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RESUMEN 

Esta investigación está enfocada en la formulación y resolución eficiente de extensiones 

de los Modelos Fundamentales para Problemas de Localización de Hubs (Fundamental 

HLPs, en inglés), que se sabe pertenecen a NP-hard para los casos no-triviales. 

Los HLPs buscan localizar un tipo de instalaciones conocidas como hubs, donde los 

flujos desde múltiples pares Origen-Destino (OD pairs, en inglés) son consolidados, 

ordenados y conmutados, obteniéndose la topología hub-and-spoke, comúnmente 

utilizada en la aviación comercial, en la entrega postal y de encomiendas, en sistemas de 

transporte público, etc. Los modelos fundamentales asumen que: (i) todas las rutas OD 

pasan por uno o dos hubs, (ii) la red entre hubs es completa, (iii) la compañía que 

localiza sus hubs es monopolista y su demanda es inelástica, y (iv) se aplica un factor de 

descuento constante sólo a los flujos entre hubs. 

El principal objetivo de esta tesis es extender los Modelos Fundamentales. Para esto, se 

usan tres enfoques diferentes. 

Primero, relajando los supuestos (i), (ii) y (iii), se formula un problema competitivo de 

localización de hubs y fijación de precios, donde una compañía existente opera una red 

hub-and-spoke que cobra un margen porcentual fijo por sus servicios de transporte y una 
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nueva compañía debe diseñar su propia red hub-and-spoke para maximizar su beneficio. 

El comportamiento de los usuarios es modelado mediante un modelo logit simple. Se 

obtiene una expresión cerrada para los precios óptimos que debe cobrar el entrante, si los 

diseños de ambas redes están fijos. Se resuelve el problema mediante un algoritmo 

genético. Se muestra la pertinencia de la maximización del beneficio como un objetivo 

para localizar competitivamente hubs y la relevancia de considerar simultáneamente la 

competencia y la fijación de precios en la localización de hubs. 

Segundo, relajando los supuestos (i), (ii) y (iv) se desarrolla un esquema de 

modelamiento para ayudar en la localización de hubs a los tomadores de decisiones. Se 

formula un modelo de programación matemática que es capaz de representar economías 

de escala. Se usan indicadores claves de desempeño agregados (KPIs, en inglés) para 

analizar las soluciones obtenidas, mostrando la pertinencia del enfoque y que las 

soluciones obtenidas son correctas. 

Finalmente, se relajan nuevamente los supuestos (i), (ii) y (iv), para desarrollar un HLP 

donde debe localizarse un número fijo de hubs, realizando asignación única, y donde el 

flujo en un arco es descontado sólo si éste excede un umbral predefinido. Se formula 

como un problema entero mixto (MIP, en inglés), y se resuelve utilizando software 

típico de Programación Matemática. También se desarrolla un procedimiento heurístico 

para resolver más rápidamente las instancias de prueba. Se muestra la pertinencia del 

enfoque, así como el desempeño, tanto del modelo exacto como del procedimiento 

heurístico. 
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ABSTRACT 

 

This research is focused on the formulation and efficient solution of extensions of 

Fundamental Hub Location Problems (Fundamental HLPs), which belong to NP-hard 

for the non-trivial cases. 

HLPs aim at locating facilities known as hubs, in which the flows from multiple Origin-

Destination (OD) pairs are consolidated, sorted and commuted, leading to the hub-and-

spoke topology, commonly used, among others, in commercial aviation, parcel and 

courier delivery, and public transportation systems. Fundamental models assume that: (i) 

all the OD routes visit one or two hubs, (ii) the inter-hub network is complete, (iii) the 

company locating hubs is monopolistic and its demand is inelastic, and (iv) a constant 

discount factor is applied only to the flows between hubs. 

The main objective of this thesis is to extend the fundamental HLPs. We use three 

different approaches. 

Firstly, relaxing assumptions (i), (ii) and (iii), we formulate a competitive hub location 

and pricing problem, where an existing company operates a hub-and-spoke network and 

applies a fixed percentage of markup to their transportation services, and a newcomer 
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designs its own hub-and-spoke network in order to maximize its profit. The users’ 

behavior is modeled using a simple logit model. We derive a closed expression for the 

optimal pricing, when both network topologies are fixed. We solve the problem using a 

genetic algorithm. Finally, we show the pertinence of profit maximization as a 

competitive hub location objective, and the relevance of considering simultaneously 

competition and pricing in hub location. 

Secondly, we develop a modeling framework to help decision-makers to locate hubs. 

We formulate a mathematical model that is able to represent economies of scale, 

relaxing assumptions (i), (ii) and (iv). We use aggregate Key Performance Indicators 

(KPIs) to analyze the solutions obtained, showing the pertinence of our approach and the 

accuracy of the solutions obtained. 

Finally, we again relax assumptions (i), (ii) and (iv) and develop a single-allocation p-

HLP in which the flow in any arc is discounted if it exceeds a predefined threshold. We 

formulate it as a Mixed-Integer Problem (MIP), and solve the model using standard 

mathematical programming software. In order to solve the test instances faster, we also 

develop a heuristic procedure. We show the pertinence of our assumptions, and the 

computational tractability of our exact model and heuristic procedure. 
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1. INTRODUCTION 

This thesis aims at modeling and solving extensions of the Fundamental Hub Location 

Problems, and more specifically, three problems concerning competition and pricing, 

more general cost structures, and threshold-based discounts. 

Hub Location is a young research field within Location Analysis that began with the 

seminal papers in which the general problem is stated (O’Kelly, 1986); formulated as a 

quadratic integer problem (O’Kelly, 1987); and then linearized (Campbell, 1994). Its 

goal is to locate a special kind of facilities, called hubs, in which flows from multiple 

origins and destinations are consolidated, sorted and commuted. Hub-and-spoke 

networks are designed by solving Hub Location Problems (HLP), and are mainly used, 

among others, in commercial aviation, parcel and courier delivery services, and public 

transportation systems. Hub Location has attracted much attention lately, as shown by 

multiple recent literature reviews (Campbell et al., 2002; Alumur & Kara, 2008; Kara & 

Taner, 2011; Campbell & O’Kelly, 2012; Farahani et al., 2013).  

Hub Location Problems (HLPs) can be classified according to their objective function 

in: median, in which the sum of distances or travel costs are minimized; covering, in 

which captured demand is maximized, given a capture distance; center, in which the 

maximum of a set of functions of the involved distances between the hub-and-spoke 

network and the OD pairs is minimized; and problems with fixed costs, where the 

number of hubs is not preset, but left to the model to decide (Campbell, 1994).  

In order to make the models computationally tractable, the early models in the literature 

- ‘Fundamental Models’ herein - have the following assumptions: 

 The routes between every Origin-Destination (OD) pair go through one or 

two hubs.  

 The inter-hub network is complete. 
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 The company locating their hubs is monopolistic and the demand is inelastic. 

 A constant discount factor is applied to the flows between hubs. 

After the initial contributions, the literature has focused on relaxing some of these 

assumptions, and has led to four main research lines in hub location: competitive 

models, development of efficient solution approaches to fundamental models, the study 

of cost structures in hub-and-spoke networks and their extensions, and the use of 

different inter-hub network topologies. 

1.1. Competitive models 

Competition has been studied in hub location since Marianov et al. (1999), in 

which the authors proposed different models for the case in which a newcomer 

must locate its hubs, aiming at maximizing the traffic capture. An OD pair traffic 

is captured if the offered cost is lower than the costs of the existing firm. In these 

models, all the traffic between an origin and a destination (OD pair) is captured 

by the cheapest option, leading to integer linear models. The direct extension to 

gradual capture was developed by Eiselt & Marianov (2009), using gravity 

functions for the utility, and assuming that the users decide what airline to use 

depending on travel time and cost. The resulting model is integer non-linear, and 

it is solved using heuristic concentration. Following this line of work, Gelareh et 

al. (2010) formulated the problem solved by a new liner service provider who 

wants to maximize its market share, depending on both time and cost. The 

authors use Lagrangean methods to solve the test instances. Note that this 

approach does not consider the response of the existing companies. 

A natural extension is to use Game Theory to locate hubs. This line of work 

began with Sasaki & Fukushima (2001), who stated the Stackelberg hub location 

problem. Under this approach, an existing company (incumbent) competes with a 
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set of entrants, maximizing its profit, using one hub in every route. The extension 

to multiple hubs in a route was done by Sasaki et al. (2014), in which two agents 

locate arcs to maximize their revenues, allowing up to two hubs in every route.  

To the best of our knowledge, including pricing in competitive hub location 

problems has not been studied in the literature. The material in Chapter 2 

contributes along this direction. In that chapter, a competitive hub location and 

pricing problem is formulated and solved, in which an existing company, the 

incumbent, is operating a hub-and-spoke network using mill pricing, i.e. 

charging a fixed margin over its costs. A new company, the entrant, has to decide 

hub locations, network design and strategic pricing to maximize its profit. We 

used a logit model to address the gradual capture of traffic based on price, and a 

genetic algorithm to solve the proposed instances (Lüer-Villagra & Marianov, 

2013). We also showed that the proposed profit maximization is an appropriate 

objective for competitive hub location problems, and we derived a closed 

expression for the optimal pricing if both network designs are fixed. 

1.2. Efficient solution approaches to the fundamental models 

Besides the development of extensions to the fundamental models, new solution 

approaches have been devised. Their main goal is to solve larger instances in a 

reasonable amount of time, or faster compared to a direct implementation. The 

work along this line has been done through the development of tighter and 

smaller formulations, and the use of decomposition techniques both on 

fundamental model and their extensions. 

The usual ways to strengthen mathematical programming formulations are 

reformulation and addition of cutting planes. Reformulation has been used since 

the beginning of hub location research. For example, a formulation by Campbell 
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(1994) was strengthened by Skorin-Kapov et al. (1996). Also, it was transformed 

into flow-based formulations by Ernst & Krishnamoorthy, both for the single 

allocation (Ernst & Krishnamoorthy, 1996) and the multiple allocation (Ernst & 

Krishnamoorthy, 1998) cases. Further work has been done in the development of 

tighter and smaller formulations. For example, Marı́n et al. (2006) developed 

new formulations for the multiple allocation p-hub median problem, generalizing 

the previous ones. Based on its structure, the authors proposed tighter constraints 

together with a preprocessing procedure, which allowed shorter solution times. 

Later, García et al. (2012) developed a new formulation for the same problem, 

together with an ad-hoc branch-and-cut procedure. Their procedures allowed 

solving larger instances, especially if the number of hubs to be located is large. 

Following a different approach, Hamacher et al. (2004) compared the 

uncapacitated single allocation hub location problem polyhedron with the 

uncapacitated facility location problem, in order to derive a new formulation for 

the hub location problem only with facet-defining constraints. 

Given that most of the hub location problems can be formulated as multi-

commodity flow problems with special constraints, the use of decomposition 

approaches appears as very natural. For example, Benders Decomposition 

(Benders, 1962) has been applied both to the single-allocation fundamental 

model (Contreras et al., 2011), and its extensions (de Camargo, Miranda Jr., & 

Luna, 2008; Rodríguez-Martín & Salazar-González, 2008; de Camargo, Miranda 

Jr., Ferreira, & Luna, 2009; de Camargo, de Miranda, & Luna, 2009; de Sá, de 

Camargo, & de Miranda, 2013). 

1.3. Cost structures for hub-and-spoke networks 

The design and use of hub-and-spoke networks is motivated by economies of 

scale, i.e. decreasing average unit costs as the amount of flow transported 
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increases. This is achieved by consolidation of flow from multiple OD pairs. In 

the fundamental models, economies of scale are modeled in the cost structure by 

applying a fixed discount to the flow between hubs. However, this discount is 

independent of the amount of flow. This approach, although computationally 

appealing, does not represent adequately the economies of scale in hub-of-spoke 

networks. 

Several extensions to fundamental models have been proposed in order to 

achieve an improved representation of the economies of scale. These extensions 

consist of changes in the cost structure of the models, and can be classified in: 

threshold-based discounts, linear-piecewise cost functions, and cost structures 

with fixed costs. 

The inclusion of flow thresholds in HLPs began with Campbell (1994). He used 

minimum flow thresholds for spoke enabling, adding a fixed cost in the objective 

function. The relative value of the minimum flow thresholds and the fixed costs 

allowed him to parameterize its model from single to multiple allocation. Later, 

Podnar et al. (2002) developed a network design problem, i.e. the model does not 

locate hubs, and any arc can be discounted if its flow exceeds a fixed threshold. 

An alternative approach has been the use of piecewise-linear functions to 

approximate the usually non-linear nature of economies of scale. Its use in HLPs 

began with O’Kelly & Bryan (1998) and their FLOWLOC model. The authors 

stated a non-linear flow discount function for the inter-hub arcs, noting that its 

use increased the flow consolidation between hubs, compared to the fundamental 

models. Later, Bryan (1998) extended the FLOWLOC model to allow capacity 

constraints, require minimum thresholds to enable arcs, relax the fixed number of 

hubs assumption, and apply flow-dependent discounts everywhere in the hub-

and-spoke network. Klincewicz, (2002) proposed a numerical procedure to solve 

the FLOWLOC model, based on the fact that if the hub locations are fixed, the 
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resulting model is an instance of the uncapacitated facility location problem. The 

author proposed a complete enumeration procedure, together with tabu-search 

and GRASP-based heuristics. Note that the resulting models are quite hard to 

solve compared to the fundamental models, and tighter formulations need to be 

solved using more sophisticated techniques, as de Camargo et al. (2009) do, for 

example. 

Finally, fixed costs have been used before in HLPs as proxies to model 

thresholds or similar structures and not capacitated vehicles utilization .To the 

best of our knowledge, the first hub location problem with a cost structure with 

fixed costs was proposed by Kimms (2006). The author modeled the problem as 

a location and network design problem, where the arcs are traversed by 

capacitated vehicles having both fixed and variable costs. 

In Chapter 3 we propose a modeling framework for hub location that correctly 

represents the economies of scale present in practice, using a cost structure with 

fixed costs. As opposed to explicitly solving a hub location problem and 

assuming an a priori existence of economies of scale as many models do, we 

formulate a Location-Network Design Model as a Mixed-Integer Problem (MIP). 

In this model, a company must locate its management and maintenance resources 

at existing airports (which become hubs), together with defining routes and 

allocating capacity both on arcs (airplanes), and nodes (airports), minimizing 

costs, subject to a constraint on the aggregated level of service. The decision 

process is guided by a set of Key Performance Indicators (KPIs) from the airline 

industry. We begin analyzing both airline economics and hub location models. 

Then, we describe the framework and the model to finally show how choosing 

different operational constraints influences both the network structure and KPIs. 

In Chapter 4 we present a single allocation, incomplete inter-hub network, p-hub 

location problem in which a fixed unit cost discount is applied to the flow in an 
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arc if it exceeds a fixed threshold. We used standard mathematical programming 

software to solve to optimality the resulting models for literature instances, and a 

heuristic procedure to get good feasible solutions. KPIs are used to analyze and 

compare solutions. Our results show that our model, based on the fundamental 

model for the p-hub, single allocation problem, is able to represent the existence 

of economies of scale. It also requires a reasonable computational effort, tending 

to consolidate flows between hubs, and it can be efficiently solved by the 

proposed heuristic procedure. 

1.4. Use of different inter-hub network topologies 

The fundamental models assume that the inter-hub network is complete. This is a 

reasonable assumption if enabling an arc is relatively inexpensive, or if the 

network flows are large enough everywhere in the network. Also, it is 

computationally appealing, since the implied additional constraints provide a 

stronger lower bound, if integer programming is used to formulate and solve the 

models. 

Some authors have relaxed this assumption. The literature follows three lines: 

tree-shaped, incomplete, and general inter-hub networks. 

To the best of our knowledge, the first authors that considered a tree-shaped 

inter-hub network were Contreras et al. (2010). They stated the Tree of Hubs 

Location Problem, which is particularly relevant in telecommunication 

applications, where the set-up cost of inter-hub arcs is higher. The authors also 

provide valid inequalities and an exact separation algorithm for them. After that, 

de Sá et al. (2013b) developed a Benders Decomposition for the problem, 

devising a new cut selection scheme, leading to a procedure that outperforms 
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other implementations, both in computational time and maximum instance size 

solved up to optimality. 

There are previous works about logistic systems where the consolidation points 

are not fully connected. However, to the best of our knowledge, the first HLP-

oriented literature review about incomplete inter-hub networks is the work by 

O’Kelly & Miller (1994), where the authors first reviewed the literature based on 

the number of hubs (one or multiple); the space in which the problem is stated 

(planar or discrete); the design objective (min-sum, mini-max); and the problem 

characteristics. All these works share the following assumptions: complete inter-

hub network, single allocation, and forbidden inter-non-hub connections. 

Secondly, they reviewed the literature in which these assumptions have been 

relaxed, and proposed a classification system for hub networks, based on the 

node-hub assignment, the (dis)allowance of inter-non-hub connections and the 

inter-hub connectivity, concluding the existence of several lines of work. 

More recently, Hub-Arc Location Problems (HALPs) were introduced by 

Campbell et al. (2005a,b). In HALPs, a predefined number of hub arcs must be 

located. Note that a complete inter-hub network is implied only if the budget is 

large enough. From a different point of view, Alumur et al. (2009) stated and 

formulated the single-allocation incomplete hub network design problem, both 

for cost minimization and covering objectives. Their focus was the efficient 

solution through tight formulations and the addition of valid inequalities. Along 

this line, Calik et al. (2009) developed a tabu-search based heuristic for the hub 

covering problem presented later, showing its efficiency in literature instances.  

A relatively unexplored line of work is the use of more general topologies for the 

inter-hub network. The Fundamental HLPs enforce that all the flow must go 

through one or at most two hubs. In the passenger transportation case, the 

inclusion of more hubs in a route implies inconvenience from the user 
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perspective, because every additional hub in the route implies delays, congestion 

and additional travel time. In freight transportation, however this is not an issue, 

if the transfers at the hubs are done efficiently, as Lüer-Villagra et al. (2015) 

pointed out. 

