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Abstract

We analyze the low energy features of a supersymmetric standard model where the anomaly-
induced contributions to the soft parameters are dominant in a scenario with bilinearR-parity
violation. This class of models leads to mixings between the standard model particles and
supersymmetric ones which change the low energy phenomenology and searches for supersymmetry.
In addition,R-parity violation interactions give rise to small neutrino masses which we show to be
consistent with the present observations. 2002 Elsevier Science B.V. All rights reserved.

PACS: 12.60.Jv; 14.60.Pq; 14.80.Ly

1. Introduction

Supersymmetry (SUSY) is a promising candidate for physics beyond the Standard
Model (SM) and there is a large ongoing search for supersymmetric partners of the
SM particles. However, no positive signal has been observed so far. Therefore, if
supersymmetry is a symmetry of nature, it is an experimental fact that it must be
broken. The two best known classes of models for supersymmetry breaking are gravity-
mediated [1] and gauge-mediated [2] SUSY breaking. In gravity-mediated models, SUSY
is assumed to be broken in a hidden sector by fields which interact with the visible particles
only via gravitational interactions and not via gauge or Yukawa interactions. In gauge-
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mediated models, on the contrary, SUSY is broken in a hidden sector and transmitted to
the visible sector via SM gauge interactions of messenger particles.

There is a third scenario, called anomaly-mediated SUSY breaking [3], which is
based on the observation that the super-Weyl anomaly gives rise to loop contribution to
sparticle masses. The anomaly contributions are always present and in some cases they
can dominate; this is the anomaly mediated supersymmetry breaking (AMSB) scenario.
In this way, the gaugino masses are proportional to their corresponding gauge group
β-functions with the lightest SUSY particle being mainly wino. Analogously, the scalar
masses and trilinear couplings are functions of gauge and Yukawaβ-functions. Without
further contributions the slepton squared masses turn out to be negative. This tachyonic
spectrum is usually cured by adding an universal non-anomaly mediated contribution
m2

0> 0 to every scalar mass [4].
So far, most of the work on AMSB has been done assumingR-parity (RP )

conservation [5–7]; see [8] for an exception.R-parity violation [9] has received quite some
attention lately motivated by the Super-Kamiokande Collaboration results on neutrino
oscillations [10], which indicate neutrinos have mass [11]. One way of introducing mass
to the neutrinos is via bilinearR-parity violation (BRpV) [12], which is a simple and
predictive model for the neutrino masses and mixing angles [13,14]. In this work, we
study the phenomenology of an anomaly mediated SUSY breaking model which includes
bilinear R-parity violation (AMSB-BRpV), stressing its differences to theR-parity
conserving case.

In BRpV-MSSM [15], bilinear R-parity and lepton number violating terms are
introduced explicitly in the superpotential. These terms induce vacuum expectation values
(vev’s)vi for the sneutrinos, and neutrino masses through mixing with neutralinos. At tree
level, only one neutrino acquires a mass [16], which is proportional to the sneutrino vev
in a basis where the bilinearR-parity violating terms are removed from the superpotential.
At one-loop, three neutrinos get a non-zero mass, producing a hierarchical neutrino mass
spectrum [17]. It has been shown that the atmospheric mass scale, given by the heaviest
neutrino mass, is determined by tree level physics and that the solar mass scale, given by
the second heaviest neutrino mass, is determined by one-loop corrections [14].

In our model, the presence ofRP violating interactions gives rise to neutrino masses
which we show to be consistent with the present observations. Moreover, the low-
energy phenomenology is quite distinct of the conservingR-parity AMSB scenario. For
instance, the lightest supersymmetric particle (LSP) is unstable, which allows regions of
the parameter space where the stau or the tau-sneutrino is the LSP. In our scenario, decays
can proceed via the mixing between the standard model particles and supersymmetric ones.
As an example, the mixing between the lightest neutralinoχ̃0

1 (charginoχ̃±
1 ) andντ (τ±)

allows the following decays

χ̃0
1 → ντZ

∗,

χ̃0
1 → τ±W∓∗,

χ̃±
1 → τ±Z∗,

χ̃±
1 → ντW

±∗.
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Another effect of the mixing between the standard model and supersymmetric particles
is a sizeable change in the mass of the supersymmetric particles. For instance, the mixing
between scalar taus and the charged Higgs can lead to an increase in the splitting between
the two scalar tau mass eigenstates by a factor that can be as large as 10 with respect to the
RP conserving case.

This paper is organized as follows. We define in Section 2 our anomaly mediated SUSY
breaking model which includes bilinearR-parity violation, stating explicitly our working
hypotheses. This section also contains an overall view of the supersymmetric spectrum in
our model. We study the properties of the CP-odd, CP-even, and charged scalar particles
in Sections 3, 4, and 5, respectively, concentrating on the mixing angles that arise from
the introduction of theR-parity violating terms. Section 6 contains the analysis that shows
that our model can generate neutrino masses in agreement with the present knowledge. In
Section 7 we provide a discussion of the general phenomenological aspects of our model
while in Section 8 we draw our conclusions.

