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We discuss a simple implementation of a quantum nondemolition measurement of the vibronic state of a
trapped ion. This scheme allows the production of Fock states associated to the center-of-mass motion and the
determination of the population distribution of the trap levels, and is based on the vibronic level dependence of
the frequency of Rabi oscillations between two internal states of the ion, induced by a resonant carrier field.
The same scheme can be used to produce a Schro¨dinger-cat-like state after a single interaction between the
trapped ion and the carrier pulse, followed by the detection of the ionic internal state.
@S1050-2947~96!09511-X#

PACS number~s!: 42.50.Vk, 42.50.Lc, 42.50.Dv, 03.65.Bz

I. INTRODUCTION

Recent advancements in ionic and atomic traps@1–5# and
in cavity quantum electrodynamics~QED! @6# have moti-
vated the realization of experiments which demonstrate fun-
damental features of quantum mechanics. The attainment of
low temperatures and low-dissipation regimes has allowed
the investigation of single quantum systems, and the realiza-
tion of basic models of quantum optics, which contemplate
the interaction between bosons and a two-level system@7,8#.
In cavity QED, two atomic levels are strongly coupled with a
mode of a high-Q cavity, either in the optical@9,10# or in the
microwave region@6,11–13#. In ion traps, two electronic lev-
els are coupled either by a direct transition@2,14# or via a
third virtual level, through a nonresonant Raman stimulated
transition with two optical fields@5,15–18#. The bosons cor-
respond to the center-of-mass motion in the approximately
harmonic potential produced by the trapping electromagnetic
fields.

Single trapped ions have led to the observation of quan-
tum jumps@14# and of antibunching and sub-Poissonian be-
havior @19# in resonance fluorescence, and to the demonstra-
tion of the quantum Zeno effect@20#, while cavity QED
experiments have led to the observation of spontaneous
emission inhibition@22#, collapses and revivals@23#, and the
vacuum Rabi splitting@10,11#. The realization of quantum
logic gates with laser-cooled trapped ions has been proposed
by Cirac and Zoller@21# and demonstrated experimentally
@17#. Several proposals have been presented for the realiza-
tion of experiments which would lead to nonclassical states
of the electromagnetic field or of the atomic center-of-mass
oscillations. They include the generation of Fock states of
the electromagnetic field in cavities@12# or of the center-of-
mass motion of an atom in a trap@24#, or yet the production
of squeezed states of motion@15,25,26# or squeezed atomic
states@27#, which could be used for improving frequency
standards. A recent experiment has led to the creation of
Fock, coherent, and squeezed states of motion of a harmoni-
cally bound9Be1 ion @18#.

Furthermore, it has been shown that cavity QED offers an
appropriate environment for the realization of quantum non-
demolition ~QND! measurements@12#, proposed originally

by Braginskyet al. @28# as sensitive probes of gravitational
waves. Cavity QED may also lead to tests of decoherence
theory@29,30#, which is at the core of the quantum theory of
measurement@31#.

Quantum nondemolition measurements are designed to
avoid the ‘‘back action’’ of the measurement on the detected
observable. They have been implemented in the optical do-
main @32#, via some kind of Kerr effect in a solid or gaseous
medium. The signal field to be measured interacts nonlin-
early with a probe field whose phase changes by a quantity
which depends on the number of photons in the signal beam.
The nonlinear character of the interaction requires a rela-
tively intense signal beam. Reference@12# proposes a QND
method to measure the number of photons stored in a high-
Q cavity, which is sensitive to a very small number of pho-
tons. It is based on the detection of the dispersive phase shift
produced by the field on the wave function of nonresonant
atoms crossing the cavity. This shift, which is proportional to
the photon number in the cavity, is measured by atomic in-
terferometry, using the Ramsey separated-oscillatory-field
method. Since the atoms are nonresonant, no photon is ex-
changed between them and the cavity, and the measurement
is indeed a QND one. However, the information acquired by
detecting a sequence of atoms modifies the state of the field
step by step, until it eventually collapses into a Fock state,
which is a priori unpredictable. Repetition of the measure-
ment for the same initial state of the field will yield a distri-
bution of Fock states, which reproduces the initial distribu-
tion of the field.

