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ABSTRACT

The present work models the dynamics of general skid-steer mobile manipulators us-
ing the formalism and tools of the spatial vectors algebra. A unified and general model of a
6-DOF floating base with a N-DOF manipulator is proposed considering traction forces and
also manipulator-vehicle and vehicle-ground interactions. This single model demonstrates
the benefits of using the spatial vector algebra formulation, unlike other of the existing
modeling approaches and simulation tools, thus opens the way to research on mechanically
more complex robot designs and their controllers. The model built is validated using iner-
tial measurements obtained during field tests with a compact skid-steer loader. It is to be
noted that most of the existing models and simulations of mobile manipulators often con-
sider two-wheeled differentially driven 3-DOF bases instead of skid-steering mobile bases
because of the complexity of simulating wheels that skid while rolling. However, skid-steer
traction is common in most of the industrial construction and mining machinery because
of their simpler mechanics, high reliability, and better mobility in rough terrains. Hence,
the development of physically accurate models of skid-steer manipulators is fundamental.
Furthermore, a model of a 6-DOF mobile base is developed considering non-permanent
contact points allowing to take into account the base interaction with the ground. The
model was validated using a Cat® 262C compact-skid steer loader instead of a small mo-
bile manipulator common in robotics research laboratory to highlight the usefulness of the

presented model and the spatial vector algebra approach.

Keywords: Mobile Manipulator, Skid-Steer, Dynamic model, Experimental Valida-

tion, Spatial Vector Algebra.



RESUMEN

El trabajo presentado modela la dindmica de un manipulador mévil con base giro
deslizante genérico utilizando el formalismo y herramientas del algebra de vectores es-
paciales. Se propone un modelo general y unificado de una base flotante de 6-DOF con
un manipulador de N-DOF, considerando fuerzas de traccion, asi como también la inter-
accion manipulador-vehiculo y vehiculo-terreno. Este modelo demuestra los beneficios de
utilizar la formulacién de algebra de vectores espaciales sobre otros enfoques de mode-
lamiento y herramientas de simulacion existentes y abre el camino para la investigacion
de sistemas mecdnicos mds complejos y su control. Este modelo fue validado utilizando
medidas inerciales obtenidas durante pruebas de terreno utilizando un cargador frontal con
base giro deslizante. Se hace notar que la mayoria de los modelos y simulaciones existentes
de manipuladores moviles en general consideran sistemas de dos ruedas con movimiento
diferencial de 3-DOF en vez de modelos de bases giro deslizantes debido a la compleji-
dad de simular ruedas que deslizan mientras giran. Sin embargo, la traccion de bases giro
deslizante es la mds utilizada por la maquinaria en la construccion industrial y mineria
debido a su sistema mecdanico simple, alta confiabilidad y mejor movilidad en terrenos
complicados. Es por esto que el desarrollo de un modelo fisico preciso de un manipu-
lador movil con base giro deslizante es fundamental. Ademas, se desarrollé6 un modelo
de una base movil de 6-DOF considerando puntos de contactos no-permanentes que per-
miten tener tomar en consideracion la interacciéon de la base con el terreno. Se escogi6
validar el modelo utilizando un cargador frontal con base giro deslizante Cat® 262C en vez
de los robots pequefios, generalmente utilizados en los laboratorios de investigacidn para
destacar la utilidad del modelo presentado y del enfoque que entrega el dlgebra de vectores

espaciales.

Palabras Claves: Manipulador Mévil, Base Giro Deslizante, Validacién Experimen-

tal, Algebra de Vectores Espaciales.
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1. INTRODUCTION

1.1. Motivation

Skid-steer mobile manipulators (SSMMs) are the integration of a robotic arm along
with a skid-steer mobile base. These two elements combine the dexterity of a manipula-
tor to interact with the environment and the mobility of the base to achieve and unlimited
workspace. Furthermore, the skid-steer main advantages over other drive-mechanisms are
their simpler mechanics, high reliability, and better mobility in rough terrains. The dy-
namics and control of manipulators have been investigated since the 70s with significant
breakthroughs (I ce, : , ), while the research concerning mobile
bases dates back to the mid 90s with several of the main advances and contributions in dy-
namic and skidding models occurring during the last decade ( , ;

, ) . Yet the integration of arms and mobile bases is
still on early stages and extenive research in the dynamic modeling and control of mobile

manipulators needs to be done to accomplish more difficult autonomous tasks.

1.1.1. Some examples

Mobile manipulators (MMs) applications seem attractive for both industrial (

, ) and domestic ( , ) applications. In
agriculture autonomous MM could be used to perform crop inspection and harvesting task
( ) ; , ). In the aero-
nautics industry, coating removal or application to an airplane’s fuselage (

, ) is a task involving a large workspace which a single ma-
nipulator will be insufficient, but MM could easily cover. Compact loaders or load-haul-
dump (LHD) can also be considered as mobile manipulators and are widely use in mining
or construction sites. Thus making them autonomous would help to improve safety and
productivity ( , ). Domestic or indoor tasks could also
benefit from mobile manipulators robots that could handle objects and solve domestic or

office chores.



1.2. Problem Description

Despite the advantages of skid-steer mobile manipulator, additional complexity arises
concerning the kinematic and the dynamic of the model ( ,

). When a manipulator is attached to a mobile base, both bodies interact and the ve-
locities, accelerations and forces that act on one have an impact in the other. Movements of
the arm causes shifts in the robot center of mass (COM), while the interaction between the
mobile base and the ground propagates to the arm. Furthermore, skidding effect inherent to
skid-steer bases when turning is still under research ( , : , ).
Even though models that describe the behavior of these machines exist, these models gen-
erally focus on the kinematic aspects, consider planar motions and treat the vehicle-ground

interaction as a permanent contact.

1.3. Objectives

The main objective is to obtain a general and unified dynamic model for skid-steer mo-
bile manipulators that considers the base as a 6-DOF floating base, which can move freely
in any direction and includes a vehicle-ground interaction forces with a non-permanent

compliant contact model.

1.4. Hypothesis

A general and unified dynamic model for a SSMM robot that considers a floating
base with non-permanent contact forces and the arm-base interaction dynamics can be ob-
tained using the spatial vector algebra formulation of the recursive Newton-Euler approach
proposed by ( , ). A model so obtained can be physically accurate and

represent better the effects of the vehicle-ground interaction and base-arm interaction.

1.5. Existing Approaches

To the best of our knowledge, only the work by Liu et al. ( , ) treats

the modeling of SSMMs with some detail. Liu et al. present a kinematic and dynamic
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model of SSMMs that takes into account traction and skidding forces, as well shifts in the
COM of the robot due to changes in arm position. On the other hand, the model by Liu
presents expressions in which the propagation of ground interaction forces to the arm, or
the propagation of arm-accelerations back to the base are implicit. The model in (

, ) assumes the mobile base moves in a 2D plane, therefore is not a fully 6-DOF
floating base with non-permanent ground contact interactions. While current work model
presents explicit equations for the arm and base accelerations for a 1-DOF arm that can be
extended to an N-link arm and solved in closed form provided that the computer has suffi-
cient computational capacity. Due to the lack of works treating the modeling of SSMMs,

we discuss next the existing research on mobile manipulators and skid-steer vehicles.

Different models for mobile manipulators have been developed over the last years,
such as the ones proposed by ( , ;
, ) that consider Ackermann steering geometry, ( , ;

, : , ), which consider differential-drive
schemes with caster wheels, or ( , ), that considers a three wheeled base
with differential-drive and a steering wheel. In general, these models separate the vehicle
dynamics from that of the manipulator and do not consider the effects of the moving arm
over the base trajectory. This is usually because the arm mass and velocity are assumed to
be negligible, or because they focus on problems of redundancy resolution and trajectory
planning. Thus for the physically accurate modeling of mobile manipulators it is desriable
to establish unified dynamical models that simultaneously consider the coupled interaction

between the base and the manipulator.

A skid-steer base was selected over other bases with Ackermann steering or differential-
drive kinematics because it is a common type found in the industry, in such machines as
compact loaders, LHDs and in many universities with the P3-AT and other robotics sys-
tems. The main reasons for the use of this kind of base are: i) the simpler mechanics
as it only uses gears to adjust the the velocity and torque, while the Ackermann steering

introduces geometric arrangements of linkages to achieve the desired angle of rotation,



i1) high-reliability and better mobility through rough terrains because all the wheel have

torque.

Regarding skid-steer base models, the main difficulty is the modeling of the lateral
skidding of the wheels, produced by the lateral centrifugal acceleration when turning. Some
model the skid-steer as a differential drive base in which the lateral slippage may be ne-
glected ( , ), while others take into account only longitudinal slipping (

, ) or more detailed lateral skidding models ( , ;

: ).

In general, a weakness of many of the published models is that they are only simulated
for controller development purposes and very few of them experimentally validate their
models. Some of these exceptions are found in ( , ; , ;

, ), which conduct experimental verifications using
small to medium size robots like like Pioneer P3-AT® used by several research groups. It
is however desirable from an application perspective to validate the models also with large

size and heavier industrial machinery.

1.6. Summary of Contributions/Original Contributions

The goal of the current research is to present a dynamical model for SSMMs built using
spatial vector algebra that is general enough and jointly takes into account the coupled
interaction between the mobile base and the manipulator, as well as the vehicle-ground
interaction in a single and unified fashion. To this end, we rely on the modeling approach
introduced by Featherstone using spatial vector algebra ( , ) for rigid body
dynamics. The spatial vector formalism allows to model complex kinematic trees with
compact equations and a high degree of generality. The model is built using the Spatial
Toolbox for Matlab ( , ) and provides a
nontrivial and enriching example that illustrates the capabilities of the modeling approach

and the toolbox applied to a real world robot.



This paper also validates the model using data experimentally acquired from a compact
skid-steer loader Cat® 262C Series 2, which is a good representative of similar machines
employed in construction and mining. The model developed and measurements have been
made publicly available at (

, ) for other researchers and students.

1.7. Thesis Outline

The thesis is organized as follows. In chapter 2 we present the dynamic modeling of a
general SSMM using spatial vector algebra, is presented together with a model for contact
points. The explicit equations for the SSMM direct dynamics derived step by step. chap-
ter 3 describes the simulation details of the SSMM dynamic model developed in chapter 2.
The experimental model validation methodology, as well as the comparison between the
experimental and simulated results is presented chapter 4. chapter 5 presents another con-
tribution of this thesis, which is the development of a library in maple that implements the
spatial vector algebra operators and the articulated rigid body algorithm to obtain the direct
dynamic equations of an articulated kinematic tree with floating base. This library can be
very useful in future research about the dynamics of mechanical multibody systems because
it allows to obtain explicit equations provided the complexity of the system is not beyond
the computational power available to the user of the library. Finally, chapter 6 presents the

conclusions of this work and discusses some aspects concerning ongoing research.



2. MODEL OF A SKID-STEER MOBILE MANIPULATOR

This chapter presents a complete and general model of the motion dynamics of skid-
steer mobile manipulators. The model is derived using the spatial vector algebra formal-
ism and the Articulated Rigib Body algorithm proposed by R. Featherstone ( ,

) to obtain the forward dynamics equations. The model considers a skid-steer mo-
bile base, an n-DOF manipulator, and also the ground-wheel interactions, as well as the
base-manipulator interactions. First, a brief explanation about spatial vector algebra and
reasons from choosing this modeling convention over others is presented.Folloginw the
mathematical background of spatial vector algebra, the description of a general SSMM
with an n-DOF arm using the spatial vector algebra formulation is introduced. Thirdly, a
model for the ground-wheels interaction is proposed in terms of an approximated wheel
with a finite number of contact points. The reaction forces acting on the contact points
are also explained in detail. Fourth, even though this model considers the mobile base and
manipulator as one entity, the kinematic considerations of a skid-steer mobile base are pre-
sented in order to fully understand the motion constraints that the model needs to fulfill.
Finally, the articulated rigid body procesure ( , ) is employed to solve the
direct dynamic of the mobile base without an arm and later with a 1-DOF. The equations
for the floating mobile base are compared to the standard model of aircraft dynamics as a

common example of a 6-DOF free floating platform approach.

2.1. Spatial Vector Algebra

The spatial vector algebra approach to modeling multibody mechanical systems offers
a higher level of abstraction and more compact notation that results in fewer equations.
The higher level of abstraction means among other things that the motion from one body
to another is propagated by generic joint transformation, while the the accelerations due
to velocity-product terms arising in rotating reference frames can be handled using the
algebraic rules for spatial vector products, thus reducing error prone calculations of stan-

dard recursive Newton-Euler or Lagrange method for deriving the differential equations
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describing the motion dynamics of a robotic system. Other advantages of the spatial vector
algebra approach over classic modeling schemes is that it provides unified framework to
formulate the dynamic equations of both closed and open-loop kinematic trees, taking into
account non-permanent contact points and thus allowing to model robots on floating bases,
e.g. underwater vehicles, flying platforms, or ground vehicles on deformable terrains. De-
spite its higher level of abstraction, the spatial vector algebra formalism provides valuable
insight into the dynamics and physical properties of multibody robotic systems. For ex-
ample, the procedure to dervive motion equations preserves the intermediate information
about the propagation of forces across joints and links, much like the recursive Newton-
Euler approach. The approach also can be used to obtain the direct dynamics equations
that are useful for controller design purposes. In terms of modeling efficiency, the spatial
vector approach does not necessarily reduce the number of terms involved since in the end
all constants, vectors, operators must be evaluated to their actual definitions in order to
obtain the equations. In fact, for small serial kinematic chains with eight or less bodies,
the Articulated Rigid Body algorithm using spatial vector algebra is computationally more
expensive than the Composite Rigid Body Algorithm together with the recursive Newton-
Euler algorithm to obtain the forward dynamic equations. However, for branched kinematic
trees the advantages of the approach become more significant. An in depth discussion on
the computational complexity of the Articulated Rigid Body algorithm using spatial vector

algebra is found in ( , ).

