 11,m* 1Cl ,m11* !. ~4!

Exact results may be obtained in special cases with
disorder. For the paired states~3! in the absence of an exte
nal field the average velocity along the chain is a consta

^v&5
2la

\

sin~ka!

cosha
. ~5!

Note that the velocity is reduced by the interaction throu
the denominator in this expression. In the presence of
field but this time with no interaction the result is

^v&5
2la

\
sin~ka1eFat/\!, ~6!

giving the well-known Bloch oscillations of periodTB
5h/eFa.13–15 The combined case with external field an
interactions may be solved forl!eFa by noting that in this
limit

Cl ,m~ t !5Cl ,m~0!e2( i /\)El ,mt1O~l!, ~7!

so that owing to the presence of the external field, to
lowest order of approximation, the sites in the tw
dimensional ~2D! lattice acquire different time-depende
phases. From Eqs.~3!, ~4!, and~7!, one then obtains for the
paired states the following result, toO(l):

^v&5
2la

\
sinS ka1

eFat

\ D S 122~12e22a!sin2
Ut

2\ D
cosha

.

~8!

Note that the drift velocity is again decreased by the inter
tion through the denominator in this expression, tending
zero as one approaches the bottom of the band (ka5p/2 for
U.0, ka50 for U,0). The result also shows that the co
pling introduces an oscillation of periodTI5h/U. Although
the amplitude of this interaction induced oscillation~ININO!
depends on the hopping amplitudel, its period is indepen-
dent of this quantity and depends only on the interact
strengthU.

A more general result for any form of the interaction p
tential may be obtained if one assumes that the system
a plane-wave~Bloch! state att50. Using Eqs.~4! and ~7!
and ignoring disorder one then gets, toO(l),

^v&5
2la

\
sinS ka1

eFat

\ D 1

N2 (
l ,m

cosS dVl ,mt

\ D . ~9!

Here N is the number of sites anddVl ,m5V( l 112m)
2V( l 2m). The sum in this expression is bounded fro
above toN2 adding evidence that the interaction in gene
reduces the drift velocity. Also, for the contact-interacti
model onlydVl ,m5U occurs in the argument of the cosin
when finite, so that, as in Eq.~8!, there is an oscillation of
period TI5h/U. For a long-range interaction several fr
quencies may be present, however.
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Next we consider disorder. From Eqs.~4! and ~7! it is
easy to see that the contribution of a disordered distribu
of site energies appears through phase factors of the f
exp@i(el112el)t/\#, so that the average over disorder yields
overall factor ^̂ cos@(el112el)t/\#&& in the drift velocity ~4!,
which at all times is less than 1. Thus, disorder decreases
drift velocity of the pair without affecting the period of th
interaction-induced oscillation discussed above.

Up to now our results rely on approximation~7! that holds
whenl!eFa. We have performed numerical calculations
test all ranges of parameters. A sample of our results
shown in Figs. 1 and 2. The units of distance and time ara
and\/l, respectively. In Fig. 1 we plot the time evolution o
the center-of-mass drift velocity foreFa54l without @Fig.
1~a!# and with @Fig. 1~b!# disorder, the latter included
through a random diagonal energy distribution in the inter
25l,e l,5l. The solid line represents the Bloch oscill
tion with no electron-electron interaction, while the dott
curve is for the contact-interaction model withU5100l.
The dashed line adds to the same contact interaction a C
lomb tail V0 /u l 2mu with V05U/4. Note first that, as exhib
ited by Eq.~8!, the interaction reduces the velocity. Note al
that the ININO’s are clearly exhibited. They have a regu
period, and as anticipated in the above discussion, more
one frequency is present in the long-range interaction mo
A Fourier analysis of the data shows a strong ININO co
ponent redshifted by a factor of about 0.8. The initial con
tions for this data were finite uniform amplitudes in th

FIG. 1. Center-of-mass drift velocity for a pair of electrons in
electric field, without~a! and with~b! disorder. The dotted~full ! line
is the evolution with~without! a contact interaction. The dashed lin
includes a contact potential as well as a Coulomb tail. For det
see text.
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square 2M, l 6m,M with M53, and zero amplitude
elsewhere. The sample was a square lattice with up to
sites on each side, enough to avoid significant reflecti
from the edges within the time of computation. Increas
the size ofM alters the relative amplitude of the oscillation
without modifying the period. Note that disorder does n
destroy entirely the ININO’s although there is an overall
duction in the velocity that becomes more severe as t
progresses.