2. The AMSB-BRpV model

Our model, besides the usualRP conserving Yukawa terms in the superpotential,
includes the following bilinear terms

(1)Wbilinear= −εab
(
µĤ a

d Ĥ
b
u + εi L̂

a
i Ĥ

b
u

)
,

where the second one violatesRP and we take|εi | � |µ|. Analogously, the relevant soft
bilinear terms are

Vsoft =m2
Hu
Ha∗
u H

a
u +m2

Hd
Ha∗
d H

a
d +M2

Li
L̃a∗i L̃ai

(2)− εab
(
BµHa

d H
b
u +Biεi L̃

a
i H

b
u

)
,

where the terms proportional toBi are the ones that violatesRP . The explicitRP violating
terms induce vacuum expectation valuesvi , i = 1,2,3 for the sneutrinos, in addition to the
two Higgs doublets vev’svu andvd . In phenomenological studies where the details of the
neutrino sector are not relevant, it has been proven very useful to work in the approximation
whereRP and lepton number are violated in only one generation [18]. In these cases, a
determination of the mass scale of the atmospheric neutrino anomaly within a factor of
two is usually enough, and that can be achieved in the approximation whereRP is violated
only in the third generation.

In this work we assume thatRP violation takes place only in the third generation, and
consequently the parameter space of our model is

(3)m0,m3/2, tanβ,sign(µ), ε3, andmντ ,

wherem3/2 is the gravitino mass andm2
0 is the non-anomaly mediated contribution to the

soft masses needed to avoid the appearance of tachyons. We characterize the BRpV sector
by theε3 term in the superpotential and the tau–neutrino massmντ since it is convenient to
tradev3 bymντ .
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In AMSB models, the soft terms are fixed in a non-universal way at the unification
scale which we assumed to beMGUT = 2.4 × 1016 GeV; see Appendix A for details. We
considered the running of the masses and couplings to the electroweak scale, assumed to be
the top mass, using the one-loop renormalization group equations (RGE) that are presented
in Appendix B. In the evaluation of the gaugino masses, we included the next-to-leading
order (NLO) corrections coming fromαs , the two-loop top Yukawa contributions to the
beta-functions, and threshold corrections enhanced by large logarithms; for details see [4].
The NLO corrections are especially important forM2, leading to a change in the wino
mass by more than 20%.

One of the virtues of AMSB models is that theSU(2) ⊗ U(1) symmetry is broken
radiatively by the running of the RGE from the GUT scale to the weak one. This feature
is preserved by our model since the one-loop RGE are not affected by the bilinearRP
violating interactions; see Appendix B. In our model, the electroweak symmetry is broken
by the vacuum expectation values of the two Higgs doubletsHd andHu, and the neutral
component of the third left slepton doubletL̃3. We denote these fields as

Hd =
( 1√

2

[
χ0
d + vd + iϕ0

d

]
H−
d

)
, Hu =

(
H+
u

1√
2

[
χ0
u + vu + iϕ0

u

])
,

(4)L̃3 =
( 1√

2

[
ν̃Rτ + v3 + iν̃i0τ

]
τ̃−

)
.

The above vev’svi can be obtained through the minimization conditions, or tadpole
equations, which in the AMSB-BRpV model are

t0d = (
m2
Hd

+µ2)vd −Bµvu −µε3v3 + 1

8

(
g2 + g′2)vd(v2

d − v2
u + v2

3

)
,

t0u = (
m2
Hu

+µ2 + ε2
3

)
vu −Bµvd +B3ε3v3 − 1

8

(
g2 + g′2)vu(v2

d − v2
u + v2

3

)
,

(5)t03 = (
m2
L3

+ ε2
3

)
v3 −µε3vd +B3ε3vu + 1

8

(
g2 + g′2)v3

(
v2
d − v2

u + v2
3

)
,

at tree level. At the minimum we must imposet0d = t0u = t03 = 0. In practice, the input
parameters are the soft massesmHd , mHu , andmL3, the vev’svu, vd , andv3 (obtained
frommZ , tanβ , andmντ ), andε3. We then use the tadpole equations to determineB, B3,
and|µ|.

One-loop corrections to the tadpole equations change the value of|µ| by O(20%),
therefore, we also included the one-loop corrections due to third generation of quarks and
squarks [17]:

(6)ti = t0i + T̃i(Q),

whereti , with i = d,u, are the renormalized tadpoles,t0i are given in (5), and̃Ti(Q) are
the renormalized one-loop contributions at the scaleQ. Here we neglected the one-loop
corrections fort3 since we are only interested in the value ofµ.

Using the procedure underlined above, the whole mass spectrum can be calculated
as a function of the input parametersm0, m3/2, tanβ , sign(µ), ε3, andmντ . In Fig. 1,
we show a scatter plot of the mass spectrum as a function of the scalar massm0 for
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Fig. 1. Supersymmetric mass spectrum in AMSB-BRpV form3/2 = 32 TeV, tanβ = 5, andµ< 0. The values of

ε3 andmντ were randomly varied according to 10−5 < ε3< 1 GeV and 10−6 <mντ < 1 eV.

m3/2 = 32 TeV, tanβ = 5, andµ< 0, varyingε3 andmντ according to 10−5< ε3< 1 GeV
and 10−6<mντ < 1 eV. The widths of the scatter plots show that the spectrum exhibits a
very small dependence onε3 andmντ . Throughout this paper we use this range forε3 and
mντ in all figures.

