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RESUMEN

La hipótesis de este trabajo es que las desviaciones y aberraciones de un instrumento

de óptica adaptativa pueden ser cuantificadas e incorporadas a una simulación, con el fin

de entrenar un reconstructor tomográfico válido bajo condiciones experimentales. Con

este propósito se caracterizó la banca óptica BEAGLE (Sáez, Basden, Guzmán, Dubost, &

Berdja, 2014), un experimento de óptica adaptativa multi-objeto que emula a CANARY del

William Herschel Telescope. Los parámetros adquiridos son empleados para ajustar una

simulación de la banca óptica, la cual produce datos de validación.

Se propone una técnica para manejar desviaciones instrumentales, cuando las medi-

ciones son realizadas utilizando un sensor de frente de onda Shack-Hartmann (SH). Dos

desviaciones son tratadas: heterogeneidad de sub-aperturas y aberraciones dependientes

del campo. La primera se debe a aberraciones estáticas en el eje y a imperfecciones en la

construcción del Shack-Hartmann. La segunda es el producto de aberraciones ópticas fuera

del eje. La técnica de corrección mitiga las desviaciones de las mediciones realizadas por

el SH, antes de entregárselas a un reconstructor basado en una red neuronal artificial (ANN

por su siglas en inglés). La intención es exponer a la ANN a datos normalizados, similares

a aquellos producidos en simulación para su entrenamiento.

Una vez implementada, la corrección falla en entregar mejora alguna. Para lidiar con

esto, se realiza un análisis de sensibilidad. Como es de esperar, la ANN se muestra robusta

frente al ruido. Dado que la corrección propuesta puede ser vista por el reconstructor como

ruido, su efecto es limitado. También se probó con otras fuentes de error, tales como

el perfil atmosférico y el pointing. Cuando estos errores caen en órdenes de magnitud

esperados, su influencia en la estimación del sistema es despreciable, bajo 1%. La varación

más significativa de rendimiento se observa cuando se cambia un parámetro atmosférico:

la escala externa. Trabajo futuro considera la realización de pruebas para todas las fuentes

de error, en una simulación inclusiva, asi como el entrenamiento de un reconstructor que

considere incertidumbre en estos factores.
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ABSTRACT

The hypothesis of this work is the deviations and aberrations of an adaptive optics

instrument can be quantified, and incorporated into a simulation, to train a tomographic

reconstructor valid in experimental conditions. To do so, the test bench BEAGLE (Sáez et

al., 2014), a multi-object adaptive optics capable experiment that emulates CANARY at the

William Herschel Telescope, is characterized. Parameters retrieved are employed to tune a

simulation of the test bench, which produces validation data sets.

A technique is proposed to handle instrumental deviations, when measurements are

made using a Shack-Hartmann (SH) wave-front sensor. Two deviations are addressed: sub-

aperture heterogeneity and field-dependent aberrations. The first is due to on-axis static

aberrations and imperfections in the Shack-Hartmann’s construction. The second are the

product of off-axis optical aberrations. The correction technique mitigates the deviations

from the SH measurements before handing them over to an artificial neural network (ANN)

based reconstructor. The intention is to present the ANN with normalized data, similar to

that produced in simulation for its training.

When implemented, the correction fails to deliver any improvement. To address this,

a sensitivity analysis is performed. As expected, the ANN is robust when facing noise.

Because the proposed correction can be seen by the reconstructor as noise, its effects are

limited. Other sources of error, such as atmospheric profile and pointing were tested as

well. When these errors fall within expected orders of magnitude, their influence on the

system’s estimation is negligible, under 1%. The most significant variation in performance

is observed when changing an atmospheric parameter: the outer scale. Further works re-

mains to test all sources of error in an inclusive simulation and to train a new reconstructor

that considers the incertitude in these factors.

Keywords: Turbulence, Adaptive, Optics, Tomography, Reconstructor.
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1. INTRODUCTION

1.1. Addressing the problem of atmospheric turbulence in astronomical ground-based

observations

Whenever looking at a star or at a planet with the naked eye, scintillation can be per-

ceived. Contrary to popular belief, this is not related to the nature of the celestial object,

but rather to the effects of atmospheric turbulence. Just as when watching over a road on a

hot day, the hot air in motion deflects the light crossing through it, causing the illusion of

motion. The deflection depends on the gradient of refraction index, which in turn depends

on the gradient of temperature. The very same phenomenon is in action when looking at

stars, but with less strength. During the night, the atmosphere is far from any source of

heat. Temperature gradients are therefore very small, but they occur and cumulate over a

large distance going from the ground, all the way up until the end of the atmosphere. The

integrated effects accounts for a perceivable scintillation.

Although this effect seems negligible to the human eye with its little pupil and mag-

nification, it has a destructive effect to larger instruments. Being small, a beam of light

entering the pupil of the eye can be thought of being a single ray. When traversing through

the atmosphere, this ray will change its phase and its direction. But for a large telescope,

fitting thousands of eyes, each ray will change in its own direction and phase, resulting in

a very distorted image. If a short exposure image of a star could be acquired, the result

would not be the typically bell-shaped profile, but instead a swarm of speckles. The long

exposure result is the integration of this moving swarm over its most probable area. The

image of any star is therefore larger than that expected without turbulence. This limits the

resolution of astronomical telescopes. The purpose of building ever larger telescopes, in-

creasing the light collecting area, is not only to obtain brighter images, but also to improve

the resolution by reducing the diffraction limit. But because of the effects of turbulence,

the resolution of a giant telescope is no better than that of 25 [cm] pupil, amateur telescope.
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There are two solutions to dealing with the problem at hand. The first and most expen-

sive one is travelling outside of the atmosphere. This means launching space telescopes,

such as the Hubble Space Telescope. This solution allows for diffraction limited images of

high resolution, even during long exposures. This is why the Hubble Space Telescope was

able to provide deep space observations of an unprecedented resolution. The problem is

this is fairly expensive, and maintenance and upgrades require space missions. The second

solution is to implement an adaptive optics (AO) system. AO systems are control systems

that measure and mitigate the effects of atmospheric turbulence. The whole of the light

entering the telescope’s pupil is called the wave-front (WF). To measure the phase aber-

rations introduced to the WF by the turbulence, a wave-front sensor (WFS) is used. The

most common kind is the Shack-Hartmann (SH) WFS, which consists of a square array of

micro-lenses or lenslets. An optical system can be used to conjugate this array to the tele-

scope’s pupil. This is equivalent to deploying a large array of small cameras on the pupil,

to image small incoming rays, thus sampling the WF.

Once the wave-front has been sampled, the information is reconstructed and handed

over to a deformable mirror (DM). The DM adopts the shape of the aberrant wave-front.

When reflecting upon it, the WF is corrected, becoming flat once again. This process

must be repeated several times per second. Because the turbulence is ever changing, any

measurement and correction ceases to be valid after a short period of time. An average

AO system works at a frequency over 200 [Hz]. Finally, the DM must be placed before

the WFS. This way the DM corrects and then the WFS sees the residual error, closing the

control loop. Figure 1.1

This describes the basic architecture of a classical AO system, invented during the

seventies for military applications. Since, the technology has found civil applications, not

only in ground-based astronomy, but also in optical telecommunications and ophthalmol-

ogy. With respect to its astronomical applications, AO has evolved into several variants.

One of them, wide-field AO, is central to this work and is discussed in the following section.

2



FIGURE 1.1. Adaptive optics system’s architecture. Reproduced from (Tokovinin, 2001)

1.2. Wide-field adaptive optics

The light of two different stars travels across different volumes of the atmosphere. It is

said that each star sees a different turbulence. Therefore, a correction that is valid for on star

is not for the other. If both stars are angularly close to each other, then a correction for one

remains partially valid for the other, as they see about the same turbulence. But as the stars

move apart, the validity rapidly decreases to none. This is called angular anisoplanatism

and is a major problem when trying to correct the aberrations seen by a target object, by

measuring the turbulence on another. The phenomenon is illustrated in Figure 1.2, for four

stars.

3



FIGURE 1.2. Topological diagram of the light cylinders of a central star and three
guide stars 30 arcseconds apart, for a 4.2 [m] telescope. Cut-throughs on the right
are take at 0 [m], 5000 [m] and 10000 [m] of altitude. Reproduced from (Osborn
et al., 2012)

The previous case arises when observing elongated and faint targets, such as galaxies

or nebulae. Because these objects are not punctual and, their shape, and therefore their

incoming wave-front is not known a priori. On the contrary, stars are supposed to be punc-

tual and emit flat wave-fronts. Because of this elongated targets cannot be used to sample

the turbulence. In a classical AO system, if any correction is to be made upon them, it

has to come from measurements of a neighbouring star. This is not always possible, as

stars are required to be angularly near to the target, and of a sufficient magnitude (bright-

ness). This calls for a new technique that is able to retrieve the aberrations of a target, from

measurements of other stars.

The solution to the problem are wide-field AO (WFAO) systems. These systems make

use of multiple WFS, each observing a different star, to better sample the atmosphere

above the telescope. A star observed by a WFS is called a guide star, since it will be

4



used to sample and later correct the turbulence. When no stars are bright enough in the

required field of view, artificial laser stars are launched, typically from the top or from

the sides of the telescope. Both, natural guides stars (NGS) and laser guide stars (LGS)

are used to illuminate volumes of the atmosphere. Each star defines a channel. When

the incoming wave-front from a guide stars travels across the atmosphere, the resulting

aberrant WF has integrated the effects of the volume it traversed. Therefore, only a pro-

jection of the turbulence volume can be observed at each channel. But when the channels

overlap, their common volume can be retrieved from all projections by a tomographic re-

constructor. In other words, the two-dimensional projection of a three-dimensional volume,

allows to reconstruct the volume using tomography. There are four major techniques using

tomographic reconstructors: ground layer AO (GLAO) (Tokovinin, 2004), laser tomog-

raphy AO (LTAO) (Le Louarn & Hubin, 2004), multi-conjugate AO (MCAO) (Beckers,

1989) and multi-object AO (MOAO) (Assémat, Gendron, & Hammer, 2007). From the

previous, MCAO and MOAO are more strictly wide-field techniques.

In the case of MOAO, the reconstructor uses the measurements to calculate the at-

mosphere’s projection as it would be seen in a desired direction. This is equivalent to

reconstructing the entire volume, and then projecting it into a direction, but with far less

computations. The result can be straightforwardly fed into a controller for correction. The

system is said to be multi-object because the reconstructor can estimate the projected phase

aberration of multiple targets, and then correct each using individual DMs.

Two major approaches to tomography have been proposed. Learn & Apply (L&A) (Vi-

dal, Gendron, & Rousset, 2010) is a linear reconstructor that uses correlation matrices cal-

culated online with on-sky data. Each matrix is directly multiplied by a vector containing a

concatenation of the phase aberrations measured for all guide sources. The resulting vector

is the estimation of the phase aberration in the target direction. The alternative technique

is CARMEN (Osborn et al., 2014), an artificial neural network (ANN) based reconstruc-

tor, trained using phase screens with different profiles and ranging from ground layer to an

altitude of about 15500 m.
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Both approaches, L&A and CARMEN, have been tested at CANARY (Morris et al.,

2010; Gendron et al., 2011), the first on-sky MOAO test based at the William Herschel

Telescope (WHT). Results from the implementation of L&A (Vidal et al., 2014) and CAR-

MEN (Osborn et al., 2014) show that while achieving higher Strehl ratios when recalcu-

lated, L&A performance is highly dependent on the turbulence profile and specially on its

altitude. Hence the reconstruction deteriorates over time as turbulence layers move, call-

ing for new measurements and recalculation which take on observation time. On the other

hand, because CARMEN is trained with phase screens at multiple altitudes and using var-

ious profiles, it does not show the same dependences and remains a valid reconstructor for

larger periods of time. CARMEN is able to do so because an ANN can effectively include

the information of multiple geometries and profiles, whereas correlation matrices strongly

change with geometry.

The advantage of having a reconstructor that can be trained earlier during the week

compensates for the fact that it cannot be with on-sky data previous to the observation. Ar-

tificial neural networks require large amounts of variably independent data and days to be

trained. The variability will depend on the phase screens used, which are usually in short

supply. Data produced via numerical simulation would not make use of facility instru-

ments, allowing for parallel training. Through pseudo-randomness, a simulation could also

guarantee a large number of independent cases, producing random phase screens at high

speed. This is state of art, as both, linear and ANN based reconstructors have validated

their concept and compete to be implemented in future telescopes, such as the European

Extremely Large Telescope (E-ELT). Being able to train ANN based reconstructors in sim-

ulation would grant them a decisive advantage over less robust linear reconstructors.

In summary, the hypothesis is the deviations and aberrations of an instrument can be

quantified, and incorporated into a simulation, to train a reconstructor valid in experimental

conditions. To do so, the test bench BEAGLE (Sáez et al., 2014), a multi-object adaptive

optics capable experiment that emulates the William Herschel Telescope, is characterized.

Parameters retrieved are employed to tune a simulation of the test bench, which produces

validation data sets.
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The first chapters develop and explain the necessary tools to address the research.

