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Exact fronts for the nonlinear diffusion equation arith quintic nonlinearities
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We consider traveling wave solutions of the reaction difFusion equation with quintic nonlinearities
ua ——u~~ + pu(1 —u)(1+ nu+ Pu + pu ). If the parameters n, P, and p obey a special relation,
then the criterion for the existence of a strong heteroclinic connection can be expressed in terms
of two of these parameters. If an additional restriction is imposed, explicit front solutions can be
obtained. The approach used can be extended to polynomials whose highest degree is odd.

PACS number(s): 47.20.Ky, 02.30.Hq, 03.40.—t, 82.40.Ck

I. INTRODUCTION

The nonlinear diffusion equation ut ——u + f(u)
models phenomena in diverse fields such as population
growth, kinetics of phase transitions, chemical reactions,
and many others. Of special interest is the case when the
function f is such that there exist two steady states, one
stable and one unstable. We shall assume that the equa-
tion has been scaled so that the unstable state is u„= 0
and the stable state is u, = 1, and we consider functions
f which are positive in (0, 1). Then sufficiently local-
ized initial conditions evolve into a traveling &ont which
joins the two steady states [1]. The speed at which the
&ont propagates, c' is equal or greater than the linear
marginal stability value cL, = 2/f'(0). In many cases
the asymptotic speed of propagation is exactly the lin-
ear value cL, = 2/f'(0) obtained by the linear marginal
stability criteria [2,3]. There are cases, however, when
the front propagates at a speed greater than this value,
a case which is referred to as that in which a nonlin-
ear speed selection mechanism [4—6] operates. Explicit
expressions for this special nonlinear &ont or strong het-
eroclinic connection and its speed have been obtained for
particular choices of f All the .known solutions corre-
spond to functions f of the form f (u) = pu+ u —u "
which, for p positive but smaller than a critical value p,
are strongly heteroclinic [7]. The purpose of this article
is to show, using as an example a quintic polynomial f,
that the criterion for the existence of special fronts can be
formulated in many cases in a simpler way that enables
one to decide whether for a certain f there is a strong
heteroclinic connection even if the exact solution for the
&ont is not known. We find exact &onts for this quintic
polynomial for f together with a criterion for strong het-
eroclinicity in terms of the parameters of the polynomial
valid even when no explicit solution for the &ont can be
obtained. Similar results can be obtained for polynomi-
als whose highest degree is odd. The knowledge of exact
solutions is of interest not only as a curiosity, they are
also needed in the &amework of the recent proposal of
structural stability [8], the knowledge of the speed for a
specific form of f enables the calculation of the speed
for small perturbations to f using renormalization group
techniques.

In Sec. II we state the problem and reformulate already
known results, and in Sec. III we give the results for the
quintic polynomial.

II. MONOTONIC FRONTS OF THE REACTION
DIFFUSION EQUATION

We consider the reaction difFusion equation

ut ——u~~ + f (u)

with f(0) = 0, f(1) = 0, f'(0) & 0, and f & 0 in (0, 1).
Given these conditions on f then there exist fronts that
connect the unstable fixed point u = 0 to the stable fixed
point u = 1. Traveling wave fronts u(2: —ct) satisfy the
ordinary difFerential equation

u„+cu, + f(u) =0, lim u=1, lim u=0,

v(0) = v(l) = 0, with v ) 0. (2b)

Since the endpoints are singular we must determine the
behavior near them analytically. If we consider functions

f analytic around 0 and with f'(0) & 0, then near u = 0
we find

where z = z —ct and we assume that c is positive. A
&ont joining the stable fixed point 1 to the unstable point
0 is monotonic if in addition its derivative du/dz does
not change sign. If we search for monotonic &onts it is
convenient to consider the dependence of z as a function
of u, or rather the dependence of v(u) = —(dz/du) as
a function of u. For a monotonic solution of Eq. (1),
u(z) decreases monotonically as z goes from —oo to oo,
therefore, the function v(u) is well defined and is positive
between 1 and 0 and vanishes at the fixed points. One
readily finds that the equation for v(u) is

dv
v(u) ——cv(u) + f (u) = 0,

dt's

with
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v(u) = aiu+ asyzu + azu + as/2u + asu +3/2 2 5/2 3

where the first terms are given by

ai —cai + f'(0) = 0,

as)2 ( 2
sa, —c) = 0,

az (3ai —c) + i f"(0) = 0,

as)2(c —2ai) —2as)2a2 = 0,7 7

(3b)