We can see from this figure that, form0 � 200 GeV, the LSP is the lightest neutralino
χ̃0

1 with the lightest charginoχ̃+
1 almost degenerated with it, as inRP -conserving

AMSB. Nevertheless, the LSP is the lightest stauτ̃+
1 for m0 � 200 GeV. This last

region of parameter space is forbidden inRP -conserving AMSB, but perfectly possible in
AMSB-BRpV since the stau is unstable, decaying intoRP -violating modes with sizeable
branching ratios. Furthermore, the slepton masses have a strong dependence onm0. We
plotted masses of the two staus, which have an appreciable splitting, the almost degenerated
smuons, and the closely degenerated tau-sneutrinos.1 The heavy Higgs bosons have also a
strong dependence onm0 and, for the chosen parameters, they are much heavier than the
sleptons. On the other hand, the gauginos show little dependence onm0, as expected.

1 In fact, there are two tau-sneutrinos in this model, a CP-even and a CP-odd field that are almost degenerated;
see further sections for details.
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Bounds on BRpV parameters depend in general on supersymmetric masses and
couplings, as shown in [19]. In models with BRpV in only one generation it is possible
to estimate the bound onε3 in a much simpler way: if we rotate the lepton and Higgs fields
such that the bilinear term in the superpotential is eliminated [20], a trilinear termλ′ is
generated

(7)λ′
3ii = hdi

ε3√
µ2 + ε2

3

,

wherehdi is the Yukawa coupling of the down quark of theith generation. Bounds on these
couplings can be found on [9]:

(8)λ′
311< 0.11× md̃R

100 GeV
, λ′

322< 0.52× ms̃R

100 GeV
, λ′

333< 0.45,

and, considering the values of the Yukawa couplings, it is easy to see that these bounds are
satisfied for our choiceε3< 1 GeV.

3. CP-odd Higgs/sneutrino sector

In our model, the CP-odd Higgs sector mixes with the imaginary part of the tau-
sneutrino due to the bilinearRP violating interactions. Writing the mass terms in the form

(9)Vquadratic= 1

2

[
ϕ0
d, ϕ

0
u, ν̃

i0
τ

]
M2
P 0

 ϕ0
d

ϕ0
u

ν̃i0τ

 ,
we have

M2
P 0

=


m

2(0)
A s2

β +µε3
v3
vd

m
2(0)
A sβcβ −µε3

m
2(0)
A sβcβ m

2(0)
A c2

β −µε3
v3
vd

c2
β

s2
β

+ v2
3
v2
d

c2
β

s2
β

m̄2
ν̃τ

−µε3 cβsβ + v3
vd

cβ
sβ
m̄2
ν̃τ

−µε3 −µε3 cβsβ + v3
vd

cβ
sβ
m̄2
ν̃τ

m̄2
ν̃τ

 ,
(10)

with m̄2
ν̃τ

=m
2(0)
ν̃τ

+ ε2
3 + 1

8g
2
Zv

2
3 andg2

Z ≡ g2 + g′2. Here,

(11)m
2(0)
A = Bµ

sβcβ
and m

2(0)
ν̃τ

=M2
L3

+ 1

8
g2
Z

(
v2
d − v2

u

)
are, respectively, the CP-odd Higgs and sneutrino masses in theRP conserving limit
(ε3 = v3 = 0). In order to write this mass matrix we have eliminatedm2

Hu
, m2

Hd
, andB3

using the tadpole equations (5). The mass matrix has an explicitly vanishing eigenvalue,
which corresponds to the neutral Goldstone boson.
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This matrix can be diagonalized with a rotation

(12)

[
A0

G0

ν̃odd
τ

]
= RP 0

 ϕ0
d

ϕ0
u

ν̃i0τ

 ,
whereG0 is the massless neutral Goldstone boson. Between the other two eigenstates, the
one with largest̃νi0τ component is called CP-odd tau-sneutrinoν̃odd

τ and the remaining state
is called CP-odd HiggsA0.

As an intermediate step, it is convenient to make explicit the masslessness of the
Goldstone boson with the rotation

(13)R̂P 0 =
 sβ cβ 0

−cβr sβr − v3
vd
cβr

− v3
vd
c2
βr

v3
vd
sβcβr r

 ,
where

(14)r = 1√
1+ v2

3

v2
d

c2
β

,

obtaining a rotated mass matrix̂RP 0M2
P 0R̂

T
P 0 which has a column and a row of zeros,

corresponding toG0. This procedure simplifies the analysis since the remaining 2× 2
mass matrix for(A0, ν̃odd

τ ) is

(15)M̂
2
P 0 =

m
2(0)
A + v2

3
v2
d

c4
β

s2
β

m̄2
ν̃τ

+µε3
v3
vd

s2
β−c2

β

s2
β

(
v3
vd

c2
β

sβ
m̄2
ν̃τ

−µε3 1
sβ

)
r(

v3
vd

c2
β

sβ
m̄2
ν̃τ

−µε3
1
sβ

)
r m̄2

ν̃τ

1
r2

 .
We quantify the mixing between the tau-sneutrino and the neutral Higgs bosons through

(16)sin2 θodd= ∣∣〈ν̃odd
τ

∣∣ϕ0
u

〉∣∣2 + ∣∣〈ν̃odd
τ

∣∣ϕ0
d

〉∣∣2.
If we consider theRP violating interactions as a perturbation, we can show that

(17)sin2 θodd�
(
v3
vd
c2
βm

2(0)
ν̃τ

−µε3
)2

s2
β

(
m

2(0)
A −m

2(0)
ν̃τ

)2 + v2
3

v2
d

c2
β,

indicating that this mixing can be large when the CP-odd Higgs bosonA0 and the sneutrino
ν̃τ are approximately degenerate.