Chapter 2 defines and calculates the covariance and the power spectral density of the turbu-

lence, as measured by an aperture. This relates the physical phenomenon to the instrument

measuring it. Chapter 3 presents standard methods for wave-front reconstruction and for

tomographic reconstruction. Their goal is to reconstruct the wave-front from wave-front

sensor measurements and to project several wave-front into a target direction, respectively.

Chapter 4 establishes calibration and characterization procedures for a multi-object adap-

tive optics capable test bench. Original work can be found from this chapter on, as new

characterization procedures are proposed. They are necessary to implement the novel cor-

rection technique presented in Chapter 5.

The final chapter proposes a technique to handle instrumental deviations. Two devia-

tions are addressed: sub-aperture heterogeneity and field-dependent aberrations. The first

is due to on-axis static aberrations and imperfections in the Shack-Hartmann’s construc-

tion. The second is the product of off-axis optical aberrations. The correction technique

mitigates them before handing over the measurements to the reconstructor. The intention

is to present the ANN with normalized data, similar to that produced in simulation for its

training. When implemented, the correction fails to deliver any improvement. To address

this, a sensitivity analysis is performed. As expected, the ANN is robust when facing noise.

Because the proposed correction can be seen by the reconstructor as noise, its effects are

limited. Other sources of error, like atmospheric profile and pointing were tested as well.
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2. CHARACTERIZING ATMOSPHERIC TURBULENCE

The atmosphere, turbulent as it is, has ever changing indexes of refraction. When the

collimated light of a punctual source in sky travels through it, it changes the speed of the

rays, producing a change in phase. The incoming wave-front has now a phase aberration.

In adaptive optics, the phase aberration must me measured so it is subtracted or corrected

using a deformable mirror. The most widely used instrument to measure the wave-front

is the Shack-Hartmann wave-front sensor (SH-WFS), which measured the slopes of the

wave-front. It is therefore useful to statistically characterize the phase aberration in terms

of its slope, so the structure or profile of the turbulence can be derived from the SH-WFS

data.

2.1. Definitions for wave-front & for slope

Let X and Y be axes defining an horizontal plane, and Z be a vertical axis. A wave-

front’s phase can be described by a function ϕ(x, y) in radians. The wave-front can also be

described in metres (or nanometres) as

z(x, y) =
λ

2π
ϕ(x, y) (2.1)

where λ is the light’s wavelength. As shown in Figure 2.1, a measure of its slope is the angle

of arrival. In general, the small-angle approximation can be applied to say tan (α) ≈ α.

FIGURE 2.1. Angle of arrival of a wave-front described by function z(x, y), at a (x0, y0)

From now on the angle of arrival may be referred to as slope. By definition, the angle of
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arrival with respect to an X axis, also called longitudinal, at a (x0, y0) location is

tan (αl[λ, x0, y0]) = −∂z (λ, x0, y0)

∂x0

(2.2)

where the minus is a useful convention. Then considering the small-angle approximation

αl[λ, x0, y0] = −∂z [λ, x0, y0]

∂x0

(2.3)

Finally replacing 2.1 into 2.3 gives

αl [λ, x0, y0] =
−λ
2π

∂ϕ [λ, x0, y0]

∂x0

(2.4)

which relates the angle of arrival as measurable by a wave-front sensor (WFS) to the wave-

front’s phase.

2.2. Slopes´ Covariance & Power Spectral Density

Because atmospheric turbulence is a stochastic process, it has to be characterized in the

long term through statistical moments. The slopes’ covariance between to points separated

by [x, y] is the defined as

Bα,l [λ, x, y] =
λ2

4π2
〈∂ϕ [λ, x0, y0]

∂x0

∂ϕ [λ, x0 + x, y0 + y]

∂x0

〉x0,y0 (2.5)

=
λ2

4π2
lim
ε→0
〈ϕ [λ, x0 + ε, y0]− ϕ [λ, x0, y0]

ε

ϕ [λ, x0 + x+ ε, y0]− ϕ [λ, x0 + x, y0]

ε
〉x0,y0 (2.6)

=
λ2

4π2
lim
ε→0

(
2Bϕ [λ, x, y]−Bϕ [λ, x+ ε, y]−Bϕ [λ, x− ε, y]

ε2

)
(2.7)

Then using Taylor’s expansion on all terms

Bϕ [λ, x± ε, y] ' Bϕ [λ, x, y]± ε∂Bϕ [λ, x, y]

∂x
+
ε2

2!

∂2Bϕ [λ, x, y]

∂x2
+ · · · (2.8)

Replacing (2.8) into (2.7)

Bα,l [λ, x, y] =
λ2

4π2
lim
ε→0

(
2Bϕ [λ, x, y]− 2Bϕ [λ, x, y]− 2 ε

2

2!

∂2Bϕ[λ,x,y]

∂x2

ε2

)
(2.9)
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and then simplifying, the covariance is

Bα,l [λ, x, y] = − λ2

4π2

∂2Bϕ [λ, x, y]

∂x2
(2.10)

From the relationship in (2.10) it is possible to find the Power Spectral Density of the slopes.

To do so, for any all wide-sense stationary process X with an auto-covariance function such

as

Bx(τ) = 〈x(t)x∗(t− τ)〉 (2.11)

Wiener-Khinchin’s theorem guarantees there is a power spectral function calculated as

W (f) =

∫ ∞
−∞

Bx(τ)e−2πiτfdτ (2.12)

⇔ Bx(τ) =

∫ ∞
−∞

W (f)e2πiτfdf (2.13)

This in terms of the turbulence’s covariance becomes

Bϕ [λ, x, y] =

∫∫
dfxdfyWϕ [λ, fx, fy] e

2πi(fxx+fyy) (2.14)

Replacing (2.14) into (2.10) gives

Bα,l [λ, x, y] = − λ2

4π2

∂2

∂x2

∫∫
dfxdfyWϕ [λ, fx, fy] e

2πi(fxx+fyy) (2.15)

=

∫∫
dfxdfyWϕ [λ, fx, fy]

(
−λ2

4π2

)
∂2

∂x2
e2πi(fxx+fyy) (2.16)

=

∫∫
dfxdfyf

2
xλ

2Wϕ [λ, fx, fy] e
2πi(fxx+fyy) (2.17)

It is now possible to note that the power spectral density of the angle of arrival is

Wα,l [λ, fx, fy] = λ2f 2
xWϕ [λ, fx, fy] (2.18)

2.3. Considering a Sub-aperture

As mentioned, the wave-front is sampled using a Shack-Hartmann wave-front sensor.

The sensor is a lenslet array, conjugated to the pupil of the system which is in this case a

10



telescope. As showed in Figure 2.2, lenslets sample a small region of an incoming wave-

front z(x, y). They do so by focusing segments of the wave-front into spots on a CCD

detector. If ϕ(x, y) is limited in frequency, there is a lenslet small enough it samples an

FIGURE 2.2. Transversal view of a Shack-Hartmann wave-front sensor represen-
tation. The wave-front z(x, y), propagates in the Z direction, down to the lenslet
array. Each lenslet, of focal length f and surface S focuses an approximately flat
segment of the wave-front. The offset of the resulting spots from the optical axis of
the lenslet is used to calculate the angle of arrival αj for sub-aperture j

approximately flat segment of wave-front. In this case, it can be said the sensor measures

the average slope of the sampled segment of wave-front. For sub-aperture j of surface S,

the average slope is

αl,p [λ, x0, y0] =
−λ
2πS

∫
S

G [x′ − x0, y
′ − y0]

∂ϕ [λ, x′, y′]

∂x′
dx′dy′ (2.19)

where G [x′ − x0, y
′ − y0] is a weight function with unitary value inside sub-aperture j of

coordinates [x0, y0], and null elsewhere.

Later, the expression can be seen as a convolution between both functions. For conve-

nience G will be centered in [0, 0] so that it is pair.

αl,p [λ, x0, y0] =
−λ
2πS

∫
S

G [x0 − x′, y0 − y′]
∂ϕ [λ, x′, y′]

∂x′
dx′dy′ (2.20)

=
−λ
2πS

(G [x0, y0]) ∗ ∂ϕ [λ, x0, y0]

∂x0

(2.21)
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It will now be shown how the covariance of the turbulence seen through a sub-aperture

can be calculated from its power spectral density and that of the sub-aperture. First lets

consider the following substitution:

GS [x, y] =
G [x, y]

S
(2.22)

Then slopes’ covariance through a sub-aperture is defined as

Bαlp [λ, x, y] = 〈−λ
2π

∫
GS [x′ − x0, y

′ − y0]
∂ϕ [λ, x′, y′]

∂x′
dx′dy′

−λ
2π

∫
GS [x′′ − x0 − x, y′′ − y0 − y]

∂ϕ [λ, x′′, y′′]

∂x′′
dx′′dy′′〉(2.23)

=

∫∫
GS [x′ − x0, y

′ − y0]GS [x′′ − x0 − x, y′′ − y0 − y]

λ2

4π2
〈∂ϕ [λ, x′, y′]

∂x′
∂ϕ [λ, x′′, y′′]

∂x′′
〉dx′′dy′′dx′dy′ (2.24)

=

∫
GS [x′ − x0, y

′ − y0]

∫
GS [x′′ − x0 − x, y′′ − y0 − y]

Bαl [x
′′ − x′, y′′ − y′] dx′′dy′′dx′dy′ (2.25)

To continue, the translation of a function must be noted as

(τ [x] f) (y) = f (y − x) (2.26)

so that the the commutation of translations by convolution can be written as

τ [x](f ∗ g) = (τ [x]f) ∗ g (2.27)

and

τ [x](f ∗ g) = f ∗ (τ [x]g) (2.28)
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Considering the notations expressed in (2.27) and in (2.28), equation (2.25) can be written

as

Bαlp [λ, x, y] =

∫
GS [x′ − x0, y

′ − y0]

∫
GS [x0 + x− x′′, y0 + y − y′′]

τ [x′, y′]Bαl [x
′′ − x′, y′′ − y′] dx′′dy′′dx′dy′ (2.29)

=

∫
GS [x′ − x0, y

′ − y0]

(τ [−x0,−y0] τ [x′, y′] (GS ∗Bαl) [x, y]) dx′dy′ (2.30)

=

∫
τ [x0, y0]GS [x′, y′] τ [−x0,−y0]

(GS ∗Bαl) [x− x′, y − y′] dx′dy′ (2.31)

Bαlp [λ, x, y] = (GS ∗GS ∗Bαl) [λ, x, y] (2.32)

Later, if the sub-aperture’s power spectral density is defined as

Wgs [fx, fy] =

(∫∫ ∞
−∞

GS [x, y] e−2πi(fxx+fyy)dxdy

)2

(2.33)

then it is possible to use Wiener-Khinchin’s theorem in equation (2.32)

Bαlp [λ, x, y] =

∫∫ ∞
−∞

Wgs [fx, fy]Wαl [fx, fy] e
2πi(fxx+fyy)dfxdfy (2.34)

from which the power spectral density is

Wαlp [λ, fx, fy] = λ2f 2
xWgs [λ, fx, fy]Wϕ [λ, fx, fy] (2.35)

2.4. Physical Model, von Karman’s Power Spectral Density

All that is needed from the previous expression is a way of calculating the turbulence’s

covariance or its equivalent in frequency space, the power spectral density Wϕ. This needs

a physical model and one of the first and most expanded is Kolmogorov’s model (Voit-

sekhovich, 1995). The model does not consider a finite outer scale parameter L0. The

outer scale is the scale at which energy enters the the turbulence and then decays in an

inertial regime down to the inner scale.
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It is impossible to have a turbulence which correlates at infinite scale. Furthermore, a

Phase Screen to simulate atmospheric turbulence in an experiment can only have a finite

size. These leads to the consideration of a model which do takes into account the outer

scale. This is von Karman’s model (Voitsekhovich, 1995). According to it, the turbulence’s

power spectral density can be described as

Wϕ [λ, fx, fy] = C(µ)C̃2
nδz

1

λ2

[
f 2 +

1

L2
0

]−[µ+3]/2

(2.36)

In the equation C̃2
nδz is the index of refraction structure constant integrated through a tur-

bulence layer δz, f is the frequency’s norm and C(µ) is a µ depending constant of value

µ = 2/3 in the case of a Kolmogorov-Obukhov regime, and is calculated as follows:

C(µ) = πΓ{µ+ 2}sin{πµ/2}/ [2π]µ (2.37)

An advantage of Equation 2.36 is that it only takes changing[
f 2 +

1

L2
0

]
(2.38)

in order to change the physical model. Equation 2.38 represents the von Karman model of

turbulence which considers a finite outter scale L0. With an infinite outter scale the model

describes a Kolmogorov regime.
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3. WAVEFRONT RECONSTRUCTION & TOMOGRAPHIC RECONSTRUCTION

An adaptive optics system’s function is to subtract phase aberrations from incoming

wave-fronts. Phase aberrations are introduced by atmospheric turbulence and constitute

a wave-front that has been added to the target’s wave-front. The system has to measure

the aberration, then reconstruct the data into a wave-front and finally subtract it using a

deformable mirror (DM). To measure a wave-front, a standard configuration is to use a

Shack-Hartmann wave-front sensor (SH-WFS). The SH-WFS samples the slope of the

wave-front, which is then used to reconstruct it. There are multiple methods or recon-

structors. In Section 3.1 are presented two possible reconstructors. Both solve the inverse

problem of calculating the wave-front’s slope, here called the derivation problem. The first

one does it in an all zonal representation base of the wave-front and the derivative, whereas

the second goes from a zonal representation of the slopes to a modal representation of the

wave-front.