(3c)

At A = 2, the speed attains its linear value cL,
——2

The problem then is to determine the value of A. This
transition value A = 2 is not associated with any spe-
cific nonlinearity, it is valid for any f that satisfies the
conditions given above.

An extensive classification of exact solutions, not re-
stricted to the search for fronts, has been given for cubic
f [9]. All exact front solutions given in the literature,
[4,6,7,10,11] correspond to functions f for which an ex-
act solution for v is of the form

v„(u) = aiu(1 —u" ')

which is an exact solution of Eq. (2) for

and so on. That the leading term in the expansion of v

near zero is linear in u is due to the fact that the front in
the original coordinates u(z) approaches the fixed points
exponentially. Since v must be positive between 0 and
1, a» must be real and positive. The two roots for a»
are given by ail = [c+ gcz —4f'(0) ]/2 and aiM = [c-
gcz —4f'(0) ]/2. The minimuin speed c for which there
may be a monotonic &ont is the linear marginal speed
cL, = 2/f'(0) at which the roots coincide ai~ = aiM =
a»L, . For speeds greater than this value a»M & a»1. &
a»~. Strong heteroclinic solutions or special nonlinear
&ont profiles are those associated with a»~. Prom the
expansion at the origin it follows from (3b) that either
c = 5ai /2 or asy2

——0. In the first case we find that c =
5/f'(0)/6 = 2.041/f'(0) and ai ——/2f'(0)/3 = aiM.
The solution that arises in this case is not a preferred
asymptotic state. In fact, it is known [1] that a small
positive initial condition will evolve into the monotonic
&ont of lower speed. This condition has been shown to
be equivalent to the statement that the selected &ont is
that with the steepest decay to zero [6], i.e. , that with
larger a» for any given c. For any c ) cl, the larger
of the two values of ai is aip hence c = 5ai/2 is not a
possible asymptotic state and we shall not consider it any
further. Strong heteroclinic connections can be achieved
only if a3j2 ——0, all half integer coefFicients vanish then
and v(u) = aiu+ a2u'+.

Near u = 1, assuming f'(1) & 0,

v(l —u) = b, (1 —u) + b2(1 —u) + bs(1 —u) +

where b» is the positive solution of

b2i + cbi + f (1) = o.

There is only one positive solution for b», the rest of the
coefficients follow easily.

It is convenient to introduce a new parameter A defined

by c = Aa». It is not difficult to realize that whenever
1 & A ( 2 then the solution for v is strongly heteroclinic,
that is, associated with a»~ and when A & 2 it becomes
associated with a»M, hence for A & 2 the linear marginal
speed is selected. If c = Aa» then

v„(u)
(6)

and explicitly by [7,12]

u„(z) =
—Za1

The criterion for the existence of strongly heteroclinic
fronts together with their exact expression has been given

[?] for functions f of the form f(u) = pu+u" —u2" i. The
critical value for p given in Ref. [7] for the transition from
a strong heteroclinic connection to a simple nongeneric
connection (a solution associated with aiM) is equivalent
to the value A = 2 after suitable rescaling. It is perhaps
convenient to see it in the example given by van Saarloos
[6]

which has a strongly heteroclinic connection for d

2/v 3, of speed

—2 j2/4+ d2

To identify the value of A from Eq. (5) we must scale
the equation for P so that the stable point is at 1. To do
so we let P = Ku, u satisfies u& ——u +u+K du —K u5

and the stable state is u = 1 if

where the positive sign is chosen to obtain a real K. Now
we compare with Eq. (5) with n = 3. We see that
f'(0) = 1 and that