Fig. 2(a) displays the full sneutrino-Higgs mixing (16), with no approximations, as a
function of tanβ for m3/2 = 32 TeV,µ < 0 and 100<m0< 300 GeV. In a large fraction
of the parameter space this mixing is small, since it is proportional to the BRpV parameters
squared divided by MSSM mass parameters squared. However, it is possible to find a
region where the mixing is sizable, e.g., for our choice of parameters this happens at
tanβ ≈ 15. As expected, the region of large mixing is associated to near degenerate states,
as we can see from Fig. 2(b) where we present the ratio between the CP-odd Higgs mass
mA and the CP-odd tau-sneutrino massmν̃odd

τ
as a function of tanβ .
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Fig. 2. (a) CP-odd Higgs–sneutrino mixing and (b) ratio between the CP-odd Higgs mass and the sneutrino mass
as a function of tanβ for m3/2 = 32 TeV,µ< 0 and 100<m0< 300 GeV.

4. CP-even Higgs/sneutrino sector

The mass terms of the CP-even neutral scalar sector are

(18)Vquadratic= 1

2

[
χ0
d ,χ

0
u, ν̃

r0
τ

]
M2
S0

 χ0
d

χ0
u

ν̃r0τ

 ,
where the mass matrix can be separated into two pieces

(19)M2
S0 = M

2(0)
S0 + M

2(1)
S0 .

The first term due toRP conserving interactions is

(20)M
2(0)
S0 =


m

2(0)
A s2

β + 1
4g

2
Zv

2
d −m2(0)

A sβcβ − 1
4g

2
Zvdvu 0

−m2(0)
A sβcβ − 1

4g
2
Zvdvu m

2(0)
A c2

β + 1
4g

2
Zv

2
u 0

0 0 m
2(0)
ν̃τ

 ,
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while the one associated to theRP violating terms is

M
2(1)
S0

=


µε3

v3
vd

0 −µε3 + 1
4g

2
Zvdv3

0
v2

3
v2
d

c2
β

s2
β

m
2(0)
ν̃τ

−µε3
v3
vd

c2
β

s2
β

µε3
cβ
sβ

− v3
vd

cβ
sβ
m

2(0)
ν̃τ

− 1
4g

2
Zvuv3

−µε3 + 1
4g

2
Z
vdv3 µε3

cβ
sβ

− v3
vd

cβ
sβ
m

2(0)
ν̃τ

− 1
4g

2
Z
vuv3 ε2

3 + 3
8g

2
Z
v2

3


(21)

Fig. 3. (a) CP-even Higgs–sneutrino mixing; (b) ratio between heavy CP-even Higgs and tau-sneutrino masses
and (c) ratio between light CP-even Higgs and tau-sneutrino masses as a function of tanβ for m3/2 = 32 TeV,
µ< 0 and 100<m0< 300 GeV.
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Radiative corrections can change significantly the lightest Higgs mass and, consequently,
we have also introduced the leading correction to its mass

(22)/mχ0
u

≡ 3m4
t

2π2v2
uv

′ ln

(
mt̃1mt̃2

m2
t

)
,

with

(23)v′ = 1− v2
3

v2
d + v2

u + v2
3

,

by adding it to the element[M2
S0]22.

Analogously to the CP-odd sector, we define the mixing between the CP-even tau-
sneutrino and the neutral Higgs bosons as

(24)sin2 θeven=
∣∣〈ν̃even
τ

∣∣χ0
d

〉∣∣2 + ∣∣〈ν̃even
τ

∣∣χ0
u

〉∣∣2 = ∣∣〈H 0
∣∣ν̃r0τ 〉∣∣2 + ∣∣〈h0

∣∣ν̃r0τ 〉∣∣2.
In general, this mixing is small since it is proportional to theRP breaking parameters
squared, however, it can be large provided the sneutrino is degenerate either withh0 orH 0.

In Fig. 3(a), we present the mixing (24) as a function of tanβ , for the input parameters
as in Fig. 2. Similarly to the CP-odd scalar sector, this mixing can be very large, occurring
either whenmH ≈ mν̃even

τ
or mh ≈ mν̃even

τ
. In fact, we can see from Fig. 3(b) that the

peak in Fig. 3(a) for tanβ ∼ 15 is mainly due to the mass degeneracy between the heavy
CP-even HiggsH 0 and the CP-even tau-sneutrinoν̃even

τ . On the other hand, the other
scattered dots with high mixing angle values throughout Fig. 3(a) come from points in
the parameter space where the light CP-even Higgsh0 and the CP-even tau-sneutrinoν̃even

τ

are degenerated. We see from Fig. 3(c) that this may occur for 5< tanβ < 15.
It is important to notice that the enhancement of the mixing between the tau-sneutrino

and the CP-even Higgs bosons for almost degenerate states implies that largeRP violating
effects are possible even for smallRP violating parameters (ε3 � 1 GeV), and for neutrino
masses consistent with the solutions to the atmospheric neutrino anomaly (mντ � 1 eV).

5. Charged Higgs/charged slepton sector

The mass terms in the charged scalar sector are

(25)Vquadratic=
[
H−
u ,H

−
d , τ̃

−
L , τ̃

−
R

]
M2
S±


H+
u

H+
d

τ̃+
L

τ̃+
R

 ,
where it is convenient to split the mass matrix into aRP conserving part and aRP violating
one

(26)M2
S± = M

2(0)
S± + M

2(1)
S± .