In some cases a previous issue has to be addressed before the phase aberration can be

reconstructed for subtraction. When a target produces an unknown wave-front, it is difficult

to make the distinction between the target’s and the added phase aberration. Only when

the wavefront is expected to be flat or without aberrations, the wave-front is considered

pure aberration due to turbulence. Unfortunately this is not always the case, as scientific

targets are not always punctual light sources that produce flat wave-fronts such as stars,

but elongated objects that produce unknown wave-fronts such as galaxies and nebulae.

In such cases, multiple SH-WFS are deployed in order to measure nearby punctual light

sources, which are called guide sources or guide stars. Because nearby stars sample the

same turbulence as the target, an algorithm can be used to extrapolate the turbulence seen

by the target. The algorithm is called a tomographic reconstructor. Section 3.2 presents

the Learn & and Apply (L&A) algorithm and the application of Artificial Neural Networks

(ANN) as tomographic reconstructors.
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3.1. Wavefront reconstruction

Two widely used reconstructors are present in this section. The first one models the

problem of calculating the slopes of a known wavefront, and then solves the inverse prob-

lem. It is said to integrate only in the sense it solves the inverse problem of the derivation.

The second reconstructor goes from a zonal representation of the slopes to a description in

Zernike coefficients of the wave-front. The last is called a modal representation since each

coefficient weights a Zernike polynomial, which are arranged in groups or modes.

3.1.1. Zonal representation

The functions z[x, y] and ϕ[x, y] are representations, respectively of the wave-front

and of its phase. They are called zonal representations because they produce a value for

each point [x, y] or zone around it. In Section 2.3, equation 2.19 describes the process

through which the SH-WFS measures the slopes. With the acquired data, the intention is

to reconstruct the wave-front through a process of integration.

To this purpose must be defined the places relative to the sub-apertures where the

samples of the wave-front z[x, y] will be reconstructed. These are called phase points.

Figure 3.1 places them in the interstice between sub-apertures. The figure also shows how,

through a discrete process of integration, a phase point zj+1 can be calculated from the

previous point zj and the slope sampled between them. This is called Fried’s configuration

as presented in (Southwell, 1980). For an array of square sub-apertures, each sub-aperture

produces a slope described in two directions. Instead of α, slopes will now be referred

by s, so the slope of in the X direction from sub-aperture j is sj x. Fried’s configuration

in a two-dimensional lenslet array is as shown in Figure 3.2. Integrating as proposed in

Figure 3.1 means defining a starting phase point with an arbitrary value, and using the

slopes to calculate the phase points around it. As the calculation is propagated through the

grid, so are the measurement errors of all the slopes used. The error will not be distributed

homogeneously and will be larger the further the phase points are from the origin.

16



FIGURE 3.1. Discrete integration of the wave-front’s slopes. Phase points zj are
located between sub-apertures of diameter d in Fried’s configuration.

FIGURE 3.2. Fried’s configuration for an nxn lenslet array. Phase points zj are
located between sub-apertures.

To solve this and to obtain a minimum error solution, the derivation problem is set and

then inverted using a minimum least-squares criteria. From Figure 3.2, let all phase points

be vertically concatenated in a vector

~z =


z1

z2

...

z(n+1)2

 (3.1)
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and all slopes be vertically concatenated in a vector

~s =
[
s1 x s1 y · · · sn2 x sn2 y

]T
(3.2)

The derivation problem is to find a matrix∇ for which

∇~z = ~s (3.3)

By examining Fried’s configuration, slopes can be calculated from phase points as

sj x =
(zj+1 + zj+n+2) /2− (zj + zj+n+1) /2

d
(3.4)

and

sj x =
(zj+n+1 + zj+n+2) /2− (zj + zj+1) /2

d
(3.5)

Using these formulae, the derivation matrix becomes

∇ =
1

2d



−1 1 0 0 . . . −1 1 0 . . .

−1 −1 0 0 . . . 1 1 0 . . .

0 −1 1 0 . . . 0 −1 1 . . .

0 −1 −1 0 . . . 0 1 1 . . .
... . . . . . . . . . . . . . . . . . .


(3.6)

This matrix is finally pseudo-inverted so that

pinv (∇)~s ≈ ~z (3.7)

Many algorithms have been implemented to perform the pseudo-inversion. They use Sin-

gular Value Decomposition (SVD) to minimize the square error

e = 〈‖pinv (∇)~s− ~z‖2〉 (3.8)

The resulting matrix Rϕ = pinv (∇) is the wave-front reconstructor.
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3.1.2. Modal representation

A modal representation describes a function as the weighted combination of other

functions called modes. In other words, the function is described in terms of the weights

necessary for its construction using a certain base. Since wave-fronts usually propagate

through circular pupils, a well fitted base to describe them are Zernike polynomials (Born

& Wolf, 1999). Zernike polynomials constitute an orthogonal base inside the unitary disk.

If Zj [ρ, θ] is a polynomial of index j, two polynomials are orthogonal if∫
d2ρW [ρ]Zj [ρ]Zj∗ [ρ] = δjj∗ (3.9)

where

W [ρ] =


1
π
, ρ ≤ 1

0, ρ > 1
(3.10)

And because they constitute a base, then any function ϕ defined inside a disk of radius R

can be described as

ϕ [Rρ, θ] =
∑
j

ajZj [ρ, θ] (3.11)

In Zernike’s definition the polynomials are defined by two indexes, the azimuthal fre-

quency m and the radial degree n, and by their parity for they can be even or odd. When

a polynomial is odd, in some cases its azimuthal frequency is considered −m. The defini-

tions of the polynomials are

Zm
n, even [ρ, θ] = Rm

n [ρ] cos[mθ]

Zm
n, odd [ρ, θ] = Rm

n [ρ] sin[mθ]

 0 ≤ θ < 2π

0 ≤ ρ ≤ 1
(3.12)

where 

Rm
n [ρ] =

∑n−m
2

k=0
(−1)k(n−k)!

k!(n+m
2
−k)!(n−m

2
−k)!

ρn−2k

|Zm
n [ρ, θ]| ≤ 1

n ≥ |m| ≥ 0

n− |m| = even

(3.13)
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The inequations in 3.13 allow only for certain combinations of n and m, which means only

certain polynomials are possible. Resulting combinations are listed in Table 3.1. When

TABLE 3.1. Indexes of Zernike polynomials. Possible pairs of indexes n,m are
shown up to n = 4. Radial frequency is also referred to as mode

Radial
degree Azimuthal frequency (m)

(n) -4 -3 -2 -1 0 1 2 3 4
0 0,0
1 1,-1 1,1
2 2,-2 2,0 2,2
3 3,-3 3,-1 3,1 3,3
4 4,-4 4,-2 4,0 4,2 4,4

further using these polynomials, specially in optical applications which require using linear

algebra, Zernike’s notation using a pair of indexes becomes uneasy or unfitted. When

representing a wave-front with Zernike coefficients, it is convenient to concatenate them in

a vector so they can be operated on. This is achieved using Noll’s sequence as presented

in (Noll, 1976). This sequence maps every pair of indexes n,m into a single index j so

that Zm
n → Zj . The sequence, presented in Table 3.2 is constructed upon two simple rules.

The first rule is n and m always start at their lowest possible values. The second rule is

odd polynomials, with negative azimuthal frequencies, relate to odd values of j, and even

polynomials with positive azimuthal frequencies relate to even values of j. When m = 0

there is no ruling, as it is not necessary. As an example, when j = 5 then m = −2, and

when j = 8 then m = 1.

TABLE 3.2. Noll’s sequence (sequence A176988 in OEIS). It maps every couple
of indexes (n,m) → j, allowing to concatenate Zernike coefficient in vectors and
to operate on them.

Index Sequence
n,m 0,0 1,1 1,-1 2,0 2,-2 2,2 3,-1 3,1 3,-3 3,3
j 1 2 3 4 5 6 7 8 9 10

Another simplification found in (Noll, 1976) is Noll’s normalization. This normal-

ization, just as the sequence, is of standard use in adaptive optics as it is convenient for
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statistical analysis. Normalizing, polynomials are now defined as

Zj, even [ρ, θ] =
√
n+ 1Rm

n [ρ] cos[mθ]

Zj, odd [ρ, θ] =
√
n+ 1Rm

n [ρ] sin[mθ]

 m 6= 0

Zj =
√
n+ 1R0

n[ρ] m = 0

(3.14)

and the resulting polynomials are shown in Table 3.3.

TABLE 3.3. Zernike polynomial with Noll’s normalization and sequence. Short-
ened version of Table I in (Noll, 1976)

Radial
degree Azimuthal frequency (m)

(n) 0 1 2 3

0
Z1 = 1
Constant

1
Z2 = 2ρ cos θ
Z3 = 2ρ sin θ
Tilts

2 Z4 =
√
3(2ρ2 − 1)

Z5 =
√
6ρ2 sin 2θ

Z6 =
√
6ρ2 cos 2θ

Astigmatism

3
Z7 =

√
8(3ρ3 − 2ρ) sin θ

Z8 =
√
8(3ρ3 − 2ρ) cos θ

Coma

Z9 =
√
8ρ3 sin 3θ

Z10 =
√
8ρ3 cos 3θ

Now, as polynomials are properly defined, the final objective of reconstructing a wave-

front in modal representation from measured slopes in zonal representation is addressed.

This means producing a modal representation of ∂ϕ
∂x

and of ∂ϕ
∂y

. The derivative of Equa-

tion 3.11 gives the starting point to develop the reconstructor.

∂ϕ [Rρ, θ]

∂x
=

∂

∂x

(∑
j

ajZj

)

∂ϕ [Rρ, θ]

∂y
=

∂

∂y

(∑
j

ajZj

) (3.15)
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Let ρ′ = R · ρ, x′ = R · x and y′ = R · y.Because coefficients aj are constant, equations

in 3.15 turn into 
R · ∂ϕ [ρ′, θ]

∂x′
=
∑
j

aj
∂Zj
∂x

R · ∂ϕ [ρ′, θ]

∂y′
=
∑
j

aj
∂Zj
∂y

(3.16)

Equations in 3.16 allow for calculations of the wave-front’s derivative in zonal represen-

tation, when knowing its modal representation in Zernike coefficients. In other words, by

knowing coefficients aj , derivatives can be calculated if the derivatives of the polynomi-

als are known a priori. This is the inverse problem of finding the coefficient by knowing

the slopes. It must then be inverted by using linear algebra. The algebraic notation of the

problem is
∂

∂x
Z~a = R · ~sx

∂

∂y
Z~a = R · ~sy

(3.17)

In this expression

~a =
[
a1 a2 . . . aj . . . am

]T
(3.18)

where sub-index m does no longer refer to a polynomial’s azimuthal frequency but to the

number of coefficients and therefore the finite number of Zernike polynomials used in the

representation. In addition, n2 will be the number of sub-apertures in the WFS providing

the slopes. The latest are concatenated in vectors as

~sx =
∂ϕ

∂x

=
[
s1 x s2 x . . . si x . . . sn2 x

]T (3.19)

~sy =
∂ϕ

∂y

=
[
s1 y s2 y . . . si y . . . sn2 y

]T (3.20)

With respect to Z, it is built by horizontally concatenating vectors Zj of n2 elements so that

Z =
[
Z1 Z2 . . . Zj . . . Zm

]
(n2×m)

(3.21)
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In turn, vectors Zj come from two-dimensional matrices, sampling Zernike polynomials

modes in a Cartesian plane. Their rows have been turned into columns and vertically con-

catenated, just as explained in Section 3.1.1 for ~s. The derivatives of these vectors have to

be calculated. Equation 3.22 from (Noll, 1976) is a recursion relation between the deriva-

tive of a polynomial and polynomials of lesser order.

∂

∂ρ
Rm
n = n

(
Rm−1
n−1 +Rm+1

n−1

)
+

∂

∂ρ
Rm
n−2 (3.22)

The recursion allows to express the derivative of a polynomial in the Zernike base as

∇Zj =
∑
j∗

γjj∗Zj∗ (3.23)

It also allows to derive rules to find all γjj∗ coefficients and to construct a rectangular

matrix γ. The rules are found in (Noll, 1976), just as are matrices γx and γy. γx is presented

in Table 3.4.