Figure 2 shows the low-field caseeFa50.1l, M510,
and same value ofU as above. Note that for these values
parameters in one Bloch oscillation one expects a thous
ININO periods, only the first few of which are shown. Th
almost perfectly straight~dashed! line is the noninteracting
result, bounding from above the correlated case obtained
a uniform initial distribution, marked asa50. The curve
labeleda53.9116 was obtained with an initial paired sta
as given by Eq.~3! with ka50. A different choice ofk just
introduces a phase shift and decreases the amplitude o
modulation, without affecting the period. The results exh
ited show that, as apparent from Eq.~8!, for this rather large
value of the parametera the state is dominated by th
ININO and motion is relatively slow. In this figure we chos
to display a case with small external field in order to illu
trate our finding that the ININO’s exist away from the lim
in which Eqs.~8! and ~9! hold as well. Note that in spite o
the diversity of initial conditions tested the oscillations a
always present.

The above results are for two electrons. The spectr
then includes two relevant bands, one of extended states
one of bound states an energyU away, in which the electrons
tend to be on top of each other as described by Eq.~3!. The
general case ofN electrons may be treated in a similar wa
as we did for two particles, resorting now to the equivale
problem of a single electron inN dimensions with planar
interfaces representing the interaction. For instance, iN
53 one treats an electron in three dimensionsm,l ,n, with
uniform defect sheets along the planesm5 l , m5n, n5 l
and an electric field along the diagonalm5 l 5n where the

FIG. 2. Drift velocity for an interacting pair initially in a finite
square on thel ,m plane, with 11 sites on the side~full line labeled
a50). The casea53.9116 has initial amplitudes as given by E
~3!. The dashed line is the noninteracting case.
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defect planes meet. Besides the band of extended states
are now two additional bands, one an energy;U away,
associated with interface states~our so-called paired states!,
the other coming from states bound to the diagonal, an
ergy ;2U away ~which we call tripled states!. Figure 3~a!
shows the center-of-mass velocity for this case using
same parameters as Fig. 1~a! with contact interaction only.
Initially, the amplitudes are set finite only within a cube
sideM53 around the origin~0,0,0!. The ININO oscillations
are clearly present and, as shown in Fig. 3~b! where the
spectral density is exhibited, include three main frequenc
eFa/\, U/\, and 2U/\, representing the Bloch oscillation
and transitions between the three bands. Notice that
weakest frequency is for oscillations involving the highe
band. This is an important consequence of the reduced n
ber of states in the interaction-induced upper bands. Fig
3~c! shows the spectral density for finite initial amplitud
over a similar cube as for Fig. 3~b! but surrounding the poin
~0,0,20!. Notice that this point is far from the diagonalm
5 l 5n near which tripled states are localized so that no co
ponent in the highest band is expected. Indeed, the spe
density of the highest frequency 2U/\ is negligible as is
apparent in the figure. In the general case ofN particles in a
string of L sites the number of extended states equal ab
LN, while the paired states number equalLN21, the tripled
statesLN22, the cuadrupledsLN23, and so on. Thus the

FIG. 3. Drift velocity ~a!, and spectral density for three interac
ing particles with finite initial amplitudes around the origin~b! and
around the point~0,0,20! ~c!. Parameters are as in Fig. 1~a!.
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amplitude of their contribution decreases in the same r
and only the lowest of such bands is important. Then, a s
tem with more than two particles will still exhibit the osci
lations described. The equivalence of the 1D wire w
N electrons and the motion of a single particle inN dimen-
sions emphasized above may also be useful in chec
the effect we are reporting. For instance, the experime
probe could be either a 1D system with three electro
or one electron moving in a 3D lattice hosting a thin shee
impurities.

In summary, we have shown that the electron-electron
teraction induces a kind of oscillations in the drift velocity
electrons moving along a chain and subject to an exte
electric field, with a period determined solely by the intera
tion range and strength. TheN-particle problem is identica
to that of a single particle moving in anN-dimensional lat-
tice, with defect surfaces dividing the space in symme
domains. One can take advantage of the equivalence o
two cases to understand the physical origin of the osc
tions. With no interactions the single particle inN dimen-
-
-

l-
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sions will respond to an external field purely through Blo
oscillations in a band of extended states, Eq.~6!. The defect
boundary introduced by the coupling gives rise to sepa
bands of surface states localized along the line perpendic
to the surface, such that electrons may exhibit oscillatio
between the free- and bound-state bands. This interpreta
is supported by our numerical results showing that the I
NO’s dissapear if one starts with a state with finite amp
tudes far from the defect line only. In fact, as the squ
around the origin in which amplitudes are initially finite i
Fig. 2 is enlarged, the oscillation of the upper curve is fl
tened due to the larger component in the lower extend
states energy band of the initial state, while the oscillation
the lower curve remains. IfU is negative so that the band o
paired states becomes the lowest in energy, then this la
oscillation is the one damped out.
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