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Abstract The western Antarctica Peninsula and Scotia

Sea ecosystems appear to be driven by complex links

between climatic variables, primary productivity, krill and

Avian predators. There are several studies reporting sta-

tistical relationships between climate, krill and Penguin

population size. The Adélie (Pygoscelis adeliae), Chinstrap

(P. antarctica) and Gentoo (P. papua) penguins appear to

be influenced by interannual variability in sea-ice extent

and krill biomass. In this paper we developed simple

conceptual models to decipher the role of climate and krill

fluctuations on the population dynamics of these three

Pygoscelis penguin species inhabiting the Antarctic Pen-

insula region. Our results suggest that the relevant pro-

cesses underlying the population dynamics of these

penguin species at King George Island (South Shetland

Islands) are intra-specific competition and the combined

effects of krill abundance and sea-ice cover. Our results

using population theoretical models appear to support that

climate change, specifically regional warming on the

western Antarctic Peninsula, represents a major driver. At

our study site, penguins showed species-specific responses

to climate change. While Chinstrap penguins were only

influenced by krill abundance, the contrasting population

trends of Adélie and Gentoo penguins appear to be better

explained by the ‘‘sea-ice hypothesis’’. We think that

proper population dynamic modeling and theory are

essential for deciphering and proposing the ecological

mechanisms underlying dynamics of these penguin

populations.

Keywords Climate change � Dynamics � Krill � Penguin

populations � Predictions

Introduction

One of the pressing contemporary issues in ecology is

predicting the response of natural populations to climate

change (Stenseth et al. 2002; Walther et al. 2002). Popu-

lation dynamics models are simple tools based on logical

and ecological principles that can be applied to analyze

ecological time series to understand and predict the effects

of climate change (Royama 1992; Sæther et al. 2000;

Stenseth et al. 2002; Berryman and Lima 2006; Lima and

Beryman 2006; Lima et al. 2006, 2008a, b; Lima and Naya

2011; Estay and Lima 2010).

In the Southern Ocean, the region of the Western Ant-

arctic Peninsula (WAP) is undergoing one of the most

rapid environmental and ecological changes. In this region,

important effects of global climate warming have been

detected, such as an increase in air temperature and the

associated drop in sea-ice cover (Smith et al. 1999;

Vaughan et al. 2001; Gille 2002; Cook et al. 2005). These

changes have profoundly affected several biological pro-

cesses at different ecological levels (Croxall et al. 2002;

Atkinson et al. 2004; Murphy et al. 2007; McClintock et al.

2008). For example, the continuous decline in the winter

sea-ice extent and the increase in the sea surface temper-

ature have impacted the recruitment and abundance of the
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Antarctic krill populations (Euphausia superba) (Atkinson

et al. 2004; Murphy et al. 2007). Because krill is a key

component in the Antarctic marine food webs (Atkinson

et al. 2004), the magnitude of these changes may affect the

population dynamics of top predators such as albatrosses,

penguins, seals and whales (Croxall et al. 2002; Fraser and

Hofmann 2003). Therefore, understanding how climatic

variability may propagate its effects across the upper tropic

levels is fundamental for predicting ecosystem responses.

In particular, some penguin populations have responded

to the recent changes in sea-ice cover and krill population

trends (Fraser et al. 1992; Croxall et al. 2002; Fraser and

Hofmann 2003; Forcada et al. 2006; Carlini et al. 2009;

Lynch et al. 2010). The Adélie (Pygoscelis adeliae),

Chinstrap (P. antarctica) and Gentoo (P. papua) penguins

appear to be influenced by the inter-annual variability in

the sea-ice cover extent (Fraser et al. 1992; Trathan et al.

1996; Ainley et al. 1998; Wilson et al. 2001; Kato et al.

2002; Fraser and Hofmann 2003; Trivelpiece et al. 2011;

Lynch et al. 2012). However, contrasting population trends

have been recorded between species and localities (Croxall

et al. 2002; Trivelpiece et al. 2011; Lynch et al. 2012). For

example, Adélie penguin populations breeding at the Ross

Sea and eastern Antarctica have been increasing during the

last decades (Croxall et al. 2002; Kato et al. 2002), while

the breeding populations from the Antarctic Peninsula and

South Orkney Islands have exhibited a decreasing trend

(Croxall et al. 2002; Forcada et al. 2006; Carlini et al.