TABLE 3.4. Zernike polynomial derivative matrix γx. Shortened version of Ta-
ble II in (Noll, 1976)

j \ j∗ 1 2 3 4 5 6
1
2 2
3
4 2

√
3

5
√

6

6
√

6

7 2
√

3

8
√

8 2
√

6 2
√

3

With matrices γx and γy the algebraic notation of Equation 3.23 is

∂

∂x
Z = ZγTx

∂

∂y
Z = ZγTy

(3.24)
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∂
∂x
Z and ∂

∂y
Z, γTx and γTy , and ~sx and ~sy are vertically concatenated to have

∇Z =

 ∂
∂x
Z

∂
∂y
Z


γ =

[
γx γy

]T
~s =

~sx
~sy


(3.25)

so equations in 3.18 can be merged into

∇Z~a = R · ~s (3.26)

Here, the modal reconstructor is RZ = pinv (∇Z) so that

R · pinv (∇Z)~s ≈ ~a (3.27)

Again, the pseudo-inversion uses SVG to minimize the square error

e = 〈‖R · pinv (∇Z)~s− ~a‖2〉 (3.28)

3.2. Tomographic reconstruction

In classical adaptive optics (AO), when correcting the phase aberration of a target, its

wave-front is directly measured. Using a SH-WFS, this is only possible when the target is a

fairly bright punctual light source. The phase aberration of dim or elongated targets cannot

be measured directly. Instead, the phase aberration of a bright enough neighbouring star is

measured. Such a star is called a guide star (GS) or a natural guide star (NGS) to make the

distinction with laser guide stars (LGS). As shown in Figure 3.3 the wave-front of two light

sources travelling through a turbulence layer at an altitude h and into a telescope overlap,

sampling the same turbulence. For h = 0 [m], both projections of the telescope’s pupil on

the layer match, sampling and mapping the same turbulence. For a small angular separation

α between both sources, has altitude h increases so does proportionally the separation
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between projected pupils. Therefore they have less sampled turbulence in common and

in different regions of the pupil. Then, if a classical AO system was to correct the phase

aberrations of one wave-front, by compensating for the aberrations seen by the other, it

would only succeed for tightly overlapped pupils. The validity of the correction would

quickly decline as the pupils move away from each other.

FIGURE 3.3. Telescope’s pupil, projected in two directions separated by an an-
gle α, into a turbulence layer at an altiude h. As a 12 × 12 Shack-Hartmann is
conjugated to the pupil, it is also projected in altitude. The overlap between both
projections depends on the altitude and on the angle between the light sources.
The star symbol represents a guide star (GS) and the spiral represents an elongated
scientific target (ST).

Instead, only the aberration of the overlapped region of the pupil projected towards

the target is known from the aberration seen in the direction of the GS. A tomographic

reconstructor is any algorithm relating the aberration of a pupil to that of another for later

correction. The task becomes more complex as not one but multiple turbulence layers,

at different and ever changing altitudes, appear above the telescope. In such a scenario,

projected pupils overlap at multiple altitudes and thus in multiple configurations.
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Multi-object adaptive optics (MOAO) uses multiple GSs, whether they are LGSs or

NGSs, to estimate or to reconstruct the target’s phase aberration. Corelation matrixes and

artificial neural networks (ANN) are two of the major MOAO reconstruction paradigms.

Examples of reconstructors based on them are Learn & Apply (Vidal et al., 2010) and

CARMEN (Osborn et al., 2012) respectively. Both have been tested at the CANARY

demonstrator and constitute the most promising candidates for the E-ELT MOAO capabili-

ties. In this section, both reconstructors are presented. This is in the interest of introducing

improvements to available reconstructor training techniques in Chapter 5.

3.2.1. Learn & Apply

An optimal reconstructor minimizes the residual phase variance between an expected

and an estimated phase. The expected phase ~ϕ, which can be directly measured when

having a punctual light source, is that of the target. The estimated phase, also being that of

the target, is reconstructed from a measurement vector ~s, concatenating the output of WFSs

pointing at GSs. When considering a linear interaction of the wave-front with all layers it

is possible to describe the problem in algebraic notation as〈
(~ϕ−R~s)~sT

〉
= 0 (3.29)

where R is a covariance matrix acting as the reconstructor. Solving for R gives

R = 〈~ϕ~s〉
〈
~s~sT
〉−1

(3.30)

In this particular case R reconstructs from a slopes base to a phase base to describe

the wave-front. In the case of Learn & Apply (L&A) the reconstruction keeps the slopes

base. For a concatenated vector of GS measurements ~s1 and a similar vector of target

measurements ~s2, the notation of the reconstruction is

~s2(t) = R · ~s1(t) (3.31)
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Let S be a matrix of m horizontally concatenated vectors ~s(t) defined as

s =
[
~s (t0 + ∆t) ~s (t0 + 2∆t) . . . ~s (t0 +m∆t)

]
(3.32)

Then Equation 3.31 is written as

S2 = R · S1 (3.33)

As S2 is not a square matrix it cannot be inverted. Furthermore, in order to ensure that R

does not converge to any particular solution, the number m of concatenated vectors must

be great in comparison to their dimension so all linearly independent cases are provided.

Then, just as for wave-front reconstructors, pseudo-inversion is in order so to minimize the

residual error defined as

e = ‖RS1 − S2‖2 (3.34)

which developing gives

e =
∑
i

∑
j

(∑
k

riks1kj − s2ij

)2

(3.35)

In this case the square error is differentiated with respect to the values in R

∂

∂rik
e =

∑
i

∑
j

∂

∂rik

[∑
k

riks1kj − s2ij

]2
 (3.36)

=
∑
i

∑
j

2s1kj

(∑
k′

riks1kj − s2ij

)
(3.37)

The error is minimized by setting the derivatives to zero. Resulting equation is

R
(
S1S

T
1

)
−
(
S2S

T
1

)
= 0 (3.38)

Here
(
S1S

T
1

)
is a square matrix, invertible when having linearly independent rows in S1.

Solving for R gives

R =
(
S2S

T
1

) (
S1S

T
1

)−1
(3.39)
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Both terms are then divided by the number of measured cases m so that

R =

(
1

m
S2S

T
1

)(
1

m
S1S

T
1

)−1

(3.40)

where m is also the number of columns in S1 and S2. When the number of cases tends

to infinity expressions
(

1
m
S2S

T
1

)
and

(
1
m
S1S

T
1

)
tend respectively to covariance matrices

COnOff and COffOff . Covariance matrices are named after the convention that GSs are

off-axis and the target is on-axis. Resulting expression is

R = COnOff · C −1
OffOff (3.41)

COffOff contains covariances of all off-axis sub-apertures with each other. COnOff

contains covariances of on-axis sub-apertures with off-axis ones. The covariance between

two sub-apertures i and j from WFSs p and q is Bαlp [λ, x, y] for a single layer. [x, y] is the

relative position of one sub-aperture with respect to the other as projected on the turbulence

layer. It is calculated as

[x, y] =

xip − xjq
yip − yjq

+ h

αp − αq
βp − βq

 (3.42)

where [αp, βp] is the direction of source p and h is the altitude of the layer. The resulting

value of the covariance is dependent on the geometry of the problem (altitude and direc-

tions) and on the profile (L0, r0). It therefore yields information on the system deviations

(real against expected directions) such as misalignments of the pupils and amplification of

the measurements. For multiple independent layers, covariances are simply added.

The direct approach of calculating covariance matrices from on-sky data is limited for

two reasons. The first is statistical convergence. In other words only a finite amount cases

can be registered and the matrices not necessarily tend to covariance matrices. The second

difficulty is having an on-axis WFS also called truth sensor. As the central target will

usually be elongated and dim, wave-front sensing in its direction may not be possible. Both

of these problems are solved by using a model to calculate the covariance matrices. Just as

in Section 2.3, the model uses an a priori turbulence model (Kolmogorov’s or Von Karman)
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and includes the previously mentioned parameters on which covariance matrices depend.

The model is fitted against measured covariance matrices COnOff,raw (when available) and

COffOff,raw by minimizing the square error defined as

e = ‖COffOff,raw − COffOff [h, r0, L0, [αp, βp]]‖2

+ ‖COnOff,raw − COnOff [h, r0, L0, [αp, βp]]‖2
(3.43)

The Levenberg-Marquardt algorithm is well fitted to minimize square errors through iter-

ations. From the optimization, the parameters of the problem are retrieved. In (Vidal et

al., 2010) this part of the algorithm is called Learn. When on-axis data is not available,

which is the second difficulty that was previously mentioned, the error to minimize is de-

fined without COffOff . Only half of the expression remains. All parameters but the precise

direction of the central target are therefore obtained. Later, the Apply part simply consists

in calculating COffOff [h, r0, L0, [αp, βp]] and COnOff [h, r0, L0, [αp, βp]] from the model,

using the parameters previously found. COffOff is relatively well estimated, even without

a calibrated direction.

Since the variation time scale of atmospheric parameters is close to a few minutes, the

reconstructor will only be valid during that time. Then, it has to be estimated and applied

before loosing validity. For longer observations, the reconstructor has to be calculated

several times, with different resulting performances each time.

3.2.2. Tomographic reconstructors based on artificial neural networks

Artificial neural networks (ANN) are computational models consisting of a multitude

of interconnected processing units called neurons or nodes. Inspired in biological neural

networks or brains, they seek to reproduce their forecasting and pattern recognition capa-

bilities under noisy conditions. In complex problems that remain difficult to analytically

model, they provide an optimized solution for prediction. In astronomical instrumenta-

tion and AO they find a spectrum of applications ranging from modelling deformable mir-

rors (Guzmán, Juez, Myers, Guesalaga, & Lasheras, 2010) to open-loop tomography (Os-

born et al., 2012)
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Neurons receive the output of other neighbouring neurons through weighted connex-

ions called synapses. The inputs are then added and passed on to an activation function

before being sent to further neurons. Neurons are arranged in ordered layers so a neuron

from a given layer receive as input all the outputs from the previous layer, and send its own

output as input for the following layer. A well performing topology when training ANNs to

be tomographic reconstructors is the multi-layer perceptron back-propagation (MLP-BP)

network. Its structure, consisting of three layers, is shown in Figure 3.4.

FIGURE 3.4. Topology of a multi-layer perceptron back-propagation network. The
activation pattern is in~y, a neuron’s activation function in the hidden layer is fH .
The number of neurons in the input layer, in the hidden layer and in the output layer
are n, n′ and m respectively. In most cases n = n′.

The input layer receives an input vector in~y, also called activation pattern. Each el-

ement of the vector is passed to a single neuron without being weighted. Each neuron j

in the hidden layer receives the weighted sum of the input layer’s outputs. The input of

neuron j is calculated as

xj =
n∑
i=0

wi,jyi

 i = 0, 1, ..., n

j = 1, 2, ..., n′
(3.44)

where wi,j is the weight of the synapse going from node i to j, and y0 is an offset node, pro-

viding a constant value, independent of the activation pattern. For normalization purposes,

the value of y0 is typically 1. The neuron’s output is produced by an activation function fH
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as

yj = fH(xi) j = 1, 2, ..., n′ (3.45)

and weighted again when sent to the nodes in the output layer. Activation function in most

cases are sigmoid functions. They act linearly within a valid range outside of which there

is saturation. A common activation function is

fH(x) =
1

1 + e−x
(3.46)

ANNs must be conditioned to perform a given task such as those mentioned before. It

is said the ANN is trained. The training consists on adjusting the weights of all synapses

arriving and leaving the hidden layer, so that the output of the ANN fits an expected output.

In other words, the weights are tuned to minimize the error between the ANN’s actual

response to an activation pattern and the response that is expected. Training for a single

scenario is irrelevant. Instead, the ANN must be able to correctly respond against a wide

variety of scenarios, perhaps even predicting some not previously seen. For m nodes in the

output layer and s scenarios or cases, the square error is defined as

e =
1

2

s∑
r

m∑
k=1

(yk,r − dk,r)2 (3.47)

where dk,r is the expected response to the activation pattern r.

The error minimization or training algorithm for the MLP is the back-propagation

(BP) algorithm (Rumelhart, Hinton, & Williams, 1988). It is a recursive algorithm that

minimizes through iterations and following the inverse of the gradient. When first set, the

weights are randomly assigned. Then each weight is added a step calculated as

∆wi,j = −ε · ∂e

∂wi,j
(3.48)
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where ε defines the size of the step proportional to de derivative an is called the learning

rate. Using the chain rule and replacing 3.44 into 3.48

∆wi,j = −ε · ∂e
∂xj
· ∂xj
∂wi,j

= −ε · ∂e
∂xj
· ∂

∂wi,j

(
n∑
i=0

wi,jyi

)

= −ε · ∂e
∂xj
· yi

= −ε · δj · yi (3.49)

To compute δj = ∂e/∂xj , the ANN is evaluated at the current state (current synaptic

weights) and for a given activation pattern. For a neuron k in the output layer, δk is retrieved

directly differentiating the error in Equation 3.47 to produce

δk =
∂

∂xk

(
1

2

s∑
r

m∑
k∗=1

(yk∗,r − dk∗,r)2

)
(3.50)

Only hidden layer nodes have an activation function. For all other neurons yk = xk. Re-

placing this gives

δk =
∂

∂xk

(
1

2

s∑
r

m∑
k∗=1

(xk∗,r − dk∗,r)2

)

=
s∑
r

(xk,r − dk,r) (3.51)

With this result it is possible to adjust all synaptic weights wj,k going from neurons j in the

hidden layer to neurons k in the output layer. To adjust a weight wi,j going from a node i

in the input layer to a node j in the hidden layer, Equation 3.49 says δj must be calculated.