Succinctly explained, spatial vectors are 6D vectors that describe the motion (or forces)
of arigid body using Pliicker coordinates for rotation and translation (or couples and linear
forces), i.e. a spatial velocity is a vector of the form v = [wT vg} T, where w = [w, Wy wZ]T
is the 3D vector describing the rotational velocity of the body about an axis passing through
a point O, and vp = [voag Voy UOZ}T is the 3D vector describing the velocity of a point
O fixed to the body relative to some point O in space that coincides with O at a given
instant. The Pliicker coordinates date back to the 19'* century and Ball’s screw theory and
Von Mises’ motor algebra. However, Featherstone introduced the concept of Pliicker basis

and defined one for a motion vector space and another for the a force vector space. This



formalism combined together with a set of algebraic properties of spatial vectors that arise
from the transformation rules for motion and force vectors expressed with respect to two
Pliicker coordinate systems A and B that can move with respect to each other provide a
mathematical framework and tools that allow to express the motion of rigid bodies with
fewer equations and a higher level of abstraction, but at the same time providing valuable
insight into the dynamics and physical properties of multibody robotic systems. Instead of
requiring two 3D equations of the form fo = mip and 79 = Ipw + w X Ipw to describe the
motion of each body in the mechanism, spatial vector reduce the expressions to an equation
of motion of the form f = Iv + v x* Iv, where f is the spatial force vector containing
the total moment and linear force acting on the body, and I is the spatial inertia matrix.
In addition to this simplification, spatial velocity and force vectors are tightly related to
the body’s velocity and force vector fields, and have some nice algebraic properties. For
example, the relative velocity v,..; between two bodies B; and B, with spatial velocities vy
and vy is simply v,. = vy — vq; the total force on a body subject to spatial forces f; and f; is
simply f;,; = f; + f5; similarly the total inertia of two bodies B; and B, connected together
to form a composite rigid body is simply given the addition of their individual spatial
inertias, i.e. I;,; = I} 4+ I,. The spatial motion and spatial force vectors, together with their
vector addition and multiplication rules define two dual vector spaces. The multiplication
operation for the motion vector space is denoted by the cross product operator x, while the
equivalent cross product on the dual vector space is denoted by x*. The main properties
connecting these two crosss products that are employed in this work are summarized in
table 2.1. For a complete exposition of the spatial vector algebra and how it allows to
reformulate the equation of motion of complex serial and closed-loop kinematic trees the

reader is referred to ( , ).

2.2. General Model of a Skid-Steer Mobile Manipulator

To build the model it is convenient to first define the bodies and joints of the robot.
To this end, the Cartesian coordinate frame Fy is first placed at a chosen fixed location in

space to serve as virtual fixed base (i.e. global inertial frame) fig. 2.1. Next the mobile base



TABLE 2.1. Spatial cross product property table.

Motion Vector Product (x) Force Vector Product (x*)

vx* = —vxT

uxXv=-vxu

(Xv) x = Xv x X! (Xv) x* = X*v x* (X*) ™!
(Av) X = A (vXx) (Av) x* = X (vx¥)

(uxv) - =—-v-ux* (ux*f)- = —f-ux

is labeled as body 1 with coordinate frame ;. A convenient location for /; is the robots
center of mass. The mobile base (body 1) is treated as a body connected to the fixed base
(body 0) by a six-degree-of-freedom (6-DOF) joint, i.e. the mobile base is a floating base
allowed to move freely without any kinematic constraints save for non-permanent ground
contact constraints. Attached to the mobile base are the wheels connected to the base by
rotary joints. The wheels are bodies labeled 2, 3, 4 and 5 with corresponding Cartesian
frames F;, 1 = 2, 3,4, 5, as shown in fig. 2.1. Similarly, the robot arm is a series of bodies
with coordinate frames F;, 1 = 6,7,8,..., N, where NV is the last body of the arm and
represents also the total number of bodies of the robot. The connectivity graph for the N
bodies of the robot is shown in fig. 2.2. The nodes of the graph represent each body, while
the lines connecting the nodes represent the joints of the robot, such that joint ¢ is the joint
that connects body 7 to its parent. The SSMM is a kinematic tree, hence its connectivity
graph is a topological tree. Adding more arms or wheels would add additional branches to

the tree in fig. 2.2.

Having numbered the bodies and joints, the connectivity of the robot can be completely
described by an array A\ € Z*", such that A(7) (the i-th entry of the array), contains the
body number of the parent of body i. From the connectivity graph of fig. 2.2 it should
be clear that A = [0,1,1,1,1,1,6,7,..., N — 1]. The model geometric parameters are
summarized in table 2.2. Parameters a, b, ¢, d, e are common to skid-steer base model
as used in ( , ), l; is generally used to describe manipulator length
with o the radius of the articulation, while r and w are used for wheels radius and width

respectively. Additionally, our model includes the parameter A to describe the location
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FIGURE 2.1. Skid-steer mobile manipulator.

o=fixed frame

1=mobile base
(floating base)

~
2 3 4 5 \6
wheels .
> arm links
8
N

FIGURE 2.2. Kinematic tree of the skid-steer mobile manipulator of fig. 2.1.
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of the manipulator along the longitudinal axis of the mobile base. The location of the
children bodies 7 = 2, 3,4, 5 corresponding to the wheels and the arm’s base body ¢ = 6,
can be more easily described relative to the parent body using 3D position vectors r; =
[rix rl-yriz], 1 = 2,3,4,5,6, in coordinates of the frame ;. The specific values for each

body’s position vector r; are summarized in table 2.3.

TABLE 2.2. Geometric and inertial parameters for the SSMM.

Symbol Description
Geometric parameters
a Base length.
b Base width.
c Base height.
d Distance between the rear wheels and the base COM.
e Distance between the front wheels and the base COM.
f Distance between the axles plane and COM.
h Distance the manipulator base and the base COM.
r Wheels radius.
w Wheels width.
l; Length of :-th link.
o Link cross-section radius.
Fo Cartesian coordinate inertial frame.

Fi Reference frame fixed to body ¢
Inertial parameters

Yy Parent of body <.

I; Body ¢ inertia matrix at body’s COM.

m; Mass of body .

S; Joint ¢ motion subspace matrix.

g Gravity acceleration constant.

TABLE 2.3. Floating base children relative positions 7;.

Body i 7, Tiy Tis Description

2 e —b/2 —f Frontright wheel
—d —b/2 —f Rear right wheel
e b/2 —f Frontleft wheel
—d  b/2 —f Rear left wheel
h 0 ¢/2 Manipulator first link

O O = W
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In addition to the connectivity of the robot bodies, to complete the geometric descrip-
tion of the robot it is necessary to define the geometric transformations relating the location
of each joint relative to the reference frame of the body to which each joint is attached.
Formally, this requires first to introduce pair of coordinate frames for each joint ¢ that links
body i to its parent A(z). One frame is labeled ; and fixed to the body 4, while the other
is labeled F(;); is fixed to the parent body A(i). To minimize the number of paremeters
required to describe the relative motion between F; and Fy(;); it is convenient to locate
the frames such that both frames coincide when the joint variables are zero, and have axes
aligned following a set of rules like the widely employed Denavit and Hartenberg con-
vention to constrain the possible frame locations ( , ). Other conventions
than the D-H procedure to define coordinates frame are posible. In fact, the spatial vector
algebra approach does not require frames to be defined according to the D-H procedure.
However, using D-H procedure as part of the spatial vector algebra approach reduces the
number of joint paremeters to a minimum of four with one of the parameters acting as joint
variable. Noting that each body ¢ contains a frame F; and a variable number of frames
Fag).j» for all j satisfying A(j) = 4 (with frames F)(;y ; located at the joints of the children
bodies j whose parent body is body A(j) = i), it is convenient to select frame F; as the
coordinate system for body ¢ in terms of which will be defined the spatial inertia of body
1. Finally, a complete description of the robot geometry is obtained defining two transfor-
mations: X7(7) and X (7). The transformation X (7) is the Pliicker coordinate transform
from body () coordinates in frame F, A(7) to the coordinates in frame ;) ; located at joint
i, but fixed to body A(7). The coordinate transform X ;(4) is the joint coordinate transform
mapping coordinates from frame ;) ; to coordinates in the frame ; fixed to the children
body i of parente body (). Therefore, with these transforms it is possible to construct the

so-called link-to-link transform
Koy = Xy(@)Xr(i) (2.1

from coordinates in frame F)(; of body A(i) to coordinates in the coordinates of frame

Fi in body i. The complete set of transformations X (i), ¢ = 1,2,..., N describes the
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location of each joint-frame ; ; relative to its corresponding body-frame /; within body
i. The body constant geometry data contained in Xr(7),7 = 1,2, ..., N, together with the
variable joint coordinate transforms X ;(i), 7 = 1,2, ..., N and the connectivity data in the
parent array A, permit to completely describe the geometry of the robot and the position of
its bodies with respect to the global reference frame F,. The recursive formula based on

the link-to-link transformation (2.1):
Xy = "Xyp PXp, with A(@) # 0. (2.2)

allows to compute the coordiante transform from the global reference frame F; to the
body coordinate frame F;, thus allowing to solve the forward kinematics. Equation (2.1)
and (2.2) are also at the base of the recursive inverse kinematics and forward/inverse dy-
namics computations with algorithms whose detailed discussion can be found in (

). It should be stressed that the transforms (2.1) and (2.2) are the basic building block
for the model of any mechanism, because in addition to transforming velocities and accel-
erations in the motion space, they can be used to implement the transformation of forces
in the dual space, i.e. if BX 4 is the motion transform from coordinate frame A to co-
ordinate frame B, then the force transform BXZ can be expressed in terms of BX 4 as
BX* = BX;T. A summary of the transformations, the dual relationship in terms of ZX 4
and their meaning is included in table 2.4. Since all other transformations can be computed
in terms of #X 4, building the model requires only to define transformations X 4 for each
body. The specific transformations required to build the SSMM model are summarized in

Table 2.5 together with the joint variables.

TABLE 2.4. Relationship between the spatial motion and force transformation ma-
trices in terms X 4.

Transformation Equivalent Description
BX 4 BX 4 Motion transformation from frame A to B.
Xp BX,'  Motion transformation from frame B to A.
BX*, BXT  Force transformation from frame A to B.
AX BXY Force transformation from frame B to A.
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TABLE 2.5. SSMM model parameters using spatial vector algebra.

Joint-{ 1 2,3,4,5 6 7,8,....N
Type Floating Rotary y;, 7 = 2,3,4,5 Rotary zg Rotary y;,t =7,8,...
Body-i 1 2,345 6 7,8,....,N
Description Mobile Base Wheels First Arm Link  Remaining Arm Links
Parent Body A(7) 0 1 1 6-(N —1)
Dimensions
X a 2r € €
y b w € €
z C 2r 16 ll
Joint-
location
Transforms 21t([0, 0, 0]) xlt(r;) xlt(rg) zlt(]0,0,1;-1])
Xr(i)
Joint
Transforms rotu(-)zlt(E  [ps, py, p2]) roty(q;) rotz(qe) roty(q;)
X (1)
Mass my Mo = M3 = My = Mj me m;
COM in F;
g 0,0,0 0,0,0 0,0,1lg/2 0,0,1;/2
coordinates [0,0,0] [0,0.0] [0,0.16/2] [0,0,4:/2]
+c2 0 0 3r24+w?0 0 302412 0 0 302412 0 0
Inertia about COM T [ 0 a?+c% 0 ] B { 0 62 0 } o { 0 30%+120 } o { 0 302+130 }
0 0 a?+b? 0 0 3r2 +w? 0 0 602 0 0 602
Summary of 3D arithmetic functions (cf. ( R ) for a complete list.)

1 0 0
E.0)=|0 ¢ s

0 —-s ¢

=)

c 0 —s c s 0 0 —v, Uy
,E@0)=]10 1 0 [,E.(0)=]| —s ¢ , VX = v, 0 —vs

s 0 c 0 0 —Vy Uy 0
with ¢ = cos(f), s = sin(0), v = [vy, vy, v.];

Pi+pi—1/2  pip2tpops  pips — pop:

pip2 —pops P +1p5—1/2  paps + popr (rotation about axis u = [, Uy, uz]);
Pips+pop2  paps —popL Pg +p3 —1/2

with Euler parameters (unit quaternion) py = cos(6/2), p1 = sin(8/2)u,,

E.(0) =

pa = sin(0/2)uy, ps = sin(0/2)u., pg + pt +p3 +p3 = 1.