In this paper, we show that it is possible to realize a QND
measurement of the vibrational population distribution for an
ion in a Paul trap@33#. As in the cavity QED proposal, a
Fock state is generated in the process. Even though this Fock
state isa priori unpredictable, it becomes completely known
once the sequence of measurements is completed. Also,
when applied to an initial coherent vibrational state, the first
step of the measuring sequence may produce a quantum su-
perposition of two well-separated coherent states, which is
an example of a ‘‘Schro¨dinger cat state.’’ States of this kind
have been recently demonstrated by the NIST group@34#,
who prepared a superposition of spatially separated coherent
harmonic oscillation states of the center-of-mass of a trapped
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9Be1 ion. Their method involves a sequence of interactions
of the atomic ion with laser pulses of different frequencies
and areas. In contrast, our proposal leads to a Schro¨dinger cat
state after a single interaction, followed by detection. Al-
though it is possible to use for ionic traps a procedure similar
to the QND method suggested for cavity QED, we propose
here a much simpler approach.

The model on which our discussion is based is introduced
in Sec. II. The QND measurement scheme is explained in
Sec. III. Numerical examples are shown in Sec. IV, while the
results are summarized in Sec. V.

II. MODEL

The basic level scheme is illustrated in Fig. 1@5,16#. The
electronic statesua& andub&, assumed to be metastable~they
will be typically two ground state hyperfine sublevels,
coupled by quadrupole transitions!, and separated by an en-
ergy\v0, are coupled by a stimulated Raman transition via
two optical fields ~treated here as classical fields!

EW i5EW 0i@e
i (kW i•x

W2v i t1f i )1c.c.#, i51,2, EW 0i real, wherexW is
the operator associated with the center-of-mass position of
the ion, and withv12v25(k12k2)c5v01d, d being a
detuning of the order of the vibrational frequencies of the
ion. Both fields are detuned from the electric dipole transi-
tions from ua& and ub& to a third leveluc&, assumed to have
lifetime g21. A fourth level ud& is used for detecting the
electronic state of the ion, and also for Doppler precooling.
We assume that the ion is trapped in a harmonic potential. In
the experiment described in Ref.@34#, ua& is the
2S1/2(F52, mF522) hyperfine ground state of a9Be1

trapped ion, ub& corresponds to the state2S1/2(F51,
mF521), uc& is the state2P1/2(F52,mF522), andud& is
the state2P3/2(F53,mF523).

Each Cartesian component of the center-of-mass position
operator, denoted byxi , can be expressed in terms of low-
ering and raising operatorsai andai

† in the following way:

xi5S \

2mv i
D 1/2~ai1ai

†!, ~1!

wherev i is the frequency of oscillations along the direction
i .

The Hamiltonian which describes the evolution of the sys-
tem between detections~so that levelud& does not participate
in the dynamics! can be written as~choosing the energy of
the stateua& as zero!

H5H01H1 , ~2!

where

H05 (
i5x,y,z

\v iai
†ai1\v0ub&^bu1\vcuc&^cu, ~3!

and

H15\g1e
2 i ~kW1•x

W2v1t1f1!ua&^cu

1\g2e
2 i ~kW2•x

W2v2t1f2!ub&^cu1H.c. ~4!

This Hamiltonian has been written under the optical rotating
wave approximation, which implies that the transitions from
uc& to ua& and ub& are coupled with the negative-frequency
parts of the fieldsEW 1 and EW 2, respectively. The phases of
statesua&, ub&, and uc& are chosen so that the coupling con-
stantsg1 andg2 are real and positive~alternatively, one may
incorporate these phases into the definitions off1 andf2).
These constants, which represent half the Rabi frequencies
associated with theua&↔uc& and ub&↔uc& transitions, are
given by gi5dW i•EW 0i /\, where dW 1 and dW 2 are the electric
dipole matrix elements corresponding to the transitions
ua&↔uc& and ub&↔uc&, respectively.