Again, using the chain rule gives

δj =
∂e

∂xj
=
∑
k

∂e

∂xk
· ∂xk
∂yj
· ∂yj
∂xj

= f ′H(xj) ·
∑
k

δk · wj,k (3.52)
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Resulting expression shows how to compute δj in the hidden layer using all previously

calculated δk from a later layer. The algorithm is said to propagate backwards the gradients

which gives origin to its name.

Artificial neural networks have successfully been trained into tomographic reconstruc-

tors, being CARMEN the most prominent example. First, a proof of concept for CARMEN

was conducted through simulated data for training and validation (Osborn et al., 2012). The

ANN receives as inputs the concatenated measurements of WFSs pointing at GSs, and is

expected to produce the measurements of another WFS observing the central target. CAR-

MEN possess a single hidden layer. It has been proved this amount is sufficient to approx-

imate any functional relationship, provided a large enough number of neurons (Hornik,

Stinchcombe, & White, 1989). It has even been shown that ANNs with two hidden lay-

ers tend to converge with less accuracy than their single-layer counterparts (De Villiers &

Barnard, 1993). With respect to the number of nodes in the hidden layer, if it is too little

the network fails to describe or to fit the model in enough detail. In contrast, too many

neurons allow for an exceeding number of degrees of freedom and therefore for overfitting.

A rule of thumb is the number has to be equal or similar to the number of nodes in the input

layer. There are techniques to find an optimized number of neurons, but a trial and error

procedure remains the preferred option amongst most users (Guzmán et al., 2010). After

training, the network is validated with an independent set of data (Bottaci et al., 1997). If

the ANN was overfitted it will not correctly extrapolate the model to fit the cases it was not

presented.

Artificial neural networks are capable of modelling functions of greater complexity and

dependent on more variables than matrices. Unlike linear reconstructors such as Learn &

Apply, ANNs do not have to be optimized for turbulence layers at fixed altitudes. The best

way to train an ANN based reconstructor is to present it with a large number of randomly

generated phase screens, at a fixed altitude, and then repeat the process for every desired

altitude. If the range of altitudes is well sampled, the ANN will be able to extrapolate

when a layer is found between two altitudes it was trained for. When trained in simulation,

CARMEN was presented with 1000 phase screens per altitude, with a resolution of 100
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m between altitudes. And because turbulence can be considered to have a linear effect

on wave-fronts, the training remains valid for any number of layers, at varying altitudes.

Later, CARMEN was tested on CANARY, an adaptive optics demonstrator operated at the

William Herschel Telescope (Osborn et al., 2014). The on-sky results show that when

comparing CARMEN to L&A, the later outperforms the ANN by 5% in Strehl, but only

when working in the configuration at which it was optimized. When layers change in

altitude, L&A’s performance quickly degrades, whereas the residual average wave-front

error (WFE) of CARMEN increases approximately as a linear function of the altitude. In

other words, the ANN remains valid for all scenarios, surpassing linear reconstructors when

not re-optimized. This trend is shown in Figure 3.5, reproduced from (Osborn et al., 2014).

FIGURE 3.5. WFE for L&A and and an ANN based reconstructor on the CA-
NARY calibration bench, against altitude of the phase screen. The dashed line
shows the expected performance of the ANN. Reproduced from (Osborn et al.,
2014).

The wide range validity of ANNs is an absolute necessity. Linear tomographic recon-

structors have to be recalculated when atmospheric conditions change. This process takes

in the order of a few minutes and can be done in parallel while observing. ANNs instead
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may take up to a week to train. Since it is not possible to accurately predict the observ-

ing conditions a few days in advance, the training has to consider all possible turbulence

strengths and altitudes. This is impractical since producing experimental training data, in-

cluding instrumental deviations and with enough variability and independence requires an

extensive use of resources. In Chapter 5 a method will be proposed to produce training data

through numerical simulations that include an instrumental characterization. This method

allows to produce large data sets with pseudo-randomness and high variability, all while

freeing instruments and resources.
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4. CALIBRATION AND CHARACTERIZATION OF THE BEAGLE TEST

BENCH

The test bench BEAGLE is a multi-object adaptive optics (MOAO) capable experiment

to simulate the 4.2 m William Herschel Telescope. It is able to produce multiple natural

and laser guide stars, the light from which goes through two phase screens. The first is

the ground layer and the second is an altitude layer, settable at any altitude. Horizontal

and vertical motions of the phase screens are controlled by step motors. Equivalent to the

4.2 m aperture, horizontal resolution is 1.5 mm and vertical resolution is 340 mm. For

stars 30 arc seconds apart from the on-axis target, the vertical resolution translates into an

horizontal resolution of 0.05 mm. In other words as the phase screen moves vertically in

steps of 340 mm, a 30 arc seconds off-axis star perceives a virtual horizontal displacement

of 0.05 mm. This will later be used in the precise measuring of the system’s plate scale. A

modular representation of BEAGLE is shown in Figure 4.1. Resulting wavefronts are then

measured by standard 16x16 Shack-Hartmann wavefront sensors giving out slopes.

FIGURE 4.1. Block diagram of BEAGLE, a multi-object adaptive optics capable
experiment. Here only the open-loop portion is shown, from the natural and laser
guide stars to the Shack-Hartmann wavefront sensor, and going through the phase
screens.

To produce precise and valid data, an experiment has to undergo characterizations and

calibrations. Characterizations offer long term knowledge on the properties of the system

such as plate scale and turbulence profile. Calibrations are performed on a routine basis to
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measure and set time changing parameters such as background images, exposure time and

reference centroids.

In the following sections calibration routines and characterization methods will be pre-

sented. These methods were specifically implemented for BEAGLE.

4.1. Calibration Routine

Before any acquisition is performed, dark images have to be set. A dark images or a

background image is an image acquired with the camera shutter closed, blocking all light

to entering the camera. If the detector senses any signal it is due to a stochastic process or

noise called dark current. This process also occurs when the shutter is opened during an

observation. Therefore, the dark current has to be subtracted from the image so only the

observed signal remains. In a CCD camera, every pixel is characterized by its own dark

current. As described in (Janesick, 2007), in a shot noise regime the dark current’s noise is

mostly its shot noise expressed as

σD SHOT = (D)(1/2) (4.1)

where D is the average dark current accumulated (which is actually expressed in units of

charge instead of units of charge per unit of time as would be expected from calling it

”current”) given as

D = tIDR (4.2)

and where tI is the integration time and DR is the dark current rate (this time expressed in

units of charge per unit of time). DR has its own expression from which it can be modelled

but here it will be considered as a pixel parameter, mostly dependent on the temperature.

Because of this noise, the background image is determined as the average of a large number

of dark images. The shot noise for a number n of averaged images is

σD SHOT = (D)(1/2)/
√
n (4.3)
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Then, as n grows the shot noise decreases, resulting in an image containing the average

dark current D to be subtracted to any future image, with little noise left.

For the background image to have the same average dark current as an acquired image,

they both need to have the same exposure time. An exposure time has to be determined

that will produce images with a sufficient signal to noise ratio. LED stars in BEAGLE

have slightly different brightness from each other. This brightness can also vary in time.

Therefore a calibration routine is required to measure the intensity of each light source and

then acquire a suitable background image with the same exposure time. It is important in

order to be precise that a dark image is subtracted to the intensity measurement.

Because a background image can only be taken after determining the exposure time,

but is necessary in the first place to do so, an iterative routine is in order. The final exposure

time must be so the intensity of the light source’s image is equal to a desired value. It must

start with an initial guest for the exposure time and acquire a temporary background image,

composed of few frames to save time. Then, by using the same exposure time, acquire

an image with the target light source on and subtract the temporary background. Let the

maximum value of the resulting image be Ii where sub-index i represents the iteration.

Each iteration adjusts the exposure time so that Ii converges to the desired value. The

exposure time for the next couple of background and light source images is calculated as

ti+1 =
tiImaxp

Ii
(4.4)

where ti is the exposure time at iteration i, Imax is the saturation value of the detector, and

p is a factor ranging from 0 to 1 to set the desired value as a percentage of the saturation

value. For BEAGLE, I was found to be sufficiently high with p = 0.7.

The iteration comes to and end when the measured intensity I has an error with the

desired intensity below a given threshold. Again, for BEAGLE a threshold of 5% was

found to be sufficient and resulting in at most two iterations for speed. Once the definitive

exposure time is found, a proper background image is acquired using a large number of

frames.
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Once the exposure time and background images have been set for all light sources to

be used, the static aberrations of the optical system have to be accounted for. BEAGLE’s

Shack-Hartmann wavefront sensor (SH-WFS) intends to measure the phase aberration in-

troduced by the system’s phase screen. The phase screen simulates a layer of turbulence

in the optical path above the telescope. But when propagating through the optical system,

its static aberrations are added. The wavefront sensor (WFS) will therefore measure both,

unless the static aberration is previously known and subtracted from the measurements.

Routine calibrations can include a previous measurement of the static aberration, where

the pupil’s position is calibrated so the average position off all centroids issued from the

Shack-Hartmann (SH) is zero and thus removing tip and tilt. The remaining offsets de-

scribe higher order aberrations. They are expressed in terms of wavefront slopes but can be

transformed into any other base such a Zernikes or wavefront.

Previously measuring static aberrations has proven to be insufficient in BEAGLE.

When adding the phase screen, a slight tip and tilt is introduced to the wavefront. In other

words, measuring phase aberration along a phase screen produces in average tilted wave-

fronts when subtracting static aberration. What is done instead is to acquire the widest

range possible of data and then subtract to it its own mean. For a large enough data set, the

turbulence can be thought of as decorrelated so any non-zero average found is the result of

static aberrations introduced by the system or by the phase screen.

4.2. Plate scale measurement

As shown in Figure 4.1, BEAGLE locates its NGS and its LGS each in separate planes.

These are then collimated and joined by the Sky Simulator. After the Sky Simulator comes

the portion of simulated sky were the phase screens are located. The system was designed

to have the same Lagrange constant as the 4.2 m WHT. With a pupil of 18 mm, transversal

magnification in simulated sky is Mt = (4200/18), while longitudinal magnification is

Ml = (4200/18)2. Then the pupil goes through a focal reducer and into the SH-WFS

formed by a lenslet array and a CCD.
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In order to determine the plate scale as a unit of angle of arrival per unit of distance

on the WFS image plane, two measurements must be performed. First is needed the plate

scale between the NGS plane and the WFS image plane. This first plate scale PS1 will

be expressed in units of pixels/mm, since the position of each LED source is known in

millimetres as shown in Figure 4.2.

FIGURE 4.2. LED printed circuit board (PCB) containing BEAGLE’s light
sources. In the PCB’s plane the light sources’ positions are known in millimetres.
This plane is the NGS plane.

To measure this plate scale the pupil’s image on the WFS plane is mapped against

the NGS plane. The pupil can be directly imaged with WFS’s camera. Being the SH

conjugated with the pupil, it can image it for all stars in the field of view (FoV) with a

single fixed CCD detector. Figure 4.3 shows the X and Y positions of the pupil against the

position of the light source light source.

From the slope the average plate scale is 17.2 [pixels/mm] in the X direction and

16.8 [pixels/mm] in the Y direction. It can also be seen the plate scale is constant through-

out the field of view, which it would not be with off-axis aberrations. From this data set, it

is interesting to calculate the error of alignment of the printed circuit board (PCB), which

can be rotated relative to the camera. The coordinates of the LEDs are transformed into

polar coordinates and the difference between the angle on the PCB and the one found for

its image on the camera is calculated. In average, the difference in angle is 2.6 [◦].
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FIGURE 4.3. Pupil location on the CCD camera as a function of the guide source
location on the NGS plane. The CCD camera is big enough to contain all the pupils
behind the SH-WFS. Pixel size is 7.4 µm. PS1 is given by the slope of the curve.

Now must be measured the plate scale PS2 between the angular position of the guide

sources and their position on the NGS plane. When two stars are aligned with the direction

of the wind, or in the case of a test bench, with the direction of the motion of the phase

screen, they will sample the same turbulence with an offset. This is true under the frozen

flow assumption, which states turbulence can be consider as frozen relative to its translation

due to wind. In other words, the turbulence is seen as an invariant phase screen translating

through the field of view. The angular offset can be then converted into a distance with the

altitude of the layer. In an test bench this deduction is inverted. Because the phase screen’s

position is controlled by stepper motors and is well known, from there can be derived

the angular separation of the sources. This configuration is illustrated in Figure 4.4. The

ratio between the angle found and the separation of the sources on the NGS plane is PS2

expressed in radians/mm. The definitive plate scale PS is calculated as PS2/PS1 so the

result is in radians/pixels. In a more convenient unit, PS = 278 [arcsec/µ]. PS is only the

plate scale that relates with angles of arrival on the bench. It has to be translated to angles

of arrival on-sky. Using transversal magnification, finally PSon−sky = 1.19 [arcsec/µ].
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FIGURE 4.4. Two light sources illuminating a moving turbulence under the frozen
flow assumption. The pupil can be large and sampled by a Shack-Hartmann wave-
front sensor, or small as a sub-aperture. In a test bench all altitudes and distances
h1, h2, d1, d2, d3 and d4 are known. The angular separation between the light
sources can therefore be determined from geometry.