Summary of spatial vector arithmetic functions (cf. ( s ) for a complete list.)
_ | 1sxs Osxs [ Es(0) 033 .
zlt(r) = { o Laes ] , rotx (0) = [ Osxs  E.(0) ] LK =T,Y,2,U
E 03 . _ E -E
PxateB) = ro@yeie) = [ % | oxaem) = ot = [ PR

It is possible to observe in Table 2.5 that the mobile base is a free-floating body with
6-DOF (three for orientation and three for translation) as defined by the world-to-base trans-
form !X, = X ;(1)X7(1) = X;(1) because X7 (1) = Isx¢ for the mobile base. However,
to avoid the singularities of Euler Angles (roll, pitch, yaw), the rotations in X ;(1) are ex-

pressed in term of Euler Parameters (unit quaternion) involving a rotation axis (u,;, ty, )
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and an angular amount 6 that give rise to four unit quaternion parameters (po, p1, P2, P3)-
Therefore, the description of the state of the first body involves a thirteen-dimensional vec-

tor:

X = @07 P1, P2, P3, Pzs Py, pz;\wxa Wy, wzl\vafn Uy, Uz/
Vv ~\~

VvV TV
Orientation Position Angular Linear
quaternion relative velocity in velocity in
to Fo Fo Fo
coordinates coordinates

For the remaing 1-DOF joints for the wheels and the manipulator only the angular position
¢; and angular velocity ¢;, ¢ = 2,3,..., N, are required to complete the description of the
state of the bodies. Thus for a four-wheeled SSMM with an M degrees of freedom manip-
ulator, the full state vector would be given by qssya = [X[q2 g3+ - qurrs]d2 G5 - - - Gares)s
requiring 13 +4 x 24+ M x 2 = 13+ 2 x (M +4) joint variables. The complete list of mo-
tion and force variables is summarized in table 2.6. Throughout the thesis the notation v is
employed to indicate that the vector v belongs to body ¢ and its coordinates are expressed
in the frame ;. When a variable of body ¢ is expressed in the coordinates of the same
body, i.e. when j = i, then the superscript is omitted to simplify the notation, e.g. v} = v;.
The notation for the SSMM variables presented in table 2.6 corresponds to the typically
employed notation for multibody mechanical systems, for which vf and wg are the linear
and angular velocities, and similarly, af , af are the linear and angular accelerations, while
¢, ¢; and g; are used for the joints position, velocity and acceleration variables, respec-
tively. Here the joint force is denoted by 7;, which for purely rotational joints corresponds
to the joint torque. To distinguish spatial vectors from common 3D vectors, the spatial

vector variables are display in bold as vg, a{ and fg , while the latter employ non-bold fonts.

Considering the platform’s orientation quaternion variables py, pi, p2, p3 and posi-
tion variables p,, p,, p., that together define the pose of the platform, the world-to-base

transform !X that maps spatial vectors with coordinates in the global frame JF to spatial
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vectors with coordinates of the base frame /7, is given according to table 2.5 by:

L E 0
Xy = , (2.3)
—FErx FE

where the rotation matrix is
2p® +2m*—1 2pipa+2pops  2p3p1 — 2pop2

E=1 2pips—2pops 2po>+2p2 =1 2pyps +2pop1 | - (2.4)

2psp1 +2pop2 2paps — 2pop1 2po” +2pst —1

and the matrix form of the cross-product is

0 —D:z py
rX = D, 0 —Dz |- (2.5)
| _py Pz 0 |

Similarly, the link-to-link transformation that maps spatial motion vectors expressed in the
coordinates of the base frame F; to coordinates of the wheels or arm’s inital link frames

Fi i =2,3,4,5,6, is given by

X, = zlt(ry)roty(q;) (2.6)
[ cos (q;) 0 —sin (¢;) 0 0 0 1
0 1 0 0 0 0
1sin (¢;) 0 cos (¢;) 0 0 0
= (2.7
—sin (¢;) Ty COS (qi) 1i, +sin(q;) riy  —cos (q:) T3y COS (@) 0 —sin(g)
—Ti, 0 Tip 0 1 0
| COS (a:) Tiy  Sin (qi) ri, —cos (qi) iy —sin(q;) T3y Sin (@) 0 cos(qi)

The motion transformations just defined in eqs. (2.3) and (2.7) are a basic part to build
the model, together with their correspoding dual tranformations for spatial force vectors,

which are computed from the motion transforms in (2.3) and (2.7).
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TABLE 2.6. Motion and force variables for the SSMM.

Symbol Definition

Description

7

J

3D space motion and force variables

ioqog31F
wixwiywizl

Angular velocity of the body ¢ in frame F;.
Linear velocity of the body ¢ in frame F;.
Angular acceleration of the body ¢ in frame 7.
Linear acceleration of the body ¢ in frame F;.
Torque applied to the body 7 in frame F;.

Force applied to the body ¢ in frame F;.
Angular position of the joint :.

Angular velocity of the joint :.

Angular acceleration of the joint 7.
Applied torque to the joint 7.

Quaternion of the floating base orientation.
Position of the floating base in .

Spatial space motion and force variables

A

2

. 3T
J J
iz iy iz]
[po P1 P2 ps]T
[pe py P2
wf
o] |
_ag_
a]
Lf ]

Spatial velocity of body 7 in frame F;.
Spatial acceleration of body ¢ in frame F;.

Spatial External force applied to the body <.

Frame motion transformation from body A to B.

Frame force transformation from body A to B.

Spatial inertia of the body ¢ in the frame F;

Inertia propagated from body B to Body A.

Body : total inertia due to children bodies inertia.

Joint 7 spatial acceleration due to velocity-product terms.
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2.3. Wheel-Ground Interaction

The model presented in the previous section is a model for any floating base with
an attached M/ -DOF manipulator and could be used for a ground vehicle, submarine or
even a spacecraft provided that the interaction forces between the vehicle and its environ-
ment are appropriately specified. Thus to complete the dynamic model of the skid-steer
mobile manipulator, the interaction between the ground and the vehicle must be defined.
To this end, in addition of the ground surface geometry and its terramechanical specifica-
tions, a set of contact points (CPs) attached to the bodies that can come into contact with
the ground, namely the wheels and the arm tool, must be defined together with the equa-
tions that describe the reaction forces. The next subsections explain the ground model and

vehicle-ground interaction forces.

2.3.1. Terrain-Vehicle Interaction Forces

Computing the contact and collision forces between moving bodies can be computa-
tionally very expensive because accurate geomtric models of real objects can have infinite
contact points, even when their geometry is relatively simple, as in the case of the contact
of an ideal wheel described by the circle equation and flat ground described by the plane
equation. This challenge has motivated significant research in compuational geometry al-
gortihms to efficiently solve the intersection of bodies described by large number of geo-
metric primitives ( , ). On the other hand, the study of different types
of wheels or tracks, the modeling of ground deformation and the effect of terramechanical
aspects on vehicle remains an open topic of research ( , ). However, what most
of the different approaches proposed to model ground-wheel forces have in common is that
contact forces consider a force decomposition into a normal and a traction force. In sim-
ple, terms the normal force is the projection of the vehicle weight onto the surface normal,
while the traction force is directly related to the applied wheel torque and several complex
effeccts that involve tangential and torsional restitution forces, ground internal deformation
forces ( , ; , ), in addition to the tangential Coloumb

friction. The local deformation of bodies that are not really rigid causes the contact points
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to become contact areas. Despite this, a soft contact can be implemented as the contact be-
tween a point and a compliant surface in which the surface behaves as a first order massless
dynamical system that includes not only the tangential Coulomb friction, but also generates
damping and spring-like restitution forces that depend on the position and velocity of the
contact point relative to the ground surface. For simplicity, the surface is described as a
piecewise continuous concatenation of planes II , with normal vector 7, , and a distance
to the world origin p, , in the global coordinate frame F,. The ground friction, stiffness and
damping coefficients that characterize the forces acting on the co ntact points are denoted
by u, K and D, respectively. Contact points (CPs) are points fixed to any of the robot’s
bodies of the form P, = [z yg zk]T, with coordinates expressed in the global reference
frame Fo, and with absolute velocity v = [v), v}, v |" in F; coordinates. The purpose
of the CPs is to determine if a certain body is in contact with a surface and provides the

location at which the contact forces act while the point is in contact. The list of parameters

and variables of the contact model is presented in table 2.7.

A
Ny

Fy

FIGURE 2.3. Contact point P, and ground surface a a plane II ,.

Considering the surface plane II(7n, ,, p,,) and CP P illustrated in fig. 2.3, the dis-

tance J;, between I1, , and P, is given by
Ok = Nt Pe = pay- (2.8)
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TABLE 2.7. Parameters and variables for the contact point model.

Symbol Description

Ground geometry and contact force parameters
II,,  Surface at the global position (x,y).

Mgy  Normal vector of the surface II, .
Py Distance between the surface Il , and the origin of frame F.

K Stiffness coefficient.
D Damping coefficient.
! Friction coefficient.
Contact point variables
Py Position of the contact point k in the global frame Fy.
vi Linear velocity of the contact point & in frame F;.
U Normalized velocity of the contact point £ in frame F
0% Distance between the contact point £ and the surface 11, ,,.
O Penetration velocity of the contact point % into the surface II, .
€k Projection of the displacement of the contact point k£ onto the tangenital
plane of the surface at the point of contact.
N, Force applied to the contact point k£ normal to the surface II .
fx Force applied to the contact point k tangent to the surface II, .

fstick, Maximum tangent force that can be applied to the contact point k.
Ly, Straight line passing through the contact point & along the direction vy,.
Ly,  Straight line passing through the contact point £ along the direction 71, ,,.

If 0, > 0, the CP is not in contact with the surface and no further analysis needs to be done.
Otherwise, if 6, < 0, the the CP is in contact with the surface, and normal and friction
forces have to be computed. In order to evaluate these forces, the velocity of the CP and
two auxiliary lines are introduced as shown in fig. 2.4. The CP’s velocity is a vector with
magnitude and direction, while lines L,;, and L ;, are two auxiliary lines that pass through

point P, with direction v} and 7, ,, respectively.

The surface penetration distance d and its rate of change, together with the surface
stiffness coefficient K and damping coefficient D are employed to compute the ground

contact normal reaction force as
Ny, = /=5 [-de — Db, (2.9)
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Fo

Lo

FIGURE 2.4. Projection of contact P, onto the plane II, , along the line L | ;, or-
thogonal to II,; , and the motion direction line L.

where, by (2.8), the penetration velocity is given by

46T,R) = 4 = 4R o

Similarly, the tangential compliance of the surface produces a contact tangential reac-

tion force fy;, that satisfies a Coulomb friciton model with coefficient . in which

lule ’ﬂNk‘ < ’fstickkl

i (2.11)
fstickka ‘,UNk| Z ‘fstickk’

ftk =

In this model, the tangential reaction force f;, is limited to a surface sticiking force fgicx,
for which the contact point does not slip unless it applies a force on the surface that exceeds
the sticking force, i.e. as long as the contact point applies a force that is within the so-
called friction cone. Analogous to the ground normal reaction force at the contact point,

the tangential sticking force is given by
Ftickr = =Ky, — Dyvy), (2.12)

where € is the displacement of the surface from its equilibrium position in the tangent

direction and v,} is the velocity of the surface’s tangential deformation.
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Two projections of the contact point P, onto the surface II, , must be calculated in
order to obtain the tangential displacement ¢, and its velocity v,). First, the point P, =
L, (Py, 0;) NIL(7y , ps ) arising from the intersection between the surface I1, , and a line
Ly ( Py, vy,) passing through the point Py in the direction of motion of the contact point:

oy = U—’g. (2.13)

1kl
The point P, represents the location where the CP should be if it would not have penetrated
the surface. The second point P, = L, (P, nyy) N I(7y,y, ps,y) corresponds to the

perpendicular projection of the point P, onto the surface 11, ,. Considering the equations

for the plane 11, , and projection lines L, and L :

Moy : {P € Rty , P — puy = 0}, (2.14)
Ly, : {P € R} P = t0t, + Py, Vty € R}, (2.15)
Liy:{PeRP =, t, + P, Vt, € R}, (2.16)

substituting a point P of L, into the plane II, , equation yields

~T
Pzy — nz,ypk

iy [0ts + Pi] = poy =0 = t, = ———5 (2.17)
n:c,yvk
thus
ey — DL P
f@zm[&%rﬁi-+a. (2.18)
nx,yvk
Similarly, substituting a point P of L, into the plane Il , equation yields
ey — NL P
R AL (2.19)
Ty My
and hence, the perpendicular projection of P onto plane II, , is given by
ey — NL D
Hk—myF#?+ﬂl + P (2.20)
Mgy My
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The difference between P, and P, corresponds to the motion direction vector of
point P}, projected onto the surface and provides information about the direction of the

tangential ground deformation. Subtracting P, ; from P,;, yields:

5T o T
- W Pry — Ty o Pk
~0 p%y zyt k ~ Z,Y T,y
PPy = Py — Pry, = Ve | =™ Q=7 70 +Pk—nx,y 7 — B
nm,yvk n:c,ynxyy
- 0 R
U n
_ k’ mvy /‘T
T AT 50 AT f } (Pa:,y - nw,ypk)
LYz, y“k z,y' T,y
[ s aT 50
Vy — Ngn,. U
o k Yy 'ry Yk ~T
= [ (- AT, B @21
L z,y "k

The tangential speed of the contact point P}, can now be calculated as the projection of v}

onto the normalized motion direction vector 6, = P, P, 1./|| P,z Py || according to

S0 AT A0
Vg — nib,yn:c,yvk

0 AT 0 s A
ol = 6/ vy, with & = —F———4 (2.22)

|0 — nw,ynf,y”k”
Finally, the velocity v,{ = |v;2]|6; of the tangential surface displacement is integrated

while the CP is in contact to obtain the total tangential deformation ¢, at the contact point:

€ = / vendt (2.23)

For numerical simulation, the previous integral is replaced by a summation using a simple

rectangle approximation €, = > v, At.