2009; Lynch et al. 2010). Because Chinstrap penguins

(P. antarctica) are essentially confined to the Antarctic

Peninsula, almost all the populations showed negative

trends during the last decade (Forcada et al. 2006). On the

other hand, Gentoo penguins are mainly sub-Antarctic with

a subspecies confined to the Antarctic Peninsula (Forcada

et al. 2006). The latter species showed a positive popula-

tion trend during the last years (Carlini et al. 2009; Lynch

et al. 2010). The population trends observed in these pen-

guin species seem to be caused by the reduction in the sea-

ice cover and krill abundance (Croxall et al. 2002; Fraser

and Hofmann 2003; Forcada et al. 2006). However, given

the close relationship between sea-ice cover and krill

recruitment (Atkinson et al. 2004; Murphy et al. 2007), the

exact causal path between climate, food availability and

penguin population dynamics may be difficult to decipher.

To date there are several studies reporting statistical

relationships between climate, krill and penguins abun-

dance and demography at Western Antarctic Peninsula

ecosystem (Croxall et al. 2002; Atkinson et al. 2004;

Forcada et al. 2006; Murphy et al. 2007; Trivelpiece et al.

2011; Lynch et al. 2012). Considering the large amount of

previous studies, it is valid to question whether something

new can be said about the role of climate warming on

population trends of penguins. Although statistical analyses

are useful tools to detect relationships between variables

and to show common signatures in the time or frequency

domain, they do not provide causal explanations based on

general ecological principles (Berryman 1999; Turchin

2003; Ginzburg and Colyvan 2004). Therefore, we propose

the use of theoretical population dynamics models as a

platform that may allow us to decipher the effects of cli-

mate change on the population trends of these species,

providing a solid and simple background to analyze and

interpret fluctuations in animal populations (Royama 1992;

Berryman 1999; Ginzburg and Colyvan 2004; Ginzburg

and Jensen 2004). Moreover, the models used in the

present study are easy to fit to data, their parameters are

ecologically interpretable, and their predictions can be

tested against independent data (Berryman and Lima 2006;

Lima et al. 2008a, b; Lima and Naya 2011), all of which

make them essential tools in any efforts to anticipate

unknown effects of climate change.

In consequence, based on the previous knowledge about

the links between climate, krill and penguin dynamics, we

will develop simple conceptual models to decipher the role

of climate and krill fluctuations on the population dynamics

of these three Pygoscelis penguin species inhabiting the

Antarctic Peninsula region.

Methods

Climatic data

Sea surface temperature (SST) was obtained from the

Hadley centre data sets (http://www.metoffice.gov.uk/

hadobs/hadsst2/). This data set was obtained from the

International Comprehensive Ocean–Atmosphere Data Set,

ICOADS, from 1978 to 1997 and from the NCEP-GTS

from 1998 to the present. HadSST2 is produced by taking

in situ measurements of SST from ships and buoys,

rejecting any measurements which fail quality checks.

Measurements are converted to anomalies by subtracting

climatological values from the measurements, and calcu-

lating a robust average of the resulting anomalies on a 5�
by 5� degree monthly grid (Rayner et al. 2006). In partic-

ular, we used those cells located both west and east of the

Ardley Island (Fildes Peninsula, King George Island),

where our focal penguins populations are located.

Total ice-covered area (ICE) was obtained from the

National Snow and Ice Data Center (NSIDC, http://www.

nsidc.org) from 1978 to 2007. Total ice-covered area is

defined as the area of each pixel with at least 15 percent ice

concentration multiplied by the ice fraction in the pixel. In

particular, we used cells located west (Bellingshausen and

Amundsen Seas) and east (Weddell Sea) of the Ardley

Island (Fildes Peninsula, King George Island). To assess
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potential effects of ice seasonality on penguin populations

Ice cover data sets were divided in two seasons: winter

(June–November) and summer (December–May) total ice-

covered area.

Annual southern annular mode (SAM) index was

obtained from http://www.nerc-bas.ac.uk/icd/gjma/sam.html.

This index is calculated as described by Marshall (2003),

using real sea-level pressure from six stations; the SAM is

a pattern of tropospheric circulation variability centered on

Antarctica, whose influence affects several atmospheric

and oceanographic conditions.

Penguin data

Data on breeding population size was collected annually at

every Adélie-, Chinstrap- and Gentoo-breeding colony on

Ardley Island (Fildes Peninsula, King George Island;

Fig. 1) from 1980 to 2006 (Fig. 2a–c). The index of

abundance used was the count of active breeding pairs

collected by observers during the month of December.

Krill data

Data representing krill (E. superba) abundance was

obtained from aggregated catch and effort data aggregated

over a fine-scale rectangle (0.5� latitude by 1.0� longitude)

and by month by the Commission for the Conservation of

Antarctic Marine Living Resources (CCAMLR) secretary.