Finally, some authors has been focused in generalize hub location and network 

design models, as Contreras & Fernández (2012, 2014) did.  

In this thesis, all the developed models allow incomplete inter-hub networks, 

extending the fundamental models. Additionally, the modeling framework 

developed in Chapter 3, and the model with flow threshold-based discounts 

presented in Chapter 4, allow the use of more than two hubs in a route. 

1.5. Thesis contributions 

In synthesis, the main scientific contributions of this thesis are the following: 

First, we formulate and solve efficiently a competitive hub location and pricing, 

for a leader-follower situation, deriving a closed expression for the optimal 

pricing if the networks of both agents are fixed. It is also the first paper that deals 

with hub location and pricing simultaneously. 

Secondly, we develop a modeling framework for hub location that does represent 

economies of scale in a general way everywhere in the network. We analyze the 

solutions using aggregated performance indicators. 

Third and finally, we model and solve a hub location problem with flow 

thresholds in the network, allowing discounting the traffic on any arc, if it is 

large enough. We show that this model also represents economies of scale, tends 

to consolidate flows between hubs, and is computational tractable, compared 

with other extensions of fundamental models. 
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The remainder of this thesis is organized as follows. Chapter 2 contains the paper 

“A Competitive Hub Location and Pricing Problem”, published in the European 

Journal of Operational Research. Chapter 3 presents the paper “A modeling 

framework for strategic airline network design”, submitted to Computers & 

Operations Research. Chapter 4 presents the paper “On single-allocation p-hub 

median location problems with flow threshold-based discounts and economies of 

scale”, to be submitted. 
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2. A COMPETITIVE HUB LOCATION AND PRICING PROBLEM 

We formulate and solve a new hub location and pricing problem, describing a situation 

in which an existing transportation company operates a hub-and-spoke network, and a 

new company wants to enter into the same market, using an incomplete hub-and-spoke 

network. The entrant maximizes its profit by choosing the best hub locations and 

network topology and applying optimal pricing, considering that the existing company 

applies mill pricing. Customers' behavior is modeled using a logit discrete choice model. 

We solve instances derived from the CAB dataset using a genetic algorithm and a closed 

expression for the optimal pricing. Our model confirms that, in competitive settings, 

seeking the largest market share is dominated by profit maximization. We also describe 

some conditions under which it is not convenient for the entrant to enter the market. 

This chapter was formatted as a manuscript and submitted to European Journal of 

Operational research in February 28, 2012. It was accepted in June 3, 2013, and 

published (Lüer-Villagra & Marianov, 2013). This chapter contains the modifications 

done to the manuscript. 

Complete reference:  Lüer-Villagra, A., & Marianov, V. (2013). A competitive hub 

location and pricing problem. European Journal of Operational Research, 231(3), 734–

744. http://doi.org/10.1016/j.ejor.2013.06.006.  
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2.1. Introduction 

Most air passenger transportation and package delivery companies have chosen 

the hub-and-spoke topology for their networks (Gelareh & Pisinger, 2011). This 

topology makes use of transshipment and flow consolidation facilities called 

hubs, which significantly reduces the number of routes required to connect all 

origins and destinations in a region. It also allows taking advantage of any 

existing economies of scale, by consolidating traffic in inter-hub transportation 

and on the spokes (arcs that connect hub nodes to non-hub nodes), as compared 

to a point to point network. Bigger and more efficient vehicles are used on high 

traffic route segments, and there is higher asset utilization throughout the 

network. 

The first model for the optimal design of hub networks (the Hub Location 

Problem) was introduced by O’Kelly (1986) and first formulated as an 

optimization problem by O’Kelly (1987). The literature about hub problems is 

now extensive. Hub location problems are classified the same way as facility 

location problems are (Campbell, 1994): median, covering, center and fixed costs 

problems. Complete reviews of hub location problems can be found in Campbell 

et al. (2002), Alumur & Kara, (2008), Kara & Taner (2011), Campbell & 

O’Kelly (2012), Farahani et al. (2013). 

Current trends in hub location include the development of new formulations that 

allow obtaining good or even optimal solutions in less time for larger instances of 

the problems. The work along this line has explored the use of polyhedral 

properties of the formulations, as in Hamacher et al. (2004) or the development 

of tighter and smaller formulations, (Marı́n et al., 2006; García et al., 2012). 

From a different viewpoint, Contreras & Fernández (2012) have proposed a 

unified view, formulations and algorithmic insights of location and network 
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design problems, including the hub location problems as a special case. Also, 

solution methods like Benders Decomposition (de Camargo et al., 2008), and 

Branch and Price (Contreras et al., 2010), have been proposed.  

Several extensions of the original problems have been used successfully. 

Congestion has been considered by constraining queue length at hubs (Marianov 

& Serra, 2003; Mohammadi, Jolai, & Rostami, 2011), as well as by adding a 

non-linear term in the objective and solving the problem either using Lagrangean 

methods (Elhedhli & Wu, 2010), or evolutionary algorithms, as in Köksalan & 

Soylu (2010).  

In regard to economies of scale, particularly interesting and relevant to all the 

research in hub location is the observation by Campbell (2012, 2013). Through 

the analysis of a very extensive set of cases, he found that the fundamental hub 

location models share the following problem: depending on the origin-destination 

flows, it could happen that the traffic between some hubs is too small for making 

use of economies of scale, and conversely, the traffic on spokes could be large 

enough to apply a discounted cost. This shortcoming was also pointed out by 

Bryan (1998), O’Kelly & Bryan (1998), and de Camargo et al. (2009). The 

fundamental hub location models apply a fixed, flow independent discount factor 

to all inter-hub arcs, and they do not apply any discount on high-traffic spokes. 

Further, the fundamental hub location models have a fully connected network of 

discounted arcs between all hubs.  

Addressing this issue should become a hot research topic, and some better 

representations of economies of scale have already been proposed by 

approximating the non-linear inter-hub discount function with a piece-wise linear 

function (Bryan, 1998; Kimms, 2006; O’Kelly & Bryan, 1998); by using 

incomplete inter-hub networks (Alumur et al., 2009; Calik et al., 2009; Contreras 

et al., 2010a); using hub-arc models (Campbell et al., 2005a, 2005b; Sasaki et al., 
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2014), and by forcing a minimum flow on inter-hub links (Podnar et al. 2002, 

Campbell et al., 2005a, 2005b). Currently, however, most of the researchers use 

the fundamental approach of discounting the flow between hubs, independent of 

its magnitude, (Campbell & O’Kelly, 2012; Farahani et al., 2013), mainly 

because of the computational attractiveness of such approach, and the fact that 

the search for a completely successful model is still open. Among these, we use a 

model in which a constant (flow-independent) discount between hubs and no 

discount on spokes are considered, and an incomplete inter-hub network is 

allowed. Although all these models tend to improve the application of economies 

of scale, they still do not completely solve the problem. We do not use hub-arc 

models, because they do not apply economies of scale on spokes with large 

flows, and they tend to locate a number of hubs that is very large, in times 

disproportionate for the airline industry (Campbell, 2009). Furthermore, deriving 

a closed form expression for both piecewise linearization models and models that 

require a minimum flow on inter-hub arcs would require an additional level of 

iteration of the procedure in this paper, because the cost and existence of 

different routes depends on the amount of the predicted flow, making the 

problem close to intractable. Also, piecewise linearization models are more 

complicated in terms of number of variables and constraints.  

Competition between firms that use hub networks has been studied mainly from 

a sequential location approach, in which an existing firm, called the incumbent or 

leader, serves the demand in a region, and a new firm, the entrant or follower, 

wants to enter the market. In the first article on competitive hub location, 

Marianov et al., (1999) model a situation in which the entrant captures a flow if 

its costs are lower than those of the incumbent’s. This approach was extended to 

gradual capture by Eiselt & Marianov (2009). A related line of research was 

followed by Gelareh et al. (2010), where the newcoming company is a liner 

service provider that maximizes its market share, depending both on service time 

and transportation cost. The formulation is very hard to solve ‘as is’, and a 
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specialized Lagrangean method is used. Using a game theoretical approach, 

Sasaki & Fukushima (2001) state the Stackelberg hub location problem, in which 

the incumbent competes with several entrants to maximize its profit. Only one 

hub is considered in every origin-destination route. Later, Adler & Smilowitz 

(2007) introduce a framework to decide the convenience of merging airlines or 

creating alliances, using a game theory based approach. More recently Sasaki et 

al. (2014) propose a problem in which two agents locate arcs in order to 

maximize their respective revenues under the Stackelberg framework, allowing 

more than one hub in a route. 

Dobson & Lederer (1993) propose the problem of maximizing profit of an airline 

for a network with only one hub, given a discrete consumer density as a function 

of departure time, duration and price of the route to be travelled. This is an 

operational problem, not including location decisions. Simultaneous location and 

pricing problems have been proposed and solved by Serra & ReVelle (1999). To 

the best of our knowledge, there is no literature on hub location problems 

explicitly including pricing and location decisions. We study a competitive 

problem, including discrete choice between routes, using a hub location model 

with incomplete hub-connectivity.  

We propose a novel hub location problem, called the Competitive Hub Location 

and Pricing Problem (CHLPP). An existing company (or group of companies), 

called the incumbent, utilizes a transportation network with a hub-and-spoke 

topology, and charges its costs plus a fixed additional percentage to their 

customers (mill pricing). A new company, the entrant, wants to offer its services 

in the same market, using its own hub-and-spoke network and setting prices so to 

maximize its profit, rather than its market share –a cherry-picking strategy. The 

profit comes from the revenues because of captured flows, subtracting the fixed 

and variable costs. Both the incumbent and the newcomer offer several routes. 

Customers choose which company and route to patronize by price, and their 
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decision process is modeled using a logit model. The question to be answered is: 

Can a newcomer obtain profit under these conditions, even with higher operating 

costs than the incumbent? In order to answer this question, our procedure finds 

how many hubs to locate, where should they be located, what is the best route 

network, and the optimal price of the services.  

The contributions of this paper are as follows. In the first place, we formulate a 

hub problem including aspects that were never taken into consideration together, 

as the optimal pricing decision and a discrete choice by customers. Secondly, we 

derive a closed form expression for the optimal pricing. Third, we solve the non-

linear problem using a genetic algorithm. Finally, we make an extensive analysis 

of the scenarios that a newcoming company would face, and the best actions it 

could take, when the objective is profit maximization –as opposed to cost 

minimization or market share maximization.  

Note that hub location decisions are strategic, while pricing decisions are tactical 

or even operational. Linking these two levels may seem unusual at first sight. 

However, location or route opening decisions -or even entrance into a market- 

can be very dependent on the revenues that a company can obtain by operating 

these locations and routes. Revenues, in turn, depend on the pricing structure and 

on the competitive context. In other words, without consideration of the feasible 

range of prices that the entrant can charge, it is difficult to make good location 

decisions, and we explore here the relationship between both. Once the firm is 

established, revenue management techniques can be applied to decide on the day 

to day prices. 

The proposed model is applied to the air passenger transportation industry. 

However, with slight changes in the discrete choice model, it can be applied to 

mail and freight transportation industries, or any other industry that benefits from 

a hub-and-spoke network structure.  
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The remainder of this chapter is organized as follows. Section 2.2 describes the 

problem and the mathematical model. Section 2.3 describes the genetic 

algorithm. Section 2.4 presents the computational results using the CAB dataset. 

Finally, in section 2.5 we provide general conclusions. 

2.2. A Competitive Hub Location and Pricing Problem 

Air passenger traffic in a region is served by an existing company (or a set of 

companies already established in the market, collectively), called the incumbent, 

that utilizes a transportation network with a hub-and-spoke topology. We make 

the assumption, customary in fundamental hub location models, that there are 

reduced transportation costs (due to economies of scale) in the traffic between 

hubs, and not on spokes, and the discount factors are constant. We assume that 

all the incumbent’s hubs are connected, although full interconnection is not 

required for the entrant’s inter-hub network. The incumbent uses mill pricing, 

i.e., charges its costs plus a fixed profit percentage. The incumbent’s hubs are 

located optimally for cost minimization when serving all the demand, though the 

incumbent may end up serving less than that after the entrant arrives. A new 

company, the entrant, intends to enter the same market, using its own hub-and-

spoke network and setting prices so to maximize its profit, rather than its market 

share, i.e., a cherry-picking strategy. The entrant does not share hubs with the 

incumbent, but could use the same locations (cities) for sitting them. The profit is 

equal to the revenues from captured flows, once fixed and variable costs are 

subtracted. Both the incumbent and the newcomer may offer several routes 

between origins and destinations in the region, i.e. an origin-destination pair may 

be served by more than one route belonging to the same company. Customers 

choose which company and route to patronize by price, although the model could 

trivially accommodate other attributes as travel time or number of legs. 

Customers’ decision process is modeled using a logit model. The logit model is 
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well validated in the transportation literature (see Ortúzar & Willumsen, 2011). 

Logit models are currently the most popular models for representing discrete 

choice, because they provide a closed form expression and because they can 

accommodate several different attributes of the alternatives as cost, waiting time, 

travel time, and so on. Logit models serve well in the case of passengers and 

multiple routes. If mail or package service is to be represented, then, rather than 

choosing among multiple routes, customers choose among several providers. 

Again, a situation that can be represented using logit models. 

The problem is defined over a graph  ,G G N A , where N  is the set of nodes 

and A is the set of arcs. Each arc has a fixed cost, 
ijK , and a variable cost 

ijc  per 

unit of flow. For the formulation we assume that both the incumbent and the 

entrant have the same arc costs, but this assumption can be trivially relaxed. To 

model inter-hub discounts, let  ,   and   be the discount factors due to flow 

consolidation in collection (origin to hub), transfer (between hubs) and 

distribution (hub to destination), respectively. Let 
kF  be the cost of locating a 

hub at node k N , and ijW  is the given inelastic demand, in terms of the flow to 

be transported from origin node i N  to destination node j N . All demand is 

served by either the incumbent or the entrant. The percentage over the cost 

charged by the incumbent is Δ. This percentage could be easily made different 

for different arcs or competitors. The logit model has a known sensitivity 

parameter Θ. Higher values of Θ mean that customers are very sensitive to price 

and they will mostly choose less expensive routes. Smaller values of Θ mean that 

the customers are less sensitive to price (or price differences), and there will be a 

higher customers’ spread among the different routes. For further details on logit 

models, see Ortúzar & Willumsen (2011). Finally, P is the set of nodes where the 

incumbent’s hubs are located. The proposed model is the following. 
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 0, , , ,ijkmp i j k m N     (2.10) 

Where,  

• ijkmX is the fraction of the flow going from i N  to j N  through 

entrants’s hubs located at ,k m N . 

• ijkmZ
 

is the fraction of the flow going from i N  to j N  through 

incumbent’s hubs located at ,k m P . 
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• 1kY  , if the entrant locates a hub at node k N ; 0 otherwise. 

• 1ijH  , if the entrant establishes a direct connection between nodes 

 , : ,i j N i j A  ; 0 otherwise. 

• 
ijkmc  is the variable cost of the flow between nodes i  and j N , using 

hubs ,k m N . 

• 
ijkmp  is the price charged by the entrant to flows between nodes i  and 

j N , using intermediate hubs ,k m N . 

• ijkmP  is the price charged by the incumbent to flows between nodes i  and 

j N , using intermediate hubs ,k m N .  

The objective function (2.1) maximizes the entrant’s profit, i.e. the net revenue 

minus the fixed and variable costs. Constraints (2.2) ensure that the flow between 

nodes ,i j N  is routed through entrant’s or incumbent’s hubs. Constraints (2.3) 

and (2.4) assign the flows according to a logit model whose argument are the 

prices charged by the entrant or the incumbent, respectively. Constraints (2.5) 

define incumbent’s mill pricing strategy, while (2.6) is the definition of the 

transportation costs over a route i k m j   . Equations (2.7) define the 

parameters ij . Finally, (2.8)-(2.10) state the domain of the decision variables. 

2.3.  Solution approach 

The resulting model is a non-linear mixed integer programming problem. 

Unfortunately, although the objective might be concave with respect to price, we 

cannot assure the convexity or concavity of the objective or the constraints with 

respect to all the variables. For this reason, we cannot guarantee that current 
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commercial software packages for integer programming would find the optimal 

solution. Furthermore, the size of real instances of the problem is too large for 

any exact procedure, because of the 4-index formulation required to make the 

pricing of every route offered by any agent.  

Consequently, we propose using an ad-hoc metaheuristic that, at each step, finds 

feasible solutions for the location-network design problem and, for each such 

solution, solves a pricing problem. Given that the location-network design search 

space includes only binary variables, any metaheuristic able to solve 

combinatorial problems could be used. However, in this case, any regular 

metaheuristic would require evaluating the objective at each step and for every 

solution in the neighborhood of the current solution, which would make the 

problem computationally intensive and the progress towards finding a solution 

extremely slow. We chose a genetic algorithm because of several reasons: it does 

not require local search procedures, as the genetic operators help the algorithm to 

explore the solution space; solutions can be represented easily; and genetic 

algorithms have had good success in previous applications involving hub 

location problems (Topcuoglu et al., 2005; Cunha & Silva, 2007; Kratica et al., 

2007). Genetic algorithms have been proven to show an optimizing behavior. 

See, for example, Rudolph (1994). The proposed approach can be stated as 

follows: the genetic algorithm explores the space of hub locations and connecting 

arcs, and finds feasible solutions. From every solution, a valid hub-and-spoke 

network configuration is derived. Once a valid configuration is found, the pricing 

problem is solved for this configuration, and the optimal flows and prices are 

found, for that network configuration. The flows captured and priced by the 

entrant are used to compute the value of the objective function, after discounting 

the network costs.  
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2.3.1. Genetic algorithm 

First, a population of 
popn  random feasible solutions, i.e. valid hub-and-spoke 

networks, is created and saved in a solution set S. Then, on every iteration, two 

solutions, called parents, are selected randomly from S. A crossover operator is 

applied to parents, generating two solutions called offsprings. With probability 

mp  the algorithm mutates an offspring, favoring population diversity. The 

objective function is computed and, finally, an offspring is accepted into the set S 

only if it is better, in terms of the objective function, than the worst solution in S. 