2.3.2. Wheel Contact Point Model

As previously mentioned an ideal wheel has infinite contact points. However, for prac-
tical numerical simulation purposes the ideal circular wheel of radius r is approximated by
a regular polygon inscribed in a circle of radius r with a total of N, contact points located
at each one of the vertices on the wheel perimeter as shown in fig. 2.5, which for simplicity
of expostion shows a wheel with N, = 6 in three different time instants at time ¢ = 0,
t = At and t = 2At from left to right. At each time instant the wheel has a translation and
rotational velocity, and each CP has a position defined as P, starting from P; for the first

point explicitly shown on each wheel and numbered in a clockwise direction.
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FIGURE 2.5. Wheels contact points transition.

At each time instant, the distance of the contact point to the surface is verified accord-
ing to (2.8). For the first instant ¢ = 0, the distances of the contact points to the ground
surface satisfy o, > 0, k = 1,2,..., N, because none of the points is in contact and thus
there is no reaction force of the ground acting on the wheel. At the second instant ¢t = At,
the wheel translates and rotates achieving a position in which the CP P is in contact since
03 < 0, thus the interaction between the wheel and the ground needs to be evaluated. Even
though fig. 2.5 shows that the point has penetrated the surface, this situation is considered
under the soft contact model as a deformation of the compliant surface due to the forces
exerted on it by the wheel. According to (2.9) a normal force appears at the point Ps; as
well as tangent forces that are related to the distance 03 and the velocity of point P5;. The
linear velocity of the contact points on the terrain is not necessarily the same as the wheel’s
velocity. The velocity of the wheel’s contact point is calculated as v§ = v —rw x Ns, where
v is the wheel’s linear velocity, w is its angular velocity, r the wheel’s radius, and ]\73 18 the
unitary normal vector of the surface at the contact point (parallel to the normal force Ny).
In the last instant, two contact points (P; and FP) are active, thus normal and tangent forces

appear acting on each of them.

The accuracy of the model depends on the number of CPs employed to approximate

the ideal circular wheel and the step time. To ensure a reasonable level of accuracy the
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step time has to be small enough so that contact point penetration of the ground is small
from one simulation instant to the other. Due to the wheel approximation it is possible that
several contact points in a wheel have penetrated the ground and thus several normal forces
may appear, but their sum should be constant (up to numerical integration errors) when the
system has no acceleration and if the surface has no slope changes. As will be shown later
in section 4.2 for an SSMM on flat terrain, the total normal reaction force is equal to the

weight of the system as expected.

2.4. Skid-Steer Mobile Base Kinematics

Unlike a typical differential-drive mobile base, the skid-steer mobile base (SSMB) is a
slightly more complex base to model because of the skidding and slippage effects, which
add some non-holonomic constraints. In this section, the main kinematic features of the
skid-steer mobile base are revised focusing our attention on the 3-DOF planar kinematic

motion model, before deriving a general 6-DOF floating-base dynamic model.

The main feature of the SSMB is that the applied force/torque for the left-side wheels
is independent from the one applied to the right-side wheels. Thus it is possible to make
the base move in a straight line if the applied torque is the same for both sides or make the
base turn in-place if the applied torques have the same magnitude but opposite directions.
Circular paths can also be accomplish by combining different applied torques to each of

the sides.

The geometric description of the planar model for the skid-steer base is presented in
Fig 2.6, which among its main features includes the longitudinal distances d and e of the
wheels to the COM and the width of the base b corresponding to the distance between the
wheels on each side, similar to the model proposed by ( , ). Despite
the simple geometric description, it should be sufficient to understand the kinematics of an
SSMB. The kinematic model considers that each wheel is located at a point p;, 1 = 2, 3,4, 5,
relative to the base frame. If the mobile base is turning, an instantaneous center of rotation

(ICR) appears and each p; has a corresponding velocity v} in the base frame as illustrated
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in fig. 2.7a and a distance d; to the ICR as shown in fig. 2.7b. The velocities v} of each
wheel can be used to compute the translation velocity v; of the COM in the base frame and

its rotational velocity w .

Yo

-
y

To

FIGURE 2.6. Skid-steer mobile base wheel dimensions.

Yo ICR

s
|
sl
|

Zo Zo
(A) Wheel velocities. (B) Turning geometry.

FIGURE 2.7. Skid-steer mobile base model
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Since the wheels cannot separate from the base, the longitudinal velocity of the wheels

on each side must be the same and thus must satisfy

1 1

(% = v
2 3z
v v (2.24)
1 _ 1
Vig = Usgs

while the lateral velocity of the front wheels, as well as that of the rear wheels, has also to

be the equal and satisfy

S |
ol =yl
3y — Tby-

Furthermore, since all bodies of the base rotate at the same angular speed about the ICR,
considering the distances shown in fig. 2.7b between the wheels and the ICR, and that
between the COM and the ICR, the following relationships must be also satisfied

1

loill _ [l
L= = |lws - (2.26)
il lldol]

Combining (2.24), (2.25), (2.26) and the geometric dimensions of the base of fig. 2.6, the

following velocities equalities are established

vy, = Ui, = Vi, — Swi,

véllm = véa: = Vig + gwlv (2 27)
vy, = v3, = (—xror—d)w,

vz, = v, = (—xcr+e)wr.

These equations show the intrinsic relationship between the mobile base and how the ve-
locities from the wheel reflect on the body and vice-versa. Finally, the nonholonomic

constraint concerning the lateral velocity can be written as
v1y + z10R0 = 0. (2.28)

This constraint implies that the magnitude of the mobile base lateral velocity is directly
related to the location of the ICR relative to the COM and if the ICR is not aligned with the

COM along the longitudinal axes, then the base will exhibit lateral skidding.
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2.5. Forward Dynamics Equations

This section presents the development of the model equations for the motion dynam-
ics of a SSMM using the spatial vector formalism and the Articulated Body Algorithm
(ABA) ( , ) for the calculation of the forward dynamics. Considering the
complexity of the system whose state vector involves 13 + 2 x (M + W) variables (13 for
the base, 2 x M for M arm joints and 2 x W for W wheels), the dynamics for the base
will be derived first without considering the wheels nor the arm. Since the base can trans-
late and rotate in 3D space the base model corresponds to that of a floating base, whose
motion is constrained later by the ground contact reaction forces. The dynamic equations
of the unconstrained floating base derived using the spatial vector algebra approach and
the Articulated Body Algortihm are compared to the well-known dynamic equations of
a general aircraft or satellite derived using the traditional Newton-Euler force balance as
an initial consistency check between both approaches. In the subsequent section an arm
1s added to the base, and the wheel contact forces are also included. Due to the size of
the explicit equations, the arm considers only one degree of freedom. Obtaining symbolic
expressions for the forward dynamics of a SSMM with an arm that has more degrees of
freedoms should be possible provided the computer algebra software for symbolic compu-
tations can handle large expressions. In general this can prove to be a very difficult task,
even for simpler systems as shown in previous work ( , ).
Here we were able to compute closed-form explicit expressions only for an SSMM with a
1-DOF arm, since the spatial vector approach involves the inversion of several 6 x 6 joint-
location and joint-tranform matrices as well as spatial 6 x 6 inertia matrices associated to
each body. However, in the numerical application of the algorithm it is possible to apply it
to more complex models, since each step evaluates matrix and vector operations that yield
numercial values that do not require the complex symbolic simplification of expressions
and symbol handling of the computer algebra software. Our implementation of a Maple
package for the symbolic computation of the spatial vector algerbra and the ABA is later

discussed in section 5.
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2.5.1. Dynamic Model of a Floating Base

The dynamic model equations of a floating base are obtained in this section using
Featherstone’s ABA and the spatial vector approach proposed in ( , ).
The spatial equation of motion of a body states that the net force acting on the body is
equal to the change of momentum, i.e. f = % (Iv) = Ia + v x* Iv, where v x* Iv is
the velocity-product term that accounts for the Coriolis and centrifugal forces. Crudely
stated, the body acceleration can be computed by subtracting the external forces to the
velocity-product term and multiplying the difference by the inverse of the spatial inertial
matrix to obtain a = —I"! (v x* Iv — f). The actual solution for a multibody system is
undoubtedly more complex, but it also involves the computation of the velocity-product
terms. In particular, the floating base model in the ABA implementation of Feather-
stone’s Spatial Toolbox for Matlab ( , ,
http://royfeatherstone.org/spatial/index.html) assumes that the spa-
tial velocities of the floating base are expressed using coordinates referred to the global
frame F,. However, in order to compare the resulting dynamic equations obtained for the
floating base using the ABA to those of an aircraft or free flying object obtained in ( ,

) using the standard Newton-Euler method, for which the force balance is typically
carried out in body coordinates, it will be assumed here that the spatial velocity, accelera-
tion and force variables of the base v?, a! and f in the global frame coordinates frame have
been expressed as a velocity, acceleration and force vi = vy, a] = a; and f] = f; in the
body frame coordinates using the base-to-body transformation ' X, mapping coordinates
from the global frame F to the base frame ;. Since the computation of the base-to-body

transformation ' X, applied to v generates large expressions for vy, it will be convenient
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to assume that the base velocity is simply declared as a spatial velocity vector

W1y

v = , (2.29)

Vg

Uly

V1,

whose angular and translational velocity components are referred to the floating body. For
comparison, the spatial velocity of the floating base using the notation in ( , )

would have been written as v, = [pqr U V W]".

The spatial inertial matrix of the floating base is defined in terms of the body inertia

relative to the COM and its mass as:

[x:cl ]a:yl [:czl

[1 ‘ @3><3 .
I = cwith Iy = | Ly Ly, e (2.30)
O3x3 ‘ millzys
[aczl [yzl ]zzl
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The first step is to compute the velocity-product term that yields the Coriolis and cen-

trifugal forces:

B (2.31)

*
flc = Vv X Ilvl - [nlcx nlcy Nicy flcx fICy flcz

(—wiodoy; Fwigles 1) wig + (—wilyy; +wiylye ) wiy + (—widys; +wiyley) wi,
(wlzlwxl - wlmlle ) Wiy + (wlzlwyl - wlwlyzl) Wiy + (wlz]wzl - wlxlzzl ) Wiz
(_wlylxwl =+ wlwl.vcyl) Wiy + (_wlylxyz =+ Wlx]yzu) Wiy + (_wlnyZI + wlxlyz1) Wiz
—W1,Mj Viy + WiyMy V1,

W1Myg Vg — WigMyg Vig

W1y My Vig + Wiy My Viy

The vector f;.,; of external forces acting on the floating base 1 in body coordinates

includes the gravitational force f; expressed in the global frame F;, and other forces

grav
f,,, which can vary depending on the system. For an aerial or underwater vehicle, f;,
includes drag, lift or buoyancy and thrust forces, which are normally expressed in coordi-
nates of the body frame /7, for ground vehicle, the other forces are typically ground normal
and trangential traction reaction forces which are expressed in the global frame F; as f; o

Therefore, before adding these forces to the platform’s velocity they have to be transformed

to coordinates of the body frame:

* T

flezt = 1X0(flog”w + floo) = [nlextz nlea:ty Nextz fleactz flexty fle:z:tz] (232)
The inertial force acting on the floating body is given by

fi=10,—fi... (2.33)
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Hence, the inertial acceleration of the body is calculated as a; = —I;'f; = a;, + a;.,,
with a;, = —I;'f;, and a;,,;, = I; 'f},,,. Calculating the acceleration due to the velocity-

product terms yields

[(Lye 1 * = Loy Ly ) e + (B g Lot = Tys g Loz ) may + (Lozg Ly g — Loy g Iyey) 2] A7
[(Ixyl ]zzl - Iyzl Imzl) Nig — (Izzl ]$I] - ]IZIQ) N1y + (Iyzl ]ac:lzl - Ia:yl [:EZI) nlz] Aj_l
[(]:czl Iyyl - [zyl Iyzl) Nig + (Iyzl Lwy — Izyl Isz) Ny — (]yyl Ly — Ixy12) nlz] Aj_l

W1z V1y — Wiy Uiy

a;,. =

Wig V1z — Wiz Vig

Wiy Vig — Wig Viy

(2.34)

A]:d€t(1) :]zzl [xxll _]zzII 2_Iacz12]yy1 _Iyz12]ac$1 +2[yz1 [acyj ]xzj

Yy 1 Ty 1
(2.35)
Similarly, the acceleration due to external forces is calculated as:
'] o
eyt = - e flea:t (236)

-1
Osx3 ‘ my I3x3

The complete expressions for the acceleration due to velocity-product terms and external

forces are included in appendix A.1.