The area used corresponds to the rectangle located between

latitude 60�S–64�S and longitude 54�W–65�W, (Subarea

48.1, Fig. 1). The catch data is given in tons (T), and the

effort data represent total hours fished during a month in

each rectangle. We transformed this data to catch per unit

of effort by adding the total tons of catch in the area and

season (from October to April) and then dividing the

resulting sum by the total hours fished (Fig. 2d).

Diagnosis and statistical models of population

dynamics

To determining the endogenous structure of the penguin

and krill populations, we first determined the order of the

feedback structure of these time series. Hence, we carried

out an autoregressive analysis using the partial rate corre-

lation function (PRCF), according to Berryman and Tur-

chin (2001). In all cases the populations were dominated by

first-order feedback (Fig. 3); therefore, we used a nonlinear

version of the simple Ricker’s (1954) equation as a starting

point to model the reproductive function or R-function

(Berryman 1999). This allowed us to model the basic

influence of endogenous and exogenous forces on these

dynamics.

Theoretical models of population dynamics

Population dynamics of penguins and krill appear to be the

result of intra-population processes that cause a first-order

feedback structure in population fluctuations. To under-

stand how these processes determine penguin and krill

dynamics, we used a simple model of intra-specific com-

petition, the exponential form of the discrete logistic model

(Ricker 1954; Royama 1992):

Nt ¼ Nt�1 � rm � exp �c� Na
t�1

� �
ð1Þ

where Nt represents the population abundance at time t, rm

is a positive constant representing the maximum finite

reproductive rate, c is a constant representing competition

and resource depletion, and a indicates the effect of

interference on each individual as density increases

(Royama 1992); a [1 indicates that interference

intensifies with density and a \1 indicates habituation to

interference. By defining Eq. 1 in terms of the R-function,

Rt = loge (Nt/Nt-1), log-transforming Eq. 1, and defining

the population density in logarithm Xt = loge (Nt), we

obtain

Rt ¼ Rm � exp a� Xt�1 þ C½ � ð2Þ

where Rt is the realized per capita growth rate

Rt = loge(Nt/Nt-1), Rm = loge(rm), a is the same

parameter as in Eq. 1, C = loge(c), and X = loge(N).

This model represents the basic feedback structure

determined by intra-population processes. Because in this

model the three parameters Rm, a, and C have an explicit

biological interpretation, we can include climatic

perturbations in each parameter using the framework of

Royama (1992). In this manner, we may build mechanistic

Fig. 1 Antarctic Peninsula region, where the King George Island is

located. The grey shaded area corresponds to the subarea 48.1 where

data of krill CPUE were obtained
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hypotheses about the effects of climate in these three

penguin populations. For example, a simple additive

climatic perturbation effect may be represented as a

‘‘vertical’’ effect that shifts the relative position of the

R-function by changing Rm on the y-axis (Royama 1992).

This may be expressed as;

R0m ¼ Rm þ g Climateð Þ ð3Þ

where g is a simple linear function (positive or negative) of

the different exogenous variables at different lags (e.g.,

SST or SAM). Another kind of climatic perturbation may

occur when the equilibrium point of the population is

influenced by the climate. This is the case when climate

influences a limiting factor or resource such as food or

shelter. The correct model structure in this scenario is that

the carrying capacity (equilibrium point) is affected by the

exogenous variable. In this case the climatic factor shifts

the R-function curve along the x-axis without changing the

slope at the equilibrium, which represents a ‘‘lateral’’

perturbation in Royama’s (1992) framework:

C0 ¼ C þ g Climate=krillð Þ ð4Þ

In addition, we may include also in the logistic Eq. 1 a

term representing inter-specific competition. In this

ecosystem, the three penguin species showed similar

ecological roles and food preferences (Lynnes et al.

2002), but they seem to exploit food resources at different

areas and depths (Wilson 2010). Hence, a logistic model

including intra- and inter-specific competition may be used

to test this hypothesis.