TheRP conserving mass matrix has the usual MSSM form
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M
2(0)
S±

=


m

2(0)
A s2β + 1

4g
2v2
u m

2(0)
A sβcβ + 1

4g
2vuvd 0 0

m
2(0)
A

sβcβ + 1
4g

2vuvd m
2(0)
A

c2β + 1
4g

2v2
d

0 0

0 0 M̂2
L3

1√
2
hτ (Aτ vd −µvu)

0 0 1√
2
hτ (Aτ vd −µvu) M̂2

R3

 ,
(27)

wherehτ is theτ Yukawa coupling and

M̂2
L3

=M2
L3

− 1

8

(
g2 − g′2)(v2

d − v2
u

) + 1

2
h2
τ v

2
d ,

(28)M̂2
R3

=M2
R3

− 1

4
g′2(v2

d − v2
u

) + 1

2
h2
τ v

2
d .

The contribution due toRP violating terms is

M
2(1)
S±

=


µε3

v3
vd

− 1
4g

2v2
3 + 1

2h
2
τ v

2
3 0 XuL XuR

0
v2
3
v2
d

c2β

s2β
m̄2
ν̃

−µε3
v3
vd

c2β

s2β
+ 1

4g
2v2

3 XdL XdR

XuL XdL ε2
3 + 1

8g
2
Z
v2

3 0

XuR XdR 0 1
2h

2
τ v

2
3 − 1

4g
′2v2

3

 ,
(29)

with

(30)XuL = 1

4
g2vdv3 −µε3 − 1

2
h2
τ vdv3,

(31)XuR = − 1√
2
hτ (Aτ v3 + ε3vu),

(32)XdL = v3

vd

cβ

sβ
m̄2
ν̃ −µε3

cβ

sβ
+ 1

4
g2vuv3,

(33)XdR = − 1√
2
hτ (µv3 + ε3vd).

The complete matrixM2
S± has an explicit zero eigenvalue corresponding to the charged

Goldstone bosonG±, and is diagonalized by a rotation matrixRS± such that

(34)


H+
G+
τ̃+

1

τ̃+
2

 = RS±


H+
u

H+
d

τ̃+
L

τ̃+
R

 .
In analogy with the discussion on the CP-even scalar sector, we define the mixing of the

lightest (heaviest) staũτ±
1 (τ̃±

2 ) with the charged Higgs bosons as

(35)sin2 θ+
1 = ∣∣〈τ̃+

1

∣∣H+
u

〉∣∣2 + ∣∣〈τ̃+
1

∣∣H+
d

〉∣∣2,
(36)sin2 θ+

2 = ∣∣〈τ̃+
2

∣∣H+
u

〉∣∣2 + ∣∣〈τ̃+
2

∣∣H+
d

〉∣∣2.
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Fig. 4(a), (b) contains the mixing between the lightest (heaviest) stau and the charged
Higgs fields sinθ+

1(2) as a function of tanβ for m3/2 = 32 TeV, µ < 0, and 100<
m0 < 300 GeV. In this sector, the mixing can also be very large provided there is a
near degeneracy between the stausτ̃±

1 , τ̃±
2 andH±. We can see clearly this effect in

Fig. 4(c), (d), where we show the ratio between the charged Higgs massmH+ and the
lightest (heaviest) stau massmτ̃1(2) . In Fig. 4(a) and (b) we also notice that large light stau–
charged Higgs mixing occurs at slight different value of tanβ compared with heavy stau–
charged Higgs mixing. Large light stau–charged Higgs mixing is found in Fig. 4(a) as a
peak at tanβ ≈ 16, as opposed to large heavy stau–charged Higgs mixing, which presents a
peak at tanβ ≈ 15. In Fig. 4(a) we notice that the mixing angle vanishes at tanβ ∼ 11. This
zero occurs at the point of parameter space where the two staus are nearly degenerated, as
will be explained in Section 7.

Similarly, in the last figure, the exact value of tanβ at which the peak of the lightest stau-
charged scalar mixing occurs is somewhat larger than the analogous mixing for the CP-odd
sector sinθodd. This can be appreciated in Fig. 5(a) where we show the ratio between sinθ+

1
and sinθodd as a function of tanβ for m3/2 = 32 TeV,µ < 0 and 100< m0 < 300 GeV.

Fig. 4. (a) Charged Higgs–light stau mixing; (b) charged Higgs–heavy stau mixing; (c) charged Higgs–light stau
mass ratio and (d) charged Higgs–heavy stau mass ratio as a function of tanβ for m3/2 = 32 TeV,µ < 0 and
100<m0< 300 GeV.
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Fig. 5. (a) Ratio between the charged Higgs–stau and CP-odd Higgs–tau-sneutrino mixing angles and (b) ratio
between the CP-odd Higgs–tau-sneutrino and CP-even Higgs–tau-sneutrino mixing angles as a function of tanβ

for m3/2 = 32 TeV,µ< 0 and 100<m0< 300 GeV.

The peak of the charged sector mixing is located at the peak of the ratio. On the other hand,
the peak for the neutral CP-odd sector is located at the nearby zero of the ratio. The other
zero of the ratio near tanβ ≈ 11 corresponds to a zero of the charged scalar sector mixing,
as shown in Fig. 4. For the sake of comparison, we display in Fig. 5(b) the ratio between
the CP-odd and CP-even mixings (sinθodd/sinθeven) as a function of tanβ . We can see
that most of the time the ratio is equal to 1 showing that the two neutral scalar sectors have
similar behavior with tanβ in contrast with the charged scalar sector. The points where this
ratio is lower than 1 correspond to the case where the CP-even scalar sector mixings are
dominated by the light Higgs and tau-sneutrino degeneracy which occurs for any value of
tanβ lower than 16, as shown in Fig. 3(c).

6. The neutrino mass

BRpV provides a solution to the atmospheric and solar neutrino problems due to their
mixing with neutralinos, which generates neutrino masses and mixing angles. It was shown
in [14] that the atmospheric mass scale is adequately described by the tree level neutrino
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mass

(37)mtree
ν3

= M1g
2 +M2g

′2

4∆0
| �Λ|2,

where∆0 is the determinant of the neutralino sub-matrix and�Λ= (Λ1,Λ2,Λ3), with

(38)Λi = µvi + εivd ,

where the indexi refers to the lepton family. The spectrum generated is hierarchical, and
obtained typically withΛ1 �Λ2 ≈Λ3.

As it was mentioned in the introduction, for many purposes it is enough to work with
RP violation only in the third generation. In this case, the atmospheric mass scale is well
described by Eq. (37) with the replacement| �Λ|2 → Λ2

3. In Fig. 6, we plot the neutrino
mass as a function ofΛ in AMSB-BRpV with the input parametersm3/2 = 32 TeV,µ< 0,
5< tanβ < 20, 100<m0< 1000 GeV and 10−5< ε3< 1 GeV. The quadratic dependence
of the neutrino mass onΛ is apparent in this figure and neutrino masses smaller than 1 eV
occur for|Λ| � 0.6 GeV2. Moreover, the stars correspond to the allowed neutrino masses
when the tau-sneutrino is the LSP. In general the points with a small (large)m0 are located
in the inner (outer) regions of this scattered plot.

From Fig. 6, we can see that the attainable neutrino masses are consistent with the
global three-neutrino oscillation data analysis in the first reference of [10] that favors the
ντ → νµ oscillation hypothesis. Although only mass squared differences are constrained
by the neutrino data, our model naturally gives a hierarchical neutrino mass spectrum,
therefore, we extract a naïve constraint on the actual mass coming from the analysis of the
full atmospheric neutrino data, 0.04�mντ � 0.09 eV [10]. In addition, we notice that it

Fig. 6. Tau neutrino mass as a function ofΛ3 for 5< tanβ < 20, 100<m0 < 1000 GeV,m3/2 = 32 TeV and
µ< 0.
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Fig. 7. Mixing between CP-even Higgses and sneutrino as a function of the tau neutrino mass.

is not possible to find an upper bound on the neutrino mass if angular dependence on the
neutrino data is not included and only the total event rates are considered.

In Fig. 7 we show the correlation between the neutrino mass and mixing of the tau-
sneutrino and the CP-even Higgses (sinθeven) for the parameters assumed in Fig. 6. As
expected, the largest mixings are associated to larger neutrino masses. Notwithstanding, it
is possible to obtain large mixings for rather small neutrino masses because the mixing is
proportional to theRP violating parametersε3 andv3, and not directly onΛ3 ∝ mντ . In
any case, Fig. 7 suggests that large scalar mixings are still possible even imposing these
bounds on the neutrino mass. This is extremely important for the phenomenology of the
model because it indicates that non negligibleRP violating branching ratios are possible
for scalars even in the case they are not the LSP.

7. Discussions

The presence ofRP violating interactions in our model render the LSP unstable,
avoiding strong constraints on the possible LSP candidates. In the parameter regions
where the neutralino is not the LSP, whether the light stau or the tau-sneutrino is the
LSP depends crucially on the value of tanβ . This fact can be seen in Fig. 8 where we
plot the ratio between the light stau and the tau-sneutrino masses as a function of tanβ

for m3/2 = 32 TeV, 100< m0 < 300 GeV, andµ < 0. From this figure we see that the
tau-sneutrino is the LSP for 8.5� tanβ � 14, otherwise the stau is the LSP.2

2 Of course,m0 has to be small enough so that the slepton is lighter than the neutralino.
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Fig. 8. Ratio between the light stau and the sneutrino masses as a function of tanβ for m3/2 = 32 TeV,
100<m0< 300 GeV andµ< 0.

When the stau is the LSP, it decays viaRP violating interactions, i.e., its decays take
place through mixing with the charged Higgs, and consequently, they will mimic the
charged Higgs boson ones. Therefore, it is very important to be able to distinguish between
τ̃±

1 andH±. This can be achieved either through precise studies of branching ratios, or via
the mass spectrum, or both [21].