We observe that for A = n+ 1 we recover the solutions
of Kaliappan [10]; since n ) 1, A is greater than two, so
none of them are strongly heteroclinic. The &ont corre-
sponding to v„ is given implicitly by

A —1'
f'(o)
A —1

{4)
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or, in terms of d,

4i/4+ d2 —2d

d+ i/4+ d'

It is straightforward to see that the critical value d =
2/~3 is exactly A = 2 and that the speed

= vt.

termined analytically only if an exact solution for v is
known. The most general form of a quintic polynomial
that vanishes at 0 and 1 is

f(x) = px(1 —2:)(1+ax+ Px'+ p2."),

where p, n, P, and p are four arbitrary parameters whose
only restriction is given by the requirement f'(0) & 0
and f & 0 in (0, 1). On the other hand, the most general
closed form solution for v given a quintic f is given by

Although in the developments above we have imposed
the restriction f'(0) & 0 so that f is positive in (0, 1),
monotonic fronts joining u = 1 to u = 0 also exist in the
subcritical case f'(0) ( 0 which is of interest in many
physical applications [6]. We consider now this subcriti-
cal or heterozygote inferior [1]case. Consider f such that
f (0) = f(1) = 0 with f'(0) ( 0 and with an additional
Bxed point 0 ( uo & 1. In this case, monotonic fronts
joining u = 1 to u = 0 exist provided that [1]

1

f(u) du & 0.
0

(7)

As we shall see below, this case corresponds to the exten-
sion of the parameter A to the region 0 ( A & 1, a regime
where all solutions are associated with al~. Since the
condition imposed by Eq. (7) guarantees the existence
of a monotonic &out, Eq. (2) is valid. When f'(0) ( 0
the only real positive solution of Eq. (3a) is air . Letting
again c = Aai we find that a2i ———f'(0)/(1 —A). There-
fore, when f'(0) ( 0, we must impose 0 ( A ( 1 and
Eq. (4) is still valid. This condition on A insures condi-
tion (7). Again it is useful to show this for the exactly
solvable case (5). Integrating (5) we find,

f f'(O) A(n —1)
2(A —1)(n + 1)'

Since n & 1 and we are considering the case f'(0) ( 0,
the integral is positive when 0 ( A & 1 and the solution
v„(u) remains valid in this range as well. For the example
discussed by van Saarloos [6] f(u) = au + ciu —(ci +
e)u, condition (7) implies e/ci & —(1/4). In terms of A

comparing f(u) with fs given by (5) we identify e = f'(0)
and A = (4e + ci)/(e+ ci). The requirement 0 ( A ( 1
is e/ci & —(1/4) [which is equivalent to van Saarloos'
condition ec2/ci & —3/16 when one writes the function
f as f(P) = eP+cigP —c2$ ] To sum .up, the subcritical
case is the continuous extension to the regime 0 ( A ( 1.

III. SOLUTIONS

Now consider &onts for f being a quintic polynomial
in u. This problem was considered in Ref. [11] but no
explicit solutions were found and no attempt to examine
the conditions for the transition &om the linear to the
nonlinear regime were made. Here we show under which
conditions a closed form can be obtained, together with
some examples and the condition for strong heteroclin-
icity A ( 2 in terms of the parameters of the function
f Evidently, the .value of the parameter A can be de-

u(u) = aiu(1 —u)(1+ bu),

where b & —1. Introducing again the parameter A given
above, so that ai and c are given by Eq. (4), Eq. (9) is
the exact solution of Eq. (2) with

f(u) = f'(o)u(1 —u) I
1+( (2+ Ab —3b)

b(5 —2b)+ u + u
A —1 A —1

(1o)

A =1+ 75'
(3P + 2p)"

and

5

3P+ 2p

and the exact solution exists if

(2+ Ab —3b)

A —1

For any other value of a a closed form solution does
not exist and we cannot determine the value of A. The
criterion for the solution to be strongly heteroclinic 1 &
A ( 2 is expressed now in terms of the &ee parameters P
and p.