Nt ¼ Nt�1 � rm � exp �c� Na
t�1 � c1 � Pb

t�1

� �
ð5Þ

As in Eq. 1, Nt represents the penguin abundance at time

t, rm is a positive constant representing the maximum finite

reproductive rate, c is a constant representing competition

and resource depletion, and a indicates the effect of

interference on each individual as density increase

(Royama 1992). In addition, Pt is the density of the inter-

specific competitor with c1 representing a constant inter-

specific effect on the resource depletion and b indicating

a b

dc

Fig. 2 Logarithm of the annual

counts of breeding pairs at

Fildes Peninsula, King George

Island, a The Chinstrap penguin

(P. antarctica), b the Adélie

penguin (P. adeliae), c the

Gentoo penguin (P. papua) and

d logarithm of the krill biomass

estimated from CPUE data at

subarea 48.1

a b

c d

Fig. 3 PRCF plots for penguin

and krill time series data.

a The Chinstrap penguin

(P. antarctica), b the Adélie

penguin (P. adeliae), c the

Gentoo penguin (P. papua) and

d krill (E. superba) biomass

estimates. The major influence

of first-order feedback structure

is clear. Dashed lines represent

a 23-year time series Bartlett

band, which is a rough

approximation to the 95 %

confidence interval
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the effect of interference on each inter-specific individuals.

We defined Eq. 5 in terms of the R-function by defining

Rt = loge (Nt/Nt-1), log-transforming Eq. 5, and defining

the population density in logarithm Xt = loge (Nt) and

Yt = loge (Pt), resulting in the following equation:

Rt ¼ Rm � exp a� Xt�1 þ b � Yt�1 þ C1½ � ð6Þ

where Rt is the realized per capita growth rate Rt =

loge(Nt/Nt-1), Rm = loge(rm), a and b are the same

parameters as in Eq. 5, and C1 = loge(c ? c1). This model

represents the basic feedback structure determined by intra-

and inter-population processes.

We fitted Eqs. 4, 6 by means of nonlinear regression

analyses (Bates and Watts 1988) using the nls library in the

program R (R Development Core Team 2011). In addition,

we included the climatic variables in the parameters Rm, C,

and a as linear functions (Eqs. 5, 6). All of the models were

fitted and ranked according to the Bayesian information

criterion (BIC) (Schwarz 1978). For clarity, BIC weights

were also included in the results. Minimum BIC was

selected to determine the best model. We used the data for

the period between 1984 and 2000 to fit the models and

data from the period between 2000 and 2006 to test the

model predictions. To assess the predictive performance of

the models we calculated the values of the root-mean-

square prediction error (rmse; Sheiner and Beal 1981).

Smallest rmse values represent the best predictive perfor-

mance. In addition, we used Pearson’s correlation coeffi-

cient between the observed and predicted numbers to

assess model predictions. We used biological criteria to fix

the Rm parameter (maximum per capita growth rates) (see

Royama 1992). Observed maximum per capita growth

rates in all three penguin species were between 0.40 and

0.65; which is consistent with the life history of these

species.

Results

The numerical fluctuations of the three penguin species

showed contrasting patterns. Chinstrap (P. antarctica) and

Adélie (P. adeliae) penguins populations were character-

ized by irregular oscillations and a sudden decrease during

the last years (Fig. 2a, b). In contrast, Gentoo penguins (P.

papua) showed a positive trend during the last years in the

study site (Fig. 2c). First-order negative feedback, PRCF

(1), was the most important component of per capita

growth rates in all the species analyzed (Fig. 3a–c). These

results suggest that intra-specific competition is the most

important component of these three feedback structures.

The population fluctuation of the krill (E. superba) showed

large irregular oscillations and a negative trend (Fig. 2d),

similar to the penguin time series data. The krill

fluctuations were also characterized by a first-order nega-

tive feedback (Fig. 3d).

According to our analyses the logistic model without

exogenous effects accounts for 24, 39, 44 and 44 % of the

observed variation in R values of P. antarctica, P. adeliae,

P. papua and E. superba, respectively (Table 1). The

addition of krill abundance as a lateral effect in P. ant-

arctica logistic models increased explained variance from

24 to 49 %. Also, the BIC criteria and the BIC weights

indicated a strong support for the role of food (krill) as the

main factor affecting chinstrap fluctuations (Table 1).

Model 5 which includes krill as a lateral perturbation was

6.09 times more likely than model 1 (w1/w5 = 6.09). In

addition, the second best model suggests a positive effect

of the one year-lagged summer sea-ice cover (Table 1).

These two models showed almost no differences in their

predictive ability (Table 1), further suggesting the impor-

tance of krill biomass in determining the population

decrease observed during the 2000–2006 period (Fig. 4a).

The addition of west side winter sea-ice cover seems to

be the most important exogenous factor for P. adeliae,

increasing explained variance from 39 to 50 % (Table 1).

Similar models using east side winter sea-ice cover, or

summer sea-ice cover also showed a good fit to the data,

but their empirical support based on the BIC and BIC

weights was weak (Table 1; w1/w4 = 1.40). Moreover,

models using sea-ice cover as a lateral effect captured the

negative trend of the observed data during the period

2000–2006 (Fig. 4b; Table 1). Nevertheless, it is important

to note that the best models predicted higher values than

the observed data for the years 2000–2006.

The Gentoo penguins (P. papua) showed positive effects

of warming, the inclusion of one year-lagged positive

effects of summer sea surface temperature (east side) and

the negative effects of one year-lagged east side winter sea-

ice cover increase the explained variance from 44 to 70 %

(Table S1 in Electronic supplementary material). The evi-

dence ratio showed that this model has 11.7 times more

empirical support than the pure endogenous model (w1/

w5 = 11.74). A close model was one with winter sea-ice

cover and west side summer sea surface temperature

effects, according to the BIC and BIC weights (Table 1). In

both cases, model predictions appear to capture the

increasing trend in this penguin species during the

2000–2006 period (Fig. 4c; Table 1).

The models including west side summer sea-ice cover as

an exogenous lateral perturbation effect in the krill (E.

superba) increased the explained variance from 44 to 59 %

(Table 1). The addition of the lagged west side summer

sea-ice cover also had some level of support according to

the BIC and BIC weights values (Table 1). Although the

model selection procedure was not able to distinguish a

simple best model, the first best five models always include
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Table 1 Optimal population dynamic models for penguin species and krill using the exponential (Rt ¼ Rm � e aXt�1þC½ �) form of logistic growth

(Royama 1992); parameter values are given in the equations

Log-likelihood BIC P DBIC wi R2 rmse rP

Models for Pygoscelis antartica

1. Rt = 0.5 2 exp (1.09 Xt212 0.82 2 0.62 Krillt) 21.09 13.51 4 0.00 0.25 0.49 0.43 0.69

2. Rt = 0.5 2 exp (1.18 Xt21 2 1.32 2 0.52 Krillt-0.88 Ice-swt-1) 20.86 15.92 4 2.41 0.075 0.50 0.41 0.74

3. Rt = 0.5 - exp (1.16 Xt-1 - 3.90 - 2.27 Ice-swt-1) 22.71 16.73 4 3.22 0.050 0.37

4. Rt = 0.5 - exp (0.21 Xt-1 ? 0.11) ? 0.30 Krillt 22.80 16.93 4 3.42 0.045 0.37

5. Rt = 0.5 - exp (0.82 Xt-1 - 3.84) 24.30 17.12 3 3.61 0.041 0.24

6. Rt = 0.5 - exp (0.48 Xt-1 - 1.65) ? 1.29 Ice - swt-1 23.08 17.51 4 4.00 0.034 0.34

7. Rt = 0.5 - exp (0.42 Xt-1 - 1.46) ? 1.10 Ice-swt 23.13 17.59 4 4.08 0.033 0.34

8. Rt = 0.5 - exp (1.03 Xt-1 - 4.71 ? 0.40 SST-et-1) 23.16 17.64 4 4.14 0.032 0.34

9. Rt = 0.5 - exp (0.97 Xt-1 - 4.49) - 0.28 SST-e t-1 23.26 17.85 4 4.34 0.029 0.33

Models for Pygoscelis adelie

1. Rt = 0.4 2 exp (2.45 Xt212 14.50 2 0.77 Ice2wet) 7.79 24.24 4 0.00 0.081 0.50 0.32 0.93

2. Rt = 0.4 2 exp (1.30 Xt21 2 9.45) ? 0.63 Ice2swt21 7.55 23.77 4 0.47 0.063 0.49

3. Rt = 0.4 2 exp (2.40 Xt21 2 19.39 ? 1.03 Ice2wwt) 7.54 23.74 4 0.50 0.061 0.48

4. Rt = 0.4 2 exp (1.96 Xt21 2 14.79) 6.10 23.70 3 0.54 0.061 0.39

5. Rt = 0.4 2 exp (2.19 Xt21 2 15.95) 2 0.034 SAMt22 7.50 23.67 4 0.57 0.061 0.49

6. Rt = 0.4 2 exp (2.38 Xt-1 2 17.08 2 1.20 Ice2swt21) 7.40 23.47 4 0.77 0.062 0.48

7. Rt = 0.4 2 exp (1.95 Xt21 2 14.72 ? 0.07 SAMt22) 7.27 23.21 4 1.03 0.048 0.47

8. Rt = 0.4 2 exp (3.25 Xt21 2 16.65 2 1.12 Ice2wet20.28 Krillt21 ? 0.27 SST2wt22) 10.06 23.11 6 1.13 0.045 0.62 0.34 0.90