The inertial force f; and inertial acceleration a; computed using the spatial vector
algebra approach were compared to the ones derived by the standard Newton-Euler method

and determined to be equal. Model simplifications often consider the inertia off-diagonal
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cross-terms to be zero, 1.e. I, = I, = I, = 0, thus reducing the expressions to

wlylzzl Wiz — wlzlyyl Wiy Niexts
wlz[xxl Wig — wlx[zzl Wiz Nlexty
Wlx]yyj Wiy — le[xxj Wiy Niextz
f, = - : (2.37)
Wiy M1 V1, — W1, M U1y Jiexts
W1, M1 Vigp — Wi M1 V1, flexty
| Wip M1 V1y — W1y My V1| | Jieat ]
and
B le[yylwly_wly]zzl W1z T B Nlexts ]
Izzl Izzl
Wigler g wi—wi los 1 Wiy Nlexty
Ty Ty 4
lelmmz Wlm_wlzlyyl Wiy Nlextz
Izzl Izzl
a; = + . (2.38)
Jieat
W1, Viy — Wiy V1, —;flx
flezt
Wig V1 — Wiy Vig mly
flezt
(Jle Vig — wlzvly | mlz ]

These equations correspond to those of any floating base like an aircraft, satellite, ship
or ground vehicle provided that the external forces are adequately defined; see for exam-
ple ( , ). In the specific case of a SSMM, the main external forces on the platform
are the gravity force, the ground normal and tangential reaction forces at the contact points

of the wheels on the terrain. These external forces are calculated as follows.

On each wheel acts a ground reaction force f;, that can be decomposed into a normal
component /V; and a tangential force Fi;. In turn, the tangential reaction force has longitu-
dinal and a lateral components f;,; and f;,., respectively. If the ground under the robot is

assumed to be locally flat, the ground normal at each wheel will be parallel to the z!-axis,
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while the longitudinal and lateral components will be parallel to the robot’s base longitu-
dinal and lateral axes, x! and y!, as illustrated in figure 2.8. Hence, the ground reaction

force at each wheel can be expressed as a linear force vector in the 3D space coordinates

of frame F7:
f txg
T, il = f ty;
N;
Thus the external spatial force will be given by
MNexts
nlexty
5 7 1
Niext, Zz‘: (Ti + Tkl) X fz w
fle:ct = = - +flg7“av7 (239)
5 1
flextz Zi:Q 7w
flexty E:
L flextz _
where 7;, © = 2,3,4,5, is the position vector of each wheel relative to frame J; (see
table), r is the wheel radius, &, = [0 0 1]7 is the unit vector parallel to the z;-axis, and

figraw = 'X300000 —myg]” is the gravity force.

Since the terrain model is often expressed in the global frame F, for numerical sim-
ulation purposes it can be more convenient to compute the ground contact forces also in

the global frame J. If this is the case, the contact forces f?

1w’

1 = 2,3,4,5 must be trans-
formed to forces expressed in the frame JF; before they can be added to the mobile base

using the transformation:

£, = X

1 w?

(2.40)

where ’ X, is the force transform from frame 0 to 1 (see (2.2) and table 2.4).
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Yo Zo

FIGURE 2.8. Skid-steer mobile manipulator with external forces: gravity and
ground reaction at the wheel contact points.

2.5.2. Dynamic Model of a Skid-Steer Mobile Manipulator

The skid-steer mobile base is extended in this section with a robotic arm and its dy-
namic model equiations are obtained using once again the spatial vector algebra approach.
Due to the large number of parameters associated to the motion and force link-to-link trans-
formations, the model is developed here for a SSMM with only 1-DOF. The model also as-
sumes the base inertia and mass is the lumped inertia of the body of the base and the wheels.
Moreover, the off-diagonal inertia cross-terms are assumed to be zero and the inertia of the
arm is considered to be non-zero only about its rotation axis. These simplifications are
made in order to reduce the length of the expressions. However, a computer algebra system
could be programmed to automate the development of the full equations for SSMMs with

more complex arms as explained later in section 5.
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Considering the simplifications mentioned, the spatial inertia matrices for the base and

the arm are given by:

I, = (2.41)

and

[ 0 0 0 0 0 0o |
0 Iy + imgls®> 0 0 0 —imgl
0 0 i mels” 0 % mele 0

I, = . (2.42)

0 0 0 mg 0 0
0 0 % m6l6 0 Mg 0

| 0 —% m6l6 0 0 0 meg ]

These spatial inertia matrices are calculated in terms of the body inertia /;, the body mass
m; and the COM location ¢; in body coordinates relative to the body-frame using the pa-
rameters in table 2.5 and the formula for the generalized version of the parallel axis theorem
for spatial inertias:
I ]Z+m15;>< @XT mié;x
i et

T

m;iC; X m;llsys

It is to be noted that because the origin of the coordinate frame J; of the floating base
coincides with the COM location, i.e. ¢; = [0,0,0], the spatial inertia is easy to build,

unlike the arm’s COM, which is located at a distance %6 from the arm frame Fg, i.e. Gg =
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0,0, ls/2], causing off-diagonal elements to appear in the expression for Is. In fact, under
the assumption that the base is symmetric and its frame axes are aligned with the body’s
principal axes, the spatial inertia I; is a diagonal matrix, unlike the inertia of the links of

thearm I;,7 = 6,5,..., N.

Just like in the case of the floating base without an arm, the velocity of the base v; is
declared in the body frame JF; according to (2.29) and an additional velocity variable g is
introduced for the arm joint. The spatial velocity of the manipulator can now be calculated

as the combined contributions of the effect of the base on the arm and the joint velocity as:
ve = °Xyvi+ Sds, (2.43)

where 6X is the transformation matrix from the body frame to the manipulator frame

given by

[ cos (g6) 0 —sin(gs) 0 0 0 ]
0 1 0 0 0 0

sin(gs) 0 cos(ge) 0 0 0

X, = (2.44)

0 0 0 cos(gs) 0 —sin(ge)

0 0 0 0 1 0

0 0 0 sin(gs) 0  cos(ge)

while S is the joint motion subspace matrix, which characterizes the motion constraint
imposed by the joint. Since the model in fig. 2.1 considers that arm joints allow arms to

rotate about their y-axis, then Sg = [0 1 0 0 0 0]7. The velocity of the arm in the arm’s
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frame Fg is thus

Vg =

The force due to the velocity-product terms f;,

_COS(Ql)le — sin(q1)v1. |

cos(q1)wi, — sin(gi)wi .
Wiz + g6
sin(q1)wi, + cos(q1)wi.
cos(q1)v1, — sin(gi)vi.

Uly

using the spatial velocity and inertia of each body yielding

Wiyler ; w1, — widyy Wiy
wlzlzwl Wiy — wl:c[zzl Wi,

lelyyl wly - wly[CEII Wig
Wiy M1 V1, — W1, M V1
W1, My Vig — Wiy M V1,

W1g My Vg — W1y 111 Vg
Yy Yy

(2.45)

= v; x* I,v; can now be calculated

(2.46)
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and

Iy (Sin (q6) wipw1y + sin (g6) wizGs + cos (gs) wi.wiy + cos (gs) w1zq'6)

— 1/4 m6lﬁ( — 16 sin (q6) w122 COS (qﬁ) + 2 Wiy sin (q6> V1, + 2 q6 sin (q6) V1,
+ lg cos (ge) W21x2 sin (gs) — 2 v, sin (gs) w1, + 2v1, cos (g6) Wi,
+ 2l cos (%) Wigwi, — 2 W1y COS (%) U1z — 2 (e COS (CIG) Vig — lﬁwlxwlz)

— sin (qG) wlzlyyﬁwly 2— 1/4 sin (q6> wlzm6l62q'6 — sin (q6) wlzfy%q'ﬁ

— 1/4 sin (q6> wlzmﬁlﬁ 2W1y + cos (q6) wlnyyGwly —; COS (q6> wleyyﬁ%

+ 1/4 cos (gs) w1,mels Wiy + 1/a cos (gs) wizmels"gs — /2 melswi,v1,

+ 1amglows 01,

fs.=| /2 m6< — 2l sin (gs) wi, €08 (gs) wr, — 201, 8i0 (g6) Wi, + 2wy, sin (gs) Vi
+ 2 g sin (gg) v1, — lg COS (q6)2 w2 —2 V1, €08 (q6) Wi, + 2 6 cos (g6) V1,

+ 2w1y COS (qG) V1, — l6w1y2 -2 ZGWIy(IG — lﬁqg — l6w1x2 + l6w1x2 COS (q6>2

1/2 m6< — lgsin (%) wi,G6 — lg sin (%) W1, Wiy + 2w1,01,

— 2wy ,V1, + lg cos (gs) wizwiy + ls cos (gs) wlx%)

1/2mg ( — g sin (g6) wi,” cos (ge) + 2wy sin (ge) vi, + 2 dg sin (ge) v1.
+ g cos (gg) wi,> sin (gg) — 2 V1 8in (g6) Wi, + 201, €08 (gs) Wiy
+ 215 cos (g6)° Wigwr, — 2wy, cos (gs) V1, — 26 cos (g6) V1, — l6w1zw1z>

(2.47)

The expression for the force fg. on the arm due to the velocity-product terms provides
insight into the effect of the base motion on the arm force in addition to the Coriolis and

centrifugal forces generated by the joint velocity (.

The inertial force on the arm is
fo =15, — fo.0s (2.48)

T . .
where f66xt = [n66xtx n6exty Neext 2 f66xtx fﬁerty f6€xtz:| is the external force aCtlng on the
arm defined in a similar way to that in (2.39) including a contact and gravity force due to

the payload. The inertial force on the arm can now be propagated back to the base and used
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to compute the inertial force on the base according to
f1 =i+ 'Xifs — oo (2.49)

where f . is the force due to the velocity-product terms and is f;.,,; the external force on the
base introduced in the previous section. If the arm has additional links, the inertial force of
the i-th link has to be propagated back to its parent body A(7) and then to the grandparent

following the kinematic tree till the base using the transformation matrix 'X?.

Before computing the inertial acceleration, it is necessary to compute the apparent
inertia of the manipulator as seen by the base. The spatial inertia of the arm is propagated

back to the base according to
-1
L = I — I6Ss (551656) Se 1§ (2.50)

and results in the spatial inertia matrix

Tl sin(gs)? 0 T lgcos(gs) 0 2T sin(ge) 0 T
0 0 0 0 0 0
I'lg cos(ge) 0 T cos(gs)le 0 2T cos(ge) 0
2 2
11/6 _ o o o m6(cos(q6> melg ;41yy6) 0  cos(ag)mg? sin(gg)ls> (2.51)

4 Iyyg+mglg 4 Iyyg+mglg

2T sin(ge) 0 2T cos(ge) 0 me 0

mg (4 Iyye +Sin(qa)2m6162)

cos(qG)m62 sin(q6)162
0 0 0 - 0 5
4 Iyyg+meglg i

L 41yy6+m6[62

1

where I' = ; mgls. Now the total spatial inertia of the floating base I’ that includes the arm

and the base own inertia can be calculated as

I =1 — T (2.52)
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Using the inertial force on the base and the total spatial inertia of the base, the inertial

acceleration of the base is simply given by

a = (Ill)_lfl
- (1/1_1) : [flc + IXE (f6c - f66mt> - fleact}

- (1/1_1) flc + ((Ill_l) 1X2f6c - \(1,1_1) IXEfGeacE - \(1,1_1) flea:i

Aalc al/Ge.’zt Alext

The inertial acceleration of the base a; can be split into an acceleration arising from the
velocity-product terms a;., and accelerations due to the external forces on the arm and the
base aj/ge,¢+ and aj..¢, respectively. The angular and linear components of the acceleration
due to the velocity-product terms about/along the axes x, y and z of the base coordinate
frame JF; are:
Nlcy = (COS (q6)2 lGlemﬁwlz[y%wly 4+ cos (q6)2 l62m1m6wlzlyysq(5

—2ma1..1mels” cos (%‘)2 wW1,G6 — 2w1 W1, COS (%)2 mal..1mels”

+ cos (qg)2 m1m6l52w1zw1y1yy1 — mamels? cos (gs) sin (g6) w1yw1zeer

+ cos (ge) I62memy sin (g6) wiglyygwiy + cos (go) l62mg sin (g6) Mmiw1 5 Tyygds

—cos (g6) le2memil,., sin (g6) wigwiy — 2 cos (gs) l62mema L., sin (g6) wi4s

+ cos (ges) l62mema sin (g6) wiywizlyy, + ml[zzlwlzm6l62w1y

+2 m11z21w12m616246 +4L1mewr Lyygwiy + 4 Lz1mewi - Iyygde

—dwi,wiylez me + 4w wiyLoz1melyy, — 4w wiymilaz,’

+4wlzwlymljzz1[yy1 + 4m1]zzlwlz1yygwly + 4m1]zzlwlzlyy6q6)/

2 2 2 2
( —cos (g6)” mil.z1mels” + macos (gs)” mele” Loxt

+m1—[zz1m6l62 + 4Izz1]zzlm6 + 4m1—[ccz1—[zzl)

Alcy = - (wlz[zzlwlz - wlz[zzlwlz + Tl) / ([yyl)
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Alcy = (— 2m1[m1 COS (q6)sin (qﬁ)mzm(algzqﬁ —mlfml COS (qe) sin (qG)wlzm6l62w1y