Now we show that an explicit solution for the &ont in
the original coordinates exists only if an additional con-
dition on b, hence a relation between the free parameters
P and p is satisfied. Proceeding as above in Eq. (6) we
find that u(z) is the solution of

e -(~+l) ~
ul+6

(1 —u)(1+ bu)~

Writing b = n/p the equation for u is

un+P
e

—(n+p) e, z

(1 —u)i'(1+ bu)" (12)

This can be inverted to obtain the explicit solution for
u(z) if n + p = 2, 3, 4. The detailed inversion of all the

In the solution for v we have three adjustable parameters,
A, b, f'(0) whereas in the inost general form for f, four
adjustable parameters exist. Hence, an exact solution for
v can be found chosing three parameters of f arbitrarily
and the fourth one in terms of them. Choosing y, , P, and

p arbitrarily, we identify

f'(o) = p
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solvable cases is not instructive, here we give one exam-
ple. Choose n = 2, p = 1, then 6 = 2, and the front is a
solution of the cubic equation

u{z) =
1

23

v'4+e ~ *
(e

-- + v'4+ e '*)
1

( +e4+"- *)'
+

2 ~i vt'4 + es ai z
(14)

Again this is an exact front for f of the form given
by Eq. (8). It corresponds to a strongly heteroclinic
connection for A & 2. If one chooses the case n+ p = 4
the quartic equation that arises has a pair of complex
conjugate solutions, a negative solution and a positive
solution which is the desired front. For values of b which
do not allow the explicit computation of the front u(z)
we still have the speed selection criteria in terms of the
&ee parameters of the polynomial. The results above
are also valid in the subcritical case f'(0) ( 0 if 0 (( 1. The integral of Eq. (10) between 0 and 1 is

(6+ 2)Af'(0)/12(A —1) which is positive when f'(0) ( 0
for 0 ( A & 1 and, therefore, all results hold in this range.

Closed form solutions v(u) for polynomial f's can be
obtained only if f is an odd polynomial. In general, if
f is a polynomial of degree 2k + 1 that vanishes at 0
and 1, there are 2k free parameters (restricted only by
the requirement of positivity of f), whereas the corre-
sponding closed form solution for v has k+ 1 parameters,
which implies that a closed form for v, and an explicit
expression for A is possible if k —1 parameters of f are

u {1+4e ")—3ue "—e "= 0. {13)

This cubic has two complex roots and a single real posi-
tive root which is the desired front, given by

chosen adequately in terms of the k + 1 remaining free
parameters.

IV. CONCLUSION

We have studied the existence of exact strongly hete-
roclinic fronts for the reaction diffusion with quintic non-
linearities. We And that the use of phase space enables
one to characterize the transition from strongly hetero-
clinic to simple nongeneric fronts in terms of a single
parameter A which is the ratio between the speed and
the rate of decay at in6nity. The introduction of this
parameter gives a uni6ed way in which to describe the
type of solution that is independent of the nature of the
nonlinearities. The exact value of this parameter cannot
be determined analytically when the highest nonlinear-
ity is even, if the highest derivatives are odd it can be
determined for special choices of parameters. In the case
studied here, quintic nonlinearities, the value of A can be
determined exactly if a special relation betwen the pa-
rameters of the equation is satisfied. It is not necessary
to know the exact solution u(z —ct) in order to deter-
mine whether a strong heteroclinic connection exists. If
an additional restriction on the parameters is imposed,
exact solutions can be found. We have illustrated this
situation for one particular choice, a whole family of ex-
act solutions can be constructed. The use of phase space
is not only useful as an aid to 6nd exact solutions, it can
be used to obtain a lower bound on the speed, valid for all

f, which allows one to determine the range of parameters
for which strongly heteroclinic connections exist [13].
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