4.3. Off-axis aberrations characterization through optimal filter signal comparison

4.3.1. Description of the optimal filter signal comparison technique

In order to measure distances d1, d2, d3 and d4 as represented in Figure 4.4, an optimal

filter was implemented. When an aperture observes two different light sources that are

aligned with wind velocity, it samples the same turbulence with an offset. The optimal

filter convolutes both signals and determines the place of maximum covariance. Let s1(x)

and s2(x) be two signals observed by the same sub-aperture. The sub-index represents the

star and x is the position of the phase screen in the X axis. For simplification, the stars will

be aligned with this axis. Both, s1(x) and s2(x) are sampling the same turbulence but using

different guide sources. Hence,

s2(x) = s1(x− χ) (4.5)

42



Now, let the covariance between both signals be

B(τ) = 〈[s1(x)− µ1] · [s2(x+ τ)− µ2]〉 (4.6)

= 〈[s1(x)− µ1] · [s1(x− χ+ τ)− µ2]〉 (4.7)

where µ1 and µ2 are the means of s1 and s2. For any couple of signals bound by Equa-

tion 4.5

argmax{B(τ)} = χ (4.8)

For two comparable signals, the maximum covariance will be in the order of magnitude

of the variance. The offset χ between the signals equals the offset τ between the maximum

auto-covariance of one of them and the maximum covariance between the two of them.

4.3.2. Application: Field dependent aberrations characterization

There is another application for the filter described above, other than plate scale mea-

surement. A Shack-Hartmann wavefront sensor’s main component is a lenslet array. Each

lenslet defines a sub-aperture that will sample a region of a wavefront by focusing it into a

spot. A single sub-apertures observing the two targets can be submitted to different aber-

rations. These are field dependent aberrations or off-axis aberrations. They change the

shape of the resulting spots, thus altering the assessment or estimation made by the cen-

troiding algorithm. The centroiding algorithm’s function is to estimate the spot’s centre so

the wavefront’s average angle of arrival can be determined. A first degree approximation

of the introduced distortion is the addition of an offset to the spot’s average position and

a change of its motion’s amplitude. Both things can happen in the X ′ direction and in the

Y ′ direction of the sub-aperture’s local referential. The ratio between the amplitude of the

motion with and without aberrations will be referred to as gain. Let ~si,j be the position of

the spot’s centroids without aberrations for light source i and sub-aperture j and ~s′i,j be its

position with aberrations so that

~s′i,j(x) =

s′x′ i,j(x)

s′y′ i,j(x)

 (4.9)
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Let Gi,j be a diagonal matrix with the gains for both directions of the form

Gi,j =

gx′ i,j 0

0 gy′ i,j

 (4.10)

Finally, if~bi,j are the offsets, the aberration’s effect can be modelled as

~s′i,j = Gi,j~si,j +~bi,j (4.11)

Without static aberrations, atmospheric turbulence should produce null average data.

In other words ~bi,j is only due to the optical aberrations, and ~si,j should have null aver-

age. Then, from experimental data ~bi,j is directly measurable as the average of ~s′i,j . For

simplification,~bi,j will be left out and all slopes will be considered to have null average so

that

~s′i,j = Gi,j~si,j (4.12)

From here, determining Gi,j is not a direct computation. Solving for Gi,j needs the real

values of ~si,j . These values are impossible to obtain since the turbulence is always measured

through an imperfect instrument with aberrations Gi,j . Instead, if two signals were known

to be equal before measuring, the ratio between their gains could be quantified. This is the

case for any pair of targets i and i′ that are aligned with the speed velocity of the turbulence,

and are seen by sub-aperture j, so that

~si,j(x) = ~si′,j(x− χ) (4.13)

Using the correlation filter on measured (and therefore with aberrations) signals, offset

of maximum correlation τ = χ is determined and added so that ~s′i,j(x) ' ~s′i′,j(x − τ).

Figure 4.5 shows two matched signals seen by two different sub-apertures observing the

same target. This configuration is equivalent to one with a single sub-aperture observing

two different stars. Their standard deviation is an indicator of their amplitudes since signals

~si,j(x) and ~si′,j(x− χ) before measurement have the same standard deviation σ [~si,j]. It is

important to note that standard deviation is measured on finite data. Therefore, two signals

without aberrations can only have the same standard deviation when it is calculated over
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comparable values. Continuing, since for any process X with standard deviation σ, the

standard deviation of X ′ = aX is σ′ = aσ, the ratio between standard deviations gives out

the ratio between gains.

σ
[
s′x′ i′,j(x− τ)

]
σ
[
s′x′ i,j(x)

] =
gx′ i′,j · σ [sx′ i′,j(x− χ)]

gx′ i,j · σ [sx′ i,j(x)]
(4.14)

=
gx′ i′,j
gx′ i,j

= gx′ (i,i′),j (4.15)

The same applies for direction Y ′ in the local sub-aperture referential. Ratios gx′ (i,i′),j and

gy′ (i,i′),j will be called on-off gains, because index i will be fixed to refer to the on-axis

target, as i′ is any other off-axis target. Because these gains are relative, for simplicity they

FIGURE 4.5. Same turbulence slopes for two different sub-apertures . By deter-
mining the offset of maximum correlation between the signals, the common obser-
vation is found and compared. The amplitude of the signals is proportional to their
standard deviation. The relative gain between these neighbouring sub-apertures is
1.3%

will all be considered relative to the on-axis target. The relative gain of the on-axis target

with itself is unitary. This way, relative gains describe the effects of off-axis aberrations

over the existing on-axis aberrations. Figure 4.6 shows measurements of on-off gains in

the X ′ and Y ′ directions as functions of field position. This allows to map the effects of

off-axis aberrations on centroid motion throughout the field of view, producing a detailed
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FIGURE 4.6. Field dependent gain, for the X and the Y direction. The phase screen
moves along the X direction. Off-axis gain is mapped for each sub-aperture j

and comprehensive characterization of the optical system. Finally, on-ff relative gains can

be arranged into a matrix

Gon−off,(i,i′) =



gx′ (i,i′),0 0 · · · 0

0 gy′ (i,i′),0

gx′ (i,i′),1

... gy′ (i,i′),1

. . .

0 gy′ (i,i′),n


(4.16)

so that

Gon−off,(i,i′) · ~s′i(x) = ~s′i′(x− τ) (4.17)

Here, n is the number of sub-apertures. This matrix allows to take any set of measured

slopes from having field-dependent aberrations in direction i, to having them in direction i′.

When inverted, because it is diagonal, all values are inverted, allowing to go in the opposite

sense from i′ to i. This will proof useful in Section 5.2. It is important to note the off-

axis aberration is only measured in the direction of the velocity of the wind. But, in polar
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coordinates, if the off-axis aberrations can be consider to be only dependent on the radius

and not on the angle, then a measurement in a single direction can be valid for all other

angular directions.

4.4. Spot & Lenslet heterogeneity

Just as a single sub-aperture can produce two different signals observing two targets,

two different sub-apertures can observe the same target, producing a signal each. Each sub-

aperture, can be submitted to a different optical aberration. As explained in section 4.3.2,

different aberrations will change the shape of the spots and in a first order approximation

introduce a gain to its movement. Furthermore, if lenslets are not homogeneous, the dif-

ference between their focal lengths will also contribute to amplify the spots’ motion. Then

relative gains could be determined using the optimal filter to compare the signals’ standard

deviation. If both sub-apertures j and j′ are aligned with the velocity of the wind, then

~si,j(x) = ~si,j′(x− χ) (4.18)

Let target i = 1 be on-axis, as to have

~s1,j(x) = ~s1,j′(x− χ) (4.19)

Comparing signals using the optimal filter would not be practical since, in order to compare

two sub-apertures, wind velocity has to be aligned with them. Therefore, mapping all rela-

tive gains requires wind velocity to be aligned with all possible sub-aperture combinations.

The solution is no to compare signals using an optimal filter, but to expose all sub-apertures

to has much turbulence as possible, with a given direction of wind. If all the turbulence has

the same profile, then as the data set acquired with a given sub-aperture grows, its standard

deviation converges. In other words

lim
∆x→∞

σ
[
~si,j(x) |x0+∆x

x0

]
= lim

∆x→∞
σ
[
~si,j(x− χ) |x0+∆x

x0

]
(4.20)

= σ [~si,j] (4.21)
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where σ
[
~si,j(x) |x0+∆x

x0

]
is the standard deviation of signal ~si,j(x), calculated over the do-

main [x0, x0 + ∆x] for any given x0. The same is true for the signal with aberrations

~s′i,j(x).

Again, just as for field dependent aberrations, but with a common target i and a couple

of sub-apertures j and j′, it can be said

σ
[
s′x′ i,j

]
σ
[
s′x′ i,j′

] =
gx′ i,jσ [sx′ i,j]

gx′ i,j′σ [sx′ i,j′ ]
(4.22)

=
gx′ i,j
gx′ i,j′

= gx′ i,(j,j′) (4.23)

These relative gains can be called on-on gains since i = 1 so they map on-axis aberrations.

On-off gains were all relative to the on-axis direction. Here, there is no criteria to chose

one sub-aperture over the others in order to make all gains relative to said sub-aperture. For

now, standard deviations σ
[
s′x′ 1,j

]
will be consider a measure of sub-aperture homogeneity

as showed in Figure 4.7.

FIGURE 4.7. Slope standard deviation map per sub-aperture. The overall average
for all sub-apertures depends on the turbulence profile. The relative differences
depends on the aberrations.
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Without having to calculate on-on gains, this map directly allows to assess the hetero-

geneity in how sub-apertures measure slopes. Normalizing values against their average,

produces a set of gains, centred around 1. Just as with Gon−off,(i,i′), a diagonal matrix

Gon−on =



gx′ ,0 0 · · · 0

0 gy′ ,0

gx′ ,1
... gy′ ,1

. . .

0 gy′ ,n


(4.24)

can be built with these normalized values so that

Gon−on~si=0(x) = ~s′i=0(x) (4.25)

When inverting this matrix, a set of perfect simulated data can be tuned into having

the same heterogeneity as the instrument. This technique and its purpose will be revisited

in 5.2 to tune numerical simulations of wavefront sensors so they match the aberrations of

true wavefront sensors, or to demodulate experimental data so it becomes homogeneous.

4.5. Phase screen characterization

To introduce phase aberrations as those caused by atmospheric turbulence, a test bench

can use a phase screen. The phase screen is manufactured to match a required turbulence

profile. To determine the goodness of fit of the manufactured profile with the intended one,

the phase screen has to be characterized.

As seen in Chapter 2, a stochastic noise process such as turbulence is well characterized

by its covariance, which translate into its power spectral density in the Fourier domain

through Wiener-Khinchin’s theorem. In turn, they are both defined by the strength of the

turbulence C̃2
nδz and the outer scale L0. Characterizing turbulence means finding values for

a model’s parameters so the error between their covariances (the model’s and the measured
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turbulence’s) is minimized. Here, only von Karman’s model will be consider as it is well

suited to developed turbulence.

Both covariances have to be calculated so the model can be fitted to the data. First

is calculated the covariance of the measured signal. Equation 2.13 allows to calculate a

function’s covariance when knowing its power spectral density. The power spectral density

of a real function s(x) is

W (f) = (F {s(x)}) · (F {s(x)})∗ (4.26)

Replacing equation 4.26 in equation 2.13 allows for direct computation of any signal’s

covariance. The resulting equation,

B(x) = F−1{(F {s(x)}) · (F {s(x)})∗} (4.27)

can be defined in any number of dimensions. In Chapter 2, Equation 2.34 allows calcu-

lation of covariance Bαlp [λ, x, y] for two points apart in both the X and the Y directions.

In the case of a single sub-aperture with wind parallel to the X axis, slopes in each local

direction will constitute one-dimensional signals. From slopes sx′ i,j(x), in the X ′ direc-

tion, can be calculated the longitudinal covariance Bαlp [λ, x, 0] and from slopes sy′ i,j(x),

in the Y ′ direction, can be calculated the transversal covariance Bαtp [λ, x, 0]. A simple

rotation in the reference system turns the transversal covariance into a longitudinal covari-

ance Bαlp [λ, 0, y] evaluated in x = 0. Therefore, instead of a two-dimensional covariance

matrix, a sub-aperture with one wind direction can only produce its central column and

central row.

As seen previously in Section 4.4, different sub-apertures have different gains as a

result of phase aberrations and heterogeneous construction of the lenslets. Since none can

be defined as the reference sub-aperture, all sub-apertures have to be taken into account to

measure the phase screen’s covariance matrix. Resulting covariance matrices have to be

averaged into a single, low noise matrix.
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Later the model’s covariance has to be calculated. Replacing the physical model given

by Equation 2.36 into Equation 2.34 produces the model’s covariance Bαlp [λ, x, y]. Sam-

pling the theoretical covariance, with the same sample size as the WFS measurements, pro-

duces a covariance matrix from which has to be considered the central column and central

row. Only they can be compared to the covariance vectors calculated from the data. Finally,

the model is fitted in a least squares sense using the Levenberg-Marquardt algorithm. The

error to be minimized is

e = ‖Bαlp, data [λ, x, 0]−Bαlp, model [λ, x, 0]‖2

+ ‖Bαlp, data [λ, 0, y]−Bαlp, model [λ, 0, y]‖2 (4.28)

It is important to consider a fair initial guess, since the algorithm can only find local

minima. For a phase screen characterized with BEAGLE, and according to the manufac-

turer, the length coherence or Fried’s parameter is r0 = 0.6 [mm]. Translated into sky

dimensions r0 on−sky = 14 [cm]. This parameter has to be turn into one of the two parame-

ters considered in the model. In (Hardy, 1998) the relationship between the strength of the

turbulence and Fried’s coherence length is given by

r0 =

[
0.423k2sec ς

∫
V eritcal

C2
n(z)dz

]−3/5

(4.29)

from which

C̃2
nδz =

r
−5/3
0

0.423k2sec ς
(4.30)

= 6 · 10−9
[
m−1/3

]
where k = 2π/λ and λ = 650 · 10−9[m]. This result is at a test bench scale (not the on-sky

scale).

Later, the outer scale is estimated from the structure function, also provided by the

manufacturer. Also in (Hardy, 1998), the structure function is defined as

D(τ) = 2 · (B(0)−B(τ)) (4.31)
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so the resulting curve is visually more representative of the turbulence profile. When plotted

in a log-log scale, the slope of the curve gives the r0 and the argument at which it saturates

is the outer scale.

Figure 4.8 presents structure functions for a phase screen characterized in a test bench.

In the same plot are included the structure functions of the fitted model. From the data

FIGURE 4.8. Structure functions in the X and in the Y directions. Functions ob-
tained from true data are compared with functions of a fitted model.

and from the fitting, the phase screen’s outer scale is L0 = 3.1 · 10−2 [m]. Translated

into sky dimensions L0 on−sky = 7.2 [m]. This is a small outer scale for any turbu-

lence on-sky. It explains the little variance and strength of the measured slopes, as the

turbulence saturates before integrating energy from larger scales. It was also found that

C̃2
nδz = 8.77 · 10−10[m−1/3]. Replacing it in Equation 4.29 gives r0 = 1.9 [mm] which

represents a 216% error against the manufacturer’s value, and on-sky translates to a value

of r0 on−sky = 44 [cm].

Finally, it can also be seen the structure function oscillates for slopes parallel to wind

propagation. In other words, covariance does not converge to zero, but oscillates on top of

it. This is due to an imperfection in the phase screen which produces a frequency in this

direction. This frequency could interfere when training a tomographic reconstructor, since

it would learn it and then expect it, without being able to generalize out of it. Because of

this, it is important to train reconstructors with as many different and general scenarios as

possible. This way, it would not fix on any specific pattern, and therefore would learn to
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generalize for all possible cases. Training through simulation as proposed in the following,

Chapter 5, allows to produce training data free of fix patterns.
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5. TOMOGRAPHIC RECONSTRUCTORS’ RANGE OF VALIDITY

As seen in Section 3.2, tomographic reconstructors can be based on artifical neural

networks (ANN). When so, their range of validity is wider than when using linear recon-

structors such as Learn & Apply. Linear reconstructors are finely tuned to work for specific

seeing conditions and altitudes. On the contrary, a sufficiently complex ANN can model

any problem, and therefore, if properly trained, handle scenarios at multiple altitudes and

seeing conditions. Being the most general, ANN based tomographic reconstructors may,

from now on, be referred to simply as reconstructors, as opposed to linear reconstructors.

The error budget of linear reconstructors against instrumental deviations and noise

is well understood (Vidal et al., 2014). This is not the case for ANN based reconstruc-

tors. These have been trained and validated in simulated conditions (Osborn et al., 2012)

and also have been trained with experimental data and then validated under experimental

conditions (Osborn et al., 2014). But never before has a reconstructor been trained with

simulated data and then tested against real experimental conditions. In such an exercise the

reconstructor’s performance is expected to decrease as of the introduction of instrumental

deviations and turbulence variability in long time scales.

The proposed thesis of this work is a reconstructor trained using simulated data can

reach an acceptable degree of validity in experimental conditions, when considering a suf-

ficiently precise instrumental characterization. The parameters retrieved from the charac-

terization can be used either to adjust simulated data so it resembles experimental data, or

to do the opposite. First, a network is trained in Section 5.1, using simulated data only. In

Section 5.2, a method is proposed to correct instrumental on-axis and off-axis gains, using

matrices Gon−on and Gon−off from Sections 4.4 and 4.3 respectively. Corrected data is

passed to the reconstructor and the difference in performance is assessed. The results of

this technique, although positive, are limited. Section 5.3 offers an explanation to its limi-

tation through a sensitivity analysis. The analysis is also applied to other sources of error a

reconstructor might encounter, such as mis-pointing of the guide source wave-front sensors
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(WFS) and variations of the outer scale. The reconstructor’s sensitivity is discussed as it

offers an understanding on how to train it so it remains valid in experimental conditions.

5.1. Training an artificial neural network based tomographic reconstructor

To test the proposed method, an artificial neural network based tomographic recon-

structor is trained. The chosen constellation is as shown in Figure 5.1. Its guide stars

are close to being aligned with the direction of wind propagation X and with Y . This will

prove to be important in Section 5.2. To this purpose, the chosen constellation was amongst

the best available in the test bench at hand, BEAGLE.

FIGURE 5.1. Guide stars constellation, with target star at center. X is the direction
of wind propagation.

A numerical simulation is set using this constellation to train the network. In order to

have a comparable reconstructor, the training method is similar to that used in (Osborn et

al., 2012). The ANN is a multi-layer perceptron back-propagation (MLP-BP) network. It

is presented with random phase screens, at individual altitudes, for which r0 = 25 [cm]

and L0 = 30 [m]. The tomographic volume, going from ground layer to hmax = 13020 [m]

is sampled 625 times at each individual altitude, at a resolution of 80 [m] between altitudes.

The simulation represents the 4.2 [m] in diameter William-Herschel telescope, sampled by

a 16x16 Shack-Hartmann WFS. The ANN is validated against three atmospheric profiles,

again, similar to those in (Osborn et al., 2012), and presented in Table 5.1.
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TABLE 5.1. Atmospheric profiles for validation.

Atmosphere
atm1 atm2 atm3

WF-RMS [nm] 759 758 758

Layer 1 Altitude [m] 0 0 0
Relative
strength 0.65 0.45 0.8

Layer 2 Altitude [m] 4000 2500 6500
Relative
strength 0.15 0.15 0.05

Layer 3 Altitude [m] 10000 4000 10000
Relative
strength 0.10 0.30 0.10

Layer 4 Altitude [m] 13020 13020 13020
Relative
strength 0.10 0.10 0.05

The results of the best reconstructor achieved are presented in Table 5.2. Here they

are compared against the results in (Osborn et al., 2012) as reference. Although having

further apart guide stars, the residual wave-front error (WFE) is smaller in all cases to that

of the reference. This is mainly due to having an extra guide source (four instead of three).

Another contributing factor comes from using a 16x16 Shack-Hartmann (SH) instead of a

7x7 one. As the performance of the reconstructor is considered comparable to that of an

accepted counterpart, it is used to test the method for correcting instrumental deviations,

proposed in the following section.

TABLE 5.2. Reconstructor validation. The achieved reconstructor is compared
against a reference. Here WFE-RMS[%] shows average WFE relative to average
WF.

Atmosphere µWF−RMS [nm] µWFE−RMS [nm] µWFE−RMS [%]

atm1 Reference 644 231 35.9
Achieved 703 216 30.7

atm2 Reference 817 262 32.1
Achieved 703 198 28.2

atm3 Reference 1088 387 35.6
Achieved 694 203 29.3
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5.2. Correction of instrumental deviations: on-axis & off-axis gains

When simulating an adaptive optics (AO) system, considerations on the pointing of

the WFSs and on the outer scale have to be hard coded a priori into the simulation. If

not, resulting data can not be modified a posteriori to match new desired values for these

parameters. As seen in Sections 4.4 and 4.3, this is not true for sub-aperture heterogene-

ity and for field-dependent aberrations, also referred to as on-axis gain and off-axis gains

respectively. If a reconstructor is trained using perfect simulated data, its performance

decreases when presented experimental data, with on-axis and off-axis gains. To address

this a method is devised that subtracts both types of gains from experimental data before

presenting it to a reconstructor, so it resembles simulated data, and then introduced back

after the reconstruction. This way the reconstructor does not operate on data as seen by a

particular instrument, but is brought to a base understandable by any reconstructor.

If ~s′ is a vector of slopes measured by an imperfect instrument and ~s are the expected

slopes without aberrations, it can be said a perfect simulation produces the last. In order

to add heterogeneity and field-dependent aberrations to simulated slopes, Equations 4.17

and 4.25 are used. Combining them gives

Gon−off,(i=0,i′) ·Gon−on · ~si=0(x) = Gon−off,(i=0,i′) · ~s′i=0(x)

= ~s′i′(x− τ) (5.1)

which can be modified into

Gon−off,(i=0,i′) ·Gon−on · ~si=0(x+ τ) = ~s′i′(x) (5.2)

Here, direction i = 0 is on-axis and i′ is any other direction. Finally, if ~si=0(x+τ) = ~si′(x),

then replacing into 5.2 gives

Gon−off,(i=0,i′) ·Gon−on · ~si′(x) = ~s′i′(x) (5.3)

Equation 5.3 above allows to transform slopes produced in simulation into slopes as

seen by an instrument. But this is only possible when directions i and i′ are aligned with
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the axis X of wind velocity. Since an AO experiment only counts with a finite amount of

wind propagation directions (typically one), matrix Gon−off,(i=0,i′) cannot be measured and

determined for all directions i′.

To deal with this, field dependent aberrations are considered azimuthally symmet-

ric relative to the optical axis of the system. If true, then it is possible to determine

Gon−off,(i=0,i′′) for a direction i′′ that is not aligned with i = 0 and wind velocity, from

Gon−off,(i=0,i′) when i′ and i are aligned. The condition is the distance between i = 0 and i′

is the same as that of i and i′′. Figure 5.2 shows the described configuration.

FIGURE 5.2. Star directions relative to wind direction in the X axis. Direction
i = 0 is on-axis, i′ is aligned with the wind, and i′′ is the same distance from
i = 0 as i′. Field dependent aberrations are considered azimuthally symmetric. For
θ = 90◦, gx′ = gy′′ and gy′ = gx′′ .

For simplicity i′′ will be considered at X = 0, with θ = 90◦. As can be seen

in the figure, for this particular case gx′ = gy′′ and gy′ = gx′′ . This allows to calcu-

late Gon−off,(i=0,i′′).

If field aberrations are not considered azimuthally symmetric, then gains cannot be

estimated for directions i′′ not aligned with X . In such gain values could be left unitary,

with gx′′ = 1 and gy′ = 1.

Having solved this, Equation 5.3 can be extended to a multi-object adaptive optics

(MOAO) system with four guide stars i = 1, 2, 3, 4 and a target i = 0. This is done

by concatenating the measurements from all WFSs and diagonally concatenating matrices
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Gon−off,(i,i′) and Gon−on as

~s =
[
~s1

T ~s2
T ~s3

T ~s4
T

]T
(5.4)

Gon−on =


Gon−on 0 0 0

0 Gon−on 0 0

0 0 Gon−on 0

0 0 0 Gon−on

 (5.5)

Gon−off =


Gon−off,(0,1) 0 0 0

0 Gon−off,(0,2) 0 0

0 0 Gon−off,(0,3) 0

0 0 0 Gon−off,(0,4)

 (5.6)

Resulting equation is

Gon−off ·Gon−on · ~s = ~s′ (5.7)

where G = Gon−off ·Gon−on. If aberrations are considered azimuthally symmetric, then

G = GXY , if not then G = GX1.

The process of subtracting gains is called demodulation, and consists in multiplying

slopes by G−1. The process of reintroducing them is called modulation and consists in

multiplying by G. Figure 5.3 shows the process of feeding a reconstructor demodulated

data and modulating it a its end. The entire operation is intended to emulate a reconstructor

trained with experimental data.

Using the test bench, an experiment is produced with the same guide stars and target as

in Figure 5.1. The turbulence layer characterized in 4.5 is swept at three different altitudes.

Guide sources measurements ~s′ and target measurements ~s′0 are produced. The network

trained in Section 5.1 was so using only simulated data. First, the ANN’s performance

is tested against raw measurements, without any consideration of instrumental deviations.

This is considered the worst case scenario upon which the correction technique should

provide with an improvement. Then the ANN is tested against perfect simulated data of

turbulence at the same three altitudes. This is considered the best case scenario. Both, the
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FIGURE 5.3. Demodulation and modulation. An ANN trained through simulation
receives demodulated data from an instrument. The ANN produced an estimation
of the target’s slopes. The result is modulated at its end. The whole acts as an ANN
trained with experimental data.

best and the worst case, provide a benchmark to assess the technique’s results. Table 5.3

presents the results of implementing the modulation and demodulations modules. These in

turn have two versions, one with GX1 and the other with GXY .

TABLE 5.3. Instrumental deviations correction results. The ratio between WFE-
RMS and WF-RMS is calculated for each random phase screen. Its average is
shown in column µWFE/WF and its standard deviation in column σWFE/WF .

Altitude [m] Origin µWF−RMS [nm] µWFE/WFE [%] σWFE/WF [%]

1442

Simulated
[best case] 696 7.1 3.6

Raw
[worst case] 474 51.0 18.8

GX1 474 50.8 18.1
GXY 474 51.3 17.3

3000

Simulated
[best case] 703 8.1 3.8

Raw
[worst case] 464 77.3 22.5

GX1 464 78.3 21.8
GXY 464 77.6 20.4

5000

Simulated
[best case] 701 8.7 4.0

Raw
[worst case] 463 76.5 23.5

GX1 463 77.2 22.7
GXY 463 76.6 21.4
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When presenting the ANN with raw instrumental data, the relative residual WFE in-

creases in an order of magnitude. When applying the modulation technique, results do

not improve. Any appreciable reduction of the error is negligible. In other words the

correction fails to compensate any significant instrumental deviation. There are two non-

exclusive explanations to this. The first is the characterization resulting in matrices Gon−off

and Gon−on was not precise enough. The second is sub-aperture heterogeneity and field-

dependent aberrations combined are not a significant source of error. Other deviations, not

addressed by the proposed technique, would have a larger weight. If the reconstructor is

insensitive to multiplying incoming data by a gain matrix G, then not even the most precise

characterization of on-axis and off-axis gains would result in any improvement, discarding

the first explanation. The later is further explored in Section 5.3

5.3. Sensitivity analysis

When presenting an ANN based reconstructor with data from a measurement, any

deviation from the training data set may lead to a decrease in the estimation’s performance.

As seen in the previous section, this can be critical as the error can increase up to three times

from its expect value. To deal with this, a method was devised to correct field-dependent

aberrations and sub-aperture heterogeneity. But there might be other differences between

the experiment and the simulation that drive the reconstruction out of its space of validity.

Three major sources of error are identified. The first are measurement distortions, amongst

which can be found the off-axis and on-axis gains. Distortions refer, in this case, to any

phenomena introducing an amplification factor or gain to the measurements. They can

be modelled by a diagonal matrix G multiplying the expected measurement vector. The

second source of error might be the difference in outer scale. The outer scale shapes the

turbulence’s spatial correlation, which determines the correlation between sup-apertures. If

a reconstructor learns a given correlation pattern, it might not be able to generalize when

facing a new one. The last deviation is here referred to as pointing and relates to the

positions of the guide sources and of the target in an experiment, against their expected

ones. When preparing and adaptive optics experiment in an optical test bench, the light
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sources representing the stars must be set in position to match a chosen constellation. The

pointing is the process of setting the stars and then setting their corresponding WFSs. This

is done with a certain precision. An error in pointing changes the direction in which the

tomographic volume is seen, and therefore the correlation between sub-apertures.

The sensitivity of a reconstructor to all of these deviations is assessed. To do so, the

ANN is presented with simulated data, where the simulation has been modified to include

one of the errors to test. The estimation’s accuracy is then compared with that obtained

without the errors. Not only is this of interest in the context of the proposed hypothesis,

but also when using standard reconstructors (trained with instrumental data) in changing

conditions. All ANN based reconstructors are trained days before being used. When so,

they all must deal with pointing errors and with a unique seeing. A sensitivity analysis

is then essential to determining the range of validity of a reconstructor and to estimate its

performance and the quality of its results. This is something not yet studied in detail.

The first source of error introduced are distortions. As seen, they can be represented

by a diagonal gain matrix. Determining the effect these matrices have on a reconstruc-

tor’s performance allows to quantify the range of improvement possible to achieve when

correcting for them. To do so, random matrices G are generated with a normal distri-

bution and the same statistical parameters as used in the modulation. In Section 5.2, the

elements of modulation matrix G had an average of 1 by definition and a standard devia-

tion σdiag(GX1) ≈ σdiag(GXY) ≈ 0.11. Being gains, these values are normalized and have no

unit. The residual WFE-RMS of the reconstructor is tested when presented with data dis-

torted with a large set of these random matrices. Simulation considers the first atmospheric

profile described in Table 5.1. Finally, to better assess the sensitivity of the ANN to distor-

tions, matrices are also generated using larger standard deviations. Results are presented in

Table 5.4.

When σG = 0.11, average WFE-RMS increases only by 0.4%. This means this is the

average improvement that can be expected when correcting for distortions of that order.
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TABLE 5.4. WFE-RMS when introducing distortion matrices G. Simulation con-
siders atmospheric profile ”atm1”. The ratio between WFE-RMS and WF-RMS
is calculated for each random phase screen. Its average is shown in column
µWFE/WF and its standard deviation in column σWFE/WF .

σG µWF−RMS [nm] µWFE/WF [%] σWFE/WF [%]
0.00 703 35.3 15.3
0.11 703 35.7 15.3
0.22 705 37.0 15.3
0.33 707 38.8 15.3

This helps explain actual correction results in Table 5.3, where improvements are not no-

ticeable. For larger distortions, the error grows at an increasing rate, but still at a slow one.

Since a distortion with σG = 0.33 is larger than could ever be expected, the ANN can be

said to be very robust against them. Therefore, off-axis and on-axis gains are not a major

source of error and not much can be expected when correcting for them.

The next error introduced is that of pointing. Pointing errors, specially in an opti-

cal experiments, can be the product of a misalignment of the guide source and the target,

relative to the WFSs. A misalignment can change the magnification and the rotation of

a constellation. The magnification affects the apparent size of an asterism, changing the

estimated altitude of a turbulence layer. Since the effect of altitude changes are well under-

stood (Osborn et al., 2014), the focus is put on rotations. Simulations are then performed

where guide sources are rotated at different angles. In Section 4.2, guide sources’ rotation

was estimated to be 2.6 [◦]. Then, the range of tested rotation angles will well include that

value, leaving it at its middle. Again, simulation will consider atmospheric profile ”atm1”

as described in the previous section. Results are presented in Table 5.5.

When rotating an amount similar to that of the estimated rotation in the test bench,

average WFE-RMS only increases 0.7%. When rotating 5.7◦, which again, is a larger

rotation to what can be expected in normal conditions, the error only increases 1.3%. With

guide stars at about 33 [arcsec] from the optical axis, the largest rotation translates the

projected pupil of 1.6 [cm] at an altitude of 1 [km], and 16 [cm] at an altitude of 10 [km].

With sub-apertures of 26.25 [cm] (16 sub-apertures across a 4.2 [m] pupil), this means
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TABLE 5.5. WFE-RMS when rotating guide sources. Simulation considers atmo-
spheric profile ”atm1”. The ratio between WFE-RMS and WF-RMS is calculated
for each random phase screen. Its average is shown in column µWFE/WF and its
standard deviation in column σWFE/WF .

Rotation [degrees] µWF−RMS [nm] µWFE/WF [%] σWFE/WF [%]
0 703 35.3 15.3

0.6 701 35.3 15.1
2.9 699 35.8 15.4
5.7 704 36.7 15.4

translations of approximately 6% and 61%, respectively. Other reconstructors such linear

ones, are very susceptible to such translations. This simulation shows ANNs are fairly

good at generalizing for rotation errors of pointing. Other pointing errors that are not tested

here relate to each WFS’s alignment. MOAO systems use pick-off mirrors to feed their

WFSs. Their alignment is a difficult task, and the error of these process his difficult to

quantize. Further work includes simulating individual misalignments of the WFSs, and

then combining it with rotation errors.

The last difference introduced in the simulation is the change in the outer scale. Until

now, ANNs are trained using a constantL0. It is unclear whether a reconstructor trained this

way can generalize for different values of this parameter. Larger values of L0 mean more

tightly correlated turbulence. In turn, this improves the turbulence’s predictability over a

given distance. A good reconstructor is one that improves its estimation as the outer scale

increases. A bad reconstructor is one for which the residual error increases when moving

apart from the outer scale at which it was trained. For this test, multiple sets of slopes are

produced through simulation. L0 is different for each set. This time, instead of considering

an atmospheric profile consisting of four layers at different altitudes, single phase screens

are produced at random altitudes ranging from ground layer to 13020 [m] (maximum alti-

tude of overlap). WFE-RMS values for each set are shown in Figure fig:outerscales.

In the figure, the error converges to a minimum as the outer scale increases. This occurs

without any anomaly or noticeable minimum around L0 = 30 [m], which is the value used

for training. The reconstructor can then be said to be good, as it generalizes correctly,
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FIGURE 5.4. Average WFE-RMS, relative to average uncorrected WF-RMS vs.
outer scale. Error bars equal 2σ, where σ is the standard deviation of WFE-RMS
for all simulated cases, also relative to average uncorrected WF-RMS. At each value
of L0, all altitudes are represented evenly.

without regard to the outer scale shown during training. With respect to the reconstructor’s

sensitivity to this parameter, it can be said to be low when using only one layer. Considering

the outer scale of a single layer in a good site like Paranal can go from about 5 [m] under bad

conditions to roughly 50 [m] (Ali et al., 2010), then the average WFE-RMS would suffer

at most a 15% variation. Although little, this is the largest performance variation obtained

with all three sources of error introduced. Since the experimental data was measured to

have an outer scale of L0 = 7.2 [m], according to the results the relative WFE-RMS should

have been around 15%, instead of 50% to 70%.

None of the individual errors introduced account for the difference in performance

when presenting the ANN with simulated experimental data. As shown, these types of

tomographic reconstructors are robust against single and expected instrumental deviations.

Future work will assess scenarios with multiple sources of error, to determine whether

together, their effects are magnified, or if other deviations remain to be considered.
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6. CONCLUSIONS

The hypothesis of this work is the deviations and aberrations of an instrument can be

quantified and incorporated into a simulation, to train a reconstructor valid in experimen-

tal conditions. With this in consideration, novel methods of characterization are presented

in Chapter 4. These methods quantify sub-aperture heterogeneities and field-dependent

aberrations, also called on-axis and of-axis aberrations respectively. The result is used in

Chapter 5 to build correction matrices Gon−on and Gon−off . These matrices mitigate the

previously mentioned instrumental deviations. An ANN based tomographic reconstructor

would then see corrected measurements as coming from a perfect instrument or simula-

tion. This way, data resembles that produced in simulation and presented to the ANN for

training, better falling in its range of validity.

When implementing the correcting technique improvements are negligible. This calls

for a sensitivity analysis. The very same error is introduced to simulated data in various

degrees, to assess its progressive impact on the reconstructor’s estimation. As expected, the

ANN is robust to such distortions, which are handled as noise. Even when they are mag-

nified by threefold over the estimated distortions, the overall residual WFE only increases

by about 3%. The major sources of error between the simulated model and the experiment

are not being addressed and correcting for them has as little impact as they do.

There may be other significant sources of error. New sensitivity analyses are con-

ducted in order to determine their estimated impact. Two likely candidates are rotation

of the field of view and variations of outer scale. From the test bench’s calibration and

characterization, the field’s rotation and the outer scale were estimated to be 2.6 [◦] and

L0 = 7 [m] respectively. Considering the simulation had no rotation and the outer scale

was L0 = 30 [m], these differences between the model and the experiment could account

for most of the error.

Simulations were performed adding as much as twice the estimated rotation of the

field, and sweeping from L0 = 4 [m] to L0 = 30 [m]. In the case of rotations, it accounts

for less than a 2% increase of the WFE when rotating 5.7 [◦]. Since this greatly exceeds any
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expectable rotation, it can be said the ANN is robust against all rotations it might encounter.

Variations of the outer scale ,on the other hand, produced a larger error. Simulation shows

the difference between the outer scale used for training and that of the experiment accounts

for about a 5% increase of the WFE, relative to the WF-RMS. This result is most interesting

since ANN based reconstructors often face seeing conditions other than those presented in

training.

Individual deviations do not account for the deterioration of the ANN’s estimation

when presented with experimental data. Also, little is known about tomographic recon-

structors’ range of validity and sensitivity. Further work consists in considering other in-

strumental deviations for analysis, and also introducing multiple ones at a time. This could

help bring new understanding on building more robust ANNs. And relative to this work’s

hypothesis and goal, this would help devise future correction techniques, that take into

account the most relevant sources of error.
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