Measurements on the mass spectrum are also important in order to distinguish AMSB
with and without conservation ofRP . In Fig. 9 we present the ratio between the stau
mass splitting in AMSB-BRpV and in the AMSB,R = (mτ̃2 −mτ̃1)AMSB−BRpV/(mτ̃2 −
mτ̃1)AMSB, with ε3 = v3 = 0 and keeping the rest of the parameters unchanged, as a
function of tanβ . In these figures, we took 100< m0 < 1000 GeV,m3/2 = 32 TeV, and
(a)µ> 0, and (b)µ< 0. Forµ> 0 (Fig. 9(a)), the stau mass splitting is always larger in
the AMSB-BRpV than in the AMSB by a factor that increases when tanβ decreases, and
can be as large asR ∼ 10 for tanβ ∼ 3! We remind the reader that, in the absence ofRP
violation, the left–right stau mixing decreases with decreasing tanβ , thus augmenting the
importance ofR-parity violating mixings. On the other hand, forµ < 0 (Fig. 9(b)), this
ratio can be as large as before at small tanβ , but in addition, the splitting can go to zero in
AMSB-BRpV near tanβ ≈ 11, which also constitutes a sharp difference with the AMSB.
For both signs ofµ the ratio goes to unity at large tanβ because the left–right mixing in
the AMSB is proportional to tanβ and dominates over anyRP violating contribution.

The behavior ofR at tanβ ∼ 11 in Fig. 9(b) indicates that the two staus can be nearly
degenerated in AMSB-BRpV. In Fig. 10 we plot the ratio between the light and heavy
stau masses as a function of tanβ , for m3/2 = 32 TeV, 100< m0 < 300 GeV andµ < 0,
observing clearly that the near degeneracy occurs at tanβ ∼ 11. In first approximation,
consider that the near degeneracy occurs whenAτvd −µvu ≈ 0 as inferred from Eq. (27).
In addition, the mixingXdR in Eq. (33) is also very small because it is proportional toΛτ
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Fig. 9. Ratio (R) between the stau splitting in AMSB with and withoutRP violation as a function of tanβ, for:
m3/2 = 32 TeV, 100<m0< 1000 GeV and (a)µ> 0 or (b)µ< 0.

Fig. 10. Ratio between the light and heavy stau masses as a function of tanβ for m3/2 = 32 TeV,
100<m0< 300 GeV andµ< 0.
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in Eq. (38), which defines the atmospheric neutrino mass, as indicated in Eq. (37). The
smallness of these two quantities implies that the mixingXuR in Eq. (31) is also small in
this particular region of parameter space, indicating that the right stau is decoupled from
the Higgs fields and thus originating the zero in the mixing angle, noted already in Figs. 4
and 5.

In order to quantify the stau mass splitting in our model, we present in Fig. 11 contours
of constant splitting between the stau masses,mτ̃2 −mτ̃1, in the planem3/2 ×m0 in GeV
for µ < 0 and several tanβ . We can see in Fig. 11(a) that for small tanβ = 3 the stau
mass splitting in our model starts atmτ̃2 −mτ̃1 ∼ 30 GeV, in sharp contrast with theRP
conserving case where the biggest splittings barely goes over this value [7]. This is in
agreement with the results presented in Fig. 9(b). Furthermore, we can also see that there
is a considerable region in them3/2 × m0 plane, indicated by the grey area, where the

Fig. 11. Contours of constant splitting between the light stau and heavy stau masses in the planem3/2 ×m0 in
GeV forµ< 0, tanβ = 3 (a), 15 (b) and 30 (c). The hatched area is theoretically forbidden; the grey area in (a)
and (b) is where the lightest stau is the LSP, while the small black area in (b) is where the tau-sneutrino is the
LSP.
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lightest stau is the LSP. For intermediary values of tanβ ∼ 15, Fig. 11(b) shows that the
stau mass splitting goes to a minimum. This is a different behavior from the MSSM which
presents a mass splitting up to 10 times bigger as we have seen in Fig. 9(b). For this value
of tanβ we still have a small region where the lightest stau is the LSP (grey area) and, as a
novelty, a tiny region for small values ofm3/2 andm0 where the tau-sneutrino is the LSP
(black area). For large values of tanβ = 30, the stau splitting mass shown in Fig. 11(c) is
similar to the MSSM one [7].

We have made below a series of three figures fixing the value tanβ = 15 to study the
dependence onm0 of the mass spectrum and mixings in the scalar sector. This choice of
tanβ is such that we find a degeneracy among the masses, and consequently we obtain
large mixings in the scalar sector. We also chosem3/2 = 32 TeV andµ< 0, while theRP
violating parameters were varied according to 10−5< ε3< 1 GeV and 10−6<mντ < 1 eV.

In Fig. 12(a) we plot tau-sneutrino mixing with the CP-odd neutral Higgs as a function
of m0 for the parameters indicated above. We find quite large mixings form0 ≈ 320 GeV.
In Fig. 12(b) we show the CP-odd Higgs and tau-sneutrino masses, which depend almost
linearly onm0. Moreover, the value ofm0 at which these two particles have the same mass
coincides with the point of maximum mixing.

The CP-even tau-sneutrino mixing with the CP-even Higgs is presented in Fig. 13(a) as
a function ofm0. There are two peaks of high mixing; the main one atm0 ≈ 320 GeV and

Fig. 12. (a) Mixing of the CP-odd Higgs and the sneutrino and (b) the CP-odd Higgs and sneutrino masses as a
function ofm0 for m3/2 = 32 TeV,µ< 0 and tanβ = 15.
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Fig. 13. (a) Mixing between the CP-even Higgs and sneutrino and (b) the light and heavy CP-even Higgs masses
as well as the sneutrino one as a function ofm0 for m3/2 = 32 TeV,µ< 0 and tanβ = 15.

a narrow one atm0 ≈ 180 GeV. These two peaks have a different origin, as indicated by
Fig. 13(b), where we plot the masses of the two CP-even neutral Higgs bosons,mh andmH ,
and the mass of the CP-even tau-sneutrinomν̃even

τ
, as a function ofm0. We observe that the

broad peak is due to a degeneracy between the tau-sneutrino and the heavy neutral Higgs
boson and the narrow peak comes from a degeneracy between the tau-sneutrino and the
light neutral Higgs boson. As expected, theH 0 and ν̃even

τ masses grow linearly withm0,
contrary to theh0 mass which remains almost constant.

In Fig. 14(a) we display the light stau mixing with the charged Higgs as a function of
m0. The maximum mixing, obtained atm0 ≈ 550 GeV, is the result of a mass degeneracy
between the charged Higgs boson and the light stau. This can be observed in Fig. 14(b)
where we plot the charged Higgs massmH± and the light stau massmτ̃1 as a function
of m0.

In a similar way, we show the heavy stau mixing with charged Higgs as a function of
m0 in Fig. 14(c), where we observe a maximum for the mixing atm0 ≈ 200 GeV. This
large mixing is due to a degeneracy between the charged Higgs boson and the heavy stau
masses, as can be seen in Fig. 14(d). One can notice that all charged scalars show an almost
linear dependency of their mass on the mass parameterm0.
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Fig. 14. (a) Mixing of the charged Higgs with the light stau, (b) charged Higgs and light stau masses, (c) mixing
of the charged Higgs with the heavy stau, and (d) charged Higgs and heavy stau masses as a function ofm0 for
m3/2 = 32 TeV,µ< 0 and tanβ = 15.

As opposed to the scalar sector, where mixing between the Higgs bosons and sleptons
can be maximum, in the chargino and neutralino sectors the mixings with leptons are
controlled by the neutrino mass being very small. Despite this fact, the mixing in the
neutralino sector is sufficient to generate adequate masses for the neutrinos and give rise
to the neutralino decays mentioned in the introduction. Therefore, in the chargino sector
the BRpV-AMSB phenomenology changes very little with respect to theRP conserving
AMSB. One of the distinctive features of AMSB that differentiates it from other scenarios
of supersymmetry breaking in the chargino-neutralino sector is the near degeneracy
between the lightest chargino and the lightest neutralino. This feature remains in BRpV-
AMSB as was anticipated in Fig. 1. Form3/2 = 32 TeV,µ< 0, and 100<m0< 300 GeV,
we show in Fig. 15 the lightest chargino mass as a function of tanβ . The lightest chargino
mass has a small dependence on tanβ since its value varies only between 100 and 104 GeV.
As inRP conserving AMSB, the mass differencemχ̃+

1
−mχ̃0

1
remains small.
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Fig. 15. Light chargino mass as a function of tanβ for m3/2 = 32 TeV,µ< 0 and 100<m0< 300 GeV.

8. Conclusions

We have shown in the previous sections that our model exhibiting anomaly mediated
supersymmetry breaking and bilinearRP violation is phenomenologically viable. In
particular, the inclusion of BRpV generates neutrino masses and mixings in a natural
way. Moreover, theRP breaking terms give rise to mixing between the Higgs bosons and
the sleptons, which can be rather large despite the smallness of the parameters needed to
generate realistic neutrino masses. These large mixings occur in regions of the parameter
space where two states are nearly degenerate. Our model also alters substantially the mass
splitting between the scalar taus in a large range of tanβ .

TheRP violating interactions render the LSP unstable since it can decay via its mixing
with the SM particles (leptons or scalars). Therefore, the constraints on the LSP are relaxed
and forbidden regions of parameter space become allowed, where scalar particles like
staus or sneutrinos are the LSP. Furthermore, the large mixing between Higgs bosons
and sleptons has the potential to change the decays of these particles. These facts have
a profound impact in the phenomenology of the model, changing drastically the signals at
colliders [22].
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Appendix A. AMSB boundary conditions

The AMSB boundary conditions at the GUT scale for the gaugino masses are
proportional to their beta functions, resulting in

(A.1)M1 = 33

5

g2
1

16π2
m3/2,

(A.2)M2 = g2
2

16π2m3/2,

(A.3)M3 = −3
g2

3

16π2m3/2,

while the third generation scalar masses are given by
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Finally, theA-parameters are given by
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Appendix B. The renormalization group equations

Here we present the one-loop renormalization group equations for our model, assuming
the bilinearRP breaking terms are restricted only to the third generation. First, we display
the equations for the Yukawa couplings of the trilinear terms

(B.1)16π2dhU

dt
= hU
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6h2
U + h2

D − 16

3
g2

3 − 3g2
2 − 13

9
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1
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.

The corresponding RGE for cubic soft supersymmetry breaking parameters are given by
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For the soft supersymmetry breaking mass parameters we have
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For the bilinear terms in the superpotential we get

(B.15)16π2dµ

dt
= µ

(
3h2
U + 3h2

D + h2
τ − 3g2

2 − g2
1

)
,

(B.16)16π2dε3

dt
= ε3

(
3h2
U + h2

τ − 3g2
2 − g2

1

)
,

and for the corresponding soft breaking terms
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Thegi are theSU(3)× SU(2)×U(1) gauge couplings and theMi are the corresponding
soft breaking gaugino masses.
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