Alcy

2 . 2 .
+mimels” cos (gs) sin (gs) w1, w1y lyy; — mimels™ cos (g6) sin (¢6) w1, wiylzz21
. 2 . . 2
+sin (gs) mimels” cos (gs) w1, Lyygds + sin (gs) mimels” cos (¢6) w1, Lyygwiy
. 2
Fadmalee1wiglyygwiy +4milee1wialyygde + mimels” w1y Lyygwiy
2 . . 2 2
+mimels w1, Lyygds + 2 wiywi,mi cos (gs)” Mels” Lear
I 2 l6°q 2 mels’I
+2maleqy cos (gs)” wizmels”ds — wiywizmi cos (gs)” Mol Iyy,
2 2
—dwiywigmilez:” — dwiywipMelear” + dwiywiomiloat Ly,
2 2
—wW1ywW1;M1Mele" Tzz1 + wiywizmimele” Iy, + 4wiywigmelee1lyy,
. 2 2
+4melzo1wialyyswiy +4dmeloeiwizlyygds — mimesle™ cos (q6) Wielyyewiy
2 2 . 2 2
—mimels” cos (ge) wlzlyysq@;)/(cos (g6)" mil..1mels

—1mq cos (q(,-)2 mels  Ioor — milosimele® — 4 1oz Lugime — 4m1fzz1fzz1)

—1/2 (8 Iyy6m12w1yvlz — 16 Iyygmemiwi V14 — SIyy6m62v1ywlz
2 2 2 2
+8 Lyyeme wiyv1, — 8 Iyygmi wi,v1y +2ma mels wiyv1,
2; 2 2 2
+2me le"miwi V1, — 2m1 mele" w1,v1y + 16 Iy gmemiwi v,
2; 2 2 2 . 2
—2me le"miw1,v1, — 4 cos (gs) Iyygleme wi,” — 41ssin (gs) T1me
2 2 2 . 2.2
—4 cos (gs) Iyygleme wiy,” — 8 cos (gs) Iyygleme wiyds — 4 cos (gs) Iyyglems” s
.2 2 3, 2 2
—4 cos (qﬁ) Iyy6l6m6m1q6 — 4 cos (qg) Iyy6l6m5m1wlz — COS (qe) lﬁ me Mi1Wi,
—41gsin (ge) miTime — 4 Iyygle sin (gs) miwi ,w1,Mme + oS (q6)3 l63m62m1w112
—2 sin (g) Mawi w12m6"le” cos (gs)” — 4 cos (g6) Iyyglememiwi,”
. 3. 2 . 3 2 .9
—8 cos (qs) Iyy616m6m1w1yq6 — 2 cos (q6) le me M1W1yge — COS (qg) lﬁ ™me M1ge
3 2 2 . 2
—cos (ge) le"me " miwi,” — 4 Iyygle sin (ge) wi.wi,me
—cos (gs)® le3m62m1w122)/(4 Lyygmi® + 4 Iyeme” + 8 Iyygmims

+mimels” + m12m6162)
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Aley = ( — 21..1mels sin (ge) w1 Lyygwiy + 4 Lz1 Low1mels sin (gs) wi . g6
—21..1mele sin (g6) wiw1ylyy; + 2 Lz211ea1mels sin (g6) wi w1y
+2 1.1 %mglg sin (g6) w1 w1y — 2 I.21mels sin (g6) w1, Lyygsds
Famil o looiwizvi, —4malzlosiwi v, + 2 c0s (gs) MeleLez1wigIyygds
+2 c08 (g6) MelsLoo1wi o Lyywiy — 2 €08 (g6) Mele oot wiywiy
—mi1Lz1mele’wi 01, + MLz imels w101, — 4 Loy Log1mev1,wi
4 L2y Low1miswi 401, — M1 €08 (g6)” mils” oo 101014
+mi 1,21 cos (g6)° mels w1 .v1, + M1 cos (g6)° Mels” Low1wi o1 -
+2 08 (¢6) MeloLuz1w1ywis Ly, — m1lszq (cos (g6))” mels wi o1
—2 1211z 1mele €OS (g6) Wi1zwiy — 4 Lzz1lez1mels cos (ge) wlz(jg)/
( — cos (qﬁ)2 mil..imels® + mi cos (qg)2 mele>Ioxn

+m1]zzlmﬁl62 + 41 1ee1me + 47711156901[.221)

2; 3 2 2 . 2; 3
e, = 1/2(m1m6 l6” cos (g6)” w1~ sin (gs) — 2mime”le" w1, cos (¢6) wi -

2 2 2
+4mq cos (gs) MeleTr + 8 IyyqUi,wiymi1” — 8 Lyygmi w1, v1y + 8 Iyyeme wiyviy
—2memals” + 2me*mals” +161,

me Mile WigViy me Mile WiyVig yygTM6TM1W1 4Vl g
16 I, 2 %16° 3 2my mels>
— vy gMeMIW1gV1y + 2mime le” cos (g6)° wizwi, + 2ma1 mele w1yv1,
2 2 2 . 2, 3 .
—2m1 mels w1,V1y — 8 IyyaMe V1ywiy, — 2y sin (gs) me™ls” w1y s
. 2) 32 . 2) 8, 2 _ g 2,3, 2
—ma sin (gs) me 16" g5 — ma sin (ge) me”ls" w1, — sin (gs) mame”ls w1,
. 2; 3 2 2 2 . .2
—ma sin (ge) me~le” (cos (g6))” w1~ — 4 Iyysme” sin (gs) leds
2 . . 2
-8 InymG S (qg) lgwlng - 4Iyy6m6 lgwlx CO8S (qs)wlz
vy in (go) lei2 — 41 2 . (g6)1 2
nyml S1n (ge ) Mele g nymg S (ge 6w1y
. . . 2
—8Iyygma sin (g6) melowiyds — 4 Iyyg sin (gs) mimelswi

—4 Iy sin (go) me lewiy,” — 4 Iyygmimelows ; cos (gs) w1, + 4 me” cos (¢s) 167'1)

/(4 Iyy67nl2 + 4Iyy6m62 + SInymﬂns + m1m62162 + m12m6l62)
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The angular and linear components of the base acceleration due to the external forces on

the arm a; /6., in the coordinates of F; are given by:

1 /6ent, = (4 cos (g6) M1 Lz1N6eats + 4 €0S (g) Lz1M6ewts Mo

+4 mIIzzl sin (qG) Néextz — 2 leGIzzl sin (qG) fGezty + 4 me sin (qG) Izzlnﬁeztz
+cos (ge) l62m6m1n65ztx)/( — cos (g6)° ma Lz 1mils”

+my cos (q6)2 mﬁlngml + m1]zz1m6l62 + 41,1 Legrme + 4mllxrllzz1)
al/ﬁexty = 0

- (m1m6l62 sin (ge) Neewts + 2 cos (gs) mele Lo 1f6eat,,

Q1 /6ext ,

—4mi Lipq cos (g6) Neext» + 4 Loz1Me sin (¢6) Neexts — 4 Loa 16 COS (g6) Neeat 5

+4my Iz sin (gs) nemz)/( — cos (g6)* m1 L.ymels”

+mi cos (g6)° mels” Luet + ma Loymele® + 4 Loy Lsyme + 4m1[mmllzzl)

a1/6ext, = (l62m1m6 sin (ge) foeat , + 4 €08 (q6) Lyy M1 focat, + 4 Iyygme sin (qgs) foeat
+2lsmema sin (ge) Neexty + 2 me” sin (g6) lon6eaty + 4 Iyygma sin (gs) foeot ,
+4 cos (ge) Lyygmefoeat, + me” sin (g6) foext » ls?
+ cos (ge) m1m6l62f6mm) / (4 Iny?”m2 +4 Iyy6m62
+8 Iyygmime + mimels” + m12m6162>
a1/6eat, = ( — 2 L.ymelenseats + Lz1mele” foeat,, + 08 (g6)° mele” L1 foeat,

—2 I.1mele sin (ge) cos (g6 ) Neexts + 2 cOS (%)2 L.1meleneeat
+2 cos (gs) MeleLoe1 sin (g6) Neexts — 2 COS (%)2 Mele Low1M6ext
—1zz1 COS (%)2 mGZGQfEthy + 4 Izzljzzlfﬁezty)/( — COs (%)2 mllzz 17'16[62

+m1 cos (%)2 mGZGZI.TJCl + 777/1[zzlr”nGZG2 + 4 Izzljzzlmﬁ + 4m1]mml[zz1)
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ai/6ext, — —( — My COS (QG) fGeztz m6l62 -2 m62 Ccos (QG) lGnGeacty

+4 Iy ¢ sin (ge) foeat,, — 4 Iyygmi cos (gs) foeat , + 4 Tyygma sin (gs) foeat 5

—4 Iy gmi cos (q6) foeat, — Me” €08 (q6) foest, Lo~ + M1 sin (¢6) freat, Mols”

-2 m1 COS (QG) mgl(;nsezzy) / (4 [yy6m12 + 4 Iyy6m62

+8 Iyy6m1m6 + m1m52162 + m12m6l62)

Finally, the angular and linear components of the base acceleration due to the external
forces on the base a;.,; in the coordinates of J; are given by:
Qlexty = (4 M6 L1 Nexts — €08 (g6) le>mema sin (g6 ) Niewt — 2 lome L1 sin (g6) Jieat,
+4m1 Lz 1 Meaty + cos (ge) l62m6m1nlertz)/( — cos (g6)? ma Lz1mels”

+mi cos (g6)° Mels” Los1 + M Lzymele” + 4 Lzt Lsime + 4ma Izzl-[zzl)
Xlexty = nlezty/lyyl

Qlegt = (4 Izzlmﬁnleztz + 4m1]zz1nleztz + m1m6l62nleztz
—mimels” (cos (g6))* Micats — 2 cos (g6) Mels Lur 1 freat,
—m1m6152 sin (qg) COS (qG) nlea:tm) /( — COS (q6)2 77’L1[zz 1m6162

+m; cos (%)2 mels” Luw1 + m1Laimels” + 4 Loy Lisime + 4m1[£1'1]zzl)

Oleaty = —( — m6” freat, L6 — cos (g6) M6’ sin (g6 ) le” freat, + €08 (q6)* M6 freat, l6”
_l62mlm6fleztz -4 Iyy@f]eztz mi — 4 ]yyﬁmﬁfleztz)/(4 Iyy6m12 + 4 Iyy6m62

+8 Iyygmime + mime2le® + m12m6162)

Alegsy = — (Izzl cos (g6)° m6l62flezty + 2 cos (ge) mele Loz 1Nicat,
7[zz 1m6162flc:cty — COs (%)2 m6l62lx11flczty +2 [zz 1m6l6 sin (%) Nlexty
—4 Izzllleflerty)/( — COs (%)2 mil,, 1m6162

+m cos (g6)° mels” Liwy + M1 Laymele” + 4 Loy Lipyme + 4m1]1w1[zzl)
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Alezt, = (mlflezf,z mels® + (cos (%))2 m62l62fleztz + 4 Lyygmefiest, + 4 Iyygfieat, M1
2 . 2 2 2
~+ cos (g6) 6" sin (ge) ls f1mz)/<4 Lyemi” +4 Iy gme

+8 Iyygmime + mime2le® + m12m6l62)

In the same way the velocity of the base was propagated to the arm in (2.43), the
acceleration of the base is propagated to the arm and added to the arm acceleration due
to the joint acceleration and the velocity-product term (corresponding to the spatial cross

product of the arm velocity and joint velocity) to obtain the arm acceleration:

(—sin(q1)w1, — cos(q1)wi) Gs

0

cos(q1 )wr, — sin(qy )wi ) g .
as — %X,a, + (cos{gr)n (@)er:) do + Sis. (2.53)

(_ Sin(ql)le - COS(Ql)Ulz) 6_?6

0

| (cos(q1)v1, —sin(q1)v1s) G |

Vv
Cg=Ve X S(jﬁ

The arm’s spatial acceleration can now be employed to calculate the arm-joint acceler-

ation, which is given by
(jﬁ = (7—6 — ng6 — IGSG ( 6X131 + 06)) (351656)_1 . (254)

In an analogous way to the computation of the base acceleration, the joint acceleration g
can be split into a term associated to the velocity-product terms g, i.e. does not include

the external forces, and two other terms that include the external forces acting on the arm
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and the base, Gec.t and g 1cqt, respectively. These terms are:

. 2
d6c — (4 ]yyﬁmlwlz[zzlwlz —4 [yy6m1w1z]zz1w1z — MWL w1 mels
I6°1, 2 I6°1, 2

—mimele” Ly w1 w1, + 2mimels™ 1y, cos (q1)” wiwi,

_m1m6l62]yy1 sin (¢1) wi,” cos (q1) + Mywi 5 L1 W1 Mgl
+m1m6l62[yy1 cos (q1) wi,>sin (q1) + 4 M Telyy, + 8 Ly e
+2maemsls” — 8 Lyygwip Lo1wi.me + 16 Iy ;meTe + 8 Ly, Lp w1, Mg
+8 Tglyy1m6>/<(4 my Ly + mimely® + 8 Iyy6m6) ]yy1)7
Goext = (4M6eaty M1 + 4 Noeaty M6 + 2Mile feat ;) /
(4 Lyyemy + mele®my + 4m6lyy6) ,
%/mm = ( - 4m1]yy6nlexty —d [yyﬁnlexty mMe — Nexty m6l62m1
+2meglgly,, cos (96) freat, +2 mel 1y, sin (g6) f]emtz>/
( (4 Ly + mgls®my + 4mgly,) Jyyl) .
These equations show that the joint acceleration ¢g does not only depend on the applied

torque 7¢ supplied by the joint actuator, but also on the external forces that propagate from

the base to the arm, as well as the load and possible contact forces on the arm.

The forward dynamics equations just obtained allow to simulate the model of a SSMM
with 1-DOF arm and develop a motion and joint controllers. The simulation of the SSMM
model implemented with the forward dynamics equations is presented in the next chapter,
which also discusses the measurements obtained during the field tests and validate the

model’s physical compliance.
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3. SIMULATION

To corroborate the dynamic model of the SSMM, a SSMM was simulated using the
Spatial Toolbox (version 2) for Matlab ( , ).
This toolbox provides a set of algorithms and functions for simulating the motion dynamics
of multibody mechanical systems using the spatial vector algebra approach. The toolbox
allows to build models in terms of easy to use data structures that only require one to
fill in the parent array A of the the kinematic structure, the position of the joints relative
to the parent body (i.e. the parameters of the joint-location transform Xy ), the location
of the COM of each body and the mass and inertia matrices of the bodies. The toolbox
contains functions for computing the forward and inverse dynamics that can be called from
Matlab scripts or from Simulink simulation models. The functions provided also allow
to include user-defined contact and motion constraints. The results from the simulations
can be visualized using functions that are part of the toolbox and that allow to create 3D

graphical representations of the robot or multibody mechanical system.

The SSMM model built for the simulations corresponds to the one presented in chap-
ter 2 with a 1-DOF manipulator to provide a realistic representation of a Cat® 262C Series
2 compact skid-steer loader that was robotized for teleoperation and autonomous navi-
gation experiments. The simulation results of the Cat® 262C are later compared to the

measurements obtained with the real Cat® 262C skid-steer loader.

In this chapter, the multiple considerations of the simulation are discussed as model

parameters, internal friction and viscosity of the joints and the simulation scheme.

3.1. SSMM Model Parameters

The Cat® 262C will be modeled as a floating base with four wheels and a one-DOF
manipulator. As shown on the model illustrated in fig. 2.1, the mobile base is assigned
body number 1, the wheels are bodies 2, 3, 4, 5 and the arm is the sixth body. The arm
of the Cat® 262C is implemented in the simulation as a 1-DOF rotary joint with axis-

y parallel to y;. Extra bodies and joints can be easily added to represent the motion of

48



the loader’s bucket. However, to reduce the number of variables the experiments were
carried out using a fixed bucket positon and therefore bodies 7 = 7,8, ..., N of the general
SSMM model were not defined in the model script that can be obtained from (

http://ral.ing.puc.cl/ssmm.htm). The specific values for the geometric and
inertial parameters in Table 2.5 of the Cat® 262C model are summarized in Table 3.1. It is
to be noted that the joint location parameter % of the loader arm corresponding to frame F;
in fig. 2.1 shown in Table 3.1 is negative. This is because the Cat 262C arm is positioned at
the rear-end of the machine, opposite to the front location of the arm in the general SSMM

model shown in fig. 2.1.

TABLE 3.1. Cat® 262 Modeled Parameters in SI Units.

Description \ Mobile Base Wheels Manipulator

T a=3 2r=20.9 e =0.15
Dimensions ¥y b=1.6 w = 0.25 e=0.15
z c=12 2r =0.9 lg = 3.3
Mass mq = 2389 ma 345 = 47.7 me = 1034
Joint d=20.2
Location — e=1 h=-12
Parameters f=05

Once each body is declared, the ground contact points are defined with respect to each
body’s frame F; in 3D coordinates. More specifically, eight CPs are defined at each corner
of the mobile base represented by a rectangular box, one CP is defined at the end of the
manipulator arm where the tip of the bucket is located, and each of the four wheels has
32 CPs distributed around its perimeter. Such number of contact points on the wheels was
choosen to obtain a more realistic simulation of the ground-wheel interaction. Fig. 3.1

shows the simulated SSMM model through the spatial vector algebra toolbox.
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FIGURE 3.1. Simulated SSMM model.

3.2. Joints Friction, Viscosity and Control

3.2.1. Response to step inputs

When a step command is send to the Cat® 262C, the response is not instantaneous
due to the response dynamics of the different mechanical subsystems (diesel engine, pump,
hydraulic motors). A basic model of the engine is shown if fig. 3.2. The first input of
the system is the accelerator throttle that set the power of the diesel engine. The engine
moves an hydrostatic pump which supplies hydraulic pressure to the left and right hydraulic

motors through the corresponding servovalves.

The diesel engine, the hydrostatic pump and the hydraulic motors each have an inertia
and friction constants which add to the total response time and efficiency reductions of the
power train. It was measured from the data collected in the experiments that the machine

velocity profile is such that the acceleration period last 0.2 s, while the deceleration period
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FIGURE 3.2. Mobile base engine model.

is 0.1 seconds. These times where included as a velocity ramping in the simulated model.
These ramping periods are implemented on the machine for safety reasons and to reduce

mechanical wear-off and damages that could be caused by sudden braking.

3.2.2. Wheel torque model

The net torque of each wheel assumes the standard viscous friction force proportional

to the wheel velocity ¢;. Thus each wheel satisfies a first order equation of the form

quz =T; — CCL'; = 27 37 47 5 (31)

where J; is the moment of inertia of the wheel, 7; the torque applied to the wheel and c is
the viscous friction coefficient. The viscous friction coefficient can be obtained from (3.1)

as

7 — Jidi
c=——"=

qi
which should be valid also when the machine achieves a steady-state velocity ¢,,q. With

steady-state torque 7,,,,. Since in steady-state equilibrium ¢; = 0, then

_ Tmaz

qmaz
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From the machine design specifications it is possible to obtain F,,,,, which allows to cal-

culate ¢ = Lmaz gince 7,4, = Lmaz,

max Qmam
3.2.3. Arm torque model

Similar to the wheels, the arm also has a viscous friction force that is proportional to
the arms velocity (¢s) and its coefficient is calculated using (3.1) and experimental data
acquired of the falling arm. The torque applied by the arm joint controller is assumed to

follow a PID control law:

d .
7(g6,) = K,-qs.+ Kq- Equ + K; / Q6. At — cqs (3.2)
where gs. = ¢s" — g 1s the error between the reference position gs" and the measured joint
position ¢g. The controller proportional constant was set to

[
Kp = §6m69 + leloadg:| .

The chosen value for K, is equal to the torque that should be applied by the arm at an
horizontal equilibrium position while holding a load of size m,,,q. While the derivative
and integral constants were set to Ky = 0.5K,T, K; = %, where T is the dead time,
and K; and K are tuned according to the Ziegler-Nichols method. With this selection of
controller parameters, it is ensure that the controller’s response does not compromise the

stability of the arm and dampens arm oscillation that affect the vehicle’s displacement.

3.3. Simulation Flowchart

A simulation flowchartfor the SSMM model is shown in fig. 3.3. The simulation starts
with the initial conditions for the joint states (position and velocities contained in x, ¢ and
q), the joint applied and dissipative torques represented by 7; and the external forces as CP
forces and load force represented by F.,;. The first four terms (z, ¢, ¢, 7;) are needed to
calculate the SSMM foward dynamics and the F.,; is needed to simulate the interaction

with the environment.
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Simultaneously, the user supplies the joystick setpoints (torque, right and left wheels

throttles) that results in the applied torque to each wheel and the arm joint setpoint that

provides the reference signal to the 1-DOF arm. The applied torque of the wheels and the

arm joint torque minus the viscous friction torques feedback to the system’s model. The

ground contact points are calculated and supplied to for the next iteration of the model.

x g q 7-/ Eﬂ:l;t

L
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Foward Dynamics

Arm Joints
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Wheel Torque
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7zmcar 71_471/ gular

8
>
1
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q
Y vV VY Y Y Y Y Y
Ground CP Arm Joint Joint Friction Wheels Motor
Force Position Control Torque Torque
Eﬂ.’L’t

|7

FIGURE 3.3. Simulation flowchart.
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4. SIMULATION AND EXPERIMENTAL VALIDATION

In order to validate the SSMM model, motion experiments were conducted using the
Cat® 262C skid-steer loader shown in fig. 4.1. The tests were carried out on asphalt pave-
ment with the machine being remotely operated. The tests consisted of two driving ma-
neuvers (i) straight line motion for approximately 4 m, and (ii) in-place 360° rotations
carried out with and without load. The load applied to the bucket corresponds to 5x 80 liter
drums of water totaling 400 kg (approx.). This load is equivalent to roughly 11% of the un-
loaded machine weight and is sufficient to considerably affect the location of the loader’s
COM. The four set of experiments were repeated ten times each. The acceleration and
heading data was acquired using a high precision Crossbow® IMU and gyroscope model
RGA300CA. This device outputs linear accelerations in the X, Y and Z axes, angular

velocity w,, roll and pitch angles ¢ and 6, respectively.

FIGURE 4.1. Compact skid-steer loader at the experiment site with unloaded
bucket (left) and loaded bucket (right).

In this section three main results are shown, one comparing the simulated against the
experimentally acquired data in order to evaluate the physical accuracy of the model. The
other two results correspond to the simulation of the contact points and wheels velocities.
These results are discussed in the context of theoretical background in the following sub-

sections.
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4.1. Comparison of Experimental and Simulated Results

The measurements for both straight line motion and in-place rotation show a reason-
able agreement with the simulated values. This can be confirmed from fig. 4.2, which
shows the machine position for the twice integrated acceleration measured in the straight
line motion experiment without load (blue lines) and the simulated value for the machine
longitudinal position (red line). Similarly, the in-place rotation experiment, whose results
are shown in fig. 4.3, display great consistency with the simulated turning rate of the ma-
chine. From the straight line experiments and simulation of fig. 4.2 it is also possible to
see that the both the measured and simualated velocities are consistent. In the case of the
turning speed shown in fig. 4.3, the agreement between the measured and simulated acceler-
ation and deceleration is clear. The mismatch in the final linear and angular displacements
is due to the fact that setpoints were manually issued, and there is a +1 second difference

in triggering the stopping command.

Straight Line Motion

Experiment 1
Experiment 2
Experiment 3
Experiment 4
—— Experiment 5
— Experiment 7
— Experiment 8
— Experiment 9
— Experiment 10
— Simulation

Distance [m]

Time [s]

FIGURE 4.2. Straight line motion experimental data compared to the simulated
model with the SSMM without load.

The experiments carried out with load show that the machine’s acceleration was slightly

reduced. This can be observed in the straight line motion experiment of fig. 4.4, which
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On Place Turn Motion

Experiment 1
Experiment 2
Experiment 3
Experiment 4
—— Experiment 5
— Experiment 7
— Experiment 8
— Experiment 9
Experiment 10
— Simulation

Angular Velocity [°/s]

FIGURE 4.3. On place turn motion experimental data compared to the simulated
model with the SSMM without load.

shows that the position curve has a slightly smaller slope when compared to the same
curves in fig. 4.2. Similarly, the in-place turn with the loaded bucket took about 4 seconds
more to complete the 360° turn, and the measured turning velocity decreased from roughly

3742 °/s to 2742 ° /s as apparent from the comparison of figs. 4.3 and 4.5.

It is to be noted that the ripple in the simulated turning speed of the loaded and un-
loaded machine shown in figs. 4.3 and 4.5 is produced by the skidding, which is not con-
stant because the active CPs change while the machine rotates. Also minor arm oscillations
due to controller tuning induce small disturbances in the forces or the active CPs. These
results confirm the power of the spatial vector algebra modeling approach in capturing the

force interactions between bodies of the SSMM.

To quantify the error between the simulated values and the real measurements obtained
during the straight line and in-place turn experiments, the measurements were averaged to
obtain the mean error and its standard deviation. In the computation of the average trajec-

tory, the worst four experiments were discarded because of noticeable discrepancies in the
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Straight Line Motion with Load
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FIGURE 4.4. Straight line motion experimental data compared to the simulated
model with the SSMM with 400 kg load.

On Place Turn Motion with Load
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FIGURE 4.5. On place turn motion experimental data compared to the simulated
model with the SSMM with 400 kg load.



trajectories length caused by the £0.75 s reation-time errors of manually issuing the stop-
ping commands. Due to this reason, it was only after computing the position curves from
the inertial measurements that the outliers could be identified and discarded. The figs. 4.6
and 4.7 present the mean error between the simulation and the measurements (blue line)
bounded by a lower and upper curve corresponding to one-standard deviation (red line).
Fig. 4.6 shows that the accumulative error increases from 0.01 m to 0.06 m roughly after 4
seconds of motion. This result shows that the error at any given time is below 1.25% of the
total distance traveled. This accumulative error is expected because the model parameters,
such as mass and COM location, are not perfectly known and any discrepancy between
the simulated and measured acceleration is integrated in time to yield an increasing error.
On the other hand, the polygonal approximation of the wheels can cause other errors in
the traction model that affect the estimated displacement. Nonetheless, the relative error of
1-2% 1s reasonable considering that an IMU was employed to estimate the motion. This re-
sult provides significant evidence that the simulated instantaneous accelerations and forces
are very close to the correct ones, since after four seconds of motion the standard deviation
is less than 0 = £0.03 m for a 4 m long trajectory. Considering n = 9 valid experiments,
the 95% confidence interval after four seconds is +1.960/+/n = 0.02 m, which in relative
terms with respect to the mean value ¢ = 4 m corresponds to a small confidence interval

of £0.5%.

Regarding the average error between the simulation and the measurments for the in-
place turn experiment, the results in fig. 4.7 show that the error is smaller than a 2-3°,
with a significantly noisier curve because of the angular velocity measurement noise of the
gyroscope as can be seen in the experiments shown in fig. 4.3. In this case it is possible to
see that the mean error is approximately —2 /s and stays bounded unlike the longitudinal
motion measurements. This is because the angular velocity measurment is not computed
by integrating accelerations like in the case of the longitudinal motion experiments. The
mean error between the simulated and measured angular velocities is approximately 6 %
of the theoretical value. However, the error oscillates and the final angular value of the

simulated turn fits well with the experimental observations as shown in fig. 4.3.
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FIGURE 4.6. Error between the simulation and the mean value of the experiments
for straight line motion.
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FIGURE 4.7. Error between the simulation and the mean value of the experiments
for turn on place motion.
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4.2. Contact Points Simulation Results

The simulation results for the normal forces acting on each of the active contact points
of the n-sided polygonal approximation to the wheels of the SSMM are presented in fig. 4.8,
which shows how each point becomes gradually active as the wheel turns and sinks in the
compliant terrain surface when the machine is translating and turning along and arc of a
circle. The curves in fig. 4.8 correspond to a segment of the graph of the normal forces
acting on the contact points of the right-front wheel of the SSMM that is presented in
fig. 4.9. It is possible to observe in fig. 4.9 that the envelope curve of the contact point
forces has a maximum value which is different for the left/right and front/rear wheels. This
is because the centrifugal acceleration forces of the turning SSMM causes a roll moment
about its longitudinal axis x; that makes the SSMM lean towards the outside of the turn,
thus increasing the pressure on the external wheels. In the simulation, the SSMM was made
to turn to the left, i.e. counter-clockwise about the z; axis, therefore, the right-side wheels
are subject to larger normal forces than the left wheels. Also due to the weight distribution
of the SSMM, in which the COM is closer to the rear wheels, the rear wheels have a normal

force that is almost twice the normal force of the front wheels.

Contact point transition
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FIGURE 4.8. Evolution of the normal forces acting on the contact points of the
rotating right-front wheel.
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between the theoretical normal force and the one obtained from the simulations is less than

0.3% for n = 32, and less than 0.1% for n = 128.

x 10* Sum of wheels normal forces

3.8 : ——32CP

w
)

Total normal force [N]

w
~
T

w
w
T

! ! ! ! !
0 0.5 1 1.5 2 25

Time [s]
FIGURE 4.10. Total normal force on the SSMM computed from the sum of the
normal forces acting on all the active contact points of each of the four wheels.

To understand better the results presented in fig. 4.10, the fast Fourier transform (FFT)
was calculated for the normal forces arising for each of the polygonal approximations to
the wheel. The frequency spectrum amplitude obtained is shown in fig. 4.11. Considering
that for a given linear longitudinal velocity v, a wheel of radius r with p CPs will have a CP
bumping frequency given by (vp) / (27r), then for the simulated SSMM, if v is approxi-
mately 1 m/s and » = 0.45 m, the bumping frequencies can be calculated to be 11.32 Hz,
22.64 Hz, and 45.28 Hz, for n = 32,64, 128, respectively. As expected, the peak ampli-
tudes of the FFT occur at frequencies 11.7 Hz, 23.4 Hz and 46.8 Hz, once again confirming
the accuracy of the simulation. It is also possible to see in the FFT plot of fig. 4.11 that
in all simulations there is a response with an oscillation frequency of 3 Hz. This low fre-
quency oscillation is produced by the arm controller, which cannot filter the disturbances
propagated from the wheels to the base up to the arm. This coupling between the arm and
the base is propagated back to the wheels which experiment a variation in the normal forces

due to the vibrations of the arm.
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4.3. Skid-Steer Base Model Validation

The relationship between the longitudingal and lateral velocities of the wheels’ centers
with respect to the COM’s velocity expressed in coordinates of the floating base frame F;
were computed from the numerical simulation results and checked for consistency with
respect to the expected behaviour described by (2.24) and (2.25) for the case the vehicle
is turning along a semi-circle trajectory. The mobile base starts its motion from an initial
rest position according to a trapezoidal velocity profile applied to the wheels in which the
left-side wheels have a higher velocity reference set-point than those on the right to make

the machine turn right.

According to (2.24), the longitudinal velocity of the wheels on a give side (right or
left) must be the same. This is indeed the case as shown in the curves of fig. 4.12. It is also
possible to notice that for the SSMM turning to the right from an initial rest position, the
interior wheels to the curve, i.e. those on the right side, initially have a negative velocity
as they skid due to the large torque applied on the left-side wheels. Once the torque on the
right-side wheels is increased, these wheels gain traction and start rolling. Due to the initial
difference between the velocities of the left-side and right-side, with w; > v, the SSMM
turns almost in-place and the right wheels briefly move backwards as observed in the real

machine.

On the other hand, according to (2.25), the lateral velocity of the front wheels must
be the same, and likewise, the lateral velocity of the rear wheels must be equal to each
other. This is verified in the simulation results for the wheels’ lateral velocities presented
in fig. 4.13. Since the COM is closer to the rear axle than to the front axle, the lateral
velocity of the rear-wheels is significantly smaller than the lateral velocity of the front

wheels.

Even though this results may seem trivial because the wheels in the real skid-steer
loader are rigidly attached to the mobile base and cannot separate from it, the results con-
firm that the model built using spatial vector algebra approach is consistent with the theo-

retical kinematic constraints stated in (2.24) and (2.25).
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FIGURE 4.13. Lateral velocities of the wheels.
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4.4. Base-Arm Interaction

The propagation of the forces acting on the base due to the wheel-ground interaction,
more specifically the normal and tangential reaction forces at the contact points, produces
disturbances on the SSMM’s arm whose position is held close to a fixed reference value
using a PID controller as explained in section 3.2.3. The closed-loop response of the arm
when the base is commanded to move according to a trapezoidal velocity profile is shown
in fig. 4.14. It is possible to observe that the arm initially goes down from a starting po-
sition of -14° to -14.5° when the base is accelerated until the speed of the base levels to
a value of almost 1 m/s. The opposite effect occurs on the arm when the base deceler-
ates as may be seen in the third graph of fig. 4.14. The transient perturbations occurring
during acceleration and deceleration of the base are more notorious in the fourth graph of
fig. 4.14, which shows the angular velocity. of the arm joint. It is also possible to observe
that there is a permanent oscillation in the arm velocity which is caused by the periodicity
of the normal forces acting on the contact points that become active as the wheels rotate.
Considering that the mobile base is translating at a velocity of v, = 1 m/s, the angular ve-
locity of the wheels is w = v, /(27r) = 1/(270.45) = 0.35 revolutions per second. Thus it
takes the wheel 1/0.35=2.83 seconds to complete one turn, and since the wheel has 32 con-
tact points, the contact interaction period is approximately 2.83/32=0.088 seconds. This
contact interaction period is precisely the period of the oscillations that can be observed
in fig. 4.14 during the time lapse at which the mobile base moves with constant velocity
roughly between seconds 2 and 4. This behaviour can also be observed in the controller’s
response curve which applies a torque that attempts to compensate the arm position. It is
also possible to confirm that the controller applies a torque which has an average value of
16.14 kNm, consistent with the theoretically expected torque which for a 3.3 m long arm
that has a mass of 1034 kg and is held at -14.5° angle with respect to the horizon should ap-
proximately be (3.3/2) cos(—14.57/180) - 1034 - 9.81 ~ 16.16 kNm in steady-state. These
allows us to conclude that the spatial vector algebra modeling approach provides physically

accurate results and allows to take into account the arm and base interactions. This feature
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is very useful for the desing of controllers that could effectively reduce the disturbances

produced by rough terrains on the arm.
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FIGURE 4.14. Closed-loop response of the SSMM’s arm when the mobile base

follows a trapezoidal velocity profile.
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5. A MAPLE PACKAGE FOR SPATIAL VECTOR ALGEBRA SYMBOLIC COM-
PUTATIONS

An additional contribution of this research is the implementation of a Maple® pack-
age for spatial vector algebra computations and modeling of the motion dynamics equatios
of multybody systems. This software tool was employed to check the derivation of the
equations of motion for the SSMM that were presented in chapter 2. This software pack-
age for the symbolic manipulation and computation of spatial vector algebra expressions
could also be useful to understand and learn how to work with spatial vector algebra. The
complete code for this software tool is presented in the appendix A.2 and can be obtained
from the website (

, ). A summary of the main functions of the software library

for symbolic spatial vector algebra computations is presented in table 5.1 below.

An example showing how the developed software library for symbolic spatial vector
algebra computations can be employed to obtain the model equations that were derived
in 2 for the SSMM are presented next. For the sake of clarity, the example is divided into
five sections: “Floating base model variables and parameters”, “Basic body velocities”,
“External forces”, “Inertial and force reactions” and “Body accelerations”. The first section
defines the model parameters, and is the main section that has to be updated or modified by
the user to describe a different robot. In the example, the first section defines a floating base
with 1-DOF manipulator. The remaining sections are rather general and can be executed
to derive the forward dynamics equations of any system using Featherstone’s Articulated
Body Alogrithm provided the user has adequately described system in the first section
and that the number of parameters does not exceed the amount of data/memory Maple®
can handle. The variable X, [¢] is employed in the example code to define the motion
transformation between the the parent body A(7) of body ¢, i.e. X, [¢] represents the motion

transform ‘X, ;) presented in table 2.5 of chapter 2.
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TABLE 5.1. Maple implemented library.

Function

Inputs

Description

crm

x e RS

Returns the cross-product operator for spatial
motion vectors .

crf

xRS

Returns the spatial cross-product operator for
spatial forces .

rq

r e R?

Converts quaternions x to 3z3 rotation matri-
ces.

skew

r € R?

Calculates the 3x3 skew-symmetric cross-
product matrix for vector x.

plux

r € R33 yeR3

Returns the Pliicker coordinate transformation
corresponding to a rotation matrix x and a trans-
lation y. If the motion transformation from
frame A to B is parameterized by a rotation
matrix PE,4 and a translation ®r,, this func-
tion returns X 4. To make the code more com-
pact, the notation X, [¢] is employed to define
the motion transformation between the the par-
ent body A(7) of body i, i.e. X, [i] represents
X\i)-

rotx
roty
rotz

feR

Returns the spatial rotation matrix
corresponding to a rotation # radians about the
x, Y Or z axis.

xtl

r € R3

Returns the spatial translation matrix from A to
B by a 3D vector z.

mel

mER, ceR3, T cR33

Returns the rigid body inertia computed in
terms of the body mass m, the center of mass
¢, and the 3D inertia matrix /.
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;Direct Dynamics Algorithm

This file implements the algorithm for spatial vector algebra for direct dynamics presented in the book
"Rigid Body Dynamics Algorithms" by Roy Featherstone.

The code implemented below corresponds to the Articulated Body Algorithm presented in Ch. 7, p.
132, table 7.1, applied to the Skid-Steer Mobile Manipulator with 1-DOF arm. The code can be
modified and extended to implement the model of any other robot provided that the user has adequately
defined the model parameters and that the number of parameters does not exceed the amount of
data/memory that Maple can handle.

Remarks:

- The model presented below employs some simplifying assumptions like diagonal body inertia
matrices and an arm location centered in the base in order to minimize the parameters required for the
symbolic computations.

- The ABA algorithm for forward dynamics applied to the SSMM with 1-DOF arm has been writen in a
general way. If additional DOFs for the arm or wheels are needed, the code only requires the addition
of some extra parameters in the section "Floating base model variable and parameters".

- In order to properly execute the code, the "libname" variable containing the path to the library
directory has to be updated.

- Any question concerning the algorithm implementation or further results may be sent to sfaguile@uc.
cl.

> restart;

> libname = "C:/Users/Sergio Aguilera/Dropbox/Magister/MapleFuctions/lib", libname :
with(LibrarySVA);
| with(LinearAlgebra) :
L This file models a floating base with a 1-DOF manipulator attached to it.

¥ Floating base model variable and parameters

First, the local variables are declared. Because of the the base is a 6-DOF floating base, six bodies

connected by 1-DOF joints are employed to account for the 6-DOF. Following Roy Featherstone's

approach, the six bodies with 1-DOF joints are combined together and their properties are stored in
Lelement 6 of the parameter vectors, while the manipulator is labeled as body 7.

> xfb == (p[0], p[1], p[2], p[3], P[X], PLY], P[], ®[X], ®[y], ®[z], v[X], V[y], v[z]) :

# xfb: is the state of the floating base in the global frame coordinates described by the
L orientation quaternion, its global position and spatial global velocity.
> vecq = (q[7]) :
# g[1] is the joint position of the arm. For a rotary joint, it represent the rotation angle.
> vecqd == (qd[7]) :
# qd[1] is the joint velocity.
> vecr:= (1[7]) :
#1[7]:is the applied torque to the manipulator joint.
> vecm == (m[6], m[7]) :
# m[6] and m[7] are the mass of the floating base and the manipulator, respectively.
> CoM[6] := (0,0,0) : COM[7] := <'[% 0, o> :
#CoM is the center of mass location in the body frame coordinates.
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> