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“I don't know anything, but I do 

know that everything is interesting if 

you go into it deeply enough” 

 

Richard P. Feynman 



iii 

ACKNOLEDGMENTS 

I am deeply thankful of many people that have helped me through my thesis. First I 

would like to thank both of my advisors, Professor Eduardo Agosin and Professor 

Ricardo Pérez-Correa, for accepting me as their student, trusting me and encouraging me 

to always push forward in my investigation. Also, thanks to the members of the 

committee that evaluated this work and provided me with valuable feedback to further 

enrich the manuscript. 

 

I would also like to thank all the members from the biotechnology laboratory, in which I 

did all of my experiments; many thanks to Waldo Acevedo, Martín Cárcamo, Mariana 

Cepeda, Martín Concha, Jonathan Leon, Trinidad Pizarro, Pedro Saa, Fernando Silva, 

Jorge Torres, Paulina Torres and Felipe Varea for their valuable assistance, and to 

Marianna Delgado, Javiera López, Alejandra Lobos and Isabel Moenne for making me 

feel as part of a family. Thanks also to Professor Claudio Gelmi for his wise 

recommendations and suggestions. 

 

Special thanks to my parents, who always have supported me in my decisions, even 

though sometimes they did not agreed entirely. Thanks also to my 6 siblings and my 

nephew, for always making my smile, and to my girlfriend Macarena, for believing in 

me specially when occasionally I did not. Special acknowledgments to my friends and 

family that read my manuscript and helped making it accessible to a broader audience. 

 

Finally, I would like to thank the Chilean governmental agency CONICYT, for partly 

financing this project (grant Fondecyt #1130822) and also my graduate studies (grant 

CONICYT-PCHA/Magíster Nacional/2013 – #221320015). 



iv  

GENERAL INDEX 

 

Page  

Table Index…………………………………………………………………………...vii 

Figure Index ...................................................................................................... ……...x 

Abstract……………………………………………………………………………...xiv 

Resumen …………………………………………………………………………….xv 

1 Introduction......................................................................................................... 1 

1.1 Flux Balance Analysis ................................................................................ 1 

1.2 Dynamic FBA ............................................................................................ 2 

1.3 Parameters in dFBA ................................................................................... 3 

1.4 Hypothesis and Objectives ......................................................................... 5 

1.5 Organization of the Document ................................................................... 7 

2 Modeling ............................................................................................................. 8 

2.1 Model Formulation..................................................................................... 8 

2.2 Metabolic Block ....................................................................................... 10 

2.3 Dynamic Block ......................................................................................... 12 

2.4 Kinetic Block ........................................................................................... 14 

2.4.1 Glucose Consumption .................................................................... 14 

2.4.2 Oxygen Consumption .................................................................... 15 

2.4.3 Secondary Metabolite Production .................................................. 15 

2.4.4 ATP Maintenance .......................................................................... 16 

2.4.5 Biomass Requirements .................................................................. 16 

2.4.6 Gene Expression ............................................................................ 17 

2.5 Parameter Estimation ............................................................................... 19 

3 Materials and Methods ..................................................................................... 22 



v  

3.1 Strains and Conditions Assessed .............................................................. 22 

3.2 Experimental Setup .................................................................................. 23 

3.3 Assay Methods ......................................................................................... 28 

3.4 Reparameterization Analysis ................................................................... 29 

3.4.1 General Methodology of Procedure ............................................... 29 

3.4.2 Pre/Post Regression Diagnostics ................................................... 31 

3.4.3 Cross-Calibration ........................................................................... 33 

4 Results and Analysis ......................................................................................... 34 

4.1 Pre/post Regression Results ..................................................................... 34 

4.1.1 Identifiability Analysis .................................................................. 34 

4.1.2 Sensitivity Analysis ....................................................................... 36 

4.1.3 Significance Analysis .................................................................... 37 

4.2 Reparameterization Results ...................................................................... 37 

4.2.1 Parameter Solutions ....................................................................... 37 

4.2.2 Fittings ........................................................................................... 41 

4.3 Cross-Calibration Results......................................................................... 46 

4.3.1 Best Solutions ................................................................................ 47 

4.3.2 Nutrient Limitation Importance ..................................................... 49 

4.3.3 Strain Performance ........................................................................ 49 

4.4 Approach Limitations ............................................................................... 50 

4.4.1 Parameters not Included in the Study ............................................ 50 

4.4.2 Fed-batch Parameters ..................................................................... 51 

4.4.3 Gene Expression Parameters ......................................................... 52 

4.4.4 Additional Considerations ............................................................. 53 

5 Conclusion ........................................................................................................ 55 

6 Abbreviations .................................................................................................... 57 

7 Outreach ............................................................................................................ 59 



vi  

References .................................................................................................................. 60 

Appendix .................................................................................................................... 68 

Appendix A: Supplementary Tables .......................................................................... 69 

Appendix B: Supplementary Figures ......................................................................... 88 

 



vii  

TABLE INDEX 

 

Page 

Table 2-1: Computational time spent for the different algorithms in the 3 different 

computers used, and for the 2 typical types of fermentation: anaerobic batch 

(AB) and aerobic fed-batch (AF). ................................................................. 10 

 

Table 2-2: Parameter estimation details. The symbols, names and units of each 

parameter analyzed in this study are shown. Initial values, lower and upper 

bounds for parameter estimation are also displayed. .................................. 20 

 

Table 3-1: Composition of all defined-media employed in this study: batch and feed 

media for aerobic cultivations, and the 2 different anaerobic batch media 

used (20 [g/L] and 80 [g/L] of glucose, respectively). ................................. 23 

 

Table 4-1: Percentage of times that each parametric problem arose in (A) aerobic and 

(B) anaerobic calibrations. Identifiability was calculated as correlations 

between each pair of parameters, relative sensitivity was averaged among all 

variables, and significance was calculated using coefficients of confidence.

 ...................................................................................................................... 35 

 

Table 4-2:  The fixed and estimated parameters are presented along with their CC (only 

for the estimated parameters), after applying the pre/post regression 

procedure in the (A) aerobic cultivations and (B) anaerobic cultivations. ... 40 

 

Table 4-3: The objective function value is presented for all 16 cultivations, after the 

initial calibration (Initial F) and after applying the iterative procedure (Final 

F).. ................................................................................................................. 42 



viii  

Table 4-4: The results of the cross calibration are presented for (A) aerobic and (B) 

anaerobic cultivations.  Each CCC was calculated as indicated in Equation 

21. The mean CCC for each solution is also presented, and the best one for 

each cultivation condition (aerobic/anaerobic) is blackened .…...……...…47 

 

Table 4-5: Averaged CCCs between duplicates for (A) aerobic and (B) anaerobic 

cultures.......................................................................................................... 50 

 

Table A-1: Calibration comparison between Yeast 5 and Yeast 6 for two typical 

cultivations. The objective function value (F) and the computation time (t) 

are displayed................................................................................................ 69 

 

Table A-2: The SGD names of the essential genes for aerobic and anaerobic growth in 

the genome-scale metabolic model Yeast 5 (Heavner et al., 2012) are 

presented. The genes that are only essential for one condition but not for the 

other one are highlighted. As it has been done regularly (Edwards & 

Palsson, 2000; Zomorrodi et al., 2012), a gene is defined essential if by 

deleting it (constraining in zero all associated reaction fluxes) growth is not 

achieved when performing FBA................................................................... 70 

 

Table A-3: All solutions with no identifiability, sensitivity and significance problems are 

shown below, for (A) aerobic and (B) anaerobic cultivations. The fixed 

parameters are highlighted, and the chosen solution in each case is 

highlighted with a bold box. ......................................................................... 71 

 

Table A-4: The correlation matrices of the reparameterized models are presented for (A) 

aerobic and (B) anaerobic cultivations. ........................................................ 83 

 

 



ix  

Table A-5: The deleted genes for the different attained thresholds are displayed for each 

of the (A) aerobic and (B) anaerobic cultivations. This table together with 

Table 4-2 shows that cases which have at least one gene deleted have the 

lower thresholds, as expected. The associated enzymes for each gene are: 

YHR096C → hexose transporter with moderate affinity for glucose. 

YJR048W, YMR256C, YOR065W → ferrocytochrome-c:oxygen 

oxidoreductase; YML054C → (S)-lactate:ferricytochrome-c 2-

oxidoreductase; YML120C → NADH:ubiquinone oxidoreductase; 

YMR009W → 2,3-diketo-5-methylthio-1-phosphopentane degradation 

reaction; YMR145C NADH → dehydrogenase, cytosolic/mitochondrial; 

YOL151W → L-lactaldehyde:NADP+ 1-oxidoreductase. .......................... 87 

 



x  

FIGURE INDEX 

 

Page 

Figure 1-1: Typical fitting problems that arise when a model has too many parameters. 

(A) An example of a parameter that is not significantly estimated, because 

the confidence interval is larger than its value. (B) An example of a non-

sensitive parameter, because different values yield the same result in the 

associated variable. (C) An example of two parameters not identifiable, 

because different value combinations will result in the same output. (D) An 

example of parameter overfitting, in which an excessive number of 

parameters are proposed to explain the data. ................................................ 4 

 

Figure 2-1: General scheme to solve the dFBA model. V is volume [L], X is biomass 

concentration [g/L], G is extracellular limiting substrate (glucose) 

concentration [g/L], Pk accounts for the different extracellular product 

concentrations [g/L], Fin(t) is the feed function for the fed-batch cases 

[L/h], O2(t) is the predefined oxygen presence or absence, t is time [h] and 

tF is the fermentation duration [h]. ................................................................ 9 

 

Figure 2-2: Derivation of the FBA equations using a small metabolic network. Adapted 

from (Becker et al., 2007). .......................................................................... 12 

 

Figure 2-3: Dynamic system modeled. The vessel represents the bioreactor and the 

figure inside of it represents yeast. .............................................................. 13 

 

  



xi  

Figure 3-1: Photograph of one of the bioreactors used. Both temperature/oxygen and pH 

probes are behind the motor and therefore not shown. (1) DC motor 

connected to the bioreactor agitator. (2) (Filtered) gas entrance to the 

bioreactor. (3) Condenser. (4) Off gas exit (to CO2 and O2 analyzer). (5) 

Sampler (behind the condenser). (6) Bioreactor (glass flask inside the glass 

jacket). (7) Water entrance to the glass jacket. (8) Water exit of the glass 

jacket. .......................................................................................................... 25 

 

Figure 3-2: P&ID of the system used for all cultivations. Nomenclature used: AT → 

Analysis Transmitter. AR → Analysis Recorder. ARC → Analysis 

Recorder & Controller. TT → Temperature Transmitter. TRC → 

Temperature Recorder & Controller. FC → Flow Controller (Not used in 

anaerobic conditions). ................................................................................. 26 

 

Figure 3-3: The temporal evolutions of the design growth rate (µset) and a given feed rate 

(F) for experimental conditions 1 (C = 0.14 [1/h]) and 2 (C = 0.07 [1/h]) are 

displayed, with t = 0 as the feed starting point. Condition 1 has a quicker 

decay in µset than condition 2, and therefore has a slower F than condition 

2. For F visualization, typical experimental conditions were selected: Vi = 

0.4 [L] and Xi = 4 [g/L] (for further details refer to Equation 14). ............. 27 

 

Figure 3-4: Methodology used in this study for obtaining dFBA models with sensitive, 

uncorrelated and significant parameters. As an example, a solution with 5 

parameters is analyzed. ............................................................................... 30 

 

  



xii  

Figure 4-1: The average number of iterations performed by the procedure for aerobic 

cultivations is displayed in a logarithmic scale, along with all possible 

combinations and the non-problematic solutions achieved. The total 

number of combinations was calculated in each case as (
19
i

), where 19 is 

the total number of parameters and i is the corresponding number of fixed 

parameters. .................................................................................................. 38 

 

Figure 4-2: The average number of iterations performed by the procedure for anaerobic 

cultivations is displayed in a logarithmic scale, along with all possible 

combinations and the non-problematic solutions achieved. The total number 

of combinations was calculated in each case as (
14
i

), where 14 is the total 

number of parameters and i is the corresponding number of fixed 

parameters. .................................................................................................... 39 

 

Figure 4-3: (previous page) Calibrations obtained with the dFBA model after applying 

the pre/post regression analysis to the aerobic cultivations. Each graphic 

displays the experimental measures for biomass (♦), glucose (■), ethanol 

(▲), glycerol (×), citric (+) and lactic acid (●), together with the 

corresponding model prediction (continuous lines), for different 

experimental conditions: (A-B) N30 strain, slow feed. (C-D) N30 strain, fast 

feed. (E-F) EC1118 strain, slow feed. (G-H) EC1118 strain, fast feed. ....... 44 

 

  



xiii  

Figure 4-4: (previous page) Calibrations obtained with the dFBA model after applying 

the pre/post regression analysis to the anaerobic cultivations. Each graphic 

displays the experimental measures for biomass (♦), glucose (■), ethanol 

(▲), glycerol (×), citric (+) and lactic acid (●), together with the 

corresponding model prediction (continuous lines), for different 

experimental conditions: (A-B) N30 strain, small G0. (C-D) N30 strain, 

large G0. (E-F) EC1118 strain, small G0. (G-H) EC1118 strain, large G0. .. 46 

 

Figure B-1: Relative sensitivity for each parameter in each state variable for the 8 

aerobic cultivations. For every parameter, each bar represent the impact on 

one state variable; from left to right the bars are biomass, glucose, ethanol, 

glycerol, citric and lactic acid. .................................................................... 88 

 

Figure B-2: Relative sensitivity for each parameter in each state variable for the 8 

aerobic cultivations. For every parameter, each bar represent the impact on 

one state variable; from left to right the bars are biomass, glucose, ethanol, 

glycerol, citric and lactic acid. .................................................................... 89 

 



xiv  

ABSTRACT 

In the biotechnology industry it is fundamental to count on accurate mathematical 

models that describe a microorganism with detail, so we can make predictions and avoid 

performing an excessive amount of experiments. Dynamic flux balance analysis (dFBA) 

has been widely used to simulate batch and fed-batch cultivations, the most recurrent 

industrial biotechnological processes; nonetheless, only a few of these models have been 

calibrated and validated under different experimental conditions. Moreover, to date, the 

importance of the different parameters usually used in this kind of models has not been 

appropriately addressed. In this work, we present a genome-scale dFBA model of 

Saccharomyces cerevisiae calibrated for the first time using both aerobic fed-batch and 

anaerobic batch data, together with a novel procedure to determine which parameters of 

the model are relevant for calibration (in terms of sensitivity, identifiability and 

significance). The proposed dFBA model comprises several kinetics including 

suboptimal growth, glucose consumption, ATP maintenance, biomass requirements and 

secondary metabolite production rates, and also integrates gene expression data. On the 

other hand, the calibration procedure uses metaheuristic optimization and pre/post 

regression diagnostics, and fixes iteratively the parameters that do not have a significant 

role in the model, so models with a reasonable amount of parameters can be proposed. 

Finally, the models attained are cross-calibrated to assure predictability. Using this 

approach, we showed that glucose consumption, suboptimal growth and production rates 

are far more useful for calibrating the model than gene expression constant Boolean 

rules, biomass requirements or ATP maintenance. Furthermore, confident models were 

obtained (for the first time in dFBA modeling) with sensitive, uncorrelated and 

significant parameters, and that are also able to calibrate numerous experimental 

settings. These robust and predictive yeast dFBA models will be useful to design 

optimized strains for metabolic engineering applications. 

 

Keywords: GSMM, dFBA, metaheuristic optimization, yeast, nonlinear dynamic model, 

parameter estimation, sensitivity analysis, metabolic engineering. 
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RESUMEN 

En la industria biotecnológica es fundamental contar con modelos matemáticos precisos 

que describan un microorganismo en detalle, de manera de que podamos hacer 

predicciones sin tener que incurrir en una cantidad excesiva de experimentos. El análisis 

dinámico de balance de flujos (dFBA) se ocupa regularmente para simular cultivos 

batch y fed-batch, los procesos industriales biotecnológicos más recurrentes; sin 

embargo, sólo unos pocos de estos modelos han sido calibrados y validados bajo 

diferentes condiciones experimentales. Además, a la fecha, la importancia de los 

diferentes parámetros usualmente utilizados en este tipo de modelos no ha sido 

debidamente estudiada. En este trabajo presentamos un modelo dFBA a escala genómica 

de Saccharomyces cerevisiae calibrado por primera vez con datos tanto de cultivos fed-

batch aeróbicos como batch anaeróbicos, junto con un nuevo procedimiento para 

determinar cuáles parámetros del modelo son relevantes para calibración (en términos de 

sensibilidad, identificabilidad y significancia). El modelo dFBA contiene varias 

cinéticas, incluyendo crecimiento sub-óptimo, consumo de glucosa, ATP de 

mantenimiento, requerimientos de biomasa y producción de metabolitos secundarios. 

También integra datos de expresión génica. Por otro lado, el procedimiento de 

calibración usa optimización metaheurística y análisis de pre/post regresión, y fija 

iterativamente los parámetros que no tienen un rol significativo en el modelo, de manera 

de obtener modelos con un número razonable de parámetros. Finalmente, a los modelos 

obtenidos se les hizo una calibración cruzada para asegurar que sean predictivos. Usando 

este enfoque, mostramos que el consumo de glucosa, el crecimiento sub-óptimo, y las 

tasas de producción son mucho más útiles para calibrar los modelos que reglas 

Booleanas constantes de expresión génica, los requerimientos de biomasa o el ATP de 

mantenimiento. Más aún, se obtuvieron modelos dFBA confiables (por primera vez) con 

parámetros sensibles, significativos y sin correlaciones, y que a la vez son capaces de 

calibrar varias condiciones experimentales. Estos modelos dFBA de levadura robustos y 

predictivos serán útiles para diseñar cepas optimizadas para diversas aplicaciones en 

ingeniería metabólica. 
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Palabras Claves: Modelos metabólicos a escala genómica, análisis dinámico de balance 
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1 INTRODUCTION 

1.1 Flux Balance Analysis 

Mathematical modeling is a fundamental tool in metabolic engineering and the 

biotechnology industry since it overcomes the need for excessive experiments to validate 

a certain biological hypothesis (Kitano, 2002). Among the different modeling tools, flux 

balance analysis (FBA) is widely employed (Park, Kim & Lee, 2009). Using mass 

balances, under pseudo steady-state assumption and with an underlying objective 

function (Orth, Thiele & Palsson, 2010), FBA can predict the behavior of the whole cell 

metabolism. Since it was first validated as a predictive tool (Varma & Palsson, 1994), 

there have been numerous efforts for improving its predictive performance (Copeland et 

al., 2012). 

 

FBA applications have increased considerably since the introduction of genome-scale 

metabolic models (GSMM) (Edwards & Palsson, 2000; Osterlund, Nookaew & Nielsen, 

2012). A GSMM consists of a fully detailed metabolic network, including not only most 

metabolites and reactions of the studied organism, but also most metabolism-associated 

genes (Henry et al., 2010; Thiele & Palsson, 2010). Hence, predictions can be computed 

to assess the impact of genetic modifications in metabolism, in order to overproduce a 

certain compound of interest. In the case of Saccharomyces cerevisiae (budding yeast), 

Förster and associates proposed the first GSMM in 2003 (Förster, Famili, Fu, Palsson & 

Nielsen, 2003), and since then numerous other versions have been reported (Nookaew, 

Olivares-hernández, Bhumiratana & Nielsen, 2011). Particularly, in 2008 a consensus 

model was developed in a world-wide jamboree of the yeast metabolic engineering 

community (Herrgård et al., 2008). This model was further expanded to improve 

biochemical coverage, connectivity and knockout predictability (Dobson et al., 2010; 

Heavner, Smallbone, Barker, Mendes & Walker, 2012; Heavner, Smallbone, Price & 

Walker, 2013). 
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Although all the aforementioned efforts have contributed to gain knowledge of yeast’s 

steady-state metabolism and to make accurate predictions for the overexpression of 

high-value metabolites in mutant strains (Oberhardt, Palsson & Papin, 2009), the 

kinetics and physiology of yeast can be better understood in a dynamic setting, with 

changing environmental conditions and variable cell-density, which are standard 

conditions of industrial processes (Gianchandani, Chavali & Papin, 2010; Oddone, Mills 

& Block, 2009). 

 

1.2 Dynamic FBA 

Dynamic FBA (dFBA) is an extension of FBA in which, under the pseudo-steady state 

premise for short time steps (Stephanopoulos, Aristidou & Nielsen, 1998), the variations 

of the extracellular metabolite concentrations modify the FBA problem restraints (using 

uptake and/or production kinetics), and in return the FBA solution modifies the 

consumption/secretion rates for the bioreactor’s dynamic equations (Mahadevan, 

Edwards & Doyle III, 2002; Sainz, Pizarro, Pérez-Correa & Agosin, 2003). This 

approach offers the main advantage of combining in one problem the industrial 

fermentation dynamics and the cell’s metabolism profile. Moreover, different metabolic 

engineering strategies appear when performing dFBA that are not attainable with FBA 

alone (Hjersted, Henson & Mahadevan, 2007). 

 

Dynamic FBA has been mainly studied in Escherichia coli and S. cerevisiae 

(Antoniewicz, 2013). Although there were some previous studies that simulated E. coli 

growth dynamics, they did not use any kinetic constraints (Varma & Palsson, 1994), 

thus the first properly formulated E. coli dFBA model was published in 2002 

(Mahadevan et al., 2002). Afterwards, the methodology was integrated with 

transcriptional regulation (Covert, Xiao, Chen & Karr, 2008; Tepeli & Hortaçsu, 2008) 

and, more recently, it was successfully applied at industrial scale for recombinant 

protein production (Meadows, Karnik, Lam, Forestell & Snedecor, 2010). 
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For  S. cerevisiae, the first dFBA model was published in 2003 (Sainz et al., 2003), 

which was later improved to account for sugar kinetics (Pizarro et al., 2007) and 

expanded to a genome-scale (Vargas, Pizarro, Pérez-Correa & Agosin, 2011) using 

GSMM iFF708 (Förster et al., 2003). Henson’s group also reported a dynamic FBA 

model (Hjersted & Henson, 2006), which they later expanded at a genome scale for 

proposing alternatives to increased ethanol production (Hjersted et al., 2007), using the 

GSMM iND750 (Duarte, Herrgård & Palsson, 2004). They also studied the effect in 

dFBA of different parameters and model complexity (Hjersted & Henson, 2009). 

Recently, the shift from aerobic respiration to anaerobic fermentation was also studied 

using a genome-scale dFBA model (Jouhten, Wiebe & Penttilä, 2012), with GSMM 

Yeast 5 (Heavner et al., 2012). 

 

dFBA has also proven useful for other applications, such as for simulating co-culture 

batchs of both E. coli and S. cerevisiae (Hanly & Henson, 2011; Hanly, Urello & 

Henson, 2012; Höffner, Harwood & Barton, 2013), co-culture batchs of S. cerevisiae 

and Scheffersomyces stipitis for optimal ethanol production (Hanly & Henson, 2013), 

recombinant protein production by Lactoccocus lactis (Oddone et al., 2009), competition 

between Geobacter sulfurreducens and Rhodoferax ferrireducens in uranium 

bioremediation (Zhuang et al., 2011), Shewanella oneidensis’s metabolism (Feng, Xu, 

Chen & Tang, 2012), batch and fed-batch growth of CHO cells (Nolan & Lee, 2011; 

Provost, Bastin, Agathos & Schneider, 2006; Provost & Bastin, 2004) and monoclonal 

antibody production in murine hybridoma cells (Gao, Gorenflo, Scharer & Budman, 

2008). 

 

1.3 Parameters in dFBA 

In all the aforementioned studies, the use of several parameters, including kinetics of 

sugar consumption, production rates, biomass prerequisites and ATP maintenance, is 

customary. Selection of the parameter’s values is generally performed by manual fitting 
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(trial and error) (Hanly & Henson, 2011; Meadows et al., 2010), parameter estimation 

(Nolan & Lee, 2011; Pizarro et al., 2007), or extracted from the literature (Hjersted & 

Henson, 2006). If the model fits the data well enough, it is considered satisfactory. 

 

 

Figure 1-1: Typical fitting problems that arise when a model has too many parameters. 

(A) An example of a parameter that is not significantly estimated, because the 

confidence interval is larger than its value. (B) An example of a non-sensitive parameter, 

because different values yield the same result in the associated variable. (C) An example 

of two parameters not identifiable, because different value combinations will result in 

the same output. (D) An example of parameter overfitting, in which an excessive 

number of parameters are proposed to explain the data. 

Although models with many parameters reproduce experimental data accurately, they 

usually present problems such as lack of parameter significance (i.e. the confidence 

interval for the estimated parameter is larger than the estimated value itself) (Figure 

1-1A), low parametric sensitivity (i.e. strong variations of a parameter value results in 

small variations of the model output) (Smith & Missen, 2003) (Figure 1-1B), non 

identifiability (i.e. high correlation between two parameters) (Jacquez & Greif, 1985) 
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(Figure 1-1C) and overfitting (i.e. more parameters than necessary to explain a particular 

behavior) (Figure 1-1D). All these situations result in multiple parameter value’s 

combinations that yield the same simulation result. As a consequence, unrealistic model 

predictions arise when the model is employed under different experimental conditions. 

Hence, the aim should be to find an adequate number of model parameters that yield 

accurate predictions within a wide range of operating conditions (Balsa-Canto, Alonso 

& Banga, 2010; Chu & Hahn, 2008). This concern has not been appropriately addressed 

in genome-scaled FBA nor dFBA modeling. 

 

Sensitivity tests have been carried out to validate the usefulness of some of the 

mentioned parameters, in both FBA (Nookaew et al., 2008; Varma & Palsson, 1993) and 

dFBA (Hjersted & Henson, 2009; Mahadevan et al., 2002; Nolan & Lee, 2011) models. 

However, results were dissimilar and, furthermore, most of the analyses disregarded 

identifiability and significance tests, and were performed considering one parameter at a 

time, instead of analyzing all parameters simultaneously. Pre/post-regression diagnostics 

(Jaqaman & Danuser, 2006) were developed to determine which parameters have one – 

or several – of the abovementioned problems (identifiability, sensitivity and 

significance). Some of these parameters should afterwards be fixed (i.e., not used for 

calibration), and the process iterated until the estimation can be run only with the most 

relevant parameters. 

 

1.4 Hypothesis and Objectives 

In this work, we propose that the development of a S. cerevisiae genome-scale dFBA 

model calibrated and reparameterized with several datasets will attain solutions that have 

sensitive, uncorrelated and significant parameters, and at the same time are able to fit a 

broad set of experimental conditions. 
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The main objective of this thesis is therefore to develop, calibrate and validate reliable 

dynamic models of S. cerevisiae metabolism. This objective can be divided in 3 specific 

objectives: 

 

1. Development: to develop a yeast dFBA model that accounts for most of the 

kinetics employed in the field. 

2. Calibration: to calibrate the model under numerous experimental conditions. 

3. Validation: to propose reparameterizations of the model with no sensitivity, 

identifiability or significance problems, and that can be fitted to several datasets. 

 

To achieve this, we first developed a dFBA model calibrated with S. cerevisiae 

experimental data from both aerobic fed-batch and anaerobic batch cultivations, the 

most common industrial fermentation processes. It is worthy to mention that, to the best 

of our knowledge, the model is calibrated for S. cerevisiae fed-batch cultivations here 

for the first time. Furthermore, we also present a novel methodology that employs 

pre/post regression analysis fixing one parameter at a time, until models with no 

identifiability, sensitivity or significance problems are obtained. Because usually more 

than one problem arises at the same time, the procedure explores different parameter 

combinations and uses heuristic criteria to avoid excessive computational time. We 

applied this procedure to 16 experimental cultivations of two different industrial S. 

cerevisiae strains, under different aerobic and anaerobic conditions, and cross-calibrated 

the results. Thus, using meta-heuristic optimization and pre/post regression analysis we 

determined for the first time the relevant parameters under different experimental 

conditions that should be considered when performing dFBA in S. cerevisiae. The use of 

these reparameterized models will provide more reliable predictions for designing new 

strategies in metabolic engineering. 

 



7 

  

1.5 Organization of the Document 

This study is organized as follows. First, the modeling approach used is presented in 

detail, including all optimization schemes, dynamic and kinetic equations employed. 

Then, the experiments performed for model calibration are detailed, and the 

reparameterization procedure thoroughly explained. Afterwards, the results are 

presented, including initial calibrations, reparameterizations, a cross-calibration study, 

and relevant limitations that should be considered for the presented study. Finally, some 

conclusions are highlighted regarding the more relevant results obtained. A list of the 

abbreviations used through the study is also included. 
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2 MODELING 

2.1 Model Formulation 

The dFBA model was formulated following standard procedures (Hjersted et al., 2007; 

Meadows et al., 2010; Vargas et al., 2011). It was based on a pseudo-steady state 

assumption (Stephanopoulos et al., 1998), i.e. considering that intracellular kinetics are 

several orders of magnitude faster than extracellular kinetics and, therefore, the former 

can be disregarded if the FBA model is resolved iteratively in short integration periods.  

 

Our model was designed as three linked blocks that are solved iteratively. The inputs are 

the initial values for each of the state variables (volume, biomass and extracellular 

substrate and products), the feed function (for fed-batch cases) and the presence or 

absence of O2 along the fermentation (Figure 2-1). This information is firstly passed to 

the kinetic block, which defines the FBA constraints, such as glucose uptake rate, ATP 

maintenance, stoichiometric requirements for biomass formation, thresholds for gene 

expression, production of secondary metabolites, etc. With these constraints, two FBA 

problems are solved in the metabolic block, first maximizing cell growth as a linear 

programming (LP) problem, and then minimizing absolute flux sum as a quadratic 

programming (QP) problem, on a sub-optimal specific growth rate that must be fitted. 

Next, the consumption and production rates from the solution of the FBA problem are 

transferred to the dynamic block, which integrates a set of ordinary differential equations 

to update the state variable concentrations. This way, the kinetic block can be solved 

again, iterating the 3-block cycle until a predefined simulation time is achieved, or the 

integration turns out to be unfeasible. 
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Figure 2-1: General scheme to solve the dFBA model. V is volume [L], X is biomass 

concentration [g/L], G is extracellular limiting substrate (glucose) concentration [g/L], 

Pk accounts for the different extracellular product concentrations [g/L], Fin(t) is the feed 

function for the fed-batch cases [L/h], O2(t) is the predefined oxygen presence or 

absence, t is time [h] and tF is the fermentation duration [h]. 

The model was coded in MATLAB® 2013a (MATLAB, 2013) and implemented in 3 

different machines: a Windows 7 PC with a 3.3 GHz AMD FX™ 6100 (six–core) 

processor, a Windows 7 PC with a 3.1 GHz Intel® Core™ 2 Duo (two–core) processor 

and a Linux CentOS 6.4 with a 2.3 GHz Intel® Xeon® L5640 (six-core) processor. The 

average computation time for a typical fermentation varied between 7 and 31 [s], 

depending on the fermentation characteristics and the machine used (Table 2-1). In the 

following, further details of each block and all associated equations and parameters are 

reported. 
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Table 2-1: Computational time spent for the different algorithms in the 3 different 

computers used, and for the 2 typical types of fermentation: anaerobic batch (AB) and 

aerobic fed-batch (AF). 

Computers used in the study 
dFBA solution eSS calibration Pre/post-regression analysis 

AB AF AB AF AB AF 

Windows 7 PC, 3.3 GHz AMD  

FX™ 6100 (6–core) processor 
7.4 [s] 31.0 [s] 7.2 [h] 13.1 [h] 14.0 [min] 51.3 [min] 

Windows 7 PC, 3.1 GHz Intel® 

Core™ 2 Duo (2–core) processor 
7.1 [s] 28.0 [s] 6.5 [h] 12.4 [h] 13.8 [min] 49.2 [min] 

Linux CentOS 6.4, 2.3 GHz Intel® 

Xeon® L5640 (6–core) processor 
6.8 [s] 25.1 [s] 4.7 [h] 13.3 [h] 11.5 [min] 41.1 [min] 

 

 

2.2 Metabolic Block 

FBA (Orth et al., 2010; Varma & Palsson, 1994) is based on mass balances. As 

illustrated for a small metabolic network in Figure 2-2, for n reactions and m 

metabolites a m × n stoichiometric matrix S can be formulated and, if we neglect the 

accumulation of metabolites – which is reasonable for short periods of time 

(Stephanopoulos et al., 1998) – a mass balance for all metabolites is: 

𝐒 ∙ 𝐯 = 𝟎  (Equation 1) 

Where v is the flux distribution vector [mmol/gDWh]. Additionally, lower and upper 

bounds for each flux can be included, based on the reversibility of each reaction (Figure 

2-2), along with an objective function to be minimized or maximized, given that the 

problem is highly subdetermined (i.e. there are much more reactions than metabolites). 

As previously mentioned, in our approach the metabolic block consists of two sequential 

optimizations: first, a LP problem is solved by maximizing the specific growth rate 

(Curran, Crook & Alper, 2012; Hjersted & Henson, 2006; Sohn et al., 2010; Varma & 

Palsson, 1994): 

 

 

 



11 

  

𝐌𝐚𝐱 𝛍 

                        𝐬. 𝐭.       𝐒 ∙ 𝐯 = 𝟎                (Problem 1) 

   𝐋𝐁 ≤ 𝐯 ≤ 𝐔𝐁 

Where μ is the specific growth rate [1/h], and LB and UB are the lower and upper 

bounds, respectively [mmol/gDWh]. Then, a QP problem is applied to minimize the 

total sum of absolute fluxes (based on the principle of enzyme efficiency maximization 

(Feng et al., 2012; Holzhütter, 2004; Schuetz, Zamboni, Zampieri, Heinemann & Sauer, 

2012)) fixing the growth rate at a sub-optimal level: 

𝐌𝐢𝐧 ∑ 𝐯𝐢
𝟐

𝐢

 

                        𝐬. 𝐭.       𝐒 ∙ 𝐯 = 𝟎  (Problem 2) 

                 𝛍 = 𝛂 ∙ 𝛍∗ 

           𝐋𝐁 ≤ 𝐯 ≤ 𝐔𝐁 

Where μ∗ is the value of the optimal specific growth rate obtained in Problem 1 [1/h], 

and α is a parameter that varies between 0 and 1 and is used for model calibration (see 

the Parameter Estimation section). For aerobic cultures, the value of this parameter has 

one value (α) during the batch stage of the cultivation and another one (αF) during the 

fed-batch stage. This is because the fermentation conditions (including the growth rate 

and the substrate to product yields) change dramatically upon glucose starvation. 

 

The genome-scaled metabolic model used was a version of the consensus model of S. 

cerevisiae, Yeast 5 (Heavner et al., 2012). We also tried Yeast 6 (Heavner et al., 2013), 

the most recent version of the consensus model. However, calibrations with our 

experimental data showed better agreement with Yeast 5 (Table A-1). All FBA problems 

were solved using the COBRA toolbox (Becker et al., 2007; Schellenberger et al., 2011), 

which uses the programming library libSBML (Bornstein, Keating, Jouraku & Hucka, 

2008) and the SBML toolbox (Keating, Bornstein, Finney & Hucka, 2006). Gurobi® 5.5 
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(Gurobi, 2013) was chosen as the optimization solver since preliminary performance 

tests showed it to be 4 times faster than the default solver. Finally, Gurobi Mex (Yin, 

2011) was used as a Matlab-interface for calling Gurobi. 

 

 

Figure 2-2: Derivation of the FBA equations using a small metabolic network. Adapted 

from (Becker et al., 2007). 

2.3 Dynamic Block 

The dynamic block consists of a set of ordinary differential equations (ODEs) that 

account for volume change, cell growth and metabolite consumption/production, in a 

batch or fed-batch culture. Figure 2-3 depicts a representation of the fermentation 

process, in which the state variables (volume, biomass, limiting substrate and products) 

change in time depending on the feed function and the cell’s specific consumptions and 

productions. 
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Figure 2-3: Dynamic system modeled. The vessel represents the bioreactor and the 

figure inside of it represents yeast. 

Considering accumulation, entrance, consumption and production, dynamic balances 

yield the following equations: 

𝐝𝐕

𝐝𝐭
= 𝐅(𝐭)     (Equation 2) 

𝐝(𝐕𝐗)

𝐝𝐭
= 𝛍 ∙ (𝐕𝐗)    (Equation 3) 

𝐝(𝐕𝐆)

𝐝𝐭
= 𝐅(𝐭) ∙ 𝐆𝐅 − 𝐯𝐆 ∙ 𝐌𝐌𝐆 ∙ (𝐕𝐗)  (Equation 4) 

𝐝(𝐕𝐏𝐤)

𝐝𝐭
= 𝐯𝐏𝐤

∙ 𝐌𝐌𝐏𝐤
∙ (𝐕𝐗)   (Equation 5) 

Where V is volume [L], t is time [h], F(t) is the feed rate [L/h] (zero for batch cases and 

exponential for fed-batch cases), X is the biomass concentration [g/L], μ is the specific 

growth rate [1/h] (obtained from Problem 2 in the metabolic block), G(t) is the 

extracellular limiting substrate concentration [g/L], GF is the feed’s substrate 
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concentration [g/L], Pk is the k-th extracellular product concentration [g/L], v is the 

corresponding flux exchange rate [mmol/gDWh] (obtained also from Problem 2 in the 

metabolic block; consumption for substrates and production for products), and MM 

accounts for the corresponding molecular mass [g/mmol]. All fermentations were 

carbon-limited, with glucose as the limiting substrate, and ethanol, glycerol, citrate and 

lactate as the most relevant products. Therefore, Equation 5 comprises 4 differential 

equations. 

 

The integration solvers were chosen based on preliminary performance tests on all 

Matlab standard integrators; the best results were achieved with ode113 for batch 

cultures and ode15s for fed-batch ones. Relative and absolute tolerances of 1e-3 were 

small enough to obtain good fittings in reasonable computation times. A maximum 

integration step size of 0.7 h was defined, in order to avoid losing information in critical 

moments such as glucose starvation. Finally, all variables were forced to be non-

negative. 

 

2.4 Kinetic Block 

2.4.1 Glucose Consumption 

The kinetic block includes glucose consumption rate (vG; reaction r_1714 in Yeast 5), 

defined as a fixed flux (LB = UB) using a Michaelis–Menten kinetic with an additional 

term to account for ethanol inhibition (Hjersted et al., 2007; Sainz et al., 2003): 

𝐯𝐆 =
𝐯𝐆𝐦𝐚𝐱𝐆

𝐊𝐆+𝐆
∙

𝟏

𝟏+
𝐄

𝐊𝐄

  (Equation 6) 

Where G and E are the glucose and ethanol concentration [g/L] respectively, vGmax is 

the maximum glucose uptake rate [mmol/gDWh], KG is the half saturation constant 

[g/L], and KE is the ethanol inhibition constant [g/L]. 
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2.4.2 Oxygen Consumption 

In aerobic fermentations, oxygen uptake rate (vO2
; reaction r_1992 in Yeast 5)  was left 

unconstrained (LB = −1000 [mmol/gDWh]) during the whole fermentation, because 

the dissolved oxygen (DO) control guaranteed enough oxygen at any time of the 

fermentation (Cárcamo et al., 2013). For anaerobic experiments instead, we proceeded 

as suggested by (Heavner et al., 2012), constraining vO2
 to zero (LB = UB = 0 

[mmol/gDWh]), allowing unrestricted uptake of ergosterol (r_1757), lanosterol 

(r_1915), zymosterol (r_2106) and phosphatidate (r_2009), and eliminating 14-

demethyllanosterol and ergosta-5,7,22,24(28)-tetraen-3beta-ol from the lipid pseudo-

reaction (in the model this was achieved simply by blocking reaction r_2108 and 

unblocking reaction r_2109). 

 

2.4.3 Secondary Metabolite Production 

Secondary metabolite production was also accounted by forcing the lower bounds of the 

product exchange reactions to be proportional to glucose consumption. As previously 

mentioned, the only 4 extracellular products detected in significant amounts were 

ethanol, glycerol, citrate and lactate; therefore, we included 4 more parameters to 

calibrate the batch fermentations: 

  𝐋𝐁𝐢 = 𝐟𝐢 ∙ 𝐯𝐆      ;       𝐢 = 𝟏 … 𝟒  (Equation 7) 

Here, i accounts for (1) ethanol, (2) glycerol, (3) citrate and (4) lactate. LBi is the 

corresponding exchange reaction lower bound (reactions r_1761, r_1808, r_1687 and 

r_1546 in Yeast 5, respectively), and fi is the corresponding parameter for calibration. 

For the aerobic cultivations, these parameters were also allowed to change their value in 

the fed-batch stage: 

𝐋𝐁𝐢 = 𝐯𝐢      ;       𝐢 = 𝟏 … 𝟒  (Equation 8) 
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Where vi are the corresponding extra parameters. This assumption allowed the aerobic 

simulations to take different yields in batch and fed-batch stages and, moreover, allowed 

product consumption during glucose-starvation culture conditions, a phenomenon that 

was observed in some conditions for ethanol and glycerol (see Results and Analysis). 

 

2.4.4 ATP Maintenance 

ATP maintenance (mATP; [mmol/gDWh]) was defined as a minimum consumption flux 

of cytosolic ATP. Consequently, an additional exchange reaction was added to the 

metabolic model, which had the following lower bound: 

𝐋𝐁𝐀𝐓𝐏[𝐜𝐲𝐭]𝐨𝐮𝐭
= 𝐦𝐀𝐓𝐏  (Equation 9) 

Here LBATP[cyt]out
 is the lower bound of the exchange rate of cytosolic ATP, and mATP 

is a calibrated parameter. mATP accounts for all cellular processes and functions not 

related to cell growth, i.e. it is the minimum non-growth associated maintenance 

(NGAM). Growth associated maintenance (GAM), on the other hand, is already 

included in the biomass pseudo-reaction rate (reaction r_2110 in Yeast 5) and it has a 

value of 59.3 [mmol/gDWh]. Although we could also include this parameter for 

calibration and further pre/post regression analysis, it would be strongly correlated with 

NGAM, and therefore one of the two should be fixed. We choose to focus on NGAM, 

which can be more easily calibrated considering that it does not directly impact on the 

biomass pseudo-reaction rate. 

 

2.4.5 Biomass Requirements 

Regarding the biomass pseudo-reaction, we considered 3 parameters for calibration that 

weighted each group of the major cellular requirements differently: a for aminoacids, c 

for carbohydrates and l for lipids: 

𝐚(𝛂𝟏𝐀𝟏 + ⋯ + 𝛂𝟐𝟎𝐀𝟐𝟎) + 𝐜(𝛃𝟏𝐂𝟏 + ⋯ + 𝛃𝟒𝐂𝟒) + 𝐥(𝛄𝐋) → 𝐁𝐢𝐨𝐦𝐚𝐬𝐬     (Equation 10) 
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With A1 … A20 being the 20 essential aminoacids; C1 … C4, the 4 sugars that are part of 

the biomass pseudo-reaction equation in Yeast 5 ((1->3)-β-D-glucan, glycogen, trehalose 

and mannan); L, the lipid fraction (obtained from the lipid pseudo-reaction); and 

α1 … α20, β1 … β4 and γ, the corresponding stoichiometric coefficients. An important 

advantage of using this approach for studying sensitivity is that it does not require to 

evaluate the impact of each compound separately (i.e. every aminoacid, every sugar and 

every lipid), but instead the impact of each group is assessed. Therefore, one can easily 

conclude that if one of the 3 parameters does not significantly affect the model’s output, 

any compound requirement of the corresponding group will neither affect it. 

 

2.4.6 Gene Expression 

Finally, two additional parameters were included to account for transcriptomic (gene 

expression) information. 18 normalized microarray expression datasets (6 for aerobic 

and 12 for anaerobic cultivations) of different yeast strains were obtained from a 

published work (Lai, Kosorukoff, Burke & Kwast, 2006) using the query-driven search 

engine search tool SPELL (Serial Pattern of Expression Levels Locator) (Hibbs et al., 

2007) from the Saccharomyces Genome Database (SGD) (Cherry et al., 2012), and from 

two works from our group (Aceituno et al., 2012; Orellana et al., 2013). All data was 

preprocessed, disregarding genes that were not included in Yeast 5 or that were essential 

for biomass growth (using single-knockout gene analysis (Edwards & Palsson, 2000; 

Zomorrodi, Suthers, Ranganathan & Maranas, 2012)). Overall, 127/119 genes were 

determined essential for supporting aerobic/anaerobic growth, respectively (Table A-2) 

and, therefore, were not considered in posterior analyses. 

 

The methodology followed for turning off genes that were not significantly expressed 

was based on a published method (Åkesson, Förster & Nielsen, 2004). First, depending 

on the cultivation (aerobic or anaerobic), the corresponding dataset was chosen. 
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Afterwards, for each gene i and for each microarray j, the binary variable Yij was 

calculated as: 

𝐘𝐢𝐣 = {  
  𝟏  ;     𝐞𝐱𝐩𝐢𝐣 ≤ 𝛍𝐣 − 𝐭𝟏 ∙ 𝛔𝐣

𝟎  ;                  𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
  (Equation 11) 

Where expij is the normalized expression level of gene i in microarray j, μj is the 

average expression in microarray j, σj is the corresponding standard deviation, and t1 is 

a parameter to estimate later and represents an expression threshold. Once all variables 

Yij were computed, a decision was made for each gene according to the following rule: 

∑ 𝐘𝐢𝐣
𝐌
𝐣=𝟏 ≥

𝐌∙𝐭𝟐

𝟏𝟎𝟎
→ 𝐆𝐄𝐍𝐢 𝐨𝐟𝐟    (Equation 12) 

Where M is the number of microarrays in the dataset, and t2 is another parameter 

representing a consistency threshold (a minimum percentage in the dataset). Therefore, 

the expression rule can be summed up as the following: “The i-th gene will be 

considered unexpressed if in at least t2% of the microarrays the expression is t1 standard 

deviations below the microarray average expression”. If this is true for any gene, then all 

reactions that are catalyzed by enzymes coded by the corresponding genes will be forced 

to carry zero flux (LB = UB = 0 [mmol/gDWh]). 

 

Even though gene expression is usually strain-dependent, our approach rests on the 

premise that if in several gene expression experiments of different yeast strains a 

particular gene is not expressed over a certain threshold, that gene will probably be 

unexpressed in most strains for that particular environmental condition 

(aerobic/anaerobic). Moreover, for simplicity our approach also assumes that each gene 

will be expressed (or unexpressed) along the whole cultivation. Once again, we 

overcome this issue by using several microarrays of different strains and different 

conditions; therefore it is likely that if a gene is not expressed under most of the 

conditions, it is because it is never expressed during a batch or fed-batch fermentation. It 

also should be mentioned that the thresholds t1 and t2 also help to overcome the 
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assumptions mentioned, because by calibrating them with experimental data we are 

obtaining realistic expression rules. 

  

2.5 Parameter Estimation 

For model calibration, we formulated a nonlinear programming problem with the dFBA 

model as a constraint, and an objective function F consisting of a sum of square errors 

between the experimental data and the simulation output, weighted by the maximum 

corresponding measured variable and by the number of measurements of the respective 

variable: 

𝐅 = 𝐌𝐢𝐧
𝛉

∑ ∑ (
𝐗𝐢𝐣

𝐦𝐨𝐝 − 𝐗𝐢𝐣
𝐞𝐱𝐩

𝐧𝐢∙𝐦𝐚𝐱
𝐣

(𝐗𝐢𝐣
𝐞𝐱𝐩

)
)

𝟐
𝐧𝐢
𝐣=𝟏

𝐦
𝐢=𝟏    (Equation 13) 

With θ representing the parameter space, m the number of measured variables, ni the 

number of measurements for the i-th variable, Xij
mod the output of the dFBA model for 

the variable i and the measurement j, and Xij
exp

 the experimental value. 

 

All the parameters studied, along with their units, lower and upper bounds and initial 

values for the optimization are summarized in Table 2-2. The LB and UB of vGmax, KG, 

KE and mATP were chosen according to the literature (Hjersted et al., 2007; Varma & 

Palsson, 1994). The UB of fE, fGL, fC and fL were the respective model’s maximum yield 

from glucose. The LB of t2 was set at 75%, thus forcing a minimum consistency in the 

microarray datasets (at least 75% of the datasets have to agree in order to delete a gene). 

The rest of the LB and UB were chosen to ensure the algorithm had enough search 

space. Finally, initial values for parameter estimation were chosen to attain a feasible 

simulation. 
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Table 2-2: Parameter estimation details. The symbols, names and units of each 

parameter analyzed in this study are shown. Initial values, lower and upper bounds for 

parameter estimation are also displayed. 

Symbol Name Units LB Initial Value UB 

𝐯𝐆𝐦𝐚𝐱 Maximum Glucose Uptake Rate mmol/gDWh 1 10 50 

𝐊𝐆 Half Saturation Constant g/L 0.005 0.05 10 

𝐊𝐄 Ethanol Inhibition Constant g/L 0.005 20 50 

𝛂 Sub-Optimal Growth - 0.1 0.7 1 

𝐚 Aminoacid Requirement - 0.5 1 3 

𝐜 Carbohydrate Requirement - 0.5 1 3 

𝐥 Lipid Requirement - 0.5 1 3 

𝐦𝐀𝐓𝐏 Maintenance ATP mmol/gDWh 0 1 5 

𝐭𝟏 Expression Threshold 1 - 0 6 6 

𝐭𝟐 Expression Threshold 2 % 75 100 100 

𝐟𝐄 Glucose – Ethanol Minimum Yield mmol/mmol 0 1.7 2 

𝐟𝐆𝐋 Glucose – Glycerol Minimum Yield mmol/mmol 0 0 1 

𝐟𝐂 Glucose – Citric Acid Minimum Yield mmol/mmol 0 0 0.258 

𝐟𝐋 Glucose – Lactic Acid Minimum Yield mmol/mmol 0 0 1 

𝛂𝐅 Sub-Optimal Growth (fed-batch) - 0.1 1 1 

𝐯𝐄 Ethanol Minimum Rate (fed-batch) mmol/gDWh -10 0 10 

𝐯𝐆𝐋 Glycerol Minimum Rate (fed-batch) mmol/gDWh -10 0 0 

𝐯𝐂 Citric Acid Minimum Rate (fed-batch) mmol/gDWh 0 0 10 

𝐯𝐋 Lactic Acid Minimum Rate (fed-batch) mmol/gDWh 0 0 10 

 

Due to the problem complexity and the presence of multiple local minima, the parameter 

estimation was performed with the enhanced scatter search method eSS (Egea & Balsa-

Canto, 2009), which is an improved version of a previous method, SSm (Egea, 

Rodriguez-Fernandez, Banga & Martí, 2006). SSm (Scatter Search for MATLAB®) is a 

metaheuristic global optimization algorithm for nonlinear programming problems that 

has been successfully used in the bioprocess field (Balsa-Canto, Rodriguez-Fernandez & 

Banga, 2007; Sacher et al., 2011; Sriram, Rodriguez-Fernandez & Doyle, 2012), and 

obtains a solution expected to be close to the global optimum, using diversification and 

intensification methods and a reference set of high-quality solutions (Egea et al., 2006). 

eSS on the other hand uses control vector parameterization (CVP) and is oriented to 
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problems with noise and discontinuities (Egea & Balsa-Canto, 2009); therefore, it is 

ideal for fermentations with substrate limitation and non-constant feed. Additional 

options should be tuned when using eSS; in our case, the best fittings (lower objective 

function values in less CPU time) were achieved with a maximum of 3,000 iterations 

and using the local optimization solver n2fb (Dennis, Gay & Walsh, 1981). With these 

options, optimization times between 5 and 13 [h] were achieved, depending on the 

cultivation characteristics and the machine that ran the code (Table 2-1). 
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3 MATERIALS AND METHODS 

3.1 Strains and Conditions Assessed 

Cultivations were carried out with 2 different strains, the industrial yeast strain S. 

cerevisiae N30 (Centrovet, Chile) and the wine yeast strain S. cerevisiae EC1118 

(Lalvin, Switzerland). For each strain, we tested 4 different environmental conditions: 

 

1. Aerobic fed-batch with slow feed rate. 

2. Aerobic fed-batch with fast feed rate. 

3. Anaerobic batch with low glucose initial concentration (G0). 

4. Anaerobic batch with large glucose initial concentration (G0). 

 

Since each experiment was done in duplicate, a total of 16 cultivations were performed 

(4 conditions × 2 strains × 2 duplicates). All media were glucose-limited and completely 

defined (Table 3-1). Conditions 1, 2 and 3 had G0 = 20 [g/L], whereas condition 4 had 

G0 = 80 [g/L]. The glucose feed concentration for conditions 1 and 2 was 300 [g/L]. 

Finally, conditions 3 and 4 were also supplied with ergosterol and Tween 80, both 

necessary for growth under anaerobic conditions (Diderich et al., 1999), and diluted in a 

small amount of ethanol. 
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Table 3-1: Composition of all defined-media employed in this study: batch and feed 

media for aerobic cultivations, and the 2 different anaerobic batch media used (20 [g/L] 

and 80 [g/L] of glucose, respectively). 

 
Aerobic batch 

medium 

Aerobic feed 

medium 

Anaerobic batch 

medium (large G0) 

Anaerobic batch 

medium (low G0) 

Glucose 20 g/L 300 g/L 80 g/L 20 g/L 

KH2PO4 6.4 g/L - 6.4 g/L 6.4 g/L 

K2HPO4 450 mg/L - 450 mg/L 450 mg/L 

NH4(SO4)2 5 g/L - 5 g/L 5 g/L 

Mg(SO4)∙7H2O 1 g/L 5.4 g/L 4 g/L 1 g/L 

Fe(SO4 )∙7H2O 4.2 mg/L 516 mg/L 16.2 mg/L 4.2 mg/L 

Zn(SO4)∙7H2O 6.3 mg/L 24.3 mg/L 24.3 mg/L 6.3 mg/L 

Cu(SO4)∙7H2O 420 µg/L 1.62 mg/L 1.62 mg/L 420 µg/L 

CaCl2∙2H2O 286 mg/L 924 mg/L 924 mg/L 286 mg/L 

NaCl 140 mg/L 300 mg/L 300 mg/L 140 mg/L 

CoCl2∙6H2O 420 µg/L 1.62 mg/L 1.62 mg/L 420 µg/L 

MnCl2∙4H2O 1.18 mg/L 4.54 mg/L 4.54 mg/L 1.18 mg/L 

H3BO3 1.4 mg/L 5.4 mg/L 5.4 mg/L 1.4 mg/L 

Na2MoO4∙2H2O 560 µg/L 2.16 mg/L 2.16 mg/L 560 µg/L 

KI 140 µg/L 540 µg/L 540 µg/L 140 µg/L 

EDTA 21 mg/L 81 mg/L 81 mg/L 21 mg/L 

d(+)biotin 600 µg/L 1.61 mg/L 1.61 mg/L 600 µg/L 

Ca d(+)panthotenate 12 mg/L 32.1 mg/L 32.1 mg/L 12 mg/L 

Nicotinic acid 12 mg/L 32.1 mg/L 32.1 mg/L 12 mg/L 

Myo-inositol 300 mg/L 803 mg/L 803 mg/L 300 mg/L 

Thiamine Hydrochloride 12 mg/L 32.1 mg/L 32.1 mg/L 12 mg/L 

Pyridoxin Hydrochloride 12 mg/L 32.1 mg/L 32.1 mg/L 12 mg/L 

p-aminobenzoic acid 2.4 mg/L 6.42 mg/L 6.42 mg/L 2.4 mg/L 

Ergosterol - - 40 mg/L 10 mg/L 

Tween 80 - - 420 mg/L 420 mg/L 

 

3.2 Experimental Setup 

The fermenters used for all cultivations consisted of 1 L reactors equipped with a 

condenser, a stirrer and two Rushton turbines, operating with brushless DC motors 

VEXTA®, AXH Series (Oriental Motor, Japan). For monitoring and control, a 
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SIMATIC PCS7 distributed control system (Siemens, Germany) was used. Dissolved 

oxygen and temperature were measured with Oxymax COS22D probes (Endress Hauser, 

Switzerland), pH was detected with Tophit CPS471D probes (Endress Hauser, 

Switzerland), and off-gas composition (CO2 and O2) was sensed with a BlueInOne Cell 

gas analyzer (Bluesens, Germany). 210U and 102FS/R peristaltic pumps (Watson 

Marlow, USA) were used for acid, base, feed and antifoam addition; and FMA–A2407 

gas flowmeters and controllers (Omega, USA) for air, O2 and N2 sparged addition. 

Figure 3-1 displays a photograph of the bioreactor and its main components. 

 

Each culture started from a 2 [mL] vial of the corresponding strain kept at -80°C. A 

preculture was grown overnight at 30°C in shake flasks with 100 [mL] of the batch 

medium, from which 50 [mL] for aerobic cultivations (or 60 [mL] for anaerobic 

cultivations) were inoculated on the 1 [L] fermenters containing 450 [mL] (or 540 [mL], 

respectively) of batch medium, with controlled conditions of 30°C, pH = 5.0 and 

whether DO ≥ 2.8 [mg/L] for aerobic cultures, or DO = 0 [mg/L] for anaerobic cultures. 

Aerobiosis was achieved by a triple split-range action of agitation (300 – 800 [RPM]), 

air flow (0.2 – 0.6 [L/min]) and pure oxygen flow (0 – 0.6 [L/min]) (Cárcamo et al., 

2013), and anaerobiosis was achieved by sparging 0.3 [L/min] of pure nitrogen and 

agitating at 300 [RPM]. pH was controlled using phosphoric acid 20% [v/v] and 

ammonium hydroxide 15% [v/v] (the use of the latter also gives additional nitrogen 

supplementation). Temperature was controlled with a mixture of hot and cold water, 

using a glass jacket. Lastly, foam was controlled manually using silicone antifoam 10% 

[v/v]. Figure 3-2 shows the process and instrumentation diagram (P&ID) of the 

experimental setup.  
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Figure 3-1: Photograph of one of the bioreactors used. Both temperature/oxygen and pH 

probes are behind the motor and therefore not shown. (1) DC motor connected to the 

bioreactor agitator. (2) (Filtered) gas entrance to the bioreactor. (3) Condenser. (4) Off 

gas exit (to CO2 and O2 analyzer). (5) Sampler (behind the condenser). (6) Bioreactor 

(glass flask inside the glass jacket). (7) Water entrance to the glass jacket. (8) Water exit 

of the glass jacket. 
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Hot water (50°C)
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 Figure 3-2: P&ID of the system used for all cultivations. Nomenclature used: AT → 

Analysis Transmitter. AR → Analysis Recorder. ARC → Analysis Recorder & 

Controller. TT → Temperature Transmitter. TRC → Temperature Recorder & 

Controller. FC → Flow Controller (Not used in anaerobic conditions). 

Glucose starvation was detected with a sudden decrease of the CO2 composition in the 

off-gas, and confirmed each time using Benedict's reagent (Benedict, 1909). For the fed-

batch cases (conditions 1 and 2), the feed F(t) was designed for a predefined variable 

growth rate, and can be calculated from the reactor’s glucose and biomass mass 

balances, as detailed elsewhere (Villadsen & Patil, 2007): 

𝐅(𝐭) =
𝛍𝐬𝐞𝐭(𝐭)

𝐆𝐅∙𝐘𝐆𝐗
∙ 𝐕𝐢𝐗𝐢 ∙ 𝐞𝐱𝐩 {∫ 𝛍𝐬𝐞𝐭(𝐭)𝐝𝐭

𝐭

𝐭𝐢
} (Equation 14) 
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With GF the glucose feed concentration [g/L], YGX the experimental glucose-biomass 

yield (fixed for Equation 13 in 0.469 [gDW/g] (Møller, Sharif & Olsson, 2004)), ti the 

time at which the feed started for a given cultivation [h], Vi and Xi the volume [L] and 

biomass [g/L] values at ti, respectively, and μset(t) the variable growth rate. The latter 

was defined as the following: 

𝛍𝐬𝐞𝐭(𝐭) = 𝐀 + 𝐁 ∙ 𝐞−𝐂𝐭  (Equation 15) 

Where A and B are both 0.07 [1/h] for all aerobic cultivations, and C is 0.14 [1/h] for 

condition 1, and 0.07 [1/h] for condition 2. Therefore, μset(t) decays more quickly in 

condition 1, which translates into a slower feed rate (Figure 3-3). 

 

 

Figure 3-3: The temporal evolutions of the design growth rate (µset) and a given feed rate 

(F) for experimental conditions 1 (C = 0.14 [1/h]) and 2 (C = 0.07 [1/h]) are displayed, 

with t = 0 as the feed starting point. Condition 1 has a quicker decay in µset than 

condition 2, and therefore has a slower F than condition 2. For F visualization, typical 

experimental conditions were selected: Vi = 0.4 [L] and Xi = 4 [g/L] (for further details 

refer to Equation 14). 
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3.3 Assay Methods 

Samples of ~5 [mL] were taken periodically from all cultivations. Biomass was 

measured in OD using a UV-160 UV-visible recording spectrophotometer (Shimadzu, 

Japan), and results were transformed to g/L using a calibration curve of 0.3797 

[gDW/L/OD] for the N30 strain and of 0.3840 [gDW/L/OD] for the EC1118 strain (both 

determined with an infrared dryer-equipped balance (Precisa, Switzerland)). 

 

A 2 [mL] aliquot of each sample was centrifuged for 5 minutes at 14,000 RPM and 4°C, 

using a Mikro 22R centrifuge (Hettich, Germany). All supernatants were kept at -80°C 

until the fermentation was over. Extracellular metabolites were afterwards measured by 

high-performance liquid chromatography (HPLC) in duplicate. 100 [µL] of a solution 

27.5 [mM] H2SO4 and with 16.7 [g/L] of pivalic acid (used as internal standard) were 

added to 1 [mL] of each sample and each of the HPLC standards (with known 

concentrations of trehalose, glucose, fructose, glycerol, ethanol, citrate, malate, 

succinate, lactate and acetate). Afterwards, 20 [µL] of the resulting solutions were 

injected into a LaChrom L-7000 HPLC system (Hitachi, Japan), with an Aminex HPX-

87H anion-exchange column (Bio-Rad, USA) for organic acids, alcohols and sugars 

separation, working at 55°C with a 0.5 [mL/min] flow of mobile phase 2.5 [mM] H2SO4 

(the same concentration as the one in each sample after adding the internal standard 

solution). A LaChrom L-7450A diode array detector (Hitachi, Japan) was used at 210 

[nm] for detecting organic acids, and a LaChrom L-7490 refraction index detector 

(Hitachi, Japan) for sugars and alcohols. Finally, each metabolite was quantified 

normalizing each area in the chromatogram by the corresponding internal standard area 

and using a calibration curve with the HPLC standards. 
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3.4 Reparameterization Analysis 

3.4.1 General Methodology of Procedure 

As mentioned in the introduction, we used a novel methodology to obtain a set of 

identifiable and significant parameters in our dFBA model for each of the 16 

experimental cultivations. As shown in Figure 3-4, the methodology starts by calculating 

sensitivity and identifiability for the estimated parameters of the calibration. Then, the 

parameters are iteratively fixed: At the end of each iteration, and depending on the 

regression diagnostics result, a parameter is eliminated (thus its value becomes fixed) for 

the next iteration. The following rules were considered for deciding which parameters to 

fix (for further details of each analysis see the Pre/Post Regression Diagnostics section): 

 

1. Identifiability: when 2 parameters had a Pearson correlation coefficient larger 

than 0.95, different combinations of the corresponding estimated values resulted 

in the same objective function in the parameter estimation procedure and, 

consequently, the decision was to fix at least one of them. 

2. Sensitivity: when the relative sensitivity of a parameter was below 0.01 for all 

variables, the parameter was considered to have no influence in the model, and 

therefore was decided to be fixed. 

 

For most of the iterations, more than one of the above problems will arise, and therefore 

exploratory branches for each of the corresponding parameters are necessary, which 

generates a growing exploratory tree. However, because the procedure could generate an 

excessive number of branches, model-specific policies should be defined in order to 

overcome this issue. Our aim here was to find an adequate set of parameters for our 

model with reasonable computational times. In this work, the main strategy to reduce the 

exploratory tree size was to count the number of problems (identifiability and 

sensitivity) for each parameter at each round of the procedure. If any parameter had both 

problems, exploratory branches were created only for the parameters with the 2 
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problems. On the other hand, if there were only parameters with 1 of the 2 problems, we 

created branches for all the problematic parameters. Finally, if no parameter had any of 

the mentioned problems, the solution was saved for posterior analyses, and the branch 

no longer explored. 

 

Figure 3-4: Methodology used in this study for obtaining dFBA models with sensitive, 

uncorrelated and significant parameters. As an example, a solution with 5 parameters is 

analyzed. 
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Once the exploratory tree concluded, the combinations that showed no identifiability or 

sensitivity problems were collected, and confidence coefficients (CCs) were calculated 

for each non-fixed parameter (Figure 3-4). The CCs had to be calculated for each of the 

combinations, given that their values are dependent on the combination of estimated 

parameters, in contrast with the sensitivity and correlation values, which remain constant 

regardless of the combination of estimated parameters (and therefore could be calculated 

only at the beginning of the procedure). If any non-fixed parameter from a solution had a 

CC larger than 2, it was considered that the parameter had a value not significantly 

different from zero, and therefore the corresponding solution was disregarded. 

 

Finally, for each of the 16 experimental conditions, the solution with the smallest mean 

CC was chosen as the optimal reparameterization (Figure 3-4). This solution had a fixed 

parameter set (i.e. parameters eliminated by the procedure) and a non-fixed parameter 

set (i.e. parameters used for model calibration). To further improve the results, each of 

these 16 solutions were used to repeat the parameter estimation, but only with the 

corresponding non-fixed parameter set; the fixed parameter set had the same values than 

the originally estimated ones. 

 

3.4.2 Pre/Post Regression Diagnostics 

In the following, we will briefly explain the regression diagnostics used in this study, as 

it has been thoroughly presented elsewhere (Jaqaman & Danuser, 2006; Sacher et al., 

2011). Sensitivity analysis accounts for the relative impact that each parameter has in 

each of the model’s state variables. In our approach, we computed the relative sensitivity 

(Gik), as indicated: 

𝐆𝐢𝐤(𝐭, 𝛉𝐤) =
𝛉𝐤

𝐗𝐢(𝐭)

𝐝𝐗𝐢(𝐭)

𝐝𝛉𝐤
  (Equation 16) 

Where t is time, θk is the k-th parameter and Xi(t) is the i-th variable at time t. With all 

Gik values, for each time we formed a sensitivity matrix G(t), in which the k-th column 
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denotes the sensitivity of the k-th parameter on the state variables. In order to obtain a 

single normalized score (spanning all experimental times) of each parameter over each 

variable, we calculated average sensitivity as detailed in (Hao, Zak, Sauter, Schwaber & 

Ogunnaike, 2006). Therefore, if this score is under 0.01 in each variable for a given 

parameter, we chose to fix the corresponding parameter. 

 

For identifiability calculations, the MATLAB function corrcoef was used to calculate 

the correlation coefficients between each column of the sensitivity matrices, and stored 

the information in a correlation coefficients matrix (C). If any of the matrix absolute 

values (besides the diagonal) is over a certain threshold (in our case |Cij| ≥ 0.95), both of 

the associated parameters are strongly correlated, and therefore one of both should be 

fixed. 

 

For significance calculations, and also using the sensitivity matrices, we first calculated 

the Fisher Information Matrix (FIM) (Petersen, Gernaey & Vanrolleghem, 2001): 

𝐅𝐈𝐌 =  ∑ 𝐆𝐣
𝐓 𝐐𝐣 𝐆𝐣

𝐧
𝐣=𝟏   (Equation 17) 

Here, Gj is the sensitivity matrix for measurement j, n is the number of measurements, 

and  Qj is the inverse of the measurement error covariance matrix assuming white and 

uncorrelated noise, which is used as a weighting matrix. Using this matrix, the variances 

for each estimated parameter (σk
2) were calculated as (Landaw & DiStefano III, 1984; 

Petersen et al., 2001): 

𝛔𝐤
𝟐 = 𝐅𝐈𝐌𝐤𝐤

−𝟏     (Equation 18) 

With the variances we computed the confidence interval (CI) with 5% significance for 

the k-parameter as follows: 

𝐂𝐈𝐤 = [𝛉̂𝐤  ± 𝟏. 𝟗𝟔 𝛔𝐤]  (Equation 19) 

Where θ̂k is the estimated value of the respective parameter. Finally, coefficients of 

confidence (CC) were calculated as follows:  
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𝐂𝐂𝐤 =
∆(𝐂𝐈𝐤)

𝛉̂𝐤
    (Equation 20) 

With ∆(CIk), the CI’s length. With this metric, we determine that a parameter is not 

significantly different from zero if the CI contained the zero, therefore if the 

corresponding CC was larger than 2. 

 

The duration to compute the whole aforementioned pre/post regression diagnostics 

lasted between 10 and 50 [min], depending on the experimental conditions and the 

computer employed (Table 2-1). 

 

3.4.3 Cross-Calibration 

Once the reparameterization was performed for each of the 16 cultivations, the 

consistency of each solution was studied by performing a cross-calibration between the 

cultivations. Both the fixed and non-fixed parameter sets obtained from each 

fermentation were used to calibrate the remaining 7 fermentations (aerobic or 

anaerobic), i.e. fixing the corresponding parameters with the fixed parameter set values 

and fitting the data with the non-fixed parameter set. Afterwards, a cross calibration 

coefficient (CCC) was computed as: 

𝐂𝐂𝐂𝐢𝐣𝐤 =
𝐅𝐢𝐣𝐤

𝐅𝐣𝐣𝐤
    ;      𝐢, 𝐣 = 𝟏 … 𝟖    ;    𝐢 ≠ 𝐣   ;      𝐤 = {𝟎, 𝟏} (Equation 21) 

Where Fijk is the objective function obtained with the i-th solution using the 

experimental data of the j-th cultivation, and k is an index for distinguishing between 

aerobiosis (k = 1) and anaerobiosis (k = 0). Therefore, if the CCCijk is close to 1, the i-

th solution used to calibrate the j-th experimental data is appropriate. On the other hand, 

if CCCijk is much larger than 1, a good fit was not possible and therefore the i-th solution 

is not useful for predicting different experimental conditions. 
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4 RESULTS AND ANALYSIS 

4.1 Pre/post Regression Results 

4.1.1 Identifiability Analysis 

After performing the first calibration (with all parameters) of the 16 cultivations, we 

encountered numerous sensitivity, identifiability and significance problems (Table 4-1). 

In the aerobic cultivations, the most correlated parameters were present in 3 groups 

(Table 4-1A). First, the glucose consumption parameters (vGmax, KG and KE) were 

almost always structurally unidentifiable. This suggests that merely one parameter 

should be used for calibration, contrary to what is traditionally done. The second group 

included all 4 parameters directly related to the biomass formation in the batch stage: α, 

a, c and l. Here, the correlations were high in almost all fermentations, suggesting that 

the “suboptimal growth” effect can be achieved with just one of these parameters. 

Interestingly, the ethanol production yield (fE) in the batch stage showed significant 

correlations with this group, indicating that in Yeast 5, under aerobic conditions, ethanol 

is more correlated to biomass formation than any other secondary metabolite. 

Furthermore, α was most of the times correlated with KE, indicating a possible 

connection between suboptimal growth rate and ethanol inhibition. The final group that 

was strongly inter-correlated belongs to the fed-batch stage, αF, vE and vGL. The 

relationship between biomass and ethanol also holds and an additional relation with 

glycerol arises, probably due to the consumption of the latter in this stage. 

 

In anaerobic cultivations, large correlations were observed between all members of a 

large parameter group, that included vGmax, KG, KE, α, a, c, l, mATP and fGL (Table 

4-1B). This indicates a stronger interdependence in anaerobic cultures between glucose-

associated and biomass-associated parameters, which was not observed for aerobic 

conditions. This is probably due to the fact that in anaerobiosis, Yeast 5 has fewer 

choices to produce the energetic requirements (given that the electron transport system is 
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inactive) for growth, and therefore employs less metabolic pathways, increasing the 

correlation between glucose consumption and biomass production. Remarkably, the 

glycerol production yield (and not the ethanol production yield, as in aerobic cultures) is 

now strongly correlated to the biomass parameters, suggesting that under anaerobic 

conditions, glycerol is more correlated that any other secondary metabolite to the 

biomass formation. 

Table 4-1: Percentage of times that each parametric problem arose in (A) aerobic and 

(B) anaerobic calibrations. Identifiability was calculated as correlations between each 

pair of parameters, relative sensitivity was averaged among all variables, and 

significance was calculated using coefficients of confidence.  

 

(A) 
|Correlation| >= 0.95 Average 

sensibility = 0 
|CC| >= 2 

vGmax KG KE α a c L mATP t1 t2 fE fGL fC fL αF vE vGL vC vL 

vGmax - 88% 100% 63% 38% 25% - 13% - - 13% 13% - 13% - - - - - - 25% 

KG 88% - 88% 25% 25% 13% 13% 13% - - 13% 13% - 13% - - - - - - 88% 

KE 100% 88% - 75% 25% 25% 25% 13% - - 13% 13% 13% 13% - - - - - - 75% 

Α 63% 25% 75% - 88% 88% 75% 13% - - 75% 25% 13% 13% - - - - - - 63% 

A 38% 25% 25% 88% - 100% 100% 13% - - 50% 25% 13% 13% - - - - - - 88% 

C 25% 13% 25% 88% 100% - 88% 13% - - 50% 25% 13% 13% - - - - - - 88% 

L - 13% 25% 75% 100% 88% - 25% - - 38% 25% 13% 13% - - - - - - 100% 

mATP 13% 13% 13% 13% 13% 13% 25% - - - 13% - - 13% - - - - - 75% 100% 

t1 - - - - - - - - - - - - - - - - - - - 100% 100% 

t2 - - - - - - - - - - - - - - - - - - - 88% 100% 

fE 13% 13% 13% 75% 50% 50% 38% 13% - - - 25% 13% 13% - - - - - - 25% 

fGL 13% 13% 13% 25% 25% 25% 25% - - - 25% - 13% 13% - - - - - - 25% 

fC - - 13% 13% 13% 13% 13% - - - 13% 13% - - - - - - - - - 

fL 13% 13% 13% 13% 13% 13% 13% 13% - - 13% 13% - - - - - - - - - 

αF - - - - - - - - - - - - - - - 100% 75% - - - 100% 

vE - - - - - - - - - - - - - - 100% - 75% - - 88% 100% 

vGL - - - - - - - - - - - - - - 75% 75% - - - 100% 100% 

vC - - - - - - - - - - - - - - - - - - - - 25% 

vL - - - - - - - - - - - - - - - - - - - - 25% 
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(B) 
|Correlation| >= 0.95 Average 

sensitivity = 0 
|CC| >= 2 

vGmax KG KE α A c l mATP t1 t2 fE fGL fC fL 

vGmax - 88% 100% 75% 88% 100% 88% 63% - 13% 13% 75% - 13% - 25% 

KG 88% - 88% 63% 75% 88% 63% 50% - - 13% 63% 13% 13% 38% 100% 

KE 100% 88% - 75% 88% 100% 88% 63% - 13% 13% 75% 25% 25% - 63% 

Α 75% 63% 75% - 63% 75% 75% 63% - - 13% 88% 25% 25% - 100% 

A 88% 75% 88% 63% - 100% 100% 63% - - 13% 63% 63% 25% - 100% 

C 100% 88% 100% 75% 100% - 88% 63% - - 13% 75% 25% 25% - 100% 

L 88% 63% 88% 75% 100% 88% - 63% - - 13% 75% 38% 13% 100% 100% 

mATP 63% 50% 63% 63% 63% 63% 63% - - - 13% 63% 38% 13% 75% 100% 

t1 - - - - - - - - - - - - - - 100% 100% 

t2 13% - 13% - - - - - - - - - - - 100% 100% 

fE 13% 13% 13% 13% 13% 13% 13% 13% - - - 13% 13% 13% 13% 13% 

fGL 75% 63% 75% 88% 63% 75% 75% 63% - - 13% - 25% 13% 38% 88% 

fC - 13% 25% 25% 63% 25% 38% 38% - - 13% 25% - 13% - - 

fL 13% 13% 25% 25% 25% 25% 13% 13% - - 13% 13% 13% - - - 

 

 

 

4.1.2 Sensitivity Analysis 

Regarding the average sensitivity, in aerobic cultivations the 5 parameters that did not 

had an impact in any of the model’s state variables for almost all experiments were 

mATP, t1, t2, vE and vGL (Table 4-1A); whereas in anaerobic cultivations, the insensitive 

parameters were l, mATP, t1 and t2 (Table 4-1B). The ATP maintenance and both 

expression thresholds (mATP, t1 and t2) showed to be insensitive to all state variables in 

most of the fermentations, regardless of the oxygen conditions, thus not being useful for 

calibration of S. cerevisiae dFBA models. vE and vGL showed also to be insensitive, and 

because they were both correlated with αF, the latter one should be preferred for 

calibration. Finally, l appears as a non-sensitive parameter only in anaerobic 

fermentations, possibly as a consequence that, under these conditions, ergosterol and 

fatty acids are supplied to the medium; and therefore there is sufficient lipid availability 

regardless of the requirements for biomass formation. 
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4.1.3 Significance Analysis 

Finally, results for significance indicate that most of the parameters have CCs larger 

than 2, i.e. they are not significantly different from zero, in the majority of the 

calibrations. The more significantly estimated parameters were vGmax, fE, fGL, fC, fL, vC 

and vL for the aerobic cultures (Table 4-1A); and vGmax, fE, fC and fL for the anaerobic 

cultures (Table 4-1B). However, as mentioned before, significance tests depend on the 

number of estimated parameters, in contrast to sensitivity and identifiability analyses. 

Therefore, several significance problems were expected at this level. After fixing a 

group of the parameters, using other criteria such as sensitivity or identifiability (as 

performed in the next section), the CCs of the remaining parameters should decrease, 

obtaining models with significant and sensitive parameters, as well as without 

correlations between them. 

 

4.2 Reparameterization Results 

4.2.1 Parameter Solutions 

The iterative procedure described in Materials and Methods was applied to each of the 

16 experimental cultivations. Thanks to the heuristic criteria described above, we 

obtained non-problematic solutions after an average of 6,232 iterations for aerobic and 

1,858 iterations for anaerobic cultivations, which are respectively 1.2% and 11.3% of the 

total amount of possible combinations (Figure 4-1 and Figure 4-2). For each group of 

non-problematic solutions, we chose the one with the lowest average CC; and then, for 

each selected solution, we repeated the parameter estimation. Table A-3 shows all the 

non-problematic solutions obtained, and Table 4-2 indicates the best choices for each of 

the 16 analysis after the second calibration.  
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Figure 4-1: The average number of iterations performed by the procedure for aerobic 

cultivations is displayed in a logarithmic scale, along with all possible combinations and 

the non-problematic solutions achieved. The total number of combinations was 

calculated in each case as (
𝟏𝟗
𝐢

), where 19 is the total number of parameters and i is the 

corresponding number of fixed parameters. 

Overall, the production and consumption parameters are most of the times non-fixed, for 

both aerobic and anaerobic cultivations. In the aerobic case, the most repeated non-fixed 

parameters were fC, fL, vC (present in 7/8 of the aerobic datasets), vL (6/8), fGL (4/8) and 

vGmax, α, fE and αF (3/8) (Table 4-2A). In the anaerobic case, the most repeated non-

fixed parameters were vGmax (present in all anaerobic datasets), fE, fL (6/8), fC (3/8) and 

α (2/8) (Table 4-2B). In contrast, both gene expression thresholds (t1 and t2) and two of 
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the biomass requirements (a and l) were not chosen as fitting parameters in any of the 

aerobic or anaerobic calibrations. ATP maintenance (mATP) and the carbohydrate 

requirement (c) were not chosen as well as non-fixed parameters in any anaerobic 

condition, and only chosen once in the aerobic cultivations. 

 

 

Figure 4-2: The average number of iterations performed by the procedure for anaerobic 

cultivations is displayed in a logarithmic scale, along with all possible combinations and 

the non-problematic solutions achieved. The total number of combinations was 

calculated in each case as (
𝟏𝟒
𝐢

), where 14 is the total number of parameters and i is the 

corresponding number of fixed parameters. 

These results, together with the analyses already presented of the initial calibrations (see 

Pre/post Regression Results) indicate that in order to adequately calibrate a dFBA 

model, information such as ATP maintenance, biomass composition, and transcriptomic 

data is redundant if the kinetic productions and consumptions are already considered in 
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the parameter estimation. This is consistent with previous observations on the sensitivity 

of the biomass components (Varma & Palsson, 1993) and gene expression data (Hjersted 

& Henson, 2009). However, we expanded here those results by considering also 

significance and identifiability criteria, so the assessment is made now from a broader 

point of view. 

Table 4-2:  The fixed and estimated parameters are presented along with their CC (only 

for the estimated parameters), after applying the pre/post regression procedure in the (A) 

aerobic cultivations and (B) anaerobic cultivations. 

(A) 

N30 EC1118 

Slow Feed Fast Feed Slow Feed Fast Feed 

1 2 3 4 5 6 7 8 

k CC k CC k CC k CC k CC k CC k CC k CC 

𝐯𝐆𝐦𝐚𝐱 1.35E+01 0.208 2.20E+01 - 1.59E+01 - 9.95E+00 - 1.47E+01 0.078 2.45E+01 0.043 1.58E+01 - 2.25E+01 - 

𝐊𝐆 5.30E+00 - 1.38E+00 0.007 2.67E+00 - 1.98E-01 - 3.05E+00 - 3.66E+00 - 6.86E-01 0.056 8.81E-01 - 

𝐊𝐄 2.23E+01 - 1.99E+01 - 1.42E+01 0.265 2.96E+01 0.002 1.58E+01 - 3.60E+00 - 2.53E+01 - 6.74E+00 - 

𝛂 8.75E-01 - 7.14E-01 - 1.98E-01 - 4.05E-01 - 8.71E-01 0.063 1.97E-01 - 6.00E-01 0.067 8.95E-01 0.501 

𝐚 5.81E-01 - 6.20E-01 - 6.12E-01 - 2.12E+00 - 5.06E-01 - 9.34E-01 - 6.19E-01 - 1.55E+00 - 

𝐜 8.19E-01 - 5.47E-01 - 1.12E+00 - 5.05E-01 - 1.65E+00 0.064 1.06E+00 - 5.82E-01 - 2.23E+00 - 

𝐥 1.89E+00 - 1.60E+00 - 1.63E+00 - 2.11E+00 - 2.11E+00 - 1.33E+00 - 2.47E+00 - 2.82E+00 - 

𝐦𝐀𝐓𝐏 9.39E-05 - 1.85E-06 - 6.17E-03 - 1.92E-06 - 2.93E-02 - 1.20E+00 0.071 1.99E-06 - 1.99E-06 - 

𝐭𝟏 3.12E+00 - 4.33E+00 - 8.88E-01 - 1.75E-01 - 4.26E+00 - 6.84E-01 - 5.53E+00 - 4.03E+00 - 

𝐭𝟐 8.49E+01 - 7.50E+01 - 8.42E+01 - 8.74E+01 - 7.97E+01 - 9.13E+01 - 9.80E+01 - 7.57E+01 - 

𝐟𝐄 1.22E+00 0.036 1.59E+00 - 2.89E-02 - 1.93E-02 - 1.43E+00 - 9.32E-03 0.091 1.49E+00 - 1.21E+00 0.326 

𝐟𝐆𝐋 1.61E-01 0.123 9.87E-02 - 5.57E-02 - 1.03E-08 - 2.23E-02 0.765 9.56E-07 - 3.38E-02 0.164 7.34E-03 1.107 

𝐟𝐂 4.74E-02 0.170 4.52E-02 - 3.68E-02 0.462 4.13E-02 0.006 8.18E-03 0.418 6.95E-03 0.036 5.16E-03 0.180 6.10E-03 0.322 

𝐟𝐋 7.91E-02 0.133 8.44E-02 - 1.04E-01 0.007 8.09E-02 0.007 1.77E-02 0.073 2.41E-02 0.400 1.60E-02 0.063 2.05E-02 0.146 

𝛂𝐅 1.02E-01 - 1.14E-01 0.047 1.18E-01 - 4.34E-01 - 8.89E-01 - 5.14E-01 0.258 5.33E-01 - 3.41E-01 1.496 

𝐯𝐄 -2.78E+00 - -9.88E+00 - -5.03E+00 - 1.17E-01 - -3.96E+00 - -9.42E+00 - -7.67E+00 - -3.53E+00 - 

𝐯𝐆𝐋 -6.13E+00 - -4.38E+00 - -8.40E+00 - -1.26E+00 - -3.56E+00 - -7.89E+00 - -6.93E+00 - -3.65E-01 - 

𝐯𝐂 2.73E-01 0.706 1.47E-01 0.040 2.26E-01 0.734 1.58E-01 0.310 3.75E-02 0.646 1.34E-01 0.224 7.91E-02 0.181 5.72E-02 - 

𝐯𝐋 1.82E-01 0.863 3.01E-01 0.730 6.88E-02 - 1.42E-01 0.401 2.47E-01 0.251 4.78E-01 0.231 2.07E-01 0.185 2.81E-01 - 
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(B) 

N30 EC1118 

Low G0 Large G0 Low G0 Large G0 

1 2 3 4 5 6 7 8 

K CC k CC k CC k CC k CC k CC k CC k CC 

𝐯𝐆𝐦𝐚𝐱 2.74E+01 0.043 1.95E+01 0.004 2.58E+01 0.020 2.86E+01 0.016 2.94E+01 0.018 1.67E+01 0.028 2.17E+01 0.019 2.06E+01 0.010 

𝐊𝐆 1.57E+00 - 1.12E-02 - 5.35E-02 - 4.38E+00 - 6.86E-02 - 3.01E-01 - 5.67E+00 - 6.44E+00 - 

𝐊𝐄 1.20E+01 - 2.47E+01 - 2.01E+01 - 1.55E+01 - 9.03E+00 - 2.79E+01 - 3.27E+01 - 3.13E+01 - 

𝛂 9.04E-01 - 7.91E-01 - 6.32E-01 - 6.23E-01 - 8.36E-01 - 9.69E-01 0.009 8.74E-01 - 9.32E-01 0.014 

𝐚 8.90E-01 - 1.22E+00 - 7.82E-01 - 8.63E-01 - 7.51E-01 - 1.54E+00 - 8.00E-01 - 1.61E+00 - 

𝐜 9.21E-01 - 1.58E+00 - 1.11E+00 - 6.95E-01 - 6.59E-01 - 7.08E-01 - 7.05E-01 - 6.06E-01 - 

𝐥 2.77E+00 - 3.00E+00 - 2.40E+00 - 2.28E+00 - 2.76E+00 - 1.24E+00 - 1.94E+00 - 2.29E+00 - 

𝐦𝐀𝐓𝐏 9.64E-02 - 1.45E-06 - 4.07E-07 - 9.44E-02 - 1.74E-06 - 4.04E-07 - 3.60E-05 - 6.76E-07 - 

𝐭𝟏 5.89E-01 - 5.28E+00 - 4.55E+00 - 4.21E+00 - 1.82E+00 - 7.09E-03 - 4.76E+00 - 4.37E+00 - 

𝐭𝟐 9.81E+01 - 8.30E+01 - 9.77E+01 - 8.93E+01 - 8.49E+01 - 9.96E+01 - 9.48E+01 - 9.81E+01 - 

𝐟𝐄 1.48E+00 0.068 1.36E+00 0.017 1.32E+00 0.106 1.44E+00 - 1.39E+00 0.013 3.81E-01 - 1.34E+00 0.059 1.41E+00 0.001 

𝐟𝐆𝐋 4.44E-03 - 1.10E-07 - 2.74E-02 - 2.24E-01 - 1.85E-01 - 1.07E-01 - 4.35E-02 - 7.04E-08 - 

𝐟𝐂 1.51E-02 - 4.65E-02 - 1.98E-02 - 3.79E-02 - 3.89E-02 0.114 3.06E-02 0.076 3.48E-02 - 3.27E-02 0.009 

𝐟𝐋 1.08E-01 0.165 1.08E-01 - 6.87E-02 0.098 7.28E-02 - 2.42E-02 0.142 2.11E-02 0.094 1.95E-02 0.043 2.14E-02 0.001 

 

 

4.2.2 Fittings 

Table 4-3 displays the objective function values obtained before and after each 

reparameterization analysis, showing in most cases a small improvement in the 

calibration, which is expected because it is the same parameter estimation but with fewer 

parameters to estimate, and with the non-estimated parameters fixed at the values 

obtained with the first optimization. Because the global optimum of the problem is not 

guaranteed when using metaheuristic optimization, calibrations with a smaller number of 

parameters contribute to explore the search space in more detail, thus obtaining better 

results. Hence, the procedure presented in this work did not only obtain models with no 

sensitivity, identifiability or significance problems, but also slightly improved the fitting 

to the experimental information. 
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Table 4-3: The objective function value is presented for all 16 cultivations, after the 

initial calibration (Initial F) and after applying the iterative procedure (Final F). 

   
Initial F Final F 

Aerobic 

Cultivations 

N30 

Slow feed 
2.30E-03 2.30E-03 

2.88E-03 2.71E-03 

Fast feed 
5.81E-03 5.66E-03 

1.63E-03 1.55E-03 

EC1118 

Slow feed 
4.07E-03 3.63E-03 

9.40E-03 8.14E-03 

Fast feed 
2.23E-03 1.93E-03 

3.66E-03 2.82E-03 

Anaerobic 

Cultivations 

N30 

Small G0 
1.50E-03 1.50E-03 

4.96E-04 4.83E-04 

Large G0 
1.86E-03 1.27E-03 

1.59E-03 1.59E-03 

EC1118 

Small G0 
2.41E-03 2.19E-03 

2.48E-03 2.35E-03 

Large G0 
1.31E-03 1.31E-03 

1.18E-03 1.18E-03 

 

 

The calibrations attained after applying this procedure, together with all the 

experimental measurements of biomass and extracellular metabolites are displayed in 

Figure 4-3 (aerobic cultivations) and Figure 4-4 (anaerobic cultivations). The main 

metabolites detected by HPLC were glucose, citrate, lactate, glycerol and ethanol. 

Acetate, malate, succinate, fructose and trehalose were occasionally detected, but in 

lower concentrations and with significant noise, and were therefore disregarded and not 

included in the analysis. 
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Figure 4-3: (previous page) Calibrations obtained with the dFBA model after applying 

the pre/post regression analysis to the aerobic cultivations. Each graphic displays the 

experimental measures for biomass (♦), glucose (■), ethanol (▲), glycerol (×), citric (+) 

and lactic acid (●), together with the corresponding model prediction (continuous lines), 

for different experimental conditions: (A-B) N30 strain, slow feed. (C-D) N30 strain, 

fast feed. (E-F) EC1118 strain, slow feed. (G-H) EC1118 strain, fast feed. 

Overall, for the aerobic cultivations the procedure successfully calibrated citrate, lactate 

and ethanol, underpredicted biomass (mostly in the fed-batch stage) 5 of 8 times, slightly 

overpredicted glucose 2 of 8 times, and incorrectly predicted glycerol 3 of 8 times. On 

the other hand, the procedure successfully calibrated anaerobic cultivations for all 

variables with the exception of ethanol that was sometimes slightly underpredicted at the 

end of the batch. Clearly, the main issue in calibration was the fed-batch phase for 

aerobic cultivations; additional kinetics or parameters should perhaps be considered in 

the future when calibrating fed-batch cultures with dFBA. Nevertheless, considering 

that, to the best of our knowledge, this is the first time that S. cerevisiae fed-batch 

cultures were calibrated using dFBA, we considered the fitting procedure successful. 

 

As final considerations, we confirmed that not only all parameters are now significant 

(Table 4-2), but also uncorrelated (Table A-4) and have an impact in at least one 

variable of the model (Figure B-1 and Figure B-2). We therefore can ascertain that the 

models developed here have an adequate number of parameters, in the sense that with 

the corresponding parameters, a good fitting is obtained and, at the same time, the 

typical problems of too many model parameters do not arise. However, nothing can be 

said yet about the predictability of the models, because they have not been tested under 

different experimental conditions. Given that we want to find robust models, in the 

following we investigate the predictive capacities of each model.  
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Figure 4-4: (previous page) Calibrations obtained with the dFBA model after applying 

the pre/post regression analysis to the anaerobic cultivations. Each graphic displays the 

experimental measures for biomass (♦), glucose (■), ethanol (▲), glycerol (×), citric (+) 

and lactic acid (●), together with the corresponding model prediction (continuous lines), 

for different experimental conditions: (A-B) N30 strain, small G0. (C-D) N30 strain, 

large G0. (E-F) EC1118 strain, small G0. (G-H) EC1118 strain, large G0. 

 

4.3 Cross-Calibration Results 

The results of the cross-calibration study are displayed in Table 4-4. For both cases 

(aerobic and anaerobic), at least 3 of the 8 different solutions are useful for predicting 

several experimental conditions, i.e. the mean CCC value was close to 1 (solutions 1, 6 

and 8 in the aerobic case (Table 4-4A) and 5, 6 and 8 in the anaerobic case (Table 

4-4B)). The latter suggest that similar fittings can be attained in the different 

experimental conditions using just one of the mentioned solutions for calibration. 

 

Remarkably, several of the CCC values are smaller than 1 (Table 4-4), suggesting that, 

for those cases, a given solution used to calibrate a different experimental dataset 

performed even better than the original solution attained by the procedure. These results 

show the usefulness of our technique and of the cross-calibration approach for obtaining 

good calibrations, which would have not been possible if we had just calibrated the data 

using all the parameters. 
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Table 4-4: The results of the cross calibration are presented for (A) aerobic and (B) 

anaerobic cultivations.  Each CCC was calculated as indicated in Equation 21. The mean 

CCC for each solution is also presented, and the best one for each cultivation condition 

(aerobic/anaerobic) is blackened. 

(A) 
  N30 EC1118 

Mean   Slow feed Fast feed Slow feed Fast feed 

      1 2 3 4 5 6 7 8 

N30 

Slow feed 
1 - 0.91 1.62 2.00 1.61 0.77 1.35 1.14 1.34 

2 2.01 - 3.59 6.05 9.72 6.16 11.66 19.52 8.39 

Fast feed 
3 2.94 3.87 - 1.83 9.24 4.00 15.13 12.32 7.05 

4 2.13 3.09 1.11 - 6.25 2.85 9.29 8.37 4.73 

EC1118 

Slow feed 
5 2.22 0.97 2.44 5.33 - 0.74 1.66 17.31 4.38 

6 2.99 3.78 1.02 1.84 2.07 - 2.85 2.37 2.42 

Fast feed 
7 1.99 3.73 3.52 6.93 0.97 0.72 - 12.48 4.34 

8 1.46 1.32 0.89 1.87 0.79 0.72 1.37 - 1.20 

 

 

(B) 
  N30 EC1118 

Mean   Low G0 Large G0 Low G0 Large G0 

      1 2 3 4 5 6 7 8 

N30 

Low G0 
1 - 15.79 2.45 6.15 4.71 5.99 6.87 12.92 7.84 

2 9.80 - 6.50 2.17 14.66 27.12 31.57 42.33 19.17 

Large G0 
3 2.10 9.18 - 4.32 3.05 2.82 3.83 5.99 4.47 

4 9.12 9.06 5.14 - 10.22 19.34 23.69 30.77 15.33 

EC1118 

Low G0 
5 0.89 1.83 0.99 2.99 - 1.15 1.30 1.83 1.57 

6 1.43 3.58 2.84 2.94 1.50 - 1.44 2.26 2.28 

Large G0 
7 5.38 5.30 3.06 3.53 1.25 1.58 - 4.01 3.45 

8 1.16 1.92 2.65 1.37 1.13 1.47 1.05 - 1.53 

 

 

4.3.1 Best Solutions 

The best solution of the 3 abovementioned calibrations is in each case highlighted in 

yellow in Table 4-4, and is further analyzed in the following. For aerobic cultivations, 
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the best fit corresponds to solution 8, which has as estimated parameters α, fE, fGL, fC, fL, 

and αF (Table 4-2A). This indicates that only using suboptimal growth rates, and 

minimum secondary metabolite production yields, we can generate models that are able 

to fit several aerobic experimental conditions of yeast growth. The rest of the parameters 

not only are not sensitive in the model or are correlated to others, as previously 

mentioned, but also do not vary significantly between conditions. For instance, a glucose 

maximum uptake rate of 22.5 [mmol/gDWh], a saturation constant of 0.881 [g/L] and an 

ethanol inhibition constant of 6.74 [g/L] (eighth column in Table 4-2A) are appropriate 

to represent the glucose consumption rate for most of the conditions explored, if the 

estimated parameters are appropriately fitted. Similar remarks can be said about the 

biomass requirements, the ATP maintenance, the gene expression thresholds and the 

fed-batch minimum secondary metabolite production rates. 

 

On the other hand, solution 8 of the anaerobic cultivations showed to be the best one for 

calibration under different conditions. This set has vGmax, α, fE, fC and fL as the only 

parameters to estimate in order to get good fittings (Table 4-2B). This suggests that 

minimum glycerol production yield is less necessary for calibration for anaerobic 

conditions, differing from the aerobic case, and instead a good estimation of the glucose 

consumption rate is of more importance. Also, in this solution the ethanol inhibition 

constant is considerably larger (31.3 [g/L]) that in aerobic cultivations, which proposes 

that yeast supports higher ethanol concentrations under anoxia. 

 

Although the two abovementioned solutions are highlighted as the best ones for 

explaining different aerobic or anaerobic conditions, respectively, they should not be 

taken as the only alternatives for calibration of new experimental conditions. Using for 

calibration the maximum glucose consumption rate, the ATP maintenance and some fed-

batch minimum secondary metabolite production rates (Table 4-2A), instead of the 

suboptimal growth rate, allowed to attain good fittings also under various aerobic 

conditions (Table 4-4A). Likewise, not including the suboptimal growth rate or the 
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minimum citrate production yield for estimation in anaerobic conditions (Table 4-2B) 

can also be useful for exploring several experimental conditions (Table 4-4B). These 

considerations will be highly relevant when expanding the procedure to other conditions, 

such as other strains or medium compositions. 

 

4.3.2 Nutrient Limitation Importance 

An interesting phenomenon happened in the 4-th anaerobic condition that is worthy to 

mention. As the last measurement was performed before the culture’s glucose limitation 

(Figure 4-4D), the iterative procedure concluded that with just one fitting parameter 

(vGmax), a good calibration to the experimental data was possible (Table 4-2B). 

However, we did not achieve good calibrations in the cross-calibration analysis, with an 

average CCC of 15.33 (Table 4-4B). We can therefore conclude that to achieve reliable 

and predictive models, it is critical to have experimental measurements beyond nutrient 

limitation. 

 

4.3.3 Strain Performance 

As a final comment, the average results between duplicates are also presented (Table 

4-5), in order to visualize more directly tendencies between strains or conditions. 

Overall, the N30 solutions are considerably worse for calibration of the EC1118 cultures 

(upper-right quadrants), than vice versa (lower-left quadrants). This situation could be 

explained because EC1118 is a wine strain that grows in very hostile environments (low 

temperatures, presence of other microorganisms, high ethanol concentrations, etc.), in 

comparison with N30 which has been optimized to work at typical industrial conditions 

(30°C, pH = 5) and separated from other microorganisms. Hence, we propose that a 

dFBA model that represents an optimized yeast strain will be more troublesome to use 

for predicting the behavior of a natural strain, than the other way around. Finally, no 
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visible tendencies were obtained analyzing the different feed strategy groups in the 

aerobic case, or the different medium composition groups in the anaerobic case. 

Table 4-5: Averaged CCCs between duplicates for (A) aerobic and (B) anaerobic 

cultures. 

(A) 
 

N30 EC1118 

  
Slow Fast Slow Fast 

N30 
Slow 1.46 3.32 4.56 8.42 

Fast 3.01 1.47 5.59 11.28 

EC1118 
Slow 2.49 2.66 1.40 6.05 

Fast 3.12 3.30 0.80 6.93 

 

(B)  
N30 EC1118 

  
Low Large Low Large 

N30 
Low 12.79 4.32 13.12 23.43 

Large 7.37 4.73 8.85 16.07 

EC1118 
Low 1.93 2.44 1.33 1.71 

Large 3.92 2.65 1.36 2.53 

 

4.4 Approach Limitations 

There are several assumptions that were made in this study that should be considered in 

order to understand the limitations of the model predictions. Most of them have been 

already mentioned (such as FBA and dFBA assumptions); here we highlight other 

important approximations. 

 

4.4.1 Parameters not Included in the Study 

Some parameters and variables that have also been used in dFBA modeling were 

disregarded from our analysis. First, all parameters associated with oxygen consumption, 

both oxygen transfer rate (OTR) and oxygen uptake rate (OUR) kinetics (Saa, Moenne, 

Pérez-Correa & Agosin, 2012), were not included in the analysis. This was because the 
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fermentations were anaerobic and aerobic glucose-limited, not oxygen-limited. 

Therefore, in the former case there was no oxygen to model, and in the latter case 

oxygen was always available at sufficient concentrations thanks to an efficient control, 

which made dynamic modeling unnecessary (Hanly & Henson, 2011; Hjersted & 

Henson, 2006). In the future, experiments with small amounts of oxygen such as 

microaerobic or oxygen-limited fermentations should be considered in order to include 

in the proposed analysis oxygen parameters, such as 𝑘𝐿𝑎 (OTR) and Monod-type 

kinetics (OUR). 

 

Secondly, as previously mentioned, the growth associated maintenance (GAM) was also 

not included, given its correlation with non-growth associated maintenance (NGAM). 

Likewise, the P/O ratio, valid only for aerobic cultures (when the electron transfer 

system is active), was neither considered, because it is structurally unidentifiable with 

the ATP maintenance (Jouhten et al., 2012). In any case, for fully aerobic conditions, the 

P/O ratio remains constant and has been estimated around 1 using small models based 

on central carbon metabolism (Saks, Ventura-Clapier, Leverve, Rossi & Rigoulet, 1998) 

and also using Yeast 5 (Jouhten et al., 2012). Therefore, microaerobic or oxygen-limited 

fermentations should be performed to study appropriately this parameter. 

 

Proton and nitrogen balances were not included in the analysis because this work 

focused in carbon limitation, and their supply was sufficient to avoid limitation. Finally, 

the CO2 production was also disregarded from the analysis, as measures of specific 

productivity [mmol/gDWh] were not attainable from our experimental setup. This could 

be solved with an additional gas flowmeter in the off-gas (Figure 3-2). 

 

4.4.2 Fed-batch Parameters 

A second consideration is related to the fed-batch stage in aerobic cultivations. Here, the 

specific growth rate was calibrated using a suboptimal parameter (αF), although we 
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simultaneously defined in Equation 14 the feed rate based on a predefined growth rate 

(μset) (Equation 15). Also in Equation 14, we used an experimentally observed glucose 

to biomass yield (YGX), instead of using the yield calculated from the model’s exchange 

reactions. Although these situations appear contradictory, one should bear in mind that 

the deduction of Equation 14 (Villadsen & Patil, 2007) has strong assumptions, such as a 

constant YSX through all the fermentation, and consequently should serve as a tool only 

for defining the feed rate, not directly imposing restrictions to the metabolic model. In 

addition, the metabolic model’s growth rate and glucose consumption values cannot be 

used to define the feed rate, because the parameter estimation cannot be performed until 

the fermentation ends. Therefore, the situation is unavoidable if we are performing just a 

couple of experiments for each condition. 

  

An interesting approach for future experiments, considering the model’s biomass 

underprediction in the fed-batch stage for some cultivations, could be an iterative 

experiment/calibration process, in which we first perform the fermentation, then 

calibrate the data; then redefine the growth rate and the glucose to biomass yield for a 

new fermentation based on the calibration results; and finally iterate until experimental 

and model parameters stabilize at the same value. 

 

4.4.3 Gene Expression Parameters 

Further considerations must be made regarding the gene expression rules proposed. As 

mentioned before, the main assumptions were that the expression was strain 

independent, and the rules remained constant through all fermentation. These 

assumptions were adopted because not enough data was collected to generate more 

elaborated rules. As seen in Table 4-2, the expression thresholds t1 and t2 are almost 

always near 4 and 100%, respectively, which means no gene deletions occurred. In the 

few cases that one of the thresholds was calibrated with a lower value (3 cases in aerobic 

and 2 cases in anaerobic cultures), some unexpressed genes arose (Table A-5), but did 
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not impact the model because the associated enzymes were already inactive (in the 

aerobic case, one of the many glucose transporters, and in the anaerobic case, several 

mitochondrial enzymes of respiration). 

 

Evidently, better methodologies are needed in order to obtain relevant information from 

gene expression in dFBA. An interesting improvement could be to measure gene 

expression through the studied fermentation, and integrate the results in the analysis as 

temporal Boolean rules using a delay parameter, as reported previously (Covert, Knight, 

Reed, Herrgård & Palsson, 2004; Covert, Schilling & Palsson, 2001). This delay 

parameter could be fixed according to literature or also estimated from experimental 

data. Also, additional levels of information such as proteomics, metabolomics and 

fluxomics would probably aid even more in the elucidation of a robust mathematical 

representation of the connection between gene expression and reaction fluxes in dFBA 

modeling. Nevertheless, we once again highlight that using only microarray information 

as constant on/off rules does not provide additional insights if the kinetics of the system 

are well characterized (Hjersted & Henson, 2009). 

 

4.4.4 Additional Considerations 

Two final remarks are necessary at this point. First, it is worthy to mention that the 

presented analysis is based on local sensitivity, identifiability and significance tools. 

Alternatively, one could use global tools such as structural identifiability analysis 

(Balsa-Canto et al., 2010) or bifurcation theory (Kruger, Ratcliffe & Steuer, 2007), but 

would require extensive symbolic manipulations and more intensive computational 

simulations. We overcome this issue by showing through cross-calibration that we can 

attain models that, although locally analyzed, are predictive for different conditions. 

Second, it is important to notice that given the relatively extensive computational time 

that the parameter estimation requires (Table 2-1), the approach is restrained to a 

reasonable number of studied parameters; more parameters will eventually prevent the 
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optimization algorithm to find a good solution. Consequently, future efforts should 

concentrate in adapting the presented methodology to models with more parameters, 

considering that novel models that account for all known cellular process have 

thousands of parameters (Karr et al., 2012). 
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5 CONCLUSION 

Since the first dFBA model was formulated and validated (Mahadevan et al., 2002), 

significant efforts of the metabolic modeling community have been conducted to further 

improve such models (Feng et al., 2010), in order to broaden predictions to different 

conditions and metabolic engineering applications, such as recombinant protein 

production (Meadows et al., 2010; Oddone et al., 2009), overproduction of ethanol 

(Hjersted et al., 2007) and bioremediation (Zhuang et al., 2011). Nonetheless, few 

experimental conditions were explored in most of these works, and there was a lack of 

certainty of which dFBA parameters were relevant and which were not. 

 

Here, we have developed a yeast dFBA model that comprises several parameters, 

kinetics and dynamics traditionally included in this type of models, and novel features 

not accounted until now, such as a sequential optimization (biomass maximization and 

total flux minimization), and parameters such as condition-specific biomass 

requirements, minimum secondary metabolite production rates for both batch and fed-

batch stages, and gene expression thresholds. Also, GSMM Yeast 5 was used here for 

the first time in fed-batch simulations. More importantly, the model presented is the first 

yeast dFBA model in literature to be experimentally validated using aerobic fed-batch 

cultivations. Furthermore, the analysis presented is unique, in the sense that for the first 

time several conditions (aerobic/anaerobic, different strains, etc.) are used for calibration 

of the same model, which gave numerous insights into the behavior of dFBA models and 

yeast metabolism. 

 

We also showed that several sensitivity, identifiability and significance problems arise in 

this kind of models, which can severely hamper their utility, since the parameter 

estimation procedure gets computationally costly and unreliable. To solve this issue, we 

proposed an iterative procedure based on pre/post regression diagnostics that generates 

reparameterizations with problem-free parameters. Moreover, we cross-calibrated these 
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results to obtain solutions that are useful among several experimental conditions. 

Glucose consumption, suboptimal growth rate and secondary metabolite production 

yields were found to be the most important parameters in most cases. Other information, 

like gene expression constant Boolean rules, biomass requirements and ATP 

maintenance is of less relevance when calibrating these models, an observation 

confirmed for the first time from a global perspective. Finally, we have also pinpointed 

improvements in this modeling approach that could further increase performance and 

predictability. 

 

One of the main uses of GSMM models – using both static and dynamic approaches – is 

as a guide for genetic modifications, i.e. knock-outs (gene deletions), knock-ins 

(additions), knock-downs (sub-expressions) or knock-ups (over-expressions), in order to 

overproduce a metabolite of interest  (Alper, Jin, Moxley & Stephanopoulos, 2005; Bro, 

Regenberg, Förster & Nielsen, 2006; Hjersted et al., 2007). To this end, a significant 

amount of computational tools are now available, which using as input a GSMM can 

propose one or more of the mentioned modifications (Copeland et al., 2012; Park et al., 

2009). Still, in order to have confident predictions, the models employed should be 

appropriately calibrated, otherwise erroneous predictions could occur. Therefore, the 

model presented in this work is expected to have important benefits when experimenting 

in silico and designing metabolic engineering strategies. 
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6 ABBREVIATIONS 

ATP  Adenosine triphosphate 

CC  Confidence coefficient 

CCC  Cross calibration coefficient 

CHO  Chinese hamster ovary 

CI  Confidence interval 

COBRA Constraint-based reconstruction and analysis 

DO  Dissolved oxygen 

dFBA  Dynamic flux balance analysis 

eSS  Enhanced scatter search 

FBA  Flux balance analysis 

FIM  Fisher information matrix 

GAM  Growth associated maintenance 

gDW  Gram of dry weight cell 

GSMM Genome-scale metabolic model 

HPLC  High-performance liquid chromatography 

LB  Lower bound 

LP  Linear programming 

NGAM Non-growth associated maintenance 

OD  Optical density 

ODE  Ordinary differential equation 

OTR  Oxygen transfer rate 
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OUR  Oxygen uptake rate 

P&ID  Process and Instrumentation Diagram 

QP  Quadratic programming 

SBML  Systems biology markup language 

SGD  Saccharomyces Genome Database 

SPELL Serial Pattern of Expression Levels Locator 

SSm  Scatter search for Matlab® 

UB  Upper bound 
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7 OUTREACH 

The contents of this thesis were submitted for publication to the journal “Metabolic 

Engineering”. This work was also partially presented in three academic meetings: 

 

 Sánchez, B.J.; Pérez-Correa, J.R.; Agosin, E. Reparametrización de un modelo 

dinámico del metabolismo celular de S. cerevisiae. In: LXXXII Meeting of the 

Chilean Mathematical Society. Olmué, Chile. 7 – 9 Nov., 2013 (oral 

presentation). 

 Sánchez, B.J.; Pérez-Correa, J.R.; Agosin, E.  Reparameterization analysis of a 

S. cerevisiae dynamic genome-scaled metabolic model. In: III Copenhagen 

Bioscience Conference: Cell Factories and Biosustainability. Copenhagen, 

Denmark. 5 – 8 May, 2013 (poster). 

 Sánchez, B.J.; Pérez-Correa, J.R.; Agosin, E. Modelación metabólica dinámica a 

escala genómica para la producción de terpenos en S. cerevisiae. In: I Chilean 

Conference of Biotechnology Engineering Students. Antofagasta, Chile. 17 – 19 

Oct., 2012 (poster). 
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APPENDIX A: SUPPLEMENTARY TABLES 

Table A-1: Calibration comparison between Yeast 5 and Yeast 6 for two typical 

cultivations. The objective function value (F) and the computation time (t) are displayed. 

GSMM used 
Aerobic Fed-batch Anaerobic Batch 

F t F t 

Yeast 5 (Heavner et al., 2012) 2.4E-03 13.1 [h] 1.5E-03 7.2 [h] 

Yeast 6 (Heavner et al., 2013) 5.5E-03 21.2 [h] 1.1E-02 10.6 [h] 
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Table A-2: The SGD names of the essential genes for aerobic and anaerobic growth in 

the genome-scale metabolic model Yeast 5 (Heavner et al., 2012) are presented. The 

genes that are only essential for one condition but not for the other one are highlighted. 

As it has been done regularly (Edwards & Palsson, 2000; Zomorrodi et al., 2012), a gene 

is defined essential if by deleting it (constraining in zero all associated reaction fluxes) 

growth is not achieved when performing FBA. 

Essential Genes for Aerobic Growth Essential Genes for Anaerobic Growth 

YBL033C YEL021W YIL094C YMR296C YAR015W YDR408C YJL088W YNL220W 

YBR029C YER003C YIL116W YMR298W YBL033C YDR454C YJL130C YNL277W 

YBR041W YER023W YIR034C YMR300C YBR029C YDR487C YJL153C YNL316C 

YBR115C YER026C YJL088W YNL003C YBR041W YEL021W YJR016C YNR016C 

YBR126C YER043C YJL130C YNL037C YBR115C YER003C YJR073C YNR050C 

YBR153W YER052C YJL153C YNL220W YBR126C YER005W YJR137C YOL058W 

YBR166C YER055C YJL167W YNL277W YBR153W YER023W YJR139C YOL066C 

YBR192W YER069W YJR016C YNL280C YBR166C YER026C YJR148W YOL140W 

YBR248C YER090W YJR073C YNL316C YBR192W YER043C YKL001C YOL143C 

YBR256C YER091C YJR137C YNR016C YBR196C YER052C YKL004W YOR074C 

YBR265W YFL045C YJR139C YNR043W YBR248C YER055C YKL024C YOR095C 

YCL009C YFR025C YJR148W YNR050C YBR256C YER069W YKL060C YOR128C 

YCL018W YFR030W YKL001C YOL058W YBR265W YER090W YKL067W YOR130C 

YCL030C YGL001C YKL004W YOL066C YCL009C YER091C YKL152C YOR136W 

YCR034W YGL009C YKL024C YOL140W YCL018W YFL045C YKL182W YOR202W 

YCR053W YGL012W YKL067W YOL143C YCL030C YFR025C YKL211C YOR236W 

YDL015C YGL026C YKL182W YOR074C YCR012W YFR030W YKL216W YPL231W 

YDL055C YGL148W YKL211C YOR095C YCR034W YGL009C YLR355C YPR021C 

YDL182W YGL154C YKL216W YOR130C YCR053W YGL026C YLR359W YPR035W 

YDR007W YGL234W YLR100W YOR136W YDL015C YGL148W YLR372W YPR060C 

YDR062W YGR060W YLR355C YOR175C YDL055C YGL154C YLR420W YPR113W 

YDR074W YGR061C YLR359W YOR202W YDL182W YGL234W YML008C YPR167C 

YDR127W YGR175C YLR372W YOR236W YDR007W YGR061C YMR062C YPR183W 

YDR158W YGR204W YLR420W YPL028W YDR062W YGR204W YMR108W  

YDR226W YHR007C YML008C YPL117C YDR074W YGR240C YMR202W  

YDR234W YHR018C YML126C YPL231W YDR127W YHR018C YMR205C  

YDR353W YHR025W YMR062C YPR035W YDR158W YHR025W YMR217W  

YDR354W YHR042W YMR108W YPR060C YDR226W YHR208W YMR296C  

YDR367W YHR072W YMR202W YPR113W YDR234W YIL020C YMR298W  

YDR408C YHR190W YMR208W YPR167C YDR353W YIL094C YMR300C  

YDR454C YHR208W YMR217W YPR183W YDR354W YIL116W YNL003C  

YDR487C YIL020C YMR220W  YDR367W YIR034C YNL037C  
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Table A-3: All solutions with no identifiability, sensitivity and significance problems are 

shown below, for (A) aerobic and (B) anaerobic cultivations. The fixed parameters are 

highlighted, and the chosen solution in each case is highlighted with a bold box. 

(A.1) N30 Strain – Slow Feed – 1 

 
Fixed Parameters mean(CC) 

1 
 

2 3 4 5 6 
 

8 9 10 
     

16 17 
  

3.50E-01 

2 1 
 

3 4 5 6 
 

8 9 10 
     

16 17 
  

3.69E-01 

3 1 2 3 4 5 6 
 

8 9 10 
     

16 17 
  

3.31E-01 

4 1 2 
 

4 5 6 7 8 9 10 
     

16 17 
  

3.07E-01 

5 1 2 
 

4 5 
 

7 8 9 10 11 
    

16 17 
  

3.31E-01 

6 1 2 
 

4 
 

6 7 8 9 10 11 
    

16 17 
  

3.74E-01 

7 
 

2 3 4 5 6 7 8 9 10 
     

16 17 
  

3.01E-01 

8 
 

2 3 4 5 
 

7 8 9 10 11 
    

16 17 
  

3.28E-01 

9 
 

2 3 4 5 6 
 

8 9 10 11 
    

16 17 
  

3.18E-01 

10 1 
 

3 4 5 6 7 8 9 10 
     

16 17 
  

3.07E-01 

11 1 
 

3 4 5 
 

7 8 9 10 11 
    

16 17 
  

3.34E-01 

12 1 
 

3 4 5 6 
 

8 9 10 11 
    

16 17 
  

3.88E-01 

13 1 
 

3 4 5 6 
 

8 9 10 
    

15 16 17 
  

3.57E-01 

14 
 

2 3 4 5 6 
 

8 9 10 
    

15 16 17 
  

3.55E-01 

15 1 2 3 4 5 
 

7 8 9 10 11 
    

16 17 
  

3.36E-01 

16 1 2 3 4 5 6 
 

8 9 10 11 
    

16 17 
  

3.19E-01 

17 1 2 3 4 
 

6 7 8 9 10 11 
    

16 17 
  

3.26E-01 

18 1 2 3 
 

5 6 7 8 9 10 11 
    

16 17 
  

3.06E-01 

19 1 2 
 

4 5 6 7 8 9 10 11 
    

16 17 
  

3.07E-01 

20 
 

2 3 4 5 6 7 8 9 10 11 
    

16 17 
  

3.16E-01 

21 1 
 

3 4 5 6 7 8 9 10 11 
    

16 17 
  

3.13E-01 

22 1 2 3 4 5 6 
 

8 9 10 
    

15 16 17 
  

3.35E-01 

23 1 2 
 

4 5 6 7 8 9 10 
    

15 16 17 
  

3.07E-01 

24 1 2 
 

4 5 
 

7 8 9 10 11 
   

15 16 17 
  

3.32E-01 

25 1 2 
 

4 
 

6 7 8 9 10 11 
   

15 16 17 
  

3.83E-01 

26 1 
 

3 4 5 6 7 8 9 10 
    

15 16 17 
  

3.06E-01 

27 1 
 

3 4 5 
 

7 8 9 10 11 
   

15 16 17 
  

3.35E-01 

28 1 
 

3 4 5 6 
 

8 9 10 11 
   

15 16 17 
  

3.75E-01 

29 
 

2 3 4 5 6 7 8 9 10 
    

15 16 17 
  

3.01E-01 

30 
 

2 3 4 5 
 

7 8 9 10 11 
   

15 16 17 
  

3.29E-01 

31 
 

2 3 4 5 6 
 

8 9 10 11 
   

15 16 17 
  

3.19E-01 

32 1 2 3 4 5 
 

7 8 9 10 11 
   

15 16 17 
  

3.39E-01 

33 1 2 3 4 5 6 
 

8 9 10 11 
   

15 16 17 
  

3.21E-01 

34 1 2 3 4 
 

6 7 8 9 10 11 
   

15 16 17 
  

3.30E-01 

35 1 2 3 
 

5 6 7 8 9 10 11 
   

15 16 17 
  

3.06E-01 

36 1 2 
 

4 5 6 7 8 9 10 11 
   

15 16 17 
  

3.09E-01 

37 1 
 

3 4 5 6 7 8 9 10 11 
   

15 16 17 
  

3.15E-01 

38 
 

2 3 4 5 6 7 8 9 10 11 
   

15 16 17 
  

3.18E-01 
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(A.2) N30 Strain – Slow Feed – 2 

 
Fixed Parameters mean(CC) 

1 1 
 

3 4 5 6 7 8 9 10 11 12 
 

14 
 

16 17 
  

9.69E-02 

2 
 

2 3 4 5 6 7 8 9 10 11 12 
 

14 
 

16 17 
  

1.02E-01 

3 
 

2 3 4 5 6 
 

8 9 10 11 12 13 14 
 

16 17 
  

1.06E-01 

4 1 2 3 4 5 6 
 

8 9 10 11 12 13 14 
 

16 17 
  

7.71E-02 

5 1 2 3 4 5 
 

7 8 9 10 11 12 13 14 
 

16 17 
  

9.72E-02 

6 1 2 3 4 
 

6 7 8 9 10 11 12 13 14 
 

16 17 
  

7.66E-02 

7 1 2 3 
 

5 6 7 8 9 10 11 12 13 14 
 

16 17 
  

7.94E-02 

8 1 2 
 

4 5 6 7 8 9 10 11 12 13 14 
 

16 17 
  

7.24E-02 

9 1 
 

3 4 5 6 7 8 9 10 11 12 13 14 
 

16 17 
  

7.24E-02 

10 
 

2 3 4 5 6 7 8 9 10 11 12 13 14 
 

16 17 
  

9.40E-02 
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(A.3) N30 Strain – Fast Feed – 1 

 
Fixed Parameters mean(CC) 

1 1 2 
 

4 5 6 7 8 9 10 
     

16 17 
  

1.34E-01 

2 1 2 
 

4 5 6 
 

8 9 10 11 
    

16 17 
  

1.23E-01 

3 1 2 
 

4 5 
 

7 8 9 10 11 
    

16 17 
  

2.11E-01 

4 1 2 
 

4 
 

6 7 8 9 10 11 
    

16 17 
  

1.63E-01 

5 1 
 

3 4 5 6 7 8 9 10 
     

16 17 
  

1.36E-01 

6 1 
 

3 4 5 6 
 

8 9 10 11 
    

16 17 
  

1.23E-01 

7 1 
 

3 4 5 
 

7 8 9 10 11 
    

16 17 
  

2.10E-01 

8 1 
 

3 4 
 

6 7 8 9 10 11 
    

16 17 
  

2.04E-01 

9 1 
 

3 
 

5 6 7 8 9 10 11 
    

16 17 
  

1.23E-01 

10 
 

2 3 4 5 6 7 8 9 10 
     

16 17 
  

1.42E-01 

11 
 

2 3 4 5 6 
 

8 9 10 11 
    

16 17 
  

1.23E-01 

12 
 

2 3 4 5 
 

7 8 9 10 11 
    

16 17 
  

2.19E-01 

13 
 

2 3 4 
 

6 7 8 9 10 11 
    

16 17 
  

1.48E-01 

14 
 

2 3 
 

5 6 7 8 9 10 11 
    

16 17 
  

1.29E-01 

15 1 2 3 4 5 6 7 8 9 10 
     

16 17 
  

1.17E-01 

16 1 2 3 4 5 6 
 

8 9 10 11 
    

16 17 
  

1.09E-01 

17 1 2 3 4 5 
 

7 8 9 10 11 
    

16 17 
  

1.70E-01 

18 1 2 3 4 
 

6 7 8 9 10 11 
    

16 17 
  

1.40E-01 

19 1 2 3 
 

5 6 7 8 9 10 11 
    

16 17 
  

9.71E-02 

20 1 2 
 

4 5 6 7 8 9 10 11 
    

16 17 
  

1.19E-01 

21 1 
 

3 4 5 6 7 8 9 10 11 
    

16 17 
  

1.19E-01 

22 
 

2 3 4 5 6 7 8 9 10 11 
    

16 17 
  

1.26E-01 

23 1 2 
 

4 5 6 7 8 9 10 
    

15 16 17 
  

8.95E-02 

24 1 2 
 

4 5 6 
 

8 9 10 11 
   

15 16 17 
  

7.88E-02 

25 1 2 
 

4 5 
 

7 8 9 10 11 
   

15 16 17 
  

1.72E-01 

26 1 2 
 

4 
 

6 7 8 9 10 11 
   

15 16 17 
  

1.30E-01 

27 1 
 

3 4 5 6 7 8 9 10 
    

15 16 17 
  

1.01E-01 

28 1 
 

3 4 5 6 
 

8 9 10 11 
   

15 16 17 
  

8.96E-02 

29 1 
 

3 4 5 
 

7 8 9 10 11 
   

15 16 17 
  

1.90E-01 

30 1 
 

3 4 
 

6 7 8 9 10 11 
   

15 16 17 
  

1.89E-01 

31 1 
 

3 
 

5 6 7 8 9 10 11 
   

15 16 17 
  

9.33E-02 

32 
 

2 3 4 5 6 7 8 9 10 
    

15 16 17 
  

1.10E-01 

33 
 

2 3 4 5 6 
 

8 9 10 11 
   

15 16 17 
  

8.67E-02 

34 
 

2 3 4 5 
 

7 8 9 10 11 
   

15 16 17 
  

1.89E-01 

35 
 

2 3 4 
 

6 7 8 9 10 11 
   

15 16 17 
  

1.19E-01 

36 
 

2 3 
 

5 6 7 8 9 10 11 
   

15 16 17 
  

8.59E-02 

37 1 2 3 4 5 6 7 8 9 10 
    

15 16 17 
  

8.07E-02 

38 1 2 3 4 5 6 
 

8 9 10 11 
   

15 16 17 
  

7.68E-02 

39 1 2 3 4 5 
 

7 8 9 10 11 
   

15 16 17 
  

1.50E-01 

40 1 2 3 4 
 

6 7 8 9 10 11 
   

15 16 17 
  

1.04E-01 

41 1 2 3 
 

5 6 7 8 9 10 11 
   

15 16 17 
  

7.57E-02 

42 1 2 
 

4 5 6 7 8 9 10 11 
   

15 16 17 
  

6.45E-02 

43 1 
 

3 4 5 6 7 8 9 10 11 
   

15 16 17 
  

7.97E-02 

44 
 

2 3 4 5 6 7 8 9 10 11 
   

15 16 17 
  

8.34E-02 
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(A.4) N30 Strain – Fast Feed – 2 

 
Fixed Parameters mean(CC) 

1 1 2 
 

4 5 6 7 8 9 10 11 
   

15 16 17 
  

1.85E-01 

2 1 2 
 

4 5 6 7 8 9 10 11 
    

16 17 
  

1.79E-01 

3 1 2 
 

4 5 6 7 8 9 10 
 

12 
  

15 16 17 
  

1.87E-01 

4 1 2 
 

4 5 6 7 8 9 10 
 

12 
   

16 17 
  

1.81E-01 

5 1 2 
 

4 5 6 
 

8 9 10 11 12 
  

15 16 17 
  

1.89E-01 

6 1 2 
 

4 5 6 
 

8 9 10 11 12 
   

16 17 
  

1.84E-01 

7 1 2 
 

4 5 
 

7 8 9 10 11 12 
  

15 16 17 
  

1.93E-01 

8 1 2 
 

4 5 
 

7 8 9 10 11 12 
   

16 17 
  

1.87E-01 

9 1 2 
 

4 
 

6 7 8 9 10 11 12 
  

15 16 17 
  

1.92E-01 

10 1 2 
 

4 
 

6 7 8 9 10 11 12 
   

16 17 
  

1.87E-01 

11 1 2 
  

5 6 7 8 9 10 11 12 
  

15 16 17 
  

1.91E-01 

12 1 2 
  

5 6 7 8 9 10 11 12 
   

16 17 
  

1.84E-01 

13 
 

2 3 4 5 6 7 8 9 10 11 
   

15 16 17 
  

1.86E-01 

14 
 

2 3 4 5 6 7 8 9 10 11 
    

16 17 
  

1.82E-01 

15 
 

2 3 4 5 6 7 8 9 10 
 

12 
  

15 16 17 
  

1.88E-01 

16 
 

2 3 4 5 6 7 8 9 10 
 

12 
   

16 17 
  

1.81E-01 

17 
 

2 3 4 5 6 
 

8 9 10 11 12 
  

15 16 17 
  

1.91E-01 

18 
 

2 3 4 5 6 
 

8 9 10 11 12 
   

16 17 
  

1.85E-01 

19 
 

2 3 4 5 
 

7 8 9 10 11 12 
  

15 16 17 
  

1.91E-01 

20 
 

2 3 4 5 
 

7 8 9 10 11 12 
   

16 17 
  

1.84E-01 

21 
 

2 3 4 
 

6 7 8 9 10 11 12 
  

15 16 17 
  

1.92E-01 

22 
 

2 3 4 
 

6 7 8 9 10 11 12 
   

16 17 
  

1.86E-01 

23 
 

2 3 
 

5 6 7 8 9 10 11 12 
  

15 16 17 
  

1.90E-01 

24 
 

2 3 
 

5 6 7 8 9 10 11 12 
   

16 17 
  

1.83E-01 

25 1 
 

3 4 5 6 7 8 9 10 11 
   

15 16 17 
  

1.89E-01 

26 1 
 

3 4 5 6 7 8 9 10 11 
    

16 17 
  

1.85E-01 

27 1 
 

3 4 5 6 7 8 9 10 
 

12 
  

15 16 17 
  

1.89E-01 

28 1 
 

3 4 5 6 7 8 9 10 
 

12 
   

16 17 
  

1.81E-01 

29 1 
 

3 4 5 6 
 

8 9 10 11 12 
  

15 16 17 
  

1.91E-01 

30 1 
 

3 4 5 6 
 

8 9 10 11 12 
   

16 17 
  

1.85E-01 

31 1 
 

3 4 
 

6 7 8 9 10 11 12 
  

15 16 17 
  

1.92E-01 

32 1 
 

3 4 
 

6 7 8 9 10 11 12 
   

16 17 
  

1.86E-01 

33 1 
 

3 
 

5 6 7 8 9 10 11 12 
  

15 16 17 
  

1.89E-01 

34 1 
 

3 
 

5 6 7 8 9 10 11 12 
   

16 17 
  

1.82E-01 

35 1 
 

3 4 5 
 

7 8 9 10 11 12 
  

15 16 17 
  

1.88E-01 

36 1 
 

3 4 5 
 

7 8 9 10 11 12 
   

16 17 
  

1.81E-01 
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(A.5) EC1118 Strain – Slow Feed – 1 

 
Fixed Parameters mean(CC) 

1 1 2 
 

4 5 
 

7 
 

9 10 
     

16 17 
  

2.92E-01 

2 1 2 
 

4 5 
  

8 9 10 
     

16 17 
  

5.64E-01 

3 1 2 
  

5 
 

7 
 

9 10 11 
    

16 17 
  

3.56E-01 

4 1 2 
  

5 
  

8 9 10 11 
    

16 17 
  

5.92E-01 

5 1 
 

3 4 5 
 

7 
 

9 10 
     

16 17 
  

3.48E-01 

6 1 
 

3 4 5 
  

8 9 10 
     

16 17 
  

5.75E-01 

7 1 
 

3 
 

5 
 

7 
 

9 10 11 
    

16 17 
  

3.57E-01 

8 1 
 

3 
 

5 
  

8 9 10 11 
    

16 17 
  

5.90E-01 

9 
 

2 3 4 5 
 

7 
 

9 10 
     

16 17 
  

3.94E-01 

10 
 

2 3 4 5 
  

8 9 10 
     

16 17 
  

4.43E-01 

11 
 

2 3 
 

5 
 

7 
 

9 10 11 
    

16 17 
  

3.93E-01 

12 
 

2 3 
 

5 
  

8 9 10 11 
    

16 17 
  

4.73E-01 

13 1 2 
 

4 
 

6 7 
 

9 10 
     

16 17 
  

3.05E-01 

14 1 2 
   

6 7 
 

9 10 11 
    

16 17 
  

3.16E-01 

15 1 
 

3 4 
 

6 7 
 

9 10 
     

16 17 
  

4.24E-01 

16 1 
 

3 
  

6 7 
 

9 10 11 
    

16 17 
  

3.74E-01 

17 
 

2 3 4 
 

6 7 
 

9 10 
     

16 17 
  

2.70E-01 

18 
 

2 3 
  

6 7 
 

9 10 11 
    

16 17 
  

3.21E-01 

19 1 2 
 

4 5 6 
 

8 9 10 
     

16 17 
  

5.16E-01 

20 1 2 
 

4 
 

6 7 8 9 10 
     

16 17 
  

2.68E-01 

21 1 2 
 

4 5 
 

7 8 9 10 
     

16 17 
  

2.56E-01 

22 1 2 
  

5 6 
 

8 9 10 11 
    

16 17 
  

5.75E-01 

23 1 2 
   

6 7 8 9 10 11 
    

16 17 
  

2.89E-01 

24 1 2 
  

5 
 

7 8 9 10 11 
    

16 17 
  

2.04E-01 

25 1 
 

3 4 5 6 
 

8 9 10 
     

16 17 
  

3.14E-01 

26 1 
 

3 4 
 

6 7 8 9 10 
     

16 17 
  

3.86E-01 

27 1 
 

3 4 5 
 

7 8 9 10 
     

16 17 
  

2.07E-01 

28 1 
 

3 
 

5 6 
 

8 9 10 11 
    

16 17 
  

5.14E-01 

29 1 
 

3 
  

6 7 8 9 10 11 
    

16 17 
  

3.63E-01 

30 1 
 

3 
 

5 
 

7 8 9 10 11 
    

16 17 
  

2.13E-01 

31 
 

2 3 4 5 6 
 

8 9 10 
     

16 17 
  

2.47E-01 

32 
 

2 3 4 
 

6 7 8 9 10 
     

16 17 
  

2.49E-01 

33 
 

2 3 4 5 
 

7 8 9 10 
     

16 17 
  

1.55E-01 

34 
 

2 3 
 

5 6 
 

8 9 10 11 
    

16 17 
  

3.81E-01 

35 
 

2 3 
  

6 7 8 9 10 11 
    

16 17 
  

2.25E-01 

36 
 

2 3 
 

5 
 

7 8 9 10 11 
    

16 17 
  

2.01E-01 

37 1 2 
 

4 5 
 

7 
 

9 10 
    

15 16 17 
  

2.09E-01 

38 1 2 
 

4 5 
  

8 9 10 
    

15 16 17 
  

5.15E-01 

39 1 2 
 

4 
 

6 7 
 

9 10 
    

15 16 17 
  

2.38E-01 

40 1 2 
  

5 
 

7 
 

9 10 11 
   

15 16 17 
  

1.70E-01 

41 1 2 
  

5 
  

8 9 10 11 
   

15 16 17 
  

5.37E-01 

42 1 2 
   

6 7 
 

9 10 11 
   

15 16 17 
  

2.02E-01 

43 1 
 

3 4 5 
 

7 
 

9 10 
    

15 16 17 
  

2.09E-01 

44 1 
 

3 4 5 
  

8 9 10 
    

15 16 17 
  

2.84E-01 

45 1 
 

3 4 
 

6 7 
 

9 10 
    

15 16 17 
  

2.31E-01 

46 1 
 

3 
 

5 
 

7 
 

9 10 11 
   

15 16 17 
  

1.82E-01 

47 1 
 

3 
 

5 
  

8 9 10 11 
   

15 16 17 
  

3.22E-01 

48 1 
 

3 
  

6 7 
 

9 10 11 
   

15 16 17 
  

1.92E-01 

49 
 

2 3 4 5 
 

7 
 

9 10 
    

15 16 17 
  

1.66E-01 
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50 
 

2 3 4 5 
  

8 9 10 
    

15 16 17 
  

2.74E-01 

51 
 

2 3 4 
 

6 7 
 

9 10 
    

15 16 17 
  

1.90E-01 

52 
 

2 3 
 

5 
 

7 
 

9 10 11 
   

15 16 17 
  

1.77E-01 

53 
 

2 3 
 

5 
  

8 9 10 11 
   

15 16 17 
  

4.39E-01 

54 
 

2 3 
  

6 7 
 

9 10 11 
   

15 16 17 
  

2.16E-01 

55 1 2 
 

4 5 6 7 
 

9 10 
     

16 17 
  

1.99E-01 

56 1 2 
  

5 6 7 
 

9 10 11 
    

16 17 
  

1.58E-01 

57 1 
 

3 4 5 6 7 
 

9 10 
     

16 17 
  

2.33E-01 

58 1 
 

3 
 

5 6 7 
 

9 10 11 
    

16 17 
  

1.63E-01 

59 
 

2 3 4 5 6 7 
 

9 10 
     

16 17 
  

1.58E-01 

60 
 

2 3 
 

5 6 7 
 

9 10 11 
    

16 17 
  

1.93E-01 

61 1 2 
 

4 5 6 7 
 

9 10 
    

15 16 17 
  

1.73E-01 

62 1 2 
 

4 5 6 
 

8 9 10 
    

15 16 17 
  

3.99E-01 

63 1 2 
 

4 
 

6 7 8 9 10 
    

15 16 17 
  

1.71E-01 

64 1 2 
 

4 5 
 

7 8 9 10 
    

15 16 17 
  

1.56E-01 

65 1 2 
  

5 6 7 
 

9 10 11 
   

15 16 17 
  

1.45E-01 

66 1 2 
  

5 6 
 

8 9 10 11 
   

15 16 17 
  

4.83E-01 

67 1 2 
   

6 7 8 9 10 11 
   

15 16 17 
  

1.52E-01 

68 1 2 
  

5 
 

7 8 9 10 11 
   

15 16 17 
  

1.32E-01 

69 1 
 

3 4 5 6 7 
 

9 10 
    

15 16 17 
  

1.60E-01 

70 1 
 

3 4 5 6 
 

8 9 10 
    

15 16 17 
  

2.16E-01 

71 1 
 

3 4 
 

6 7 8 9 10 
    

15 16 17 
  

1.38E-01 

72 1 
 

3 4 5 
 

7 8 9 10 
    

15 16 17 
  

1.94E-01 

73 1 
 

3 
 

5 6 7 
 

9 10 11 
   

15 16 17 
  

1.20E-01 

74 1 
 

3 
 

5 6 
 

8 9 10 11 
   

15 16 17 
  

2.61E-01 

75 1 
 

3 
  

6 7 8 9 10 11 
   

15 16 17 
  

1.41E-01 

76 1 
 

3 
 

5 
 

7 8 9 10 11 
   

15 16 17 
  

1.71E-01 

77 
 

2 3 4 5 6 7 
 

9 10 
    

15 16 17 
  

1.58E-01 

78 
 

2 3 4 5 6 
 

8 9 10 
    

15 16 17 
  

2.57E-01 

79 
 

2 3 4 
 

6 7 8 9 10 
    

15 16 17 
  

1.48E-01 

80 
 

2 3 4 5 
 

7 8 9 10 
    

15 16 17 
  

1.28E-01 

81 
 

2 3 
 

5 6 7 
 

9 10 11 
   

15 16 17 
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(A.6) EC1118 Strain – Slow Feed – 2 
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(A.7) EC1118 Strain – Fast Feed – 1 

 
Fixed Parameters mean(CC) 

1 
  

3 4 5 6 
 

8 9 10 
     

16 17 
  

2.59E-01 

2 
  

3 4 5 
 

7 8 9 10 
     

16 17 
  

2.44E-01 

3 
  

3 4 
 

6 7 8 9 10 
     

16 17 
  

2.32E-01 

4 1 
  

4 5 6 
 

8 9 10 
     

16 17 
  

3.60E-01 

5 1 
  

4 5 
 

7 8 9 10 
     

16 17 
  

4.43E-01 

6 1 
  

4 
 

6 7 8 9 10 
     

16 17 
  

3.28E-01 

7 1 
 

3 4 5 6 
 

8 9 10 
     

16 17 
  

2.32E-01 

8 1 
 

3 4 5 
 

7 8 9 10 
     

16 17 
  

2.16E-01 

9 1 
 

3 4 
 

6 7 8 9 10 
     

16 17 
  

2.00E-01 

10 
  

3 4 5 6 7 8 9 10 
     

16 17 
  

2.03E-01 

11 
  

3 4 5 6 
 

8 9 10 11 
    

16 17 
  

2.61E-01 

12 
  

3 4 5 
 

7 8 9 10 11 
    

16 17 
  

2.42E-01 

13 
  

3 4 
 

6 7 8 9 10 11 
    

16 17 
  

2.31E-01 

14 1 
  

4 5 6 7 8 9 10 
     

16 17 
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(A.8) EC1118 Strain – Fast Feed – 2 

 
Fixed Parameters mean(CC) 
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(B.1) N30 Strain – Small G0 – 1 

 
Fixed Parameters mean(CC) 
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(B.2) N30 Strain – Small G0 – 2 
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14 4.46E-02 

3 1 2 3 
 

5 6 7 8 9 10 
 

12 
 

14 2.35E-02 

4 1 2 
 

4 5 6 7 8 9 10 
 

12 
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8 1 2 3 4 5 
 

7 8 9 10 
 

12 13 14 2.72E-02 
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(B.3) N30 Strain – Large G0 – 1 

 
Fixed Parameters mean(CC) 
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(B.4) N30 Strain – Large G0 – 2 
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(B.6) EC1118 Strain – Small G0 – 2 

 
Fixed Parameters mean(CC) 
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(B.7) EC1118 Strain – Large G0 – 1 

 
Fixed Parameters mean(CC) 
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(B.8) EC1118 Strain – Large G0 – 2 
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Table A-4: The correlation matrices of the reparameterized models are presented for (A) 

aerobic and (B) anaerobic cultivations. 

(A.1) N30 Strain – Slow Feed – 1 

 𝐯𝐆𝐦𝐚𝐱 𝐟𝐄 𝐟𝐆𝐋 𝐟𝐂 𝐟𝐋 𝐯𝐂 𝐯𝐋 

𝐯𝐆𝐦𝐚𝐱 - -0.91 -0.86 -0.77 -0.87 0.00 0.00 

𝐟𝐄 -0.91 - 0.88 0.76 0.88 -0.08 -0.05 

𝐟𝐆𝐋 -0.86 0.88 - 0.72 0.84 -0.09 -0.17 

𝐟𝐂 -0.77 0.76 0.72 - 0.72 0.31 -0.02 

𝐟𝐋 -0.87 0.88 0.84 0.72 - -0.05 0.14 

𝐯𝐂 0.00 -0.08 -0.09 0.31 -0.05 - 0.13 

𝐯𝐋 0.00 -0.05 -0.17 -0.02 0.14 0.13 - 

 

(A.2) N30 Strain – Slow Feed – 2 

 𝐊𝐆 𝛂𝐅 𝐯𝐂 𝐯𝐋 

𝐊𝐆 - -0.01 -0.02 0.00 

𝛂𝐅 -0.01 - 0.06 0.52 

𝐯𝐂 -0.02 0.06 - 0.03 

𝐯𝐋 0.00 0.52 0.03 - 

 

(A.3) N30 Strain – Fast Feed – 1 

 𝐊𝐄 𝐟𝐂 𝐟𝐋 𝐯𝐂 

𝐊𝐄 - -0.27 -0.45 0.03 

𝐟𝐂 -0.27 - 0.00 0.54 

𝐟𝐋 -0.45 0.00 - -0.01 

𝐯𝐂 0.03 0.54 -0.01 - 

 

(A.4) N30 Strain – Fast Feed – 2 

 𝐊𝐄 𝐟𝐂 𝐟𝐋 𝐯𝐂 𝐯𝐋 

𝐊𝐄 - -0.29 -0.58 0.08 -0.01 

𝐟𝐂 -0.29 - 0.07 0.59 -0.09 

𝐟𝐋 -0.58 0.07 - -0.08 0.53 

𝐯𝐂 0.08 0.59 -0.08 - -0.01 

𝐯𝐋 -0.01 -0.09 0.53 -0.01 - 
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(A.5) EC1118 Strain – Slow Feed – 1 

 𝐯𝐆𝐦𝐚𝐱 𝛂 𝐜 𝐟𝐆𝐋 𝐟𝐂 𝐟𝐋 𝐯𝐂 𝐯𝐋 

𝐯𝐆𝐦𝐚𝐱 - 0.91 -0.74 -0.88 -0.23 -0.81 0.02 0.02 

𝛂 0.91 - -0.94 -0.75 -0.56 -0.80 -0.10 -0.17 

𝐜 -0.74 -0.94 - 0.55 0.74 0.70 0.22 0.35 

𝐟𝐆𝐋 -0.88 -0.75 0.55 - 0.04 0.72 -0.08 -0.10 

𝐟𝐂 -0.23 -0.56 0.74 0.04 - 0.19 0.39 0.34 

𝐟𝐋 -0.81 -0.80 0.70 0.72 0.19 - 0.02 0.34 

𝐯𝐂 0.02 -0.10 0.22 -0.08 0.39 0.02 - 0.18 

𝐯𝐋 0.02 -0.17 0.35 -0.10 0.34 0.34 0.18 - 

 

(A.6) EC1118 Strain – Slow Feed – 2 

 𝐯𝐆𝐦𝐚𝐱 𝐦𝐀𝐓𝐏 𝐟𝐄 𝐟𝐂 𝐟𝐋 𝛂𝐅 𝐯𝐂 𝐯𝐋 

𝐯𝐆𝐦𝐚𝐱 - -0.83 -0.41 -0.25 -0.41 0.07 0.04 0.04 

𝐦𝐀𝐓𝐏 -0.83 - -0.01 0.23 0.50 -0.40 0.01 0.04 

𝐟𝐄 -0.41 -0.01 - 0.13 -0.03 0.48 -0.06 -0.10 

𝐟𝐂 -0.25 0.23 0.13 - -0.01 0.01 0.59 -0.07 

𝐟𝐋 -0.41 0.50 -0.03 -0.01 - -0.31 -0.07 0.49 

𝛂𝐅 0.07 -0.40 0.48 0.01 -0.31 - 0.03 0.00 

𝐯𝐂 0.04 0.01 -0.06 0.59 -0.07 0.03 - 0.02 

𝐯𝐋 0.04 0.04 -0.10 -0.07 0.49 0.00 0.02 - 

 

(A.7) EC1118 Strain – Fast Feed – 1 

 𝐊𝐆 𝛂 𝐟𝐆𝐋 𝐟𝐂 𝐟𝐋 𝐯𝐂 𝐯𝐋 

𝐊𝐆 - -0.70 0.92 0.68 0.29 -0.02 -0.03 

𝛂 -0.70 - -0.71 -0.10 -0.84 -0.04 -0.07 

𝐟𝐆𝐋 0.92 -0.71 - 0.66 0.31 -0.04 -0.05 

𝐟𝐂 0.68 -0.10 0.66 - -0.33 0.14 -0.06 

𝐟𝐋 0.29 -0.84 0.31 -0.33 - 0.03 0.24 

𝐯𝐂 -0.02 -0.04 -0.04 0.14 0.03 - 0.14 

𝐯𝐋 -0.03 -0.07 -0.05 -0.06 0.24 0.14 - 
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(A.8) EC1118 Strain – Fast Feed – 2 

 𝛂 𝐟𝐄 𝐟𝐆𝐋 𝐟𝐂 𝐟𝐋 𝛂𝐅 

𝛂 - -0.91 -0.80 -0.61 -0.78 0.17 

𝐟𝐄 -0.91 - 0.68 0.50 0.69 -0.11 

𝐟𝐆𝐋 -0.80 0.68 - 0.45 0.55 -0.31 

𝐟𝐂 -0.61 0.50 0.45 - 0.40 -0.21 

𝐟𝐋 -0.78 0.69 0.55 0.40 - -0.15 

𝛂𝐅 0.17 -0.11 -0.31 -0.21 -0.15 - 

 

(B.1) N30 Strain – Small G0 – 1 

 𝐯𝐆𝐦𝐚𝐱 𝐟𝐄 𝐟𝐋 

𝐯𝐆𝐦𝐚𝐱 - -0.04 -0.91 

𝐟𝐄 -0.04 - 0.11 

𝐟𝐋 -0.91 0.11 - 

 

(B.2) N30 Strain – Small G0– 2 

 𝐯𝐆𝐦𝐚𝐱 𝐟𝐄 

𝐯𝐆𝐦𝐚𝐱 - -0.14 

𝐟𝐄 -0.14 - 

 

(B.3) N30 Strain – Large G0– 1 

 𝐯𝐆𝐦𝐚𝐱 𝐟𝐄 𝐟𝐋 

𝐯𝐆𝐦𝐚𝐱 - -0.37 -0.94 

𝐟𝐄 -0.37 - 0.40 

𝐟𝐋 -0.94 0.40 - 

 

(B.4) N30 Strain – Large G0– 2 

 𝐯𝐆𝐦𝐚𝐱 

𝐯𝐆𝐦𝐚𝐱 - 
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(B.5) EC1118 Strain – Small G0– 1 

 𝐯𝐆𝐦𝐚𝐱 𝐟𝐄 𝐟𝐂 𝐟𝐋 

𝐯𝐆𝐦𝐚𝐱 - -0.21 -0.92 -0.87 

𝐟𝐄 -0.21 - 0.25 0.35 

𝐟𝐂 -0.92 0.25 - 0.85 

𝐟𝐋 -0.87 0.35 0.85 - 

 

(B.6) EC1118 Strain – Small G0– 2 

 𝐯𝐆𝐦𝐚𝐱 𝛂 𝐟𝐂 𝐟𝐋 

𝐯𝐆𝐦𝐚𝐱 - 0.38 -0.82 -0.80 

𝛂 0.38 - -0.63 -0.29 

𝐟𝐂 -0.82 -0.63 - 0.68 

𝐟𝐋 -0.80 -0.29 0.68 - 

 

(B.7) EC1118 Strain – Large G0– 1 

 𝐯𝐆𝐦𝐚𝐱 𝐟𝐄 𝐟𝐋 

𝐯𝐆𝐦𝐚𝐱 - -0.27 -0.92 

𝐟𝐄 -0.27 - 0.24 

𝐟𝐋 -0.92 0.24 - 

 

(B.8) EC1118 Strain – Large G0– 2 

 𝐯𝐆𝐦𝐚𝐱 𝛂 𝐟𝐄 𝐟𝐂 𝐟𝐋 

𝐯𝐆𝐦𝐚𝐱 - 0.75 -0.26 -0.91 -0.88 

𝛂 0.75 - -0.05 -0.83 -0.60 

𝐟𝐄 -0.26 -0.05 - 0.17 0.23 

𝐟𝐂 -0.91 -0.83 0.17 - 0.78 

𝐟𝐋 -0.88 -0.60 0.23 0.78 - 
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Table A-5: The deleted genes for the different attained thresholds are displayed for each 

of the (A) aerobic and (B) anaerobic cultivations. This table together with Table 4-2 

shows that cases which have at least one gene deleted have the lower thresholds, as 

expected. The associated enzymes for each gene are: YHR096C → hexose transporter 

with moderate affinity for glucose. YJR048W, YMR256C, YOR065W → 

ferrocytochrome-c:oxygen oxidoreductase; YML054C → (S)-lactate:ferricytochrome-c 

2-oxidoreductase; YML120C → NADH:ubiquinone oxidoreductase; YMR009W → 2,3-

diketo-5-methylthio-1-phosphopentane degradation reaction; YMR145C NADH → 

dehydrogenase, cytosolic/mitochondrial; YOL151W → L-lactaldehyde:NADP+ 1-

oxidoreductase. 

(A) 

N30 EC1118 

Slow Feed Fast Feed Slow Feed Fast Feed 

1 2 1 2 1 2 1 2 

- - YHR096C YHR096C - YHR096C - - 

 

(B) 

N30 EC1118 

Low G0 Large G0 Low G0 Large G0 

1 2 1 2 1 2 1 2 

- - - - YJR048W YML120C - - 

- - - - YML054C YMR009W - - 

- - - - - YMR145C - - 

- - - - - YMR256C - - 

- - - - - YOL151W - - 

- - - - - YOR065W - - 
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APPENDIX B: SUPPLEMENTARY FIGURES 

 

Figure B-1: Relative sensitivity for each parameter in each state variable for the 8 aerobic 

cultivations. For every parameter, each bar represent the impact on one state variable; from left 

to right the bars are biomass, glucose, ethanol, glycerol, citric and lactic acid.  
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Figure B-2: Relative sensitivity for each parameter in each state variable for the 8 aerobic 

cultivations. For every parameter, each bar represent the impact on one state variable; from left 

to right the bars are biomass, glucose, ethanol, glycerol, citric and lactic acid. 