Models for Pygoscelis papua

1. Rt = 0.65 2 exp (0.49 Xt21 2 7.80 1 0.36 SST 2 et21 1 0.66 Ice2wet21) 12.42 210.67 5 0.00 0.54 0.70 0.04 0.69

2. Rt = 0.65 2 exp (0.54 Xt21 2 7.69 1 0.27 SST2wt21 1 0.54 Ice2wet21) 12.26 210.35 5 0.32 0.46 0.69 0.05 0.62

3. Rt = 0.65 2 exp (0.72 Xt21 2 6.50 ? 0.22 SST 2 wt21) 9.82 28.30 4 2.37 0.16 0.59

4. Rt = 0.65 2 exp (0.75 Xt21 2 6.66) 2 0.20 SST 2 et21 9.58 27.53 4 3.14 0.11 0.58

5. Rt = 0.65 2 exp (0.85 Xt21 2 7.52) 7.14 25.77 3 4.90 0.046 0.44

6. Rt = 0.65 2 exp (0.78 Xt21 2 7.00) 2 0.15 SST2wt21 9.40 27.46 4 3.21 0.11 0.57

7. Rt = 0.65 2 exp (0.72 Xt21 2 6.45 ? 0.25 SST2et21) 9.36 27.38 4 3.29 0.10 0.57

8. Rt = 0.65 2 exp (0.75 Xt21 2 11.51 ? 0.68 X Padt21) 8.53 25.72 4 4.95 0.045 0.52

9. Rt = 0.65 2 exp (0.70 Xt21 2 7.49 ? 0.59 Ice2set21) 8.45 25.56 4 5.11 0.042 0.52

10. Rt = 0.65 2 exp (0.85 Xt21 2 7.51) ? 0.002 Krillt 7.94 24.54 4 6.13 0.025 0.49

11. Rt = 0.65 2 exp (0.42 Xt21 2 3.10) ? 0.16 Ice2wet 7.91 24.48 4 6.19 0.024 0.49

12. Rt = 0.65 2 exp (1.06 Xt21 2 9.51) 2 0.75 Ice2set21 7.26 23.20 4 7.47 0.024 0.49

13. Rt = 0.65 2 exp (0.83 Xt21 2 7.37 ? 0.015 SST2wt) 7.15 22.96 4 7.71 0.011 0.44

Models for Euphasia superba

1. Rt = 3 2 exp (0.25 Xt21 2 0.22) 1 2.39 Ice2swt 26.78 24.90 4 0.00 0.14 0.59

2. Rt = 3 2 exp (0.36 Xt21 2 0.91 2 0.73 Ice 2 swt) 26.78 24.90 4 0.00 0.15 0.59 0.28 0.86

3. Rt = 3 2 exp (0.32 Xt21 2 0.49 2 0.43 Ice 2 swt) 1 1.58 Ice 2 swt21 25.55 25.27 5 0.37 0.12 0.64 0.30 0.82

4. Rt = 3 2 exp (0.40 Xt21 2 0.98 2 0.58 Ice 2 swt 2 0.46 Ice 2 swt21) 25.78 25.72 5 0.82 0.10 0.63 0.22 0.78

5. Rt = 3 2 exp (0.25 Xt21 2 0.25) 1 2.26 Ice 2 swt21 27.19 25.72 4 0.82 0.10 0.56

6. Rt = 3 2 exp (0.35 Xt21 2 0.88 2 0.70 Ice 2 swt21) 27.46 26.25 4 1.35 0.080 0.55

7. Rt = 3 2 exp (0.30 Xt21 2 2.10 ? 0.24 Ice 2 wet21) 28.02 27.37 4 2.47 0.040 0.52

8. Rt = 3 2 exp (0.27 Xt21 2 0.75) 29.44 27.39 3 2.49 0.043 0.44

9. Rt = 3 2 exp (1.00 Xt21 2 6.98) 2 0.44 Ice 2 wet21 28.29 27.72 4 2.82 0.036 0.51

The best population dynamic models were chosen by using the Bayesian information criterion (BIC) or Schwarz (1978) criterion

For clarity, BIC weights were also included in the results. Model parameters were estimated by nonlinear regression analysis in R-program using the nls (nonlinear

least squares) library R Development Core Team (2011). The model notations are: Rm, maximum per capita growth rate; a, effect of interference on each individual

as population size increases; C, a constant representing competition and resource depletion; Xt-1, loge (population size); Krill, loge krill abundance; SAM, Southern

Annular; Ice-ww, ice cover during winter western to Antarctic peninsula; Ice-we, ice cover during winter eastern to Antarctic peninsula; Ice-sw, ice cover during

summer western to Antarctic peninsula; Ice-se, ice cover during summer eastern to Antarctic peninsula; SST-w, sea surface temperature western to the Antarctic

peninsula and SST-e, sea surface temperature eastern to the Antarctic peninsula. Model predictions are evaluated through root-mean-square prediction error (rmse)

and the Pearson’s correlation coefficient rP. The best models are shown in bold face
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the sea-ice cover variable (Table 1). However, using only

the positive effects of summer sea-ice cover as the main

exogenous factor, we were able to predict the observed

dynamics of krill quite accurately (Fig. 4d; Table 1). In

fact this simple model has good empirical support com-

pared with the pure endogenous model (w1/w8 = 3.26).

Discussion

Our results suggest that the relevant processes underlying

the population dynamics of these penguin species at King

George Island (Antarctic Peninsula) are intra-specific

competition and the combined effects of krill abundance

and sea-ice cover. Although the influence of krill and sea-

ice cover have been widely reported elsewhere (Fraser

et al. 1992; Trathan et al. 1996; Croxall et al. 2002; Fraser

and Hofmann 2003; Atkinson et al. 2004; Murphy et al.

2007; McClintock et al. 2008; Trivelpiece et al. 2011),

most of these studies were based on statistical correlation

between estimates of population size and climatic variables

(but see Murphy et al. 2007). We think that using simply

logistic models (Ricker 1954) with few ecological param-

eters and good predictive ability provides a new perspec-

tive on penguin and krill dynamics at Western Antarctic

Peninsula. Our results offer a slightly different hypothesis

about the role of sea-ice cover and krill abundance on

population trends of three species of penguins. Moreover,

we will discuss how simple models can be used to interpret

ecological hypotheses and to predict putative ecological

mechanisms.

Several studies have reported the relationships between

sea-ice cover, krill abundance and penguin trends (Fraser

and Hofmann 2003; Trivelpiece et al. 2011; Lynch et al.

2012), while some support the ‘‘sea-ice hypothesis’’ (Fraser

et al. 1992), others proposed that penguin populations

trends are caused by changes in their main prey, the Ant-

arctic krill (Trivelpiece et al. 2011). The ‘‘sea-ice hypoth-

esis’’ proposes that the negative trend of sea-ice cover in

several regions of Antarctica have affected the winter

habitat of ‘‘ice-loving’’ species, such as, the Adélie pen-

guins, but have been beneficial to populations of ‘‘ice-

avoiding’’ species like the Chinstrap penguins (Trivelpiece

et al. 2011). In particular, Chinstrap penguins at King

George Island appear to be limited by food (krill) avail-

ability and regulated by intra-specific competition. The

strong dependency of this penguin species on krill avail-

ability has been widely reported (Fraser and Hofmann

2003; Lynnes et al. 2004; Polito et al. 2011). In agreement

with these studies, our results support the hypothesis that

Chinstrap penguins are limited by food (krill availability)

at the WAP ecosystem. Hence, due to its restricted distri-

bution and the observed decreasing trend in krill recruit-

ment, this species appears to be more threatened than

others (Forcada et al. 2006; Trivelpiece et al. 2011).

Chinstrap penguins conform to the typical case where food

limitation is clearly expressed as a lateral perturbation

effect arising in a logistic model (Royama 1992). As

expected by population dynamic theory, the main factor

limiting Chinstrap penguins is the demand/supply ratio

between the population size and krill abundance. The high

explanatory power of this form of interaction between

limiting factors and intraspecific competition has been

widely reported in other organisms (Berryman and Lima

2006; Lima et al. 2006, 2008a, b; Previtali et al. 2009;

Lima and Naya 2011).

Regarding the other two species, our results seem to

support the ‘‘sea-ice hypothesis’’ and they are consistent

a b

dc

Fig. 4 Comparison of observed penguin abundance and krill biomass

(solid circles) for the period 2000–2006 with predictions from models

fitted to the data until the year 2000 (both solid and broken lines),

a predictions from model 1 (solid line) and 2 (broken line) (Table 1)

to the observed Chinstrap penguin data, b predictions from model 1

(solid line) and 2 (broken line) (Table 1) to the observed Adélie

penguin data, c predictions from model 1 (solid line) and 2 (broken

line) (Table 1) to the Gentoo penguin data and d predictions from

model 2 (solid line) and 3 (broken line) (Table 1) to the krill biomass

data
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with the contrasting population trends that both species

exhibited at the Western Antarctic Peninsula (Forcada et al.

2006; Carlini et al. 2009; Lynch et al. 2010). Adélie pen-

guins appear to be mainly influenced by the direct positive

effects of sea-ice cover and intra-specific competition.

However, the empirical support for the role of sea-ice

cover in the fitted models for this species was weak, but the

sign of the effect was consistent with previous findings

(Forcada et al. 2006). In fact, there is substantial evidence

that this species exhibited a high preference for habitats

dominated by pack ice (Forcada et al. 2006; Trivelpiece

et al. 2011). In particular, Adélie penguins on the Antarctic

Peninsula are highly dependent on the year to year varia-

tions in sea-ice cover due to their habitat requirements

during breeding (Forcada et al. 2006). Because the main

food item in this area is the krill (Fraser and Hofmann

2003; Lynnes et al. 2004), which is closely related to sea-

ice cover, we expected both variables (krill and sea-ice

cover) to be important drivers of the population fluctua-

tions. Nevertheless, model predictions underestimate the

negative trend showed by this species. We think that some

other factors not considered in our models may explain this

bias, such as strong competition in the area with other top

predators like seals, fur seals and whales (Trivelpiece et al.

2011). Also, environmental factors related to winter dis-

persal and/or juvenile overwinter survival can explain our

biased predictions and the weak support for the positive

effect of sea-ice cover (see Carlini et al. 2009; Lynch et al.

2010). In contrast, models for Gentoo penguins support the

hypothesis that the observed positive trend of this species

at WAP is a consequence of a niche expansion due to

global warming (Forcada et al. 2006; Lynch et al. 2012).

This species prefers ice-free areas to breed, in contrast to

Adélie penguins (Forcada et al. 2006; Lynch et al. 2012).

There is strong evidence that the southernmost breeding

colonies of this species at WAP are increasing (Carlini

et al. 2009; Lynch et al. 2010), which seems to be caused

by the colonization of new breeding sites and foraging

areas facilitated by climate warming. In addition, Gentoo

penguins seem to exploit a slight different food niche than

the other two species. They are deep divers and seem to

forage in other prey items than krill (Carlini et al. 2009),

although they are still highly dependent on krill during the

breeding season.

Population dynamic models for krill supported the

hypothesis that sea-ice cover and lagged sea surface tem-

perature are key variables to understand krill fluctuations.

Previous studies have reported a strong association

between years of extensive winter sea ice and krill

recruitment and density (Fraser and Hofmann 2003;

Atkinson et al. 2004; Murphy et al. 2007). The mechanistic

explanation for the relationship between ice and krill

dynamics seems to be related to the importance of sea-ice

algae for adult spawning and larvae survival (Atkinson

et al. 2004). There is a general consensus on the relation-

ship between the fast rate of warming of the WAP and the

shortening trend in winter sea-ice duration (Parkinson

2002). Therefore, we think that the use of simple logistic

models to describe and predict krill dynamics represents a

very important and interesting finding of this study. Fitted

logistic models that use the demand/supply ratio between

the krill abundance and sea-ice cover as a proxy of limiting

factors capture the essential component of krill dynamics in

the WAP ecosystem.

In summary, our results using population theoretical

based models support the idea that global warming repre-

sents a major driver of avian predator populations and its

major prey at the WAP ecosystem. At our study site, pen-

guins showed species-specific responses to climate change.

First, Chinstrap penguins were only influenced by krill

abundance (food limitation) and are represented quite well

by a simple logistic model with carrying capacity as a

function of krill population size. Second, the contrasting

population trends of Adélie and Gentoo penguins appear to

be better explained by the ‘‘sea-ice hypothesis’’ (Fraser

et al. 1992; Trivelpiece et al. 2011), but the models

including sea-ice effects on Adélie penguins showed weak

empirical support. Interestingly, none of the selected mod-

els included inter-specific competition suggesting that nei-

ther space nor food does inter-specific competition seem to

be important for explaining the population trends. Despite

the fact that several statistical relationships between cli-

mate, krill and penguins numbers have been reported

(Croxall et al. 2002; Atkinson et al. 2004; Forcada et al.

2006; Murphy et al. 2007), we think that proper population

dynamic modeling is essential to decipher the ecological

mechanisms behind the dynamics of these penguin popu-

lations. In other words, this study is an example of applied

ecological theory, in particular, the application of theories

pertaining to nonlinear population dynamics, exogenous

perturbations, and resource partitioning.
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