The algorithm iterates until a stopping condition is met. 

The remainder of this section describes the components of the genetic algorithm. 

Solution representation 

The solution representation is a key issue in the performance of a genetic 

algorithm. A solution to the location and network design problem can be defined 

using two elements: a binary vector Y  of size |N|, called the hub location vector, 

in which Yk = 1 means that a hub is located at node k; and a binary matrix H , 

called the arc utilization matrix, of size 
2

N , in which 1ijH   means that the arc 

 ,i j A  is used by the entrant’s network, for collection, transmission or 

distribution. 

We chose a representation using arcs, as opposed to edges, because it enables the 

use of classical crossover operators, and it does not bias the search toward edges 

connecting the low-index nodes. Note that this representation does not preclude 

infeasible solutions, because it can contain arcs between non-hub nodes. This 

situation is allowed to keep the diversity of the population; otherwise, there could 

be a premature convergence. However, these arcs are not considered in the 

computation of the objective function. 
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Crossover operator 

The crossover operator combines two or more solutions from the population, and 

results in one or more offsprings. We use the 1-point crossover operator, which 

starts from two parent solutions and returns two offsprings. An integer number 

1, 1b N     is selected randomly, called the cutting point. The location vectors 

and arcs utilization matrices of the parents are cut after the bth position in the 

former, and after the bth column (or row) in the latter. The row and column 

crossover are applied with equal probability. Then, the resulting pairs of pieces 

of the hub location vectors and arc utilization matrices of the two parents are 

exchanged. Figure 2-1a shows two solutions of this location and network design 

problem, for a 4-node network. Figure 2-1b and Figure 2-1c show the new 

solutions obtained after applying the crossover operator to the solutions shown in 

Figure 1a, using 3b   and making column and row exchanges in the arc 

utilization matrices, respectively. 

 

 

 
 (a) 

 
(b) 

 
(c) 

Figure 2-1. (a) Two partial solutions with |N|=4, to be used with the proposed 

genetic algorithm. After applying 1-point: (b) row crossover, (c) 

column crossover. 

Mutation operator 

The mutation operator creates a new solution from an old one as follows. A 

random integer 1,v N    is selected. In the hub location vector, the value of 
vY  

is flipped. In the arc utilization matrix, all the elements of either the v -th column 
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or the v -th row are flipped, choosing at random which it is going to be, with the 

same probability. 

Insertion operator 

The insertion operator evaluates every solution generated by crossover and 

mutation, and includes it in the population if its objective value is better than the 

worst solution currently in the solution set. If that is the case, the worst solution 

is replaced by the new one. 

2.3.2. Pricing problem 

Hub problems have never included the pricing into consideration together with 

discrete choice models, since deriving a closed expression for optimal pricing is 

not straightforward in this case. However, in other research fields, e.g. the field 

of product bundle pricing (Bitran & Ferrer, 2007), pricing has been studied. We 

adapt a formula from that field to our case, considering that hubs on a route are 

bundles, as follows. Once a new solution is found by the genetic algorithm, i.e. 

the values  k
k N

Y


 and  
 ,

ij
i j A

H


 are known, we define ijS  as the set of feasible 

pairs of hubs  ,k m  that can connect the origin-destination (OD) pair  ,i j , that 

is: 

   2, , 1 , ,k m ik km mjijS k m N Y Y H H H i j N           (2.11) 

Replacing (2.3) in (2.1), and using (2.11), the objective function of the pricing 

problem is:   

 

   
 

 
 

,

,

,

exp

max
exp

ij

ij

ij ijkm ijkm ijkm

k m S

i j N ijkm ij

k m S

W p c p

Z
p










 

 
 





  (2.12) 



25 

 

with: 

 
 ,

ˆ ˆ
ij ij k k

i j A k N

K H F Y
 

     (2.13) 

Optimal prices are derived from the first order conditions, in the next Theorem.  

Theorem 1.  The optimal price for every route i k m j    is given by the 

following closed expression.  

  
 

*

,

1 1
1 exp 1

ij

ijkm ijkm ijst

s t Sij

p c W c
 

   
      

     
   (2.14) 

Where  W   is the W Lambert function, defined as the inverse function of 

  Wf W We .  

PROOF. Bitran & Ferrer (2007) derive a formula for optimal pricing in the case of 

a single product bundle. Our formula and proof are a generalization for the case 

of multiple bundles (multiple hub pairs). It is easy to see that the objective 

function (2.12) can be decomposed in separate expressions for every OD pair 

 ,i j . Using the first order conditions 0, , , ,
ijkm

Z
i j k m N

p


  


, we obtain the 

following expression for a particular route i s t j   : 

 
 

 

   
 

,

,

exp 1

exp 0

ij

ij

ijkm ij ijst ijst

k m S

ijkm ijkm ijkm

k m S

p p c

p c p






 
       

  

 
    

  





  (2.15) 

Consider now the equivalent expression for a route i u v j    of the same 

OD pair. Dividing this expression and (2.15) by  , and then subtracting them, 

we obtain the following equation: 
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    
 ,

exp 0
ij

ijst ijst ijuv ijuv ij ijkm

k m S

p c p c p


 
      

  
   (2.16) 

Since the terms in brackets in equation (2.16) are nonnegative, the expression in 

parenthesis must be zero. In other words, if there are multiple optimal routes for 

the OD pair  ,i j , the margins 
ij ijp c   will be equal. Let 

ij ijkm ijkmr p c  . 

Replacing in (2.15), we obtain: 

 

   
 

 
 
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   (2.17) 

Let  
 ,

exp
ij

ij ijkm

k m S

Q c


  . A reordering of the terms leads to: 

    
 exp 1

1 exp 1
ij

ij ij

ij

Q
r r




       (2.18) 

The W(z) Lambert function is defined so that    expz W z W z     holds. Let 

 exp 1ij

ij

ij

Q
z




  and   1ij ijW z r   .  

Then,  
 exp 1

1
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ij ij
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Q
W z r W
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 
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 
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Q
r W



  
        

  (2.19) 

Replacing back ijr , the closed expression for the optimal prices is: 
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  
 

*

,

1 1
1 exp 1

ij

ijkm ijkm ijst

s t Sij

p c W c
 

   
      

     
   (2.20) 

The second order conditions can be used to show that Z  is concave on every 

ijkmp ■ 

Note that in this expression, the price is always greater than the operating cost, 

because 0   and  W z   if z  . Secondly, a lower factor Θ (users’ 

sensitivity to price differences) leads to higher optimal prices. This is intuitively 

correct, since a lower sensitivity means that there are more customers willing to 

pay higher prices for the service. These customers can be captured by the entrant.  

2.4. Computational experiments and discussion 

We tested our model on the CAB data set (O’Kelly, 1987). The fixed cost of 

opening a hub at node k was set to 100,kF k N   . The fixed cost of 

establishing a link between the pair of nodes i and j was computed using the 

following expression (Calik et al., 2009). 

 

 

 
,

/
100 , ,

max /

ij ij

ij

kl kl
k l A

c W
K i j A

c W


     (2.21) 

For the experiments, we used the following setting: the flows in thousands, 

1   ,  0.2,0.4,0.6,0.8,1.0  ,  1, ,5q P  , 

 0.05,0.1,0.2,0.3,0.4,0.5  , and  3.85,5.78,7.70,9.63,11.55,15.39  . 

These values of  correspond to 3 taking the values {1, 0.66, 0.5, 0.4, 0.33, 

0.25}, where  is the standard deviation of the users’ perception of the price. The 

900 resulting instances were run 10 times each, using different random seeds.  
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We used a PC with a 2.80 GHz Core i7 processor and 6 GB of RAM, and 

operating system Ubuntu 11.10. The genetic algorithm was programmed in C++ 

and compiled using GCC 4.6 with the vectorization and code optimization 

options activated.  

As the calculation of the objective function value is separable by origin-

destination pairs, we parallelize it using the library GOMP (GNU-OpenMP). 

The genetic algorithm was run up to a maximum of 10,000 iterations, with 100 

solutions in the set S, and a mutation probability of 1%. However, the 

preliminary tests shown that after 5,000 iterations there was no improvement in 

the quality of the solutions, and we used this last value in the reported numerical 

experiments. As we mention before, optimality is not necessarily achieved. 

2.4.1. The role of inter-hub economies of scale on the entrant’s profit 

We first study the case in which inter-hub transportation is cheaper, and analyses 

the effects of these discounted costs or economies of scale on the entrant’s profit.  

From the entrant’s point of view, there are three basic situations. 

1. The incumbent has only one hub located. In this case, the larger the inter-

hub discount, the higher the benefit of the entrant.  

2. Both the incumbent and the entrant have two or more hubs. Inter-hub 

economies of scale are less relevant to the entrant, because both 

competitors can take advantage of them.  

3. The incumbent operates a large hub-and-spoke network. The entrant will 

obtain benefit only if there are low economies of scale or none at all. In 

this case, the only advantage of the entrant is the a priori knowledge of the 

incumbent’s network.   
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Figure 2-2 shows the results for these three scenarios. The profit earned by the 

entrant is shown on the left vertical axis of each graph, the income perceived by 

the incumbent on the right vertical axis, and the inter-hub discount factor (α) on 

the horizontal axis.  

We display the incumbent’s income (and not the profit) because the incumbent is 

supposed to have been in the market for a while, so its investment costs are sunk. 

Figure 2-2a shows the case in which the incumbent has only one hub located 

( 1q  ) and charges a low margin ( 0.05  ) over his costs, with customers 

having an intermediate sensitivity factor ( 5.78  ). In this case, for lower inter-

hub costs (lower values of α), the entrant can increase its customer capture and 

profit by opening more than one hub, taking advantage of the reduced inter-hub 

costs, which the incumbent, with only one hub, cannot. 

Figure 2-2b and Figure 2-2c show what happens when q = 2 and q = 3 (the 

incumbent has two and three open hubs, respectively). Please note the different 

scale for the entrant profit on these Figures, since now the entrant’s profit is 

significantly smaller than when q = 1, because the incumbent can take advantage 

of the inter-hub discounts, achieving a better competitive position and reducing 

the entrant’s capability of obtaining a higher profit. Figure 2-2c shows how, if 

the incumbent has a more extensive network, with more than two hubs, it is not 

convenient for the entrant to start operations in the same market, unless there are 

no inter-hub economies of scale at all. Our tests show that this situation does not 

change for different values of Θ. 

If the leader’s margin Δ increases, the entrant’s profit potentially grows and 

becomes less dependent on α, even if the incumbent has a larger network with 

several hubs. Naturally, the incumbent can easily change its margins, making the 

entrant’s option of competing in this market very risky. The effect of the margin 

charged by the incumbent on the entrant’s profit is shown in Figure 2-3, for 
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0.6   and 15.39  . The entrant’s profit Z is shown on the vertical axis, 

while the margin Δ is shown on the horizontal axis. Each series is associated 

with a different number of incumbent’s hubs, q. Note that the entrant’s profit 

increases almost linearly on Δ, especially for low values; but not on q. As before, 

there are situations in which it is not possible for a new competitor to enter the 

market ( 5q   and small margins, for example). 

 

 

 
(a) q = 1 

 
(b) q = 2 

 
(c) q = 3 

Figure 2-2. Entrant’s objective function value as a function of α, with Δ=0.05 

and Θ = 5.78. 
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Figure 2-3. The effect of sensitivity to price differences on the entrant’s profit.  

Figure 2-4 shows how the entrant’s profit varies as a function of the users’ 

sensitivity to price differences, Θ. We focus on the case in which the incumbent 

charges a small margin over its costs (Δ = 0.05), for different values of α.  

When q = 1 (Figure 2-4a), for high values of Θ, i.e. most of the customers choose 

the least expensive routes. In other words, there is little spread of customers 

among the different routes. Since the entrant can locate two or more hubs –taking 

advantage of inter-hub economies of scale– it can offer routes that are cheaper 

than those offered by the incumbent, obtaining a reasonable profit. As the value 

of Θ decreases, more customers are willing to pay higher prices, and the entrant’s 

advantage due to inter-hub economies of scale, as well as its profit, decreases. 

However, when customers’ sensitivity to price further decreases, the entrant can 

increase its prices, obtaining a higher profit. 

If q = 2, the market is more competitive, because the incumbent is already taking 

advantage of the inter-hub economies of scale. This is shown in Figure 2-4b. 

High and intermediate values of Θ put the entrant in a disadvantageous situation, 

particularly if the incumbent has optimized its hub locations and network. As Θ 
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continues decreasing, customers are less sensitive and the entrant can increase its 

prices and profit. 

 

 

 
(a) q = 1 

 
(b) q = 2 

Figure 2-4. Entrant’s objective function value as a function of σ, with Δ=0.05, for 

different values of α. 

As intuitively expected, the larger the margin charged by the incumbent, the 

greater the entrant’s potential profit.  

Finally, note that curves are not monotonic, and in occasions they intersect each 

other. This is due to the fact that the genetic algorithm does not guarantee 

optimality of the solutions obtained. 

2.4.2. Optimal pricing decisions 

The pricing problem is decomposable by OD pairs, each pair being an individual 

market. Every feasible route is a separate product in this market. In this 

subsection we will not consider the fixed costs of using arcs of the network, to do 

a fair comparison between both agents. From the entrant’s point of view, there 

are two possible scenarios: with and without (variable) cost advantage over the 

incumbent. 
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The entrant has a cost advantage over the incumbent. 

If the location and network design decisions allow the entrant to open a route 

with lower operating costs than the incumbent for a specific OD pair, then it has 

a competitive advantage in this particular market. An intuitive decision would be 

to price that particular route just below the incumbent’s cheapest price. However, 

this is not always the optimal decision. Consider, for example, the situation 

depicted in Table 2-1, that shows a solution in which the incumbent has two hubs 

located at nodes 2 and 5, and the entrant has also two hubs, at nodes 10 and 25, 

with α = 0.2 (strong inter-hub discount), 0.05  (low incumbent margin), and Θ 

= 15.39 (customers are very sensitive to price differences). The Table shows all 

routes and optimal costs for the (8, 3) OD pair. The entrant has lower costs than 

the incumbent, leading to a competitive advantage. The first column shows the 

possible routes for both the entrant and the incumbent. The remaining columns 

are the cost, price, likelihood of usage, market share and profit of each route, 

respectively. The least expensive routes of both the entrant and the incumbent are 

highlighted. Note that although the entrant has the cheapest cost for this (O,D) 

pair (through route 8, 10, 25, 3), and in spite of the high price sensitivity of the 

customers, the optimal price of this entrant’s route (which implies charging a 

margin of about 0.112 units) is higher than the incumbent’s lowest price (route 

8,5,2,3). As counterintuitive as it seems, this is the optimal decision when the 

objective of the entrant is profit maximization. Note that this pricing policy does 

not lead to a maximum market share. Decreasing this price would most likely 

increase the entrant’s market share to over 50%, but it would decrease its profit. 

By making this decision, the entrant captures less customers, but the customers 

that it captures are those willing to pay higher prices (cherry-picking). This 

behavior is similar to what Sasaki et al. (2014) found for heterogeneous 

customers.  
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Table 2-1. Optimal pricing by the entrant, with cost advantage, Θ = 15.39, Δ = 

0.05, α = 0.2, for the (8,3) OD pair. Entrant’s hubs on nodes 10 and 25, and 

incumbent’s hubs on nodes 2 and 5. 

 Route Cost Price exp(−Θ⋅Price) MS (%) Profit 

 8 10 3   2.478 2.590 4.927E-18 0.00% 0.000 

Entrant’s 8 10 25 3    1.521 1.633 1.213E-11 41.71% 0.269 

routes 8 25 10 3    3.320 3.432 1.159E-23 0.00% 0.000 

 8 25 3   1.881 1.993 4.773E-14 0.16% 0.001 

 8 2 3   1.872 1.966 7.322E-14 0.25% 0.001 

incumbents’s 8 2 5 3    2.338 2.454 3.936E-17 0.00% 0.000 

routes 8 5 2 3    1.536 1.613 1.668E-11 57.38% 0.254 

 8 5 3   1.830 1.921 1.436E-13 0.49% 0.003 

   Sum 2.908E-11 100.00% 0.528 

 

 

Using the same parameter values as in Table 2-1, Figure 2-5 shows both 

competitors’ market share and profit for different values of the margin over cost 

charged by the entrant. The incumbent’s profit and market share increase as the 

entrant increases its margin. However, although the entrant’s market share 

decreases as its margin increases, its profit is not monotonic, achieving a 

maximum at the point predicted by expression (2.14), charging a margin of about 

0.112 units over its costs. 

  The entrant does not have a cost advantage over the incumbent. 

Consider now the situation in which it is the incumbent who has the least cost for 

an OD pair, on one of its routes, as shown in Table 2-2. Still the entrant has some 

room for capturing the customers that are willing to pay a higher price, provided 

it charges a low margin over its costs. 
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Figure 2-5. Incumbent’s and entrant’s market share and profit, for different 

values of entrant’s margin over cost. Entrant has lower costs than the incumbent. 

Entrant’s hubs on nodes 10 and 25; incumbent’s hubs on nodes 2 and 5; it is the 

(8,3) OD pair, with α = 0. 

We focus on the (4,6) OD pair, with α = 0.2, and Δ = 0.05, as before. For this 

example, however, we use Θ = 3.85 i.e., customers are less sensitive to price 

differences. We use this value to illustrate more explicitly the rationale behind 

the pricing decisions that our model suggests. 

As Table 2-2 shows, in this situation, the entrant, taking advantage of the low 

sensitivity to price differences (Θ), charges a margin of about 0.065 units, that 

enables the capture of the customers willing to pay more for the service, 

achieving some profit, as the rightmost column shows. For higher values of Θ, 

the margin charged and the total profit are smaller. 

2.4.1. Entrant’s network structure 

We studied three scenarios to understand the resulting entrant’s network 

structure: (1) intermediate inter-hub discount, high sensitivity to price 

differences, and a moderate margin charged by the incumbent; (2) intermediate 
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inter-hub discount, intermediate sensitivity to price differences, and a moderate 

margin charged by the incumbent; and (3) no inter-hub discount, intermediate 

sensitivity to price differences, and low incumbent margin. Figure 2-6 and Figure 

2-7 show the entrant’s network structure for scenarios 1 and 3, respectively. The 

narrower arcs connect hubs and non-hub nodes. The thicker arcs connect 

entrant’s hubs, shown as black circles. The incumbent’s hubs are shown as stars, 

but for the sake of clarity, the network is not drawn. A grey star shows co-

location of entrant’s and incumbent’s hubs. 

Table 2-2. Optimal pricing by the entrant, without cost advantage, Θ=3.85, 

Δ=0.05, α=0.2, for the (4,6) OD pair. Entrant’s hubs on nodes 10 and 25, and 

incumbent’s hubs on nodes 2 and 5. 

 Route Cost Price exp(−Θ⋅Price) MS. (%) Profit 

 4 10 6   2.037 2.102 3.060E-04 0.11% 0.002 

Entrant’s 4 10 25 6    1.472 1.537 2.689E-03 0.93% 0.021 

routes 4 25 10 6    1.938 2.003 4.480E-04 0.15% 0.004 

 4 25 6   0.891 0.956 2.522E-02 8.68% 0.198 

 4 2 6   0.926 0.972 2.368E-02 8.15% 0.133 

incumbents’s 4 2 5 6    0.925 0.971 2.379E-02 8.19% 0.133 

routes 4 5 2 6    0.654 0.686 7.117E-02 24.51% 0.281 

 4 5 6   0.481 0.505 1.431E-01 49.28% 0.416 

   Sum 2.904E-01 100.00% 1.188 

 

 

  Scenario 1 

In this case, α = 0.6, Θ =15.39, and Δ = 0.3, i.e. there are moderate inter-hub 

economies of scale; the users are very sensitive to price differences; and the 

incumbent charges a moderate margin over his costs. Figure 2-6 shows the 

networks for different values of q.  
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(a) q =1 

 

 

(b) q =2 

 

 

 
(c) q =3 

Figure 2-6. Solutions for α=0.6, Θ=15.39, and Δ=0.3, and different values of q. 

White circles are cities; black circles are locations of entrant’s hubs; white stars 

are locations of incumbent’s hubs. Gray stars indicate colocation of both 

incumbent’s and entrant’s. 

If q = 1 (Figure 2-6a), the incumbent cannot use the inter-hub economies of 

scale, so the entrant has the incentive to locate several hubs, separated from each 

other by long arcs. 

When q = 2 (Figure 2-6b), both agents can use the inter-hub economies of scale, 

and the scenario is more competitive. The entrant’s hub interconnection network 

is less extended; i.e., the number and distance between hubs decreases.  

Finally, then q = 3 (Figure 2-6c), the incumbent is even stronger, allowing the 

entrant to locate only three hubs and an even smaller network. 
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(a) q =1 (b) q =2 

 
(c) q =3 

Figure 2-7. Solutions for α=1, Θ=7.7, and Δ=0.2, and different values of q. White 

circles are cities; black circles are locations of entrant’s hubs; white stars are 

locations of incumbent’s hubs. 

  Scenario 2 

Now, we consider the case in which the users are less sensitive to price 

differences. Let Θ = 7.7, with all the other parameters as in the previous scenario. 

The results for this scenario are very similar to Scenario 1, but with a higher 

income for the incumbent. 

  Scenario 3 

If there are no inter-hub economies of scale (α = 1), the incumbent charges a 

lower margin (Δ = 0.2) and there is intermediate sensitivity to price differences, 

the resulting networks for different values of q, are shown in Figure 2-7. 
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Without inter-hub economies of scale, and if the incumbent’s margin is low, it is 

harder for the entrant to capture customers in any scenario. If q = 1, the resulting 

entrant’s network is smaller (Figure 2-7a). When q = 2 (Figure 2-7b), the entrant 

creates a more sparse network, and locates four hubs. Finally, when q = 3 (Figure 

2-7c), the incumbent is even stronger, and the entrant’s network is even smaller. 

We remark that even though there are no economies of scale, some passengers 

will choose using routes including inter-hub arcs. This is due to the fact that, as 

opposed to hub location models with no user choice, there is dispersion in the 

preferences of the customers. 

Note that the networks in Figure 2-7 have most (or all) the hubs very close 

together. This is due to the following possible reasons: Each origin-destination 

pair uses all possible routes going through one or two hubs (there is multiple-

assignment of demands to hubs). Also, the model requires every flow to go 

through at least one hub. These two conditions, together with the fact that the 

largest flows and the highest density of cities are on the east coast (on Figure 

2-7b, half of the flows are either originating or having as a destination the hub 

nodes), and the low opening cost of hubs, make the east side of the country a 

good location for several hubs. It is also important to note that the cost structure 

influences the resulting entrant’s network. For example, with larger fixed hub 

costs, there would likely be fewer hubs; and using the fixed costs structure in 

Calik et al. (2009) for arcs could give an incentive to use short links between 

cities with large flows. Similarly, Table 2-3 summarizes the results of all 

scenarios. In general, the stronger the incumbent’s position is, i.e. lower margin 

and larger network, the harder it is for the entrant to obtain any profit. Stronger 

incumbent’s positions result in a decrease in both profit and the number of hubs 

open by the entrant. Also, when the incumbent is strong, in terms of the number 

of located hubs, the entrant’s best option tend to be to concentrate in a small area 

(if possible) and obtain the highest profit there. Finally, we remark that the 

objectives of both firms are different: while the incumbent minimizes cost to 
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serve the entire demand, which resembles the profit maximization of a 

monopolist, the entrant’s objective is profit maximization given the incumbent’s 

network and prices. 

Table 2-3. Number of open hubs (# hubs) and arcs (# arcs), running time (Time), 

Entrant’s Profit and Incumbent’s Income, for all scenarios and values of q. 

Scenario Parameters q # hubs # arcs Time (s) Entrant’s Profit Incumbent’s Income 

1 α=0.6 1 9 102 7.67 5180.01 442.28 

 Θ=15.39 

Δ=0.3 

2 7 84 7.61 1704.10 736.34 

3 3 36 7.24 399.20 1520.16 

2 α=0.6 1 12 152 15.23 4823.74 587.47 

 Θ=7.7 

Δ=0.3 

2 7 93 6.89 1799.74 964.43 

3 3 31 6.30 315.23 1771.64 

3 α=1 1 9 107 6.32 3071.23 663.83 

 Θ=7.7 

Δ=0.2 

2 4 64 4.47 714.09 1132.56 

3 2 29 6.43 445.55 1467.26 

2.5. Conclusions 

We present a new approach to analyze a situation in which two firms compete in 

a transportation market. An existing firm operates a hub-and-spoke network, and 

applies mill pricing. A new firm wants to enter the same market, maximizing its 

profit by building a possibly incomplete hub network, and by making optimal 

pricing decisions. Customers’ choice of provider and route depends solely on 

price, as would predict a simple logit model, although including other factors 

would be very easy. 

We formulate a non-linear mixed integer programming model. We derive a 

closed form expression for the optimal pricing policy, and solve the problem as a 

location-network design problem (combinatorial) with an embedded pricing 

problem. We use a genetic algorithm for the location and network design 

problem. We thoroughly analyze the results of the model using the CAB dataset. 
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The computational experience shows that considering optimal pricing decisions 

when solving the hub location-network design problem leads to a better 

estimation of the maximum profit that the entrant will be able to obtain. Without 

solving the pricing problem, it is not possible to estimate the demand captured, 

its behavior and the final profit.  

As opposed to Eiselt & Marianov (2009), who studied the hub location problem 

considering that users choose according to a gravity model, we use a logit model, 

which enables introducing customers’ sensitivity to prices. The consideration of 

sensitivity provides new insights about the competitive hub location problem. We 

show how this sensitivity plays either in favour of the entrant or the incumbent, 

depending on the incumbent’s margin and network configuration. We show that, 

if sensitivity to price differences is considered, the optimal pricing policy for the 

entrant does not necessarily always consist in charging a price that is below the 

incumbent’s cheapest price for a given OD pair. In fact, for low sensitivities to 

price, customers will spread among the routes more evenly, so all routes will 

capture some traffic. This is a conceptual difference with the work by Marianov 

et al. (1999), who consider that the firm with the cheapest route captures all 

customers. 

Also, we show that, under competition, inter-hub discounted costs strongly 

influence the decision of entering a market. Inter-hub economies of scale, 

together with low prices, can be used by a strong operator to block a new agent 

from entering the market. On the other hand, inter-hub discounted costs can be 

the key to success for a new agent, who can take advantage of his knowledge of 

the incumbent’s network and prices, whenever incumbent’s location and network 

design are not the best, or its prices are high. We remark, though, that the 

modelling of the economies of scale is still an open question in the hub location 

literature, as Campbell (2012, 2013) pointed out recently, and using inter-hub 
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discount factors of the incurred costs is just an approximation of the actual 

dynamics in a hub-and-spoke network.  

A scenario analysis like the one presented here can be a valuable tool for a firm 

that is evaluating its entrance to a market. Furthermore, using this analysis, some 

situations can be foreseen in which entering the market is not convenient even if 

customer sensitivity is low.  

We also show that, for competitive situations, a formulation that maximizes 

profit provides different results and insights than a model that seeks market share 

maximization, while more adapted to situations in which a competitor aims at a 

higher profit.  

Naturally, there are some factors that we did not take into account, which could 

be relevant in a competitive situation. One of these is the fact that the incumbent 

could react to the newcomer’s entry to the market, using for example smaller 

planes in some spokes to increase the service frequency; or decreasing the prices 

charged on certain routes; improving the benefits offered within frequent-flyer 

programs, and so on. However, taking all these factors into account is left as a 

future challenge.  

Further analysis could be performed to explore situations in which profit is 

required to exceed a certain bound and the number of routes opened by the 

competing firms is limited. Extensions to this work include the analysis of the 

same scenarios using multinomial logit models, since in the airline hub problem 

customers choose based on prices, flight time, the number of stops (hubs), and 

other factors. 

Also of interest is the effect of sharing hubs by different companies, as it reduces 

fixed location costs, but potentially increases congestion. Finally, we leave for 

future research the analysis of von Stackelberg-type games. 
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3. A MODELLING FRAMEWORK FOR STRATEGIC AIRLINE 

NETWORK DESIGN 

We develop a modelling framework to assist airline managers evaluating their strategic 

network design decisions. As opposed to explicitly solving a hub location problem and 

assuming an a priori existence of economies of scale, as many models do, we formulate 

a Location-Network Design Model as a Mixed-Integer Problem (MIP), in which a 

company must locate their management and maintenance resources at existing airports, 

together with defining routes and allocating capacity both on arcs (airplanes), and nodes 

(airports), minimizing costs, subject to a constraint on the aggregated level of service. 

The decision process is guided by a set of Key Performance Indicators (KPIs) from the 

airline industry. We begin analyzing both airline economics and hub location models, 

follow by describing the framework and the model and, finally, we show how choosing 

different operational constraints influences both the network structure and KPIs. 

 

This chapter was formatted as a manuscript titled “A modeling framework for strategic 

airline network design”, and submitted for review to Computer & Operations Research 

in December 29, 2014.  
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3.1. Introduction 

After deregulation, the airline industry has changed significantly, mainly in the 

USA (Berechman & de Wit, 2014). Firstly, the market of air passengers has 

increased consistently (Oum & Zhang, 1997). This increase in the demand has 

led to unpleasant externalities to users, as congestion and delays. Secondly, part 

of the industry is now concentrated on firms that operate large networks, in terms 

of the number of OD (origin-destination) pairs served. These firms (“trunk”, 

“network carriers,” or “hub-and-spoke” airlines) were created through expansion 

and mergers between companies, in order to achieve economies of scale, network 

and density, through consolidation of flows, using hub-and-spoke network 

topology. The remainder of the market is served by low-cost carriers, which 

fiercely compete with each other, cherry-picking on the demand of hub-and-

spoke airlines through the provision of direct services between important OD 

pairs, and offering routes that use secondary airports, as opposed to congested 

hub airports. Finally, the flying material (airplane) technology has evolved 

following two trends: providing small and medium-sized airplanes with greater 

autonomy, and very efficient wide-body and long range airplanes. 

All of these changes have decreased the market share of hub-and-spoke airlines, 

increasing the competition in the markets, and making possible the existence of 

direct services between more OD pairs. These changes have stressed the need to 

develop tools to design more efficient airline networks for the hub-and-spoke 

companies.  

The strategic design of airline networks has been addressed mainly using hub 

location models, which have been under discussion recently (Campbell, 2013). 

The main concern relates to the appropriate modelling of economies of scale in 

transport networks, and the relative amount of spoke and inter-hub flows.  
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The contribution of this paper lies along those lines: we aim at an improved 

modelling of economies of scale when designing an airline network. The 

contribution is three-fold: we provide an extensive review on literature referring 

to economies of scale in the airline industry, hub location models and network 

design, unifying and integrating concepts from these areas. Then, we develop a 

general framework to design airline networks, which we believe approximates 

better the economies of a hub-and-spoke airline network, and we measure its 

performance proposing and using key performance indicators which, to the best 

of our knowledge, has never been done to analyze solutions of a hub network 

design problem. Finally, we formulate a general location and network design 

problem for airlines, providing computational experience and managerial 

insights. 

The remainder of the article is organized as follows: subsection 3.2 reviews the 

literature on Economies of Scale (EoS) in the airline industry, hub location 

models, and airline network design. Subsection 3.3 states our framework for 

airline network design, composed of parameters, a set of possible policies, a 

location and network design problem, and KPIs. Subsection 3.4 is devoted to 

computational experiments and managerial insights. Subsection 3.5 discusses the 

results and states the concluding remarks. 

3.2. Literature review 

3.2.1. Economies of scale in the airline industry 

The existence of hub-and-spoke airlines suggests that, in practice, there are 

economies of scale. However, there is no agreement in the literature about this 

issue. Finding whether there are in fact economies of scale is important, because 

these are a source of cost advantages for larger companies. 
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Formally, a company/industry has EoS if, as the production increases, the 

average costs decrease, i.e. the increase in total costs is less than proportional to 

the increase in production. The classical way to estimate the amount of 

economies of scale is to state a production function, and calculate its elasticity 

with respect to the production factors. Recent research on the subject began with 

the work by Caves, Christensen, & Tretheway (1984), who, by means of a 

translog (transcendental logarithm) model adjusted using panel data on large and 

small airlines, studied the differences between trunk and local service airline 

costs, showing that density of traffic is the primary factor that explains EoS. This 

result explains why local airlines can compete with trunk airlines in dense traffic 

markets. Their paper has also been the seminal reference for further research in 

terms of methodology. 

Relevant papers on airline costs from the economical perspective can be 

classified in those dealing with estimation of returns of scale, density and/or 

traffic, together with their respective economies; and those determining the 

factors that generate savings in the airline cost function. 

  Estimation of return of scale, density and their economies 

After the work of Caves et al. (1984), the economic analysis of airlines has been 

a controversial topic, because researchers have not used a common terminology 

and methodology for their calculations. Also, a correct formal definition of EoS 

in the transport context was only stated about 20 years later (Basso & Jara-Díaz, 

2006). During the 20 years between Caves et al. (1984) and this definition, the 

theoretical analyses suggested that there were no strong economies of scale, 

contradicting the practical fact that the average firm size and industry 

concentration had increased significantly in the USA after deregulation. 

One of the first efforts to improve the calculation of EoS in the airline industry 

was attempted by Oum & Zhang (1997), noting the scarce evidence in the 
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literature on the existence of such economies. The divergence between theory 

and practice was caused by the traditional way returns of scale were measured, 

on which EoS are based, using cost elasticities of outputs and network size, and 

ignoring the effects of the operating characteristics, as load factor, leg length 

(flying distance), network size (the number of OD pairs), etc. The authors show 

empirically that all these operating characteristics are relevant and affect the 

computation of economies of scale, allowing a better approximation of what 

happens in practice. 

Later, and from a theoretical point of view, Basso & Jara-Díaz (2006) pointed out 

that the cause of the practice-theory divergence was the definition of EoS used in 

the transport industry. Previous literature assumes that the route structure remains 

constant after an increase in traffic, which is not so. They distinguish two 

concepts: the economies of density, i.e. the decrease in the unitary transport cost 

when the traffic increases but the route structure is fixed; and the economies of 

scale, which appear when the number of origin-destination pairs remains 

constant, but the route structure changes. Based on this analysis, for the US 

airline data set covering period 1980 – 1989, they estimate that while the 

transport firms get closer to exhaust economies of density, there are still 

economies of scale to exploit.  

More recently, Johnston & Ozment (2013) pointed out another reason for the 

lack of strong  evidence in the literature on the existence of EoS in the airline 

industry. They noted that all the previous studies were done using data prior to 

1989, when deregulation did not have yet a full effect on industry. The authors’ 

goal was to “reconcile the disparity between the traditional economic definition 

of economies of scale and those that have evolved in the transportation literature, 

while assessing the potential effects of multicollinearity”. The data used ranged 

from 1985 to 2009, two models were adjusted to the data, and economies of scale 
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were calculated using the economic and transport definitions. They detected 

economies of scale on the USA airline industry in all the cases. 

It is important to note that EoS are not only related to the flying material 

operation, as Pels, Nijkamp, & Rietveld (2003) stated in a study on European 

airports using DEA (Data Envelopment Analysis). They found that, in average, 

the European airports have constant returns to scale in air transport movements, 

but increasing return to scale in passenger movements, which makes relevant the 

inclusion of the operation of airports in the analysis of EoS. 

In summary, the literature has been drifting towards an agreement in that 

economies of scale do exist, at least in the USA airline industry, so an accurate 

modelling, both considering airplane and airport operation is pertinent and 

important when designing airline networks.  

  Factors that determine changes in airline cost functions 

In order to properly model airlines’ costs, it is important to detect the factors that 

generate savings. After Caves et al. (1984), most of the studies refer to the USA 

and European airline industry, with the interesting exception of Kirby's (1986) 

work, who discusses some air transport policies for the Australian industry, given 

the fear of monopoly development on those years. The study reveals the 

existence of large potential cost savings, and economies of operation on load 

factors, airplane size and stage length. 

Later, and focused on the USA airline industry, Baltagi, Griffin, & Rich (1995) 

studied the effects of deregulation using a translog variable cost function. They 

found that the cost savings had four main sources: improvements in load factor, 

reduction on union wage rates, lower fares (especially in local airlines), and 

changes in route structure based mostly on greater leg length and hubbing (the 

percentage of routes with two or more legs, with connection in at least one hub). 

This result is consistent with that of Wei & Hansen (2003) when only the 
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operating cost of airplanes is computed. The authors found economies of airplane 

size and leg length, with an optimal airplane size increasing with leg length. It 

implies that an appropriate model for airline operation must include decisions on 

the type of airplane used. 

The load factor appears consistently as a proper performance indicator for 

airlines, both for passenger and cargo transportation. On the latter case, Mayer & 

Scholz (2012), using a log linear specification of the average cost function of 

every airline,  noting that both the fuel price and the flight related labor have the 

highest impact on airplane operating costs. Also, the load factor is a proper 

indicator of the performance on the flight level. The authors also noticed the 

existence of economies of density on the USA cargo transporting airlines studied. 

More recently, the effects on airfares of the interaction between low-cost carriers 

and network carriers has been studied. Brueckner, Lee, & Singer (2013) analyze 

two cases: non-stop and connecting flights. Their results suggest “that most 

forms of legacy-carrier competition (competition between network airlines) have 

weak effects on average (fare of) flights. Low-cost carrier competition, on the 

other hand, has dramatic fare impacts”. 

It follows that important savings can be achieved by using appropriately the 

flying material (airplanes) capacity, avoiding short flights and using 

progressively more efficient airplanes. It motivates the development of better 

models for the (existing) economies of scale and to the use of the airlines’ 

operational assets. 

3.2.2. Hub location and network design models 

Hub Location Problems (HLPs) have been used since deregulation for the 

strategic design of airline networks. Current research focuses on extending in 
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different directions and relaxing assumptions of the fundamental model proposed 

by O’Kelly (1986, 1987) and linearized by Campbell (1994).  

The fundamental model assumes the existence of a fixed discount factor for 

inter-hub flows, due to economies of scale. The use of this fixed discount in the 

fundamental model leads to networks in which an economy of scale discount is 

applied even to legs where the traffic is very low. The literature afterwards has 

followed one of the following approaches: continuing its use, because of its 

simplicity, or proposing better models for representing economies of scale in 

HLPs. 

To the best of our knowledge, most of the research follows the first approach, as 

Campbell & O’Kelly (2012) and Farahani et al. (2013) have pointed out. In 

Kimms' (2006) words: “Surprisingly enough, although the economies of scale 

phenomenon is one of the main motivations for installing hub-and-spoke 

systems, the way costs are modelled has not really been questioned by many 

authors in this area.” 

Nevertheless, better models to represent the economies of scale in HLPs have 

been indeed proposed. These can be classified in models that use flow dependent 

inter-hub discount factors; models using incomplete inter-hub networks; hub-arc 

models; and models considering thresholds to enable links with discounted cost 

in the network. 

  Flow dependent discount factors 

Given that the fundamental model uses a fixed factor to discount the inter-hub 

flows, a natural extension is to use non-linear or linear piecewise (and flow-

dependent) discount factors. 

O’Kelly & Bryan (1998) were the first to use this approach. They used a linear 

piecewise flow-dependent discount factor for a multiple assignment HLP to 
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approximate a continuous non-linear objective cost function. The resulting model 

for location and hub network design, called FLOWLOC, tends to consolidate 

most of the inter-hub flows in a particular inter-hub arc, if the discount is 

stronger, ceteris paribus. It suggests that a better way to model the economies of 

scale, rather than a fixed discount factor, is some function of the flow. 

On the same year, Bryan (1998) further extended the latter article, including 

models considering capacity, minimum thresholds on inter-hub arcs, non-fixed 

number of hubs to locate, and flow-dependent cost functions for every arc in the 

network. The author stated a relationship between the FLOWLOC model and the 

user equilibrium, which is quite interesting, because it finds in the HLP, the 

conditions under which the flows distributes (spontaneously) in the network 

according to a closest demand-hub assignment. An interesting fact was 

highlighted later by Klincewicz (2002), who noted that the FLOWLOC model  

can be reduced to the Uncapacitated Facility Location Problem, if the hub 

locations are known. Also the author proposed enumeration and search 

procedures, extending the O’Kelly & Bryan's (1998) approach to larger 

instances. 

Later, O’Kelly & Bryan (2002) studied in more detail the fundamental and 

FLOWLOC models, both with single and multiple allocations. They studied the 

concept of ‘fractional facilities’ to analyze the behavior of the models when ties 

exist on route costs. Their work showed that the FLOWLOC model tends to 

concentrate the flows in the inter-hub arcs, as it should be. 

Extending the FLOWLOC, Horner & O’Kelly (2001) propose a network design 

problem where a non-linear cost function exists on each arc, rewarding the 

appearance of economies of scale everywhere in the network, with conditions 

taken from the equilibrium traffic assignment. The location of hubs is not 

considered explicitly. The contribution of their work is the use of the notion of 
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equilibrium, which leads to new patterns of flows, with more consolidation of 

them, together with the appearance of gateway nodes in the network. Also, they 

noted that the consolidation of flows are more likely if there are considerable 

costs discounts and the interactions occurs between distant points of the network. 

HLPs are not only devoted to the passenger airline industry, as Racunica & 

Wynter (2005) pointed out, proposing a model to design a hub-and-spoke 

network in which passenger and freight rail transports are combined. Concave 

linear piece-wise costs functions are defined for every arc in the network, with 

stronger discounts on inter-hub arcs. Also, the discount depends on the absolute 

amount of flow that traverses the arc, and not the proportion of the total flow that 

goes through that arc, as in O’Kelly & Bryan (1998). The authors noted that the 

solution is sensitive both to the fixed costs of locating a hub, and the number of 

pieces used to approximate the costs functions. 

A few years later, instead of trying to extend the FLOWLOC model, Kimms 

(2006) focused on modelling the economies of scale as accurately as possible. 

The author argued that “In a hub-and-spoke network design setting, however, 

economies of scale due to quantity discounts may appear only if the 

transportation is done by a third party.” He proposed to include both fixed and 

variable costs on every arc of the network. Also, his base model is extended to 

include multiple traveling modes, capacitated facilities, limits in the size of the 

fleet of vehicles, etc. In some of these cases, the author noted that models 

including multiple modes and vehicles must include conservation constraints of 

vehicles. His contribution is a model with a mixed cost structure, having both 

fixed and variable costs of using the vehicles/airplanes, because it allows 

modelling EoS on HLPs. 

One of the practical applications of HLPs using linear-piecewise costs is given 

by Cunha & Silva (2007). They solved a HLP with fixed costs and non-linear 
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discount factors in the inter-hub arcs, using a genetic algorithm with a local 

search procedure. The heuristic achieves good results in the models, and in the 

case of study. They recognized the existence of EoS in the Less-Than-Truck 

(LTL) Brazilian freight industry. The authors highlight the importance of 

studying other inter-hub cost structures, including explicitly the quality of service 

of the industry. 

Most of research on HLPs using linear piecewise costs has been done on p -

median and fixed costs HLPs. An exception is the work of Wagner (2007), who 

proposed new formulations for hub covering problems, using both fixed and 

flow-dependent discount factor on the inter-hub flows. The author focused on 

modelling, rather than on the interpretation of economies of scale. His 

contribution is the formulation of the problem, and exploiting its structure by 

means of pre-processing. 

A promising line of work on this area is the use of decomposition approaches to 

solve HLPs with more general cost structures. The work by de Camargo, de 

Miranda, & Luna (2009) proposed a Benders Decomposition for a variation of 

the FLOWLOC model. The authors first developed a tighter formulation, and 

then solved it using Benders Decomposition, solving the sub-problems by 

inspection, speeding up the method as compared to the proposed model ‘as is’, 

being able to solve larger instances, also. 

In summary, most of the research aimed at improving the representation of 

economies of scale has been done on p-median and fixed costs HLPs, using 

linear piece-wise cost functions for the inter-hub links. The added complexity of 

the resulting models is a computational challenge, so the structure must be 

exploited, perhaps through decomposition approaches.  
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  Incomplete inter-hub networks 

In occasions, the optimal solutions of the fundamental model carry very few units 

of flow between some inter-hub arcs, which are discounted by assumption. This 

is partially due to the fact that the inter-hub network is assumed completely 

connected. This complete connection can be relaxed, however.  

In the fundamental models for HLPs, the scarce resources are the hubs, which 

need to be located efficiently, together with complete inter-hub networks. 

Campbell, Ernst, & Krishnamoorthy (2005a,b) were the first authors to formulate 

and study Hub Arc Location Problems, which locate a fixed number of inter-hub 

arcs, where the hubs must be located on both ends of every located inter-hub arc. 

As in this case ‘the scarce resource’ is the connectivity between hubs, the flows 

tend to concentrate more in inter-hub arcs. On the other hand, these models tend 

to locate more hubs than desired, so the solution could be unrealistic for some 

industries. 

From another point of view, Alumur, Kara, & Karasan (2009) studied the HLPs 

with single allocation and incomplete inter-hub networks, where both the number 

of hubs and inter-hub arcs could be parameters. The authors focused on the 

covering and center HLPs. The main insights are that if the incomplete inter-hub 

networks are designed properly, the same level of service can be achieved doing 

a lower investment. 

More recently, Lüer-Villagra & Marianov (2013) stated a competitive pricing 

and hub location problem, with an incomplete hub network, and solved it using a 

genetic algorithm. They showed that the structure of the inter-hub network 

affects the way an agent competes in a hub-and-spoke network. They noted also 

that the stronger the other agent’s position is, the more incomplete the inter-hub 

network is. 
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Using incomplete inter-hub networks looks appropriate to model hub-and-spoke 

networks, if the number of arcs is not set exogenously, because it could 

consolidate the flows artificially, leading to the appearance of flow concentration 

where it is not reasonable. Furthermore, incomplete inter-hub networks can 

achieve almost the same quality of service of complete networks, with a lower 

investment. 

  Flow thresholds on arcs  

Another way to avoid the appearance of inter-hub discounted arcs with little 

flows is to incorporate minimum thresholds. It also makes sense in some 

industries, where minimum utilization rates are required. 

To the best of our knowledge, the models proposed by Campbell (1994) are the 

first ones including thresholds. The author models spoke arcs having both fixed 

cost and minimum flow threshold to be enabled. This setting should lead to fewer 

connections between every non-hub node and hubs, tending to consolidate flows 

between them. 

One of the approaches by Bryan (1998) was to develop extensions of the 

FLOWLOC model including minimum thresholds to enable inter-hub arcs. She 

found that, in terms of their optimal objective function value, the solutions are 

not sensitive to the threshold value and tend to concentrate more the flows on 

inter-hub arcs, compared to the FLOWLOC model. 

Instead of locating hubs, Podnar, Skorin-Kapov & Skorin-Kapov (2002) 

developed a network design problem with fixed discount factors. If the flow in a 

certain arc exceeds a minimum threshold, the cost incurred by the flow is 

discounted by a fixed factor, as in the fundamental model. The key difference 

between the fundamental HLP and their model is that the economies of scale are 

allowed to appear everywhere in the network. This approach could be accurate 

when the industry uses only two kinds of vehicles, for large and small shipments, 
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for example. Their main contribution is recognizing that the economies of scale 

could appear not only between hubs, but also in spokes. 

More recently, Skorin-Kapov & Skorin-Kapov (2005) used a game theoretical 

approach. They developed a cooperative game, based on the model of Podnar et 

al. (2002). The problem consists in dividing evenly the costs of operating the 

network, obtained by Podnar et al.’s model, between the network users, 

according to their contribution to the appearance of the economies of scale. This 

insightful work provides further directions of research, bonding together network 

design with economies of scale and game theory. 

In other words, flow-dependent discounts factors, or fixed costs of enabling 

certain arcs in the network are a reasonable approach to the location or network 

design models that seek to represent appropriately the economies of scale. The 

goal is to make average costs dependent on the amount of flow. 

  Airline Network Design 

Jaillet, Song, & Yu, 1996 used a different approach to the design of airline 

networks. They described and formulated problems based on a single airline with 

a fixed share of the market designing its network, following three different 

service policies, based on the maximum number of stops in a route: One-stop, 

Two-stop and All-stop. Then, solution approaches are presented and discussed, 

followed by heuristic procedures. Rather than locating hubs, the authors 

determine hub candidates, based on six indicators including the outflow of each 

node. They found strong or dominant connecting cities, depending more on their 

position than on the demand amount, and that the network structure is very 

different to a hub-and-spoke topology. Also, they suggested that on an efficient 

network, considering two kinds of airplanes does not decrease the total cost by a 

relevant amount, as compared to the case of a single type of airplane. This 

conclusion is partially due to the fact that only the fixed cost of arc capacities is 
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considered in the objective function, but not the fixed costs associated with the 

nodes. 

As opposed to previous approaches, the framework and model we propose locate 

neither hubs nor hub-arcs explicitly, but allocates resources to airports, some of 

which become naturally hubs, because they end up performing hub functions 

given their size. Instead of using non-linear discount functions, we implicitly 

consider all factors that have an influence on economies of scale, including fixed 

and variable costs both at airports and flying material. The aim is to let the model 

decide on the network that uses optimally all the possible economies, for hub-

and-spoke airlines. 

3.3. Modelling framework for strategic airline network design 

An appropriate modelling framework must include consideration of the following 

issues:  

 It must adequately represent the economies of scale, whenever they exist;  

 Given the relevance of airport performance for airlines (Pels, Nijkamp, & 

Rietveld, 2003), it should allocate the adequate capacity to the airports. 

Naturally, if an airport exceeds a certain capacity, it will require a greater 

investment, leading to an airport that could be called a main airport or a 

hub of the company. 

 The framework should consider the capacities of the flying material. 

 The framework has to be flexible enough to include operational 

constraints, which are airline-dependent, and can affect the operation of 

airports or flying material. For example, the transoceanic flights using 

wide-haul airplanes must be operated between airports with maintenance 
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facilities, or the longest legs must be symmetrical, in order to ease the 

crew scheduling, maintenance, catering, etc.  

 It needs to consider the current airline network 

 It must include consideration of the service quality, in some aggregate 

form, since a decrease of the service quality (e.g., total flight time, 

number of legs in a route, etc.) can make the airline lose capture or 

revenues. 

 It must be flexible enough to accommodate different types of topologies. 

Looking at actual airlines, it is clear that most of them do not operate pure 

network topologies, namely point-to-point or hub-and-spoke. So, only 

general assumptions on the network structure must be done a-priori. 

We then propose a framework that addresses these issues, providing also the 

managers with KPIs, and the possibility of feedback, based on a MIP formulation 

of the airline network design problem. 
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3.3.1. Framework structure 

Figure 3-1 shows a block diagram of our proposed framework. The inputs for the 

framework are the operational constraints, as described before, the specifications 

and number of the airplanes available, the demand matrix, and all the relevant 

costs. 

 

 

  

Figure 3-1. Block diagram of our proposed framework. 

First, the MIP model is solved (ideally up to optimality), leading to a first 

network design. It includes the legs operated; the capacity allocated to arcs 

(number and type of airplanes) and nodes (capacity units on airports); the airports 

that would be central in the operation of the airline, i.e. hubs; together with the 

paths followed by flows. 

The solution obtained by the MIP model can be assessed by the use of different 

KPIs, in order to analyze the solutions achieved in an aggregated way. Some 

possible KPIs are averages, as route length, number of legs in a route, and 

airplane utilization; or ratios, like total cost per unit of available capacity, total 
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distance travelled per unit of available capacity; total cost per unit of total 

demand (unitary cost); etc. 

The network design and the KPIs can be used by the managers to analyze the 

solution, and to generate additional constraints to be added to the MIP model, for 

example, to set an upper bound on the number of legs for some routes or OD 

pairs, force the appearance of a direct flight between certain nodes, etc. Then, the 

model is solved again, leading to a new network design and KPIs, until the 

managers reach a suitable solution. 

3.3.2. MIP model for the airline network design problem 

  Parameters 

The problem is formulated as a discrete network design problem over a graph 

 ,G N A , where N  is the set of nodes and A  is set of arcs, where the length 

of arc  ,i j A  is denoted ijd . The transport demand between every o N  and 

d N  is considered static, inelastic, and denoted by odw . The fleet of the airline 

is composed of a set T  of different airplane models. The airplane type t T  has 

limited autonomy tAu , capacity tCap , and at most 
t

M  airplanes can fly the same 

leg. The set of flights than a type of airplane can cover is defined 

as   , :t t

ijA i j A d Au   . The airline has tP  airplanes of type t T . Note 

that the airplanes allocated to a certain arc do not represent actual flights, since 

the proposed model is strategic. 

The airports, which can receive at most Q  airplanes simultaneously, are 

classified in two kinds: small and large, in terms of the capacity allocated to them 
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by the company. A large airport is a central point for flights, maintenance or 

catering operations. A small airport can receive at most R  airplanes.  

We remark that airports are usually owned by third parties. An airline can 

allocate capacity to any airport in the network, and transform it into either a hub 

(in which legs of different routes are connected) or a technical base (in which 

there is concentration, maintenance, operative or administrative facilities, large 

flows, etc.) or both (Martín & Voltes-Dorta, 2007). An existing airport can be 

large itself, but if the airline does not allocate a large capacity to it for its 

operations, is considered a small airport for the effects of our model.  

Four kinds of costs are considered in our strategic airline network design 

problem. First, fixed costs of using a node k N  as a large airport, denoted by 

kCF , and incurred if more than R  airplanes will be at that node simultaneously. 

Second, fixed costs of operating a direct flight from i N  to j N , using an 

airplane of type t T , denoted by 
t

ijCA ,  , ti j A . Third, variable costs incurred 

in a flight, associated with the number of passengers flying, denoted by
t

ijc , 

 , ti j A . Finally, fixed costs of allocating the s  th unit of capacity to a node 

k N , i.e. the costs incurred to receive the s  th airplane at node k N , 

denoted by 
skCFC , where 1, ,s Q . 

Finally, there is an upper bound on the total distance travelled by the passengers, 

that can be seen as the proxy of an ‘aggregated level of service’, denoted by  .   

  Variables 

Four groups of variables are used, defined as follows. 

 
ikZ : 1, if the node i N  is assigned (connected by at least one flight) to 

the large airport located at node k N ; 0, otherwise.  
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 
skY : 1, if airport at node k N  has at least 1, ,s Q  units of capacity 

allocated; 0, otherwise. 

 mt

ijW : 1, if at least m  airplanes of type t T  are operating a direct flight 

on  , ti j A ; 0, otherwise. 

 ot

ijF : flow (number of passengers) flying on an airplane of type t T  on 

 , ti j A , coming from node o N . 

  Base model 
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Objective function (3.1) minimizes the total cost incurred by the airline on 

locating a large capacity at a node (large airport or hub), the fixed capacity 

allocation costs, fixed cost of operating airplanes, and the variable costs per 

passengers transported. Constraints (3.2) allow allocating a demand node only to 

a located large airport. On the other hand, constraints (3.3) assure the assignment 

of every small airport to at least one large airport, while constraints (3.4) force 

the existence of at least one airplane flying the implied leg i j . Constraints 

(3.5) assure that a node is a large airport only if it has more than R  units of 
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capacity allocated. Also, (3.6) and (3.7) are used to sequentially add capacity on 

nodes and arcs, respectively. Constraints (3.8) enforce the allocation of enough 

capacity at the nodes (airports) to meet the capacity on incoming arcs (airplanes). 

Moreover, constraints (3.9) assure that the flow in a certain type of airplane over 

an arc is at most the capacity implied by the airplanes allocated to it. The 

allocable arc capacity (fleet) is limited by (3.10), while (3.11) is an aggregated 

quality of service constraint, setting an upper bound on the total distance 

travelled in the network. (3.12) are flow balance constraints, and (3.13) are 

airplane conservation constraints. Constraints (3.14) assures that only one kind of 

airplane operates every leg, as usually happens on airlines. Finally (3.15)-(3.18) 

state the domain of decision variables. 

  Examples of operational constraints 

Depending of the company, more constraints can be added. For example, 

a. If flights operated using certain type t T  of airplanes must be only 

between large airports, constraints (3.19) are required. 

  
1

1
, ,

t

ij ii t

t

ij jj

W Z
i j A

W Z


 


  (3.19) 

b. If certain type t T  of airplanes is only allowed to make ‘back-and-

forth’ routes, constraints (3.20) must be added to the formulation. 
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  Comparison with previous literature 

It is important to note that this work does not assume any particular topology of 

the network to be designed, considering only technical and operational 

constraints, designing the network in terms of capacity allocation. In this sense, 
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the most similar work is (Jaillet et al., 1996), with the All-stop policy, because 

they design an airline network without having in mind a particular topology. 

However, there are differences. A first difference is that their focus is on 

determining candidate nodes for hubs, not to actually locate them. Secondly, in 

our MIP model, the objective includes the total operating costs, and not only the 

fixed costs of operating flights. Together with the network design, our model 

allocates capacity both on nodes and arcs, and explicitly locates facilities (large 

airports). In the third place, our aim is to correctly represent and use the 

economies of scale to design the network. This is achieved by using the right 

airplanes for the right legs (e.g., use low per-seat cost airplanes for long distance 

flights), optimally assigning the capacity, etc.  

The MIP model can be seen as a generalization of previous models, which can be 

obtained deleting the node capacity allocation, setting parameters or adding 

additional constraints. For instance, the models of (Jaillet et al., 1996) can be 

obtained omitting the large airport location variables, considering unlimited 

supply of airplanes, and adding constraints on the maximum number of stops in a 

route (for the one and two-stop models). 

The p-Hub Median Problem (Campbell, 1994; Ernst & Krishnamoorthy, 1996, 

1998; O’Kelly, 1986, 1987) can be obtained fixing the number of large airports 

to p , dropping the capacity constraints and the fixed costs, defining two types of 

airplanes, the first ones operating only between large airports (hubs), and the 

second ones on the spokes, also requiring complete connectivity between hubs. 

These models can be extended to those using piecewise linear costs (Bryan, 

1998; Ricardo Saraiva de Camargo et al., 2009; O’Kelly & Bryan, 1998), by the 

use of more than one type of airplane between hubs (every discount range), with 

decreasing unit variables costs, plus additional constraints for the sequential use 

of every discount factor.  
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The models in (Kimms, 2006) can be derived adding constraints on the 

maximum number of arcs (3) on every route, and dropping the capacity 

constraints on the nodes. 

Hub Arc Location Models (Campbell et al., 2005a, 2005b) can also be obtained 

using the same changes as in the p-Hub Median Models, but bounding the 

number of (uncapacitated) airplanes flying between hubs, instead of the number 

of hubs. 

3.4. Computational experiments 

We tested our framework using the CAB10 instance from the literature. As there 

are no previous studies on the proposed airline network problem and hence, no 

full set of required parameters, we developed a base instance. We scaled the 

original demand  
0

odw   and distance  
0ijd  matrices in order to get appropriate 

values for the other parameters. We considered two kinds of airplanes, denoted l  

(large) and s  (small). The rest of the parameters are set as follows. 

00.001od odw w ; 00.01ij ijd d ; 6
l

M  ; 6
s

M  ; 10Q  ; 5R  ; 20l

ij ijCA d ; 

10s

ij ijCA d ; 0.01l

ij ijc d ; 0.02s

ij ijc d ; 18lAu  ; 6sAu  ; 200lCap  ; 

100sCap  ; 1000, 1, ,10kCF k   ; 

 10 0.5 1 , 1, ,10, 1, ,skCFC s k s Q         

In what follows, this set of parameters will be called the base instance for our 

experiments. 

The MIP model was solved using the CPLEX 12.6 C++ library, on a PC with 

Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, 16 GB of RAM, Ubuntu 14.04.1 
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LTS Operating System. For the tests, CPLEX is allowed to run only 1 processing 

thread. The code was compiled using GCC 4.8.2. 

In our experiments, we computed the following KPIs: Average Route Length, 

ARL; Average Leg Number, ALN; Average Airplane Utilization, AAU; Average 

Unit Cost, AUC; Average Leg Length, ALL; Total Distance Travelled, TDT; and 

(Optimal) Objective Function Value, OFV. The CPU time required to solve the 

instances is also reported. 

We studied the solutions in terms of network structure and the values of the 

KPIs, from five different perspectives. First, we determine if the MIP model 

reproduces the existing economies of scale. Next, we studied the effect of 

changing the upper bound of the total distance travelled, as one proxy of the 

quality of service. Also, different fleet composition and operational constraints 

were tested. Finally, we analyze the effect of changes on flying material 

specifications. 

3.4.1. Economies of scale 

Recall that EoS exists when, keeping the network size constant, the average 

transportation cost is decreasing in the amount of demand. 

In order to test whether our MIP model reproduces the economies of scale 

existing in practice, we computed iteratively all KPI’s while successively 

multiplying all the demands odw  by a factor  1  , where the parameter   

represents the percentage of increase in demand, with respect to the base case. 

The complete results obtained are displayed in Table A.1, Appendix A. 

Figure 3-2 shows the values of AUC (Average Unit Cost) and ARL (Average 

Route Length) for different values of  . Note that AUC is decreasing (at a 
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decreasing rate) in , i.e. our MIP model indeed reproduces the economies of 

scale (EoS). Also, rather than assuming EoS a priori, as it is done in the 

fundamental model, these appear by correctly modelling the cost structure. On 

the other hand, the increase in ARL with   is not strict, i.e., the function “jumps” 

at places where a marginal increase in demand enables cost minimization through 

changes in the network topology. However, in average, the larger the demand is, 

the longer is the route average, consistently with what is seen in practice. The 

stability, under certain circumstances, of network design to demand changes is 

also consistent with practice.  

Also, Figure 3-3 shows the values of the increasing behavior both on of Average 

Leg Number (ALN) and Average Airplane Utilization (AAU) with respect to  , 

consistent with reality. Note that an increase of ALN means that more complex 

networks are required and, in average, more unpleasant trips for the passengers. 

Meanwhile, the increase of AAU implies airplanes with fewer empty seats. 

 

 

 

Figure 3-2. Average Unit cost (AUC) and Average route length (ARL) obtained 

varying υ in the base instance. 
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Figure 3-3. Average leg number in routes (ALN) and Average airplane utilization 

(AAU) obtained varying υ in the base instance. 

3.4.2. Upper bound on the total distance travelled 

Following, we tested if setting an upper bound (  ) on the total distance travelled 

by passengers allows us to improve the service quality provided to them. First, 

we solved the unconstrained problem, and then we decreased  , until the 

problem became infeasible. The complete results obtained are shown in Table 

A.2, Appendix A. 

Figure 3-4 shows the values of the ARL and ALN, as a function of  . Firstly, 

ARL is increasing in  , denoting that the routes are, in average, shorter when   

is reduced, i.e. the average level of service is increased. Interestingly, ALN is 

non-monotonically increasing in  , see for example the region around 7000   
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and 7800  . At these points, in the solution, some small airplanes are replaced 

by large airplanes, and the average number of legs per route decreases. 

 

 

 

Figure 3-4. Average route length (ARL) and Average number of legs per route 

(ALN) obtained varying χ in the base instance. 

This sudden change is also seen in the values of AAU in Figure 3-5, showing that 

around these regions the utilization of the airplanes decreases, caused by the 

higher number of large airplanes prescribed by the MIP model. In this figure, it 

can be also noted that AUC is decreasing in  , i.e. the lower the average service 

level is, the cheaper is the average trip for the airline. 
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Figure 3-5. Average airplane utilization (AAU) and Average Unit cost (AUC) 

obtained varying χ in the base instance. 

3.4.3. Fleet composition 

It is unrealistic to consider an airline with an unlimited number of airplanes. 

Consequently, we tested the effect both on KPIs and network structure of 

changing the available fleet. In order to get useful insights, we modify the 

instance progressively. 

First, we solved the base instance constraining only the number of large 

airplanes. Table 3-1 shows, for every feasible number of large airplanes ( lP ), the 

number of small airplanes to be used ( sN ), and the resulting KPIs. Note that 

AAU, AUC and OFV are decreasing in lP , because in the base instance the MIP 

model, unconstrained on the number of airplanes, tries to use as many large 

airplanes as it is cost-efficient. Also, ALN is empirically decreasing in lP  as 

expected, caused by the progressively greater fleet flexibility. 
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Table 3-1. KPIs obtained by limiting the maximum number of large planes ( lP ) 

available in the base instance.  

lP  
sN  ALN AAU AUC OFV Time (s) 

3 18 2.001 0.833 3.523 3519.98 17.84 

4 16 2.019 0.841 3.464 3460.38 106.11 

5 16 2.019 0.841 3.464 3460.38 78.83 

6 16 1.842 0.657 3.236 3233.20 172.98 

7 16 1.842 0.657 3.236 3233.20 88.25 

8 13 1.885 0.649 3.108 3105.44 53.02 

9 13 1.885 0.649 3.108 3105.44 70.64 

10 10 1.789 0.596 3.101 3097.88 90.20 

 

 

Then, we constrained only the small airplanes. Table 3-2 shows the KPIs for 

every tested value of maximum numbers of small airplanes ( sP ), together with 

the number of large airplanes prescribed by the MIP model ( lN ) to cover all the 

demand. Note than in this case the fleet suggested by the model has 20 airplanes, 

varying the mix between the two kinds. On the other hand, ARL, ALN, AUC, 

TDT and OFV are decreasing in sP , because of the greater flexibility that the 

MIP model has to design the network. Also, AAU and ALL are slightly 

increasing in sP , as expected. 

Table 3-2. KPIs obtained by limiting the maximum number of available small 

planes ( sP ) in the base instance. 

 

F

i

n

a 

 

 

sP  
lN   ARL ALN AAU AUC ALL TDT OFV 

Time 

(s) 

0 20 9.467 1.892 0.472 3.387 5.004 9457.38 3384.17 7.89 

2 18 9.467 1.892 0.497 3.307 5.004 9457.38 3303.51 40.08 

4 16 9.467 1.892 0.525 3.238 5.004 9457.38 3234.36 30.98 

6 14 9.203 1.789 0.526 3.187 5.144 9193.69 3183.57 30.99 

8 12 9.203 1.789 0.558 3.142 5.144 9193.69 3138.96 21.66 

10 10 9.203 1.789 0.596 3.101 5.144 9193.69 3097.88 45.86 
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Finally, we constrained both large and small airplanes. In this case the KPIs do 

not show a clear trend, because the change on the maximum number of more 

than one kind of airplanes affects the way the MIP model allocates capacity both 

to nodes and arcs. Of course, smaller fleets lead to higher values of ARL, ALN, 

ALL, AAU and TDT. Also, the tighter the capacity is, the sparser the network 

topology is. 

3.4.4. Operational constraints 

Airlines operate under different operational constraints. We studied the effect on 

both the network structure and KPIs of adding constraints (3.19) or (3.20). To 

illustrate the effect, take the base instance with 4lP   and 18sP  . 

Table 3-3 shows the results obtained, in terms of KPIs, while Figure 3-6 show 

the network structures obtained. Taking Case 1 as the base of the analysis, note 

that the inclusion of constraints (3.19) for large airplanes, i.e. forcing them to 

operate only between large airports (Case 2), greatly increases OFV (and AUC), 

while keeping ARL, AAL relatively stable. In other words, this policy increases 

the costs but does not improve the performance, from the users’ point-of-view. 

Table 3-3. Results on base instance with 4lP   and 18sP  , including 

constraints (3.19) or (3.20). 

Case 

Using 

(3.19) 

Using 

(3.20) ARL ALN AAU AUC ALL TDT OFV Time (s) 

1 No No 9.469 2.019 0.841 3.464 4.689 9459.37 3460.38 137.08 

2 Yes No 9.737 2.001 0.833 4.524 4.867 9727.13 4519.98 25.44 

3 No Yes 8.323 1.980 0.761 3.517 4.203 8314.95 3513.14 55.39 

4 Yes Yes 8.807 1.932 0.742 4.616 4.558 8798.46 4611.03 12.79 
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Including constraints (3.20) for large airplanes, i.e. forcing symmetrical legs for 

large airplanes (Case 3), increases marginally the costs, i.e. AUC and OFV, but 

improves the user-related KPIs (ARL and ALL).  

Finally, including constraints (3.19) and (3.20) together, i.e. Case 4, produce an 

intermediate result. It is important to highlight that ALN is quite stable on all the 

cases, been more dependent on fleet composition. 

From a graphical point of view, Figure 3-6a shows that on Case 1, it is optimal to 

locate large airports at Dallas (node 7) and Cleveland (node 6), with large 

airplanes operating between these cities, Denver (node 8) and Chicago (node 4). 

Inclusion of constraints (3.19), namely Case 2, in Figure 3-6b, does not affect 

significantly the network topology, but the increase in costs is explained by the 

location of a large airport at Denver (node 8), only by operational purposes. 

On the other hand, adding constraints (3.20), i.e. Case 3,  in Figure 3-6c, affects 

the network topology, but keeping the location and number of the large airports. 

It is important to note that in this case, the large airport at node 7 (Dallas) is used 

mainly for maintenance of large airplanes, while the large airport located at node 

6 (Cleveland) is used for connection between flights operated with small 

airplanes. 

Finally, Figure 3-6d, obtained by adding constraints (3.19) and (3.20), shows a 

mixed result, locating more large airports and using symmetrically large 

airplanes. 

This experiment shows both the large impact of operational constraints on 

network design and KPIs, and the way our framework can be successfully used 

as a decision support tool. 
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(a): Case 1. Using neither (3.19) 

nor (3.20). 

 
(b): Case 2. Using (3.19). 

 
(c): Case 3. Using (3.20). 

 
(d): Case 4. Using (3.19) and (3.20). 

Figure 3-6. Network designs of base instance with 4lP    and 18sP   , using 

(3.19) or (3.20). 

3.4.5. Flying material specifications 

Our last experiment studies the effect on KPIs and network structure of changing 

the specifications of the airplanes.  

First we increased progressively the autonomy of small airplanes ( sAu ) from 6 

to 18 units of distance. Table 4 shows the value of previously used KPIs for the 

values of sAu tested on the base instance. 

It is clear that the AAU increases with sAu , because more legs can be operated 

using small airplanes, which is desirable in markets with small demands and 

distant origin and destination nodes. Also the AUC is decreasing in sAu , mainly 
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caused by the higher fleet flexibility. Note that the solution is sensitive to sAu  

only for small values of sAu , staying the same for 12sAu  . 

Table 3-4. KPIs obtained by changing the autonomy of small airplanes ( sAu ) in 

the base instance. 

sAu  ALN AAU AUC ALL TDT OFV Time (s) 

6 1.789 0.596 3.101 5.144 9193.69 3097.88 56.65 

8 1.860 0.664 2.936 4.649 8640.87 2932.97 85.07 

10 1.579 0.751 2.540 5.618 8861.15 2537.54 31.32 

12 1.890 0.821 2.525 4.806 9075.03 2522.98 46.10 

14 1.890 0.821 2.525 4.806 9075.03 2522.98 71.11 

16 1.890 0.821 2.525 4.806 9075.03 2522.98 99.92 

18 1.890 0.821 2.525 4.806 9075.03 2522.98 66.91 

 

 

Note the impact on KPIs of increasing the autonomy of small airplanes, mainly 

on AUC. It could be considered as consistent with practice, particularly 

considering the current state of the airplane manufacturing industry, with both 

major manufacturers providing new long-ranged and mid-sized airplanes, both 

for network and low-cost carriers. 

Later, we change the autonomy of large airplanes ( lAu ), ranging from the 

original autonomy (18 units to distance), to 8 units of distance, where Table 3-5 

shows the results. Solution is stable to changes in the autonomy of large airplanes 

for 12lAu  . Also, ALN is decreasing in lAu , mainly because larger airplanes 

with greater autonomy allow decreasing the average number of connections. 

Note that the KPIs are quite stable to changes in autonomy of airplanes, for the 

instances tested. 
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Table 3-5. KPIs obtained by changing the autonomy of large airplanes 

( lAu ) in the base instance. 

lAu  ARL ALN AAU AUC ALL TDT OFV Time (s) 

8 10.575 2.068 0.712 2.944 5.113 10565.00 2941.53 39.06 

10 10.205 1.988 0.735 2.851 5.134 10194.70 2848.58 159.04 

12 9.203 1.789 0.596 3.101 5.144 9193.69 3097.88 110.83 

14 9.203 1.789 0.596 3.101 5.144 9193.69 3097.88 64.54 

16 9.203 1.789 0.596 3.101 5.144 9193.69 3097.88 43.31 

18 9.203 1.789 0.596 3.101 5.144 9193.69 3097.88 56.65 

3.5. Concluding remarks 

We present a framework and a model for the design of airline networks, 

including allocation of resources to airports, some of which become hubs.  The 

model is able to represent economies of scale, if the cost structure and situation 

are such that these economies do exist. These economies are caused by the 

existence of fixed costs of using the airplanes, which are shared by the 

passengers flying a specific leg. 

The framework can be easily extended to use different models to analyze more 

general problems. For example, if a competitive situation is addressed, a game-

theoretical oriented model can be used instead. The same would occur if the 

demand is elastic to the transport offer. We leave these topics as future research. 

Although the difficulty of solving the MIP model is high, it is important to 

highlight that even the small instances tested (based on CAB10) are useful to get 

insights on strategic airline network design, by testing different policies, either 

oriented to reductions of cost or towards a higher quality of service, i.e., towards 

the customers. For example, an upper bound on the total distance travelled can be 

used as a proxy for quality of service. In this case, a better way of improving 

quality would be to force the compliance of a strict standard of quality on every 

OD pair, but this can be added later, as additional constraints. Also, the effect on 
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KPIs of the available fleet, the operational constraints, and airplane autonomy 

can be derived from the instance of interest. The latter is important, because the 

appearance of short-haul airplanes with extended range is a tendency on the 

industry, adding flexibility to current and future fleets. On the other hand, in 

certain scenarios, the entire network can be aggregated in just a few ‘super 

nodes’, making location, allocation and flow routing decisions easier. 

Regarding future work, extensions include the efficient solution of the MIP 

model for larger instances, because it is a capacitated (both on arcs and nodes) 

network design model, with special nodes to be located, and modular capacities, 

make it hard to solve for larger sizes. Then, heuristic or exact decomposition 

approaches must be studied. 
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4. ON SINGLE-ALLOCATION P-HUB MEDIAN LOCATION PROBLEMS 

WITH FLOW THRESHOLD-BASED DISCOUNTS AND ECONOMIES OF 

SCALE 

The design and improvement of hub-and-spoke systems is a hot topic in air passenger 

transportation, postal and parcel service industries. However, the most extended class of 

models for hub networks, which we call the class of “fundamental models”, does not 

adequately represent economies of scale in these networks. An improved form of 

representation of the economies is an active research trend. We present a single 

allocation, incomplete inter-hub network, p-hub location problem in which a fixed unit 

cost discount is applied to the flow in an arc if it exceeds a fixed threshold. We use 

standard mathematical programming software to solve to optimality the resulting model 

for literature instances, and a heuristic procedure to get good feasible solutions. 

Aggregated performance indicators are used to analyze and compare solutions. Our 

results show that our model, based on the fundamental model for the p-hub, single 

allocation problem, is able to represent the existence of economies of scale, requires a 

reasonable computational effort, tends to consolidate flows between hubs, and can be 

efficiently solved by the proposed heuristic procedure. 
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4.1. Introduction 

Hub Location Problems (HLPs) address the location of hubs and the allocation of 

demand to them. Hubs are a special kind of facility used mainly in air passenger, 

freight, and courier transportation for flow consolidation, sorting and commuting. 

The resulting network topology is called hub-and-spoke, where the spokes are 

the arcs connecting non-hub nodes with hub nodes. 

Hub Location is a relatively young and active research area that began with the 

pioneering works of O’Kelly (1986, 1987), and the linearization proposed by 

Campbell (1994). The models were developed under a few assumptions: supply 

and offer are inelastic; the company is monopolistic; the inter-hub network is 

complete; and the flows between hubs are discounted by a fixed factor, i.e. 

independent of its volume. In the following, we will denote the models that use 

these assumptions as ‘fundamental models’. 

Literature reviews by (Campbell et al., 2002; Alumur & Kara, 2008; Kara & 

Taner, 2011; Campbell & O’Kelly, 2012; Farahani et al., 2013) show the 

uninterrupted interest in hub location within the field of Location Analysis. Two 

research trends can be observed: improvements in the solution methods of the 

fundamental models, and the development of extensions of them.  

The improvements in the solution methods of HLPs have been achieved by 

model reformulation (Ernst & Krishnamoorthy, 1996, 1998; O’Kelly, Bryan, 

Skorin-Kapov, & Skorin-Kapov, 1996; Boland, Krishnamoorthy, Ernst, & Ebery, 

2004), the addition of cuts (Labbé, Yaman, & Gourdin, 2005; Rodríguez-Martín 

& Salazar-González, 2008; García, Landete, & Marín, 2012), and the use of 

decomposition schemes (de Camargo, de Miranda, & Luna, 2008, 2009; 

Rodríguez-Martín & Salazar-González, 2008; Contreras, Cordeau, & Laporte, 
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2011). Up to now, instances of the fundamental models with hundreds of nodes 

can be solved to optimality, while the extensions of the fundamental models can 

be solved only for small or medium-size instances.  

To extend and adapt the fundamental models to different contexts, some of the 

assumptions have been changed. One such extension includes competition 

(Marianov et al., 1999; M. Sasaki & Fukushima, 2001; Adler & Smilowitz, 2007; 

Eiselt & Marianov, 2009; Lüer-Villagra & Marianov, 2013; Mihiro Sasaki et al., 

2014). On another front, the completeness of the inter-hub network has been 

replaced by the use of other topologies, such as incomplete networks or trees 

(Contreras, Fernández, & Marín, 2010; de Sá, de Camargo, & de Miranda, 2013). 

Another strand of research are hub arc location problems where, as opposed to 

locating a number of hubs, a limited number of inter-hub arcs must be located, 

probably leading to incomplete inter-hub networks (Campbell, Ernst, & 

Krishnamoorthy, 2005a, 2005b). Finally, different cost structures have been 

proposed for HLPs to relax the fixed discount factor assumption, in order to 

represent the economies of scale. These can be classified in three categories: the 

use of thresholds, piecewise linear cost functions, and cost structures with fixed 

costs.  

In the fundamental model, Campbell (1994) used both thresholds and fixed costs 

in the spokes of the network. A spoke would not be used unless the flow reaches 

the threshold. Fixed costs on spokes were used to control the structure of the 

network: if there were no fixed costs, every non-hub node would be connected 

through spoke edges to every hub, as this structure is optimal (multiple-

allocation). As the fixed cost of enabling spokes increases, the number of spoke 

edges connecting non-hub nodes to hubs decreases, becoming eventually a 

single-allocation network. Modifying the threshold also changes the shape of the 

network, as an increasing threshold reduces the number of open spokes. 

Following similar lines, Podnar, Skorin-Kapov, & Skorin-Kapov (2002) 
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proposed a network design problem (rather than a hub location problem), where 

all the arcs can be discounted if a certain flow threshold is achieved.  

The use of piecewise linear cost functions for HLPs began with (O’Kelly & 

Bryan, 1998) and the FLOWLOC model. Instead of considering a discontinuous 

cost structure, i.e. using thresholds, they linearize a non-linear objective function, 

where the discount factor between hubs is a flow-dependent function. In a follow 

up, Bryan (1998) extends the FLOWLOC model to include capacity constraints, 

minimum thresholds, non-fixed number of hubs and the use of the flow-

dependent discount function everywhere in the network. Later, Klincewicz 

(2002) develops an optimal enumeration procedure for the FLOWLOC model, 

noting that if the hub locations are fixed, the model reduces to an uncapacitated 

facility location problem. Also, tabu-search and GRASP-based heuristic are 

provided. Given their structure, all these models tend to be hard to solve, or 

require more sophisticated solution techniques to solve tighter formulations, see 

de Camargo et al. (2009). 

The fixed costs in Campbell (1994), rather than representing actual costs, were 

required for an appropriate modelling of the threshold-enabled spokes. Without 

the fixed costs, too many spokes would be enabled. To the best of our 

knowledge, the first author in recognizing that fixed costs do exist in practice, 

and that they should be estimated and included in the modelling, was Kimms 

(2006). He modelled an HLP where capacitated vehicles are used, having both 

fixed and variable costs. More recently, Lüer-Villagra, Marianov, & Latorre-

Núñez (2015) proposed a modelling framework for airline network design, in 

which the underlying model extends the previous approaches by  allocating 

capacity both to arcs and nodes. The solutions are analyzed using aggregated 

indicators of the network performance, such as the average number of legs in a 

route, vehicle utilization, etc. In industry, these indicators are commonly called 

Key Performance Indicators (KPI). Is important to note that, although previous 



83 

 

models with piecewise linear cost functions and fixed costs do represent 

economies of scale properly, they are hard to solve for practical sizes, i.e. 25 or 

more nodes, without further algorithmic enhancement.  

Figure 4-1 shows the different cost structures that appear in the models in the 

literature. Is important to highlight that, in the fundamental models (Figure 4-1a), 

there are two linear cost functions, representing respectively the costs of travel 

over spoke arcs (upper line) and inter-hub arcs (lower line). It is assumed a priori 

that there will be a larger flow between hubs and hence, the unitary cost will be 

lower. Should the flow volume change on any arc (spoke or inter-hub), the 

unitary cost remains the same and the model cannot adequately represent 

economies of scale. The remaining curves in Figure 4-1 consider a threshold, 

marking a flow volume at which costs change. If piecewise linear costs are used, 

Figure 4-1b, the total cost function is continuous in the amount of flow, but the 

slope decreases once the threshold is reached, so representing decreasing costs 

when flow is consolidated in the network. If fixed cost structures are used, Figure 

4-1c would represent the case in which vehicles with limited capacity are 

considered. The increase in the total cost after the threshold, without any change 

in the slope, occurs at the flow at which all vehicles travelling on an arc are full, 

and another vehicle with the same fixed and variable cost must be allocated to 

the arc. Finally, if threshold-based discounts are used, Figure 4-1d, after the 

threshold, both the slope and the total cost decrease. We assume the last type of 

structure, which somehow keeps the features of the fundamental model, but 

corrects its main flaw: the lack of adequate representation of the actual 

economies of scale. 

 Note that the existence of different cost structures has led to interest in the study 

of economies of scale in hub-and-spoke networks. According to Basso & Jara-

Díaz (2006), economies of scale are defined as the less than proportional increase 

in total costs caused by a proportional increase in transportation demand, i.e. the 
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average unit cost is decreasing in the demand, keeping the network size fixed but 

allowing the network structure to change. Although the existence of economies 

of scale has a central role in the use of hub-and-spoke systems, the issue of their 

appropriate modeling has been raised only recently, see for example (Kimms, 

2006; Campbell & O’Kelly, 2012; Campbell, 2013). From an empirical point of 

view, recent evidence shows that these economies do exist in the USA airline 

industry (Johnston & Ozment, 2013). 

 

 

 
(a) Fundamental models. 

 

 
(b) Piecewise linear costs. 

 

 
(c) Fixed cost structure. 

 
(d) Threshold-based discount. 

Figure 4-1. Comparison of different costs structures used in HLPs, for a generic 

arc  ,i j A . 
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A review of the literature shows that the threshold-based discount applied to 

every arc of a hub-and-spoke network has not been explicitly used before, and 

that the study of the cost structure is relevant in the representation of economies 

of scale in hub-and-spoke networks, in order to extend the fundamental models. 

Our contribution is multiple. First, we formulate a single-allocation p-HLP based 

on the fundamental model, in which the flow in all the arcs of the network, both 

spokes and inter hub arcs, is discounted if and only if it is larger than a fixed 

threshold. Secondly, we show that our model is able to represent economies of 

scale and flow consolidation between hubs. Thirdly, we compare our approach 

with the fundamental model, both in terms of solution characteristics (Key 

performance indicators) and the computational effort required. Finally, we 

propose a fast heuristic procedure. 

The remainder of this chapter is organized as follows. In subsection 4.2, the 

problem is described, and the model stated. Following, subsection 4.3 contains 

the experiments and discussion. Finally, subsection 4.4 provides concluding 

remarks and future research. 

4.2. The problem 

A non-competing company wants to locate p  hubs in a network, represented by 

a graph  ,G N A , where N  is the set of nodes, and A  the set of arcs. For every 

pair of nodes ,o d N  the inelastic and deterministic transportation demand is 

known and denoted
odw . For every arc  ,i j A , the cost per unit of flow is 

undiscounted if the flow in that arc is less than T  units of flow, and denoted 

by ijc ; otherwise, a discount factor 0 1   is applied. Also, the total flow that 

originates from node o N  is denoted by
o oj

j N

O w


 . Similarly, the total flow 
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that ends in node d N  is denoted by d id

i N

D w


 . Finally, every non-hub node 

is allocated to a single hub node, i.e. we consider industries where the cost of 

enabling a spoke is high. First we present the exact model for the problem, 

followed by an ad-hoc heuristic procedure. 

4.2.1. Exact model 

Consistent with the notation in (Ernst & Krishnamoorthy, 1996), we define our 

model as follows. 

  Variables 

 
ikZ : 1, if node i N  is allocated to a hub located at node k N ; 0, otherwise. 

 
i

klY : Flow that originates from node i N  that goes through hubs located 

in ,k l N . 

 ijf : Regular flow through arc  ,i j A . 

 ijg : Discounted flow through arc  ,i j A . 

  Objective function 

  
 ,

min ij ij ij

i j A

c f g


   (4.1) 

  Constraints 

 1,ik

k N

Z i N


     (4.2) 

 , ,ik kkZ Z i k N     (4.3) 

 kk

k N

Z p


   (4.4) 
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 , ,i i

kl lk i ik ij jk

l N l N j N

Y Y O Z w Z i k N
  

         (4.5) 

 , ,i

kl i kk

l N

Y O Z i k N


     (4.6) 

 , ,i

kl i ll

k N

Y O Z i l N


     (4.7) 

  , ,m

i ij ij j ji ij ij

m N

O Z Y D Z f g i j A


        (4.8) 

    , -1 , ,ij ij ijf g SOS i j A     (4.9) 

   0, , ,ijf T i j A     (4.10) 

     0 , , ,ijg T i j A       (4.11) 

  0,1 , ,ikZ i k N     (4.12) 

 0, , ,i

klY i k l N     (4.13) 

Objective function (4.1) minimizes the total costs. Constraints (4.2) assure that 

every non-hub node is allocated to a single hub node, not allowing connections 

between non-hub nodes. Constraints (4.3) allocate non-hub nodes only to located 

hub nodes, while constraint (4.4) ensures that p  hubs are located, and (4.5) are 

flow conservation constraints. Only feasible inter-hub flows are enforced by (4.6)

-(4.7). Constraints (4.8) compute the total flow in every arc. The threshold-based 

discount is modelled through (4.9)-(4.11), while (4.12)-(4.13) state the domain of 

the remaining decision variables.  

Note that for every arc, ijf  and ijg  belong to a Special Ordered Set Type 1 (SOS-

1), i.e. at most one variable in the set is non-zero in a feasible solution. Also, is 

important to highlight that variables ijg  are semi-continuous. We use these 
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modelling structures to avoid the use of Big-M constraints, and to let the solver 

exploit the problem structure in a more efficient way.    

4.2.2. Heuristic procedure 

Preliminary computational experiments showed that although the time required 

to solve our model is shorter than solving other piecewise linear/fixed costs hub 

models, it is not competitive with the standard computational implementation of 

the fundamental models. Due to this fact, we developed an iterative heuristic that 

starts by solving the formulation by Ernst & Krishnamoorthy (1996). In the 

solution, it checks whether the flow through discounted arcs exceeds the 

threshold and the amount of flow through non-discounted arcs is below the 

threshold. If this is so, the solution is optimal. Otherwise, the heuristic 

progressively updates the discounts applied in every arc, so they approach the 

right discounts corresponding to the amount of flow in it.  

Let 
 t

AD  be the following sub-problem, in iteration t  of the heuristic execution. 

 
 

 ,

min
t

ij ij ij

i j A

c h


   (4.14) 

  , ,m

i ij ij j ji ij

m N

O Z Y D Z h i j A


       (4.15) 

  0, ,ijh i j A     (4.16) 

Together with expressions (4.2)-(4.7), (4.12)-(4.13). Note that 
 t

AD  is 

essentially a single-allocation p -hub location problem in which the flows are 

discounted by the parameters 
 t
ij .  
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Let EK  be the formulation of the fundamental model given by Ernst & 

Krishnamoorthy (1996) and 
LRP  the linear relaxation of problem P , and  , 


 

and 

 execution parameters. The pseudo-code of the heuristic procedure is 

presented in Figure 4-2. 

 

 

1 Solve EK  

2 0t   

3 For  ,i j A   

4       If 1iiZ   and 1jjZ   then 

5               0

ij    

6       Else 

7               0
1ij    

8 0stop    

9 Do  

10        1stop    

11        Solve 
 t
LRAD   

12        For  ,i j A   

13               If 
*

ijh T  then 

14                         1
max ,

t t

ij ij   



    

15               Else 

16                        1
min 1,

t t

ij ij  



    

17               If    1t t

ij ij  


   then 

18                   0stop   

19         If stop = 0 then 

20                   1t t   

21 While 0stop    

22 Solve 
 t

AD  

23 Return solution obtained 

Figure 4-2. Pseudo-code of proposed heuristic procedure. 
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The heuristic procedure starts by solving the fundamental model (line 1), and 

initializing the iteration counter (line 2). Then, using the solution of problem EK, 

initial values for parameters  0

ij  are set (lines 3-7), as well as the stopping 

condition (line 8). After that, until the stopping condition is met (lines 9-21), 

successive linear relaxations of problem AD  are solved (line 11), and if the 

‘fractional flow’ in an arc exceeds threshold T , its discount factor is decreased in 



 at most (lines 13-14), otherwise it is increased in 


 at most (lines 15-16), 

and if the discounts do not change between iterations, the loop stops (lines 17-

18), or the iteration counter is updated (lines 19-20). Finally, AD  is integer-

solved (line 22) and the solution obtained is returned (line 23). 

4.3. Computational Experiments and Discussion 

To test our model, we used the 25 node instance of the CAB dataset (CAB25), 

dividing all demands by 1000. To implement and solve our model we used 

AMPL and CPLEX 12.6.1, on a PC with Intel(R) Core(TM) i7-4790 CPU @ 

3.60GHz, 32 GB of RAM, Ubuntu 14.04 LTS Operating System. For the tests, 

CPLEX is allowed to use up to 4 threads. 

Together with the solutions obtained in our experiments, and as a way to analyze 

their quality, we computed some aggregated performance indicators. These 

indicators are related to the objectives of the network operator, and the quality 

expectations of the users of the network. The Average Route Length indicates 

how long is the average trip for a passenger; the Average Number of Legs per 

Route counts the number of transfers a passenger would require and, from the 

point of view of the operator, the number of legs (or planes) required to cover a 

route; the Average Unit Cost is an indicator of the cost per passenger or per unit 
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of load; the Average Leg Length; the Fraction of Flows that are Discounted gives 

the operator an indication of the percentage of flow that is carried at a discounted 

cost in that solution; and the (Optimal) Objective Function Value, Z*. The CPU 

time required to solve the instances is also reported. 

In our experiments, we have multiple goals. The first goal is to show that our 

model actually does correctly represent economies of scale. With this goal in 

mind, we progressively increase the total demand, registering the behavior of the 

average unit cost. Secondly, we aim at characterizing the solutions obtained by 

changing the flow threshold T and the discount factor alpha, in terms of the 

aggregated performance indicators. Thirdly, we seek to compare our approach 

with the corresponding fundamental model (using the performance indicators), 

and measure how far off is this last one by fixing the discount structure. And 

finally, we want to assess the performance of our heuristic. 

4.3.1. Existence of economies of scale 

We first progressively increase the demand in every origin-destination (OD) pair, 

solving the model for the new demands and computing the AvgUnitCost. If 

AvgUnitCost is decreasing, economies of scale are indeed reproduced by the 

model. Let   be the percentage of increase in transport demand on every OD 

pair. Figure 4-3 shows the values of AvgUnitCost and FracDiscFlow obtained by 

our model for p=3, T=400 and α=0.5. It clearly shows that our model is able to 

represent economies of scale, because AvgUnitCost is decreasing when demand 

increases. Note that FracDiscFlow is approximately increasing in ν, because the 

model is using more intensively the discounted arcs in the network, without 

changing in average what could be taken as a proxy of quality of service, i.e. the 

values of AvgLegLen, AvgRouteLen y AvgLegNum, which are insensitive to ν 

for this case.  
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Figure 4-3. AvgUnitCost and FracDiscFlow obtained for p=3, T=400 and α=0.5 

4.3.2. Sensitivity in the flow threshold T 

As a parameter of our model, the flow discount threshold T  has a key role in the 

solutions obtained. Figure 4-4 shows the values of AvgUnitCost obtained when 

0.5   for different values of T  and p . As the demand is fixed for this 

experiment, the change in AvgUnitCost is proportional to Z*. As expected, 

AvgUnitCost is increasing in T  and decreasing in p . If the threshold value is 

higher, fewer arcs are discounted, and it is more expensive to satisfy the demand 

in average. Also, as p increases, AvgUnitCost decreases because the constraint 

on the number of hubs is less tight. The non-concavity of AvgUnitCost is caused 

by the discontinuous nature of our problem and the changes in the network 

structure caused by the different values of T. 

This fact is confirmed by Figure 4-5, where FracDiscFlow is appears quasi-

decreasing in T, implying that fewer units of flow are transported through 
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discounted arcs if the discount threshold is increased. The non-monotonicity can 

be explained analogously to the previous figure. 

4.3.3. Effect of the discount factor 

As it happens also with the fundamental model, our approach depends on the 

appropriate estimation of the value of the discount factor  , which is mostly 

industry-dependent. Note that lower values of   imply bigger incentives to 

consolidate flows in certain arcs. Figure 4-6 shows the values of AvgRouteLen 

and FracDiscFlow obtained for different values of   when for p=4 and T=500. 

Note that FracDiscFlow is approximately decreasing in  , implying that a lower 

portion of the flow is transported through discounted arcs if there is less incentive 

to use them. Also, AvgRouteLen is decreasing in  , as expected, meaning that –

conversely– the routes tend to be longer when strong discounts are applied to 

arcs where the flow exceeds the threshold, because the hubs tend to spread apart, 

taking advantage of the low cost of inter-hub travel. In other words, longer routes 

with consolidated and discounted flows are preferred in average.  
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Figure 4-4. Values of AvgUnitCost obtained for different values of T, for α=0.5. 

 

 

 

Figure 4-5. Values of FracDiscFlow obtained for different values of T, for α=0.5. 
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Figure 4-6. Values of AvgRouteLen and FracDiscFlow obtained for different 

values of α, for p=4, T=500. 

 

 

The effects in flow consolidation (FracDiscFlow) and hub dispersion 

(AvgRouteLen) are confirmed in Figure 4-7, that shows the solutions obtained 

when p=4 and T=500, for 0.1  , 0.5   and 0.9  . The circles are regular 

nodes; triangles are the nodes with located hubs; and the thicker the arc, the 

larger is the flow through it. 

In Figure 4-7a, when weak discounts are applied ( 0.9  ) the hubs are located 

not far from each other, because long arcs do not provide a significant cost 

difference if they are discounted. Also, some spokes carry large flows, and the 

inter-hub flows are not significantly larger than spokes’ flows. If the discount is 

stronger, for example 0.5   in Figure 4-7b, the network topology changes, and 

long discounted arcs appear, consistent with the higher value of AvgRouteLen. 

Note also that the inter-hub network is sparser, and less spokes carry large flows. 

In other words, the flows tend to concentrate between hubs. Finally, if the 

discount is even stronger ( 0.1   in Figure 4-7c), the network topology, 
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although it stretches a little more, is essentially the same, confirming the stability 

of AvgRouteLen and FracDiscFlow for low values of   shown in Figure 4-6. 

 

 

  
(a) 0.9   (b) 0.5   

 
(c) 0.1   

Figure 4-7. Solutions obtained for p=4, T=500 and different values of α. 

4.3.4. Comparison of our exact model with the fundamental p-hub model 

In the following, we compare our approach with the fundamental single-

allocation p-hub median model. A graphical comparison could be appealing, but 

ambiguous. We prefer to use KPIs. Table 4-1 shows the results obtained by 

comparing our model for different values of the threshold T, with the 

fundamental model, if 0.5  . The KPIs were computed assuming travel costs 

proportional to the distances, and they are in comparable units. The first row of 

each part of the table (FM) shows the values of the KPIs obtained by solving the 

fundamental model. The remaining rows show the figures for different values of 

the threshold T. 
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First of all, the fundamental model tends to use longer legs in average 

(AvgLegLen), but not always longer routes (AvgRouteLen), because the average 

leg number (AvgLegNum) tends to be smaller. This is important from the 

perspective of users, e.g. in passenger flights, but when there is no user-comfort 

involved, as in parcel delivery or courier services, this indicator has no relevance.  

From this point of view, the fundamental models show results with a better 

quality of service (comfort) at the expense of efficiency. Recall, though, that the 

results of the fundamental models do not necessarily describe what happens in 

practice, because some legs that in the fundamental model appear as discounted, 

in practice are not, and vice versa. In second place, comparatively, our model 

tends to build networks that use more intensively the discounted arcs, obtaining 

higher values of FracDiscFlow, even when the flow threshold T is large.  From a 

cost-perspective, the lower value of AvgLegNum and FracDiscFlow for the 

fundamental model implies higher costs. On the other hand, from a 

computational perspective, our model is harder to solve than the fundamental 

model, but easier than other models with piecewise linear costs that require the 

use of decomposition approaches and more sophisticated algorithms to be solved 

for this instance size. 

4.3.5. Heuristic performance 

We tested the performance of our heuristic with the following experimental 

settings:  0.00,0.05, ,1.00  ,  2,3, 4,5p  ,  100,200, ,800T  , and 

0.5  .     

For these settings, the heuristic procedure provides in average solutions that are 

8.81% away from optimum, in 0.02% of the CPU time required by the exact 

method. Figure 4-8 and Figure 4-9 show the histograms for the proposed 
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measures, noting that both have positive kurtosis and reasonable spread around 

the mode, especially for the CPU time ratio. 

Table 4-1. Comparison between our exact model and the fundamental model, for 

α=0.5. 

p T AvgLegLen AvgRouteLen AvgLegNum FracDiscFlow AvgUnitCost Z* Time 

2 

FM 690.212 1403.796 2.034 0.116 1151.990 9838004 1.24 

100 600.877 1365.175 2.272 0.990 685.524 5854376 171 

200 633.339 1366.235 2.157 0.889 761.417 6502508 233 

300 607.223 1366.606 2.251 0.728 845.924 7224198 269 

400 607.223 1366.606 2.251 0.658 864.210 7380362 280 

500 633.339 1366.235 2.157 0.484 1007.715 8605895 680 

600 607.223 1366.606 2.251 0.459 1037.680 8861791 626 

700 678.060 1384.081 2.041 0.371 1054.023 9001363 386 

800 678.060 1384.081 2.041 0.371 1054.023 9001363 637 

3 

FM 612.365 1298.597 2.121 0.254 967.849 8265432 2.02 

100 576.463 1256.630 2.180 0.989 633.906 5413558 162 

200 548.631 1274.257 2.323 0.884 708.040 6046667 718 

300 548.631 1274.257 2.323 0.765 770.242 6577873 570 

400 548.631 1274.257 2.323 0.697 788.528 6734037 446 

500 563.399 1292.682 2.294 0.555 893.652 7631789 1004 

600 563.399 1292.682 2.294 0.502 918.215 7841561 1282 

700 563.399 1292.682 2.294 0.502 918.215 7841561 993 

800 563.399 1292.682 2.294 0.502 918.215 7841561 946 

4 

FM 650.643 1242.587 1.910 0.342 863.360 7373102 2.82 

100 554.849 1212.774 2.186 1.000 606.387 5178547 328 

200 528.533 1216.933 2.302 0.897 668.305 5707332 2692 

300 513.477 1238.630 2.412 0.797 725.492 6195708 481 

400 513.070 1246.857 2.430 0.734 747.892 6387002 2272 

500 543.256 1288.514 2.372 0.592 827.270 7064887 2376 

600 558.155 1297.289 2.324 0.556 857.958 7326970 3344 

700 507.243 1283.903 2.531 0.540 868.763 7419241 4432 

800 521.589 1290.265 2.474 0.562 872.534 7451444 5873 

5 

FM 669.797 1214.380 1.813 0.370 792.137 6764854 2.79 

100 509.888 1178.466 2.311 1.000 589.233 5032053 1211 

200 503.801 1187.905 2.358 0.925 640.929 5473535 2606 

300 524.262 1196.236 2.282 0.777 694.050 5927193 3601 

400 470.512 1210.737 2.573 0.778 713.043 6089389 14498 

500 538.048 1285.861 2.390 0.658 786.518 6716872 54647 

600 505.491 1261.530 2.496 0.594 810.980 6925775 65504 

700 461.033 1248.123 2.707 0.606 821.823 7018371 76618 

800 463.621 1255.131 2.707 0.606 825.327 7048297 86326 
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Figure 4-8. Percentage gap between heuristic and optimal solutions, for the tested 

instances based on CAB25. 

 

 

Figure 4-9. Percentage ratio of CPU times of heuristic and optimal methods, for 

the tested instances based on CAB25. 
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4.3.6. Summary 

We showed that, as opposed to the fundamental model, our model prescribes 

network designs that do represent economies of scale, behaves properly to 

changes in the main parameters, and produces solutions coherent with a flow-

dependent discount assumption. In other words, the solutions obtained by our 

model are a better representation of reality than the fundamental model for the 

same problem. Also, we tested our heuristic procedure, noting that is fast and 

efficient in computing good quality feasible solutions. 

4.4. Concluding remarks 

We formulated a single-allocation p-HLP with threshold-based discounts 

anywhere in the network. We showed that our model for the single-allocation p-

hub median, based on the fundamental model for the same problem, is able to 

represent economies of scale, tends to consolidate flows between hubs, obtaining 

similar or better (for some industries) values of the KPIs used, in exchange for a 

higher computational effort, which, in any case, is comparatively smaller than 

existing more complex models. We also developed a fast heuristic procedure, in 

order to quickly get high quality feasible solutions. 

Note that a good heuristic that obtains solutions reproducing the real economies 

of scale is a powerful tool that will allow a substantial leap in hub research, as it 

makes possible to analyze complex extensions of hub problems, without the flaw 

of the fundamental models.   In fact, future research includes the use of these 

heuristic feasible solutions as starting points for more sophisticated fast 

heuristics, its extension to other hub location problems, as for example the hub 

location problem with fixed costs, considering covering and center objectives, 

including competition, different service quality constraints, etc. 
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5. CONCLUSION 

This thesis successfully develops extensions to fundamental hub location models. 

The contributions are both theoretical and practical. 

In Chapter 2 we state, formulate and heuristically solve a competitive hub 

location problem that includes pricing decisions. Two firms compete in a 

transportation market. An incumbent firm operates a hub-and-spoke network and 

applies mill pricing. The entrant firm wants to enter in order to maximize its 

profit by designing and operating a hub-and-spoke network, and by making 

optimal pricing decisions. The customers’ choice between the routes of the 

incumbent and the entrant is based only on price, following a simple logit model. 

The resulting non-linear mixed integer programming model is solved using a 

genetic algorithm, and given that if the networks of both companies are fixed, a 

closed form expression for the optimal entrant’s policy can be derived. We tested 

our model using the CAB dataset. 

Our computational experiments show that both pricing and users’ sensitivity 

parameter are relevant in competitive hub location problems. Their role for both 

companies depends mainly on the incumbent’s margin and network 

configuration. We also show that if sensitivity is considered, it is not optimal to 

the entrant to price its routes below the incumbent’s cheapest, for a given OD 

pair.  

Finally, we show that if competition is considered, the inter-hub costs strongly 

influence entrant’s decision of entering a market. We also note that a profit-

maximizing model provides different solutions and insights than a market share-

maximizing model.  
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Future work includes incorporating the reaction of the incumbent after entrant’s 

appearance, the extension of our users’ behavior model to include elastic demand 

and other factors like travel time, number of stops in a route, etc. Finally, we 

think that the study of sharing hubs between companies to reduce congestion and 

costs is a very promising research line. 

In Chapter 3 we develop a framework and a model for airline network design. 

Our model represents economies of scale, if these are available by the cost 

structure. Our framework provides a flexible decision support tool, which can be 

easily extended to other situations, like competitive environments, elastic 

demand, etc. 

We show that although our model is hard to solve, we are able to get insights on 

airline network design using small instances. For example, setting and upper 

bound to the total distance traveled can be used to increase the average service 

quality to customers. 

The use of KPIs (Key Performance Indicators) is also relevant, and provides an 

appropriate way to analyze quantitatively network design and location problems.  

Future research includes the efficient (heuristic or exact) solution of our model 

for larger instances, perhaps through decomposition, model reformulation or 

formulation strengthening.  

In Chapter 4 we formulate and solve a single-allocation p-HLP, where threshold-

based discounts can be applied anywhere in the network.  

Our model, based on the fundamental single-allocation p-hub median model, can 

represent economies of scale, consolidate flows between hubs if there are 

incentives to do it, and obtains similar or better KPI values. In the other hand, 

solving our model implies a computational effort between the fundamental model 
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and other existing complex models.  Finally, we develop a fast heuristic 

procedure, in order to quickly get high quality feasible solutions. 

Future work along this line includes using the solutions obtained by our heuristic 

procedure in more sophisticated heuristics and meta-heuristics, and the use of 

this flow threshold-based discount structure in other hub location problems. 
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