The linewidths of levelsua& and ub& are assumed to be
much smaller than the frequenciesv i ~this corresponds to the
resolved sideband limit!. We take as infinite the lifetime of
the vibrational modes~in actual experiments@16,34#, life-
times of the order of milliseconds have been obtained — this
time scale is much larger than those involved in the present
method, as will be shown in the following!.

In the limit in which the magnitude ofD, defined as
vc2v1, is much larger thang, udu, g1, and g2, the state
uc& can be adiabatically eliminated@15,27#, and an effective
Hamiltonian can be written for the statesua& and ub& ~it is
easy to show that this Hamiltonian yields the amplitude
equations derived in Ref.@27#!:

Heff5H081HI , ~5!

where

H085 (
i5x,y,z

\v iai
†ai2\d8s3 , ~6!

and

HI52
\V0

2
@s1e

2 i ~dkW •xW1f!1H.c.#. ~7!

In these equations,dkW5kW22kW1, f5f22f1, and s3
5(ub&^bu2ua&^au)/2, s15ub&^au are the usual Pauli spin
operators. For the Raman stimulated transition scheme,V0
can be expressed in terms ofD and the frequenciesg1 and

FIG. 1. Energy level diagram for the QND measurement
scheme. A Raman stimulated transition is induced between levels
ua& andub& by laser beams 1 and 2. Detection of the electronic state
is provided by the scattered photons resulting from the cycling tran-
sition ua&↔ud&, produced by the resonant pulse 3.
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g2: V052g1g2 /D. The frequencyd85d2g1
2/D1g2

2/D dif-
fers from the previously defined detuningd by the Stark
shifts of statesua& and ub&.

A similar Hamiltonian is obtained if the transition be-
tween the statesu1& andu2& is directly stimulated by a single
classical field. In this case,2\d8 should be replaced by the
energy difference between the two levels, andV0 would be
the Rabi frequency associated to the interaction with that
field @8#. Even though our discussion applies equally well to
this situation, we prefer to concentrate on the Raman stimu-
lated case, which is of wider applicability@15,16#.

For the experiment described in Ref.@16#, the oscillation
frequencies alongx, y, andz are in the range 10230 MHz,
v0/2p'1.250 GHz,D/2p'12 GHz,g/2p'20 MHz, and
V0/2p is of the order of 1 MHz.

Defining as usual the Lamb-Dicke parameters
h i5dki(\/2mv i)

1/2, so thath i
2 is the ratio between the re-

coil energy and the vibrational quantum of energy in thei
direction~in the experiment reported in Ref.@16#, uh i u ranges
from 0.1 to 0.2, approximately!, we may writeHI in the
interaction picture as follows:

HI
int52

\V0

2 H s1expF2 i(
j

h j~aje
2 iv j t1aj

†eiv j t!G
3exp~2 id8t !exp~2 if!1H.c.J . ~8!

For a Raman stimulated transition resonant with thekth
vibrational red sideband in thei direction, one has
d852kv i , k.0. One can then conserve in the Hamiltonian
~8! only the time-independent terms. Assuming for simplic-
ity that only vibrations in the directionl are excited~this
will be the case ifv l is different from the otherv i ’s, or if
dkW is along the directionl ), one is led to the Hamiltonian
@36# ~the indexl is suppressed in the following, since only
one vibrational mode is involved!

HI
int52

\V0

2
@ f k~a

†a!s1a
ke2 if1H.c.#, ~9!

where the normally-ordered form off k(a
†a) is given by~cf.

Ref. @36# for a similar result derived for a standing wave!

f k~a
†a!5 f k

~n!~a†a!5e2h2/2(
l 50

`
~2 ih!2l 1k

l ! ~ l 1k!!
~a†! l al .

~10!

Equation~9! corresponds to a generalized Jaynes-Cummings
Hamiltonian, involving multiquantum transitions~if instead
d85kv i , again withk.0, one gets a ‘‘counter-rotating’’
Hamiltonian!. In particular, if k51 and uhuAn!1 for all
relevant excitation numbersn ~Lamb-Dicke limit @35#!, one
can approximate the sum in Eq.~10! by its first term, so that,
up to first order inh, we get

HI
int5

i\V0h

2
s1a1H.c., ~11!

which corresponds to the usual Jaynes-Cummings Hamil-
tonian @7#.

From Eq.~11! we can see that ifd5v1n, with n much
smaller thanv, and at the same time much larger than the
electronic linewidth and the second-order ac Stark shift
V0

2h2n/n, where n is any relevant vibrational occupation
number, one reproduces, in the Lamb-Dicke limit, the con-
ditions of dispersive interaction considered in the QND pro-
posal of Ref.@12#. This implies that similar procedures can
be applied to this case. We refrain, however, from analyzing
this situation in detail, since a much simpler QND method
can be envisaged for the system here considered.

III. QND MEASUREMENT SCHEME

Our proposal is based on the situation in which the Raman
transition is precisely resonant with the Stark-shifted elec-
tronic levels, that is,d850. One has then

HI
int52

\V0

2
@ f 0~a

†a!s1e
2 if1H.c.#, ~12!

with

Vn[V0^nu f 0~a†a!un&5V0^nue2 ih~a1a†!un&

5V0e
2h2/2Ln~h2!, ~13!

whereLn(h
2) is the Laguerre polynomial of ordern:

Ln~x!5 (
l 50

n S n
n2l D ~2x! l

l !
. ~14!

The Hamiltonian~12! leads to Rabi oscillations between
the electronic levelsua& andub&, without affecting the vibra-
tional quantum numbers. The Rabi frequency depends, how-
ever, on the motional state. Up to fourth order inh, we have

Vn5V0@12~n1 1
2 !h21 1

4 ~n21n1 1
2h4!1O~h6!#.

~15!

From Eqs.~12! and~13! it follows that, if the initial state
of the system is

uC~0!&5ua& (
n50

`

cnun&, ~16!

then the state at timet will be

uCa~ t !&5 (
n50

`

cnF ua&cosS Vnt

2 D1ub& ie2 ifsinS Vnt

2 D G un&,

~17!

while if the ion is initially in the electronic stateub&, the state
at time t will be

uCb~ t !&5 (
n50

`

cnF ua& ieifsinS Vnt

2 D1ub&cosS Vnt

2 D G un&.

~18!

The dependence of the Rabi frequencyVn on the occupation
numbern is the basis of our QND scheme, which proceeds
as follows. The ion is submitted to a Raman pulse of dura-
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tion t, resonant with the electronic transition, so that the
vibrational state does not change. The timet is assumed to
be much smaller than the lifetimes of statesua& andub&, and
the vibrational state lifetime. Right after the pulse, the elec-
tronic state of the ion is detected, by following the stimulated
excitation with a circularly polarized light pulse (s2 , for the
example mentioned above, corresponding to the levels cho-
sen in Ref.@34#! tuned to theua&↔ud& resonance. We as-
sume that the area of this pulse is sufficiently large so that,
during this last step, the photons scattered by the ion can be
detected with efficiency close to one, thus allowing one to
determine the electronic state of the ion. A fluorescent signal
projects the ion into the stateua&, while the absence of fluo-
rescence projects it in stateub&. Note that, in the Lamb-Dicke
limit, each photon-scattering event leads to negligible recoil.
However, if many photons are scattered during this detection
process~the detection procedure reported in Ref.@16# in-
volves thousands of photons!, appreciable heating might re-
sult even in the Lamb-Dicke limit, thus spoiling the QND
procedure. IfDE is the recoil energy due to a single scatter-
ing process, one must assume therefore that the numberN of
scattered photons is such thatNDE!\v i , or yet, since
h2'DE/\v i , N!h22. For uhu'0.1, this yieldsN!100.
On the other hand, for a saturating cycling process,
N'GT/2, whereG is the width of levelud& andT the dura-
tion of the detection pulse. One must have therefore
T!200/G, which yields, forG/2p'20 MHz, the upper limit
T!2 ms. Under these conditions, heating can be neglected
~weaker conditions are obtained if the detection transition
corresponds to a smaller Lamb-Dicke parameter!, and

uce
~1!&5

(n50
` cnsinS Vnt

2
1e

p

2 D un&

F (
n50

`

ucnu2sin2S Vnt

2
1e

p

2 D G1/2, ~19!

wheree51 if the detected electronic state coincides with the
initial electronic state, ande50 otherwise.

Equation~19! shows that the original vibrational distribu-
tion is modulated by an oscillating function ofn, that is,

Pe
~1!~n!5

sin2S Vnt

2
1e

p

2 DP~n!

(
n850

`

sin2S Vn8t

2
1e

p

2 DP~n8!

. ~20!

This implies a decimation of some of the populations, de-
pending on the value ofu(t)[V0h

2t/2 @cf. Eq. ~15!#. In
order to enhance the dependence ofVn with n, we choose
the durationt of the Raman pulses so thatu(t) is of the
order ofp. For typical values ofV0/2p'1 MHz, h'0.1,
this impliest'50 ms. This is by far the largest time in the
cycle~since the detection process, as discussed above, should
involve a pulse shorter than 1ms!, so that the duration of the
whole cycle is of the order of 50ms. Under these conditions,
and if the relevant occupation numbers are smaller than 10,
the term of orderh4 in Eq. ~15! will give a contribution
smaller than 3% of the term proportional toh2. On the other
hand, the term independent ofh in Eq. ~15!, given by

V0t, will be about 100 times larger than the term of order
h2. This will not spoil the QND procedure, however, due to
the fact that this larger contribution is independent ofn, and
represents therefore a phase which just displaces the fringes
modulating the original distribution.

After the first sequence of Raman stimulated emission and
detection, a new cycle is initiated. By changing for each run
the Raman pulse areaV0t, one multiplies successively the
population distribution by sines or cosines with changing
periods and changing phases, so that after thei th cycle one
has

Pe
~ i !~n!5

sin2S Vnt i
2

1e
p

2 DP~ i21!~n!

(
n850

`

sin2S Vn8t i
2

1e
p

2 DP~ i21!~n8!

, ~21!

wheret i is the duration of the Raman pulse in thei th cycle,
andP( i21)(n) is the probability distribution of vibronic ex-
citations in the previous cycle@we defineP(0)(n)[P(n)#.

As our numerical simulations will show, this may result in
the decimation of more and more populations, until finally a
Fock state is reached, within a very good approximation, and
the vibrational state does not change anymore. This proce-
dure can be followed for all three directions, thus generating
a three-dimensional Fock state.

It is clear that this process depends on the random nature
of the electronic state detection, and therefore the Fock state
to be obtained cannot be predicteda priori. However, if the
vibronic excitation distribution becomes negligible after a
finite value ofn, then one is able to assert precisely the Fock
state which was obtained, once the sequence of detected
states and the Raman pulse durations are known. Under these
conditions, this state depends only on the sequence of mea-
surements~atomic states and pulse areas!, and is independent
of the initial distribution. Note that in an experiment this can
be implemented in real time by feeding a computer with the
data about the successive state detections and pulse dura-
tions, during an experimental run.

Furthermore, the distribution of Fock states after many
realizations, starting with the same initial vibrational state,
reproduces the initial distribution. Indeed, summing up over
all possibilities of detection of the ion internal states is
equivalent to not detecting them. Since the interaction does
not change the vibrational state, the distribution should not
change in this case. This can be seen explicitly in the follow-
ing way. The probabilityPe

( i ) of detecting the ion in states
ua& or ub& at the end of thei th cycle is

Pe
~ i !5 (

n50

`

sin2S Vnt i
2

1e
p

2 DP~ i21!~n!, ~22!

where, as before,e51 or 0 depending on whether this state
coincides or not with the electronic state in the beginning of
the cycle. AveragingPe

( i )(n) given by Eq. ~21! over the
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distribution Pe
( i ) one gets P( i )(n)5(e50,1Pe

( i )(n)Pe
( i )

5P( i21)(n). In the same way, we show thatP( i21)(n)
5P( i22)(n)5•••5P(n).

Experimental verification of the produced Fock state can
be made in the following way. One repeats the experiment
several times, and one selects the groups of experiments
characterized by the same sequence of electronic state detec-
tions, changing, however, in the final step the pulse area so
thatu spans some cycles, and measuring for each group and
for each value ofu the probabilitiesPa(u) and Pb(u) of
detecting the ion in statesua& or ub&. According to Eq.~15!,
one has in the Lamb-Dicke limit

Vnt

2
5F~n,t!1O~un2h2!, ~23!

where

F~n,t!5
V0t

2
2

u

2
2un. ~24!

Choosing a sequence of values of the pulse area so that
F(0,t)5(12h2/2)V0t/2 is always a multiple ofp ~since
V0t'200u, this would still provide about 100 values foru
in a p interval!, one gets forPa and Pb sines or cosines
which oscillate, as functions ofu, with frequencyn. Mea-
surement of this frequency leads therefore to the Fock state
obtained in a specific realization.

The above treatment, developed for an initial pure state,
can be easily generalized to statistical mixtures. Populations
will still change according to Eq.~21!, while the change in
the density matrix elements after thei th cycle is given by

rn,n8,e
~ i !

5

sinS Vnt i
2

1e
p

2 D sinS Vn8t i
2

1e
p

2 D
(
m

P~ i21!~m!sin2S Vmt i
2

1e
p

2 D rn,n8
~ i21! ,

~25!

where e has the same definition as before. It is clear that
urn,n8,e

( i ) u<urn,n8
( i21)u, so coherence will tend to be reduced, as

the QND measurement progresses. If the atomic state is not
detected, on the other hand, the change in the density matrix
elements will be the weighted average of the expressions
given by Eq. ~25!, the weights being the probabilities of
getting each state@denominators in Eq.~25!#. We get then

rn,n8
~ i !

5cosS Vn2Vn8
2

t i D rn,n8
~ i21! , ~26!

confirming that the populations do not change, while the co-
herences get reduced.

In practice, the whole process should take a time smaller
than the decay time of the electronic or vibrational levels. In
fact, as we are going to show in the following section, a few
cycles are enough to produce a Fock state, if only the lowest
vibrational levels are significantly populated. This implies
that the whole process should take place in a time shorter
than one millisecond.

IV. NUMERICAL RESULTS

All the following numerical simulations correspond to ini-
tial states with an average number of vibrational quanta
equal to five. Both a thermal and a coherent initial state are
considered. All the simulations are done in the Lamb-Dicke
limit, with h'0.1. We also assume that the uncertainty in
the determination of the area of the Raman pulses is of the
order of 1024 of the area, which seems to be realistic from
the experimental point of view. This precision is not neces-
sary for getting a Fock state. It is required, however, for
assessing which Fock state is obtained after a sequence of
measurements.

The convergence of the distribution to a Fock state de-
pends on the strategy adopted in the choice of the Raman
pulse areas for the successive cycles~strategies for speeding
up the convergence in cavity QED nondemolition measure-
ments were discussed in Ref.@37#!. We first consider simu-
lations where we vary the Raman pulse areas at random in an
interval such thatp/12,u,11p/12. Which electronic level
is detected at the end of each cycle is chosen according to the
a priori probability,Pe , given in Eq.~22!, of detecting it.

We have done several simulations starting with a thermal
and with a coherent state. In most of these simulations we
achieved convergence to a Fock state after 18 cycles. A typi-
cal example is shown in Fig. 2.

A much faster convergence may be achieved if we could
change both the phaseF(0,t) and the fundamental fre-
quencyu(t) at will after each cycle. In fact, once we have
fixed the value ofh during a real experiment, we may only
change the pulse area, between cycles, which means that
after each cycle the ratio betweenF(0,t) andu(t) is main-
tained fixed and equal to its initial value. We may take ad-
vantage, however, of the fact thatF(0,t) is experimentally
much larger thanp, to change the argument of the trigono-
metric functions that appear in Eq.~20! by a factor of

FIG. 2. Population distributions as a function of the vibronic
excitation number, for a Lamb-Dicke parameterh50.1: ~a! before
the first cycle, for a thermal distribution witĥn&55; ~b! after the
first cycle;~c! after the fifth cycle;~d! after the tenth cycle;~e! after
the thirteenth cycle. The pulse areasV0t were chosen at random, so
that u[V0th2/2 remains in the interval (1/12p,11/12p). Which
level is detected in a given cycle was chosen according to the prob-
ability distribution given by Eq.~22!.
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O(p) through a small relative change in the pulse area. This
small change affects the value ofu only by a factor of
O(h2). Therefore from a practical point of view we may
assume that these changes affect the phaseF(0,t), but not
the value ofu.

Consider that the first cycle has durationt0 and that we
have adjusted the values ofh and the initial value ofV0t0 in
such a way thatF0[F(0,t0)5(K1k)p, whereK@1 and
k50 or 1/2. We also assume thatK is divisible by small
integers, say j52,3,4,5. . . , so that F(0,t j )5F0t j /t0,
wheret j5t0 / j is still a multiple ofp pluskp.

Therefore, ifk50 andu j[u(t0)t j /t05p/(2 j ), detec-
tion of the electronic levelua& decimates populations corre-
sponding ton’s equal to odd multiples ofj , while detection
of the electronic levelub& decimates populations correspond-
ing to n’s equal to even multiples ofj , includingn50. On
the other hand, ifk51/2 andu5p/(2 j ), detection of the
electronic levelub& decimates populations associated with
n’s equal to odd multiples ofj , while detection of the elec-
tronic levelua& decimates populations withn’s equal to even
multiples of j . Using these results it is easy to plan a strategy
to obtain fast convergence to a Fock state when the initial
average vibrational occupation number is small, using an
electronic feedback mechanism to change conveniently the
value of the pulse area such thatu takes one of the values
p/(2 j ), depending on which electronic level was detected in
the previous cycle.

As an example, assume that initially the vibrational dis-
tribution is limited to occupation numbersn<5, and that the
internal electronic state isua&. In the first cycle one takes
u5p/2 andk50. After detection of the electronic level only
the even (n50,2,4) or odd (n51,3,5) populations survive,
depending on whether levelua& or ub& has been measured,
respectively. Ifua& is detected, one changesu to p/4. After
the second cycle, detection of levelub& produces a Fock state
with n52, while detection of levelua& reduces the distribu-
tion to occupation numbersn50,4. In this last caseu is
changed top/8. Now detection ofua& produces the Fock
state withn50 while detection ofub& produces the state
u4&. On the other hand, if in the first cycle levelub& is de-
tected,u should be changed top/4 andk to 1/2. Detection of
level ub& reduces the distribution to populations withn51
and 5, while detection of levelua& generates the Fock state
u3&. In the first case one changesu to p/8. Detection of level
ub& generates the stateu1& while detection of levelua& gen-
erates the stateu5&. In this simple example we show that
choosing conveniently the pulse areas we may generate a
Fock state after detection of only two or three atoms. Of
course more cycles are needed if the initial distribution has a
larger width. Note that our arguments depend only on the
maximum number of vibronic excitations being equal to five,
and not on the specific form of the distribution.

Even if the number of vibronic excitations is not limited,
it is still possible to get Fock states within a very good ap-
proximation, and with fast convergence, as long as similar
strategies are followed for the choices of the successive pulse
areas. In Figs. 3 and 4 we show simulations of experiments
where we start either with a thermal or a coherent vibrational
state with^n&55, the electronic level beingua&, and adjust
the values ofh and the area of the Raman pulse in the first

cycle so thatF0548p and u5p/2. In these simulations a
probability distribution very close to that corresponding to a
Fock state withn54 is reached after only three or four
cycles corresponding to the sequence of valuesp/2, p/4,
p/8, p/12 for u and the sequence of detections of the elec-
tronic levels in the~lower, lower, upper, lower! states.

Even thoughh'0.1 and^n&55, we use in all numerical
simulations the expression forVn given by Eq.~13!, so that
corrections of higher order inh2n are fully taken into ac-
count.

FIG. 3. Population distributions as a function of the vibronic
excitation number, forF0548p and u5p/2 in the first cycle
~Lamb-Dicke parameterh'0.102: ~a! before the first cycle, for a
thermal distribution witĥ n&55; ~b! after the first cycle (u5p/2,
lower level detected!; ~c! after the second cycleu5p/4, lower level
detected!; ~d! after the third cycle (u5p/8, upper level detected!;
~e! after the fourth cycle (u5p/12, lower level detected!.

FIG. 4. Population distributions as a function of the vibronic
excitation number, forF0548p and u5p/2 in the first cycle
~Lamb-Dicke parameterh'0.102: ~a! for an initial coherent state
with ^n&55; ~b! after the first cycle (u5p/2, lower level detected!;
~c! after the second cycle (u5p/4, lower level detected!; ~d! after
the third cycle (u5p/8, upper level detected!; ~e! after the fourth
cycle (u5p/12, lower level detected!.
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V. GENERATION OF SCHRÖ DINGER CATS

If the initial vibrational state is coherent, so that
cn5exp(2uau2/2)an/An!, it follows from Eqs.~23! and~19!
that

uC~ t !&5
1

N @ uae2 iu&1e2 i ~V0t2u!uaeiu&], ~27!

where as beforeu5h2V0t/2, and the normalization constant
is given by

N 252@11cos~ uau2sin2u2V0t1u!#

3exp@2uau2~12cos2u!#. ~28!

For uau2@1, andu sufficiently large~e.g.,u5p/2), Eq.~27!
provides an example of a quantum superposition of distinct
coherent states, which is sometimes called a ‘‘Schro¨dinger
cat’’ state@12#. In fact, Fig. 4~b! displays a quite character-
istic feature of these states: the rapid oscillations in the dis-
tribution for the occupation numbern @12#.

It should be noticed that this state is obtained here at the
end of a single cycle, involving therefore a simpler proce-
dure than the one adopted in Ref.@34#, at the expense, how-
ever, of requiring a greater degree of precision in the defini-
tion of the area of the carrier pulse.

VI. CONCLUSIONS

We have shown that it is possible to realize a quantum
nondemolition measurement of the vibrational populations of
a trapped ion, by means of a sequence of Raman pulses
which induce resonant transitions between two electronic
states~usually ground-state hyperfine sublevels!. The crucial
point in this scheme is the dependence of the Rabi oscilla-
tions between the two levels on the vibronic quantum num-

bern. For properly chosen parameters, a ‘‘Schro¨dinger cat’’
state is produced after the first pulse and subsequent atomic
state detection. Repetition of this cycle leads, for an appro-
priate choice of pulse areas, to a Fock state. Of course, this
scheme is QND so far as the occupation numbers are con-
cerned. Thus, if one starts with a given coherent state, its
phase will be quickly randomized by the measurement pro-
cedure@one should note that after the first measurement one
gets already a superposition of two coherent states with dif-
ferent phases, cf. Eq.~27!#. Equation~19! shows, however,
that the measuring process does not spoil the relative phase
between the surviving Fock-state components of the original
state.

A feedback procedure, by which the areas of successive
pulses are chosen according to the result of the atomic state
detection in the previous cycle, greatly speeds up the process
of getting a Fock state. The whole procedure can be consid-
ered as a paradigm of quantum measurement, leading after
some time to an eigenvector of the observable being mea-
sured, in this case the number of excitations in a vibronic
mode.

Note added in proof:Recently, a paper containing similar
ideas was published by R. L. de Matos Filho and W. Vogel
in Phys. Rev. Lett.76, 4520~1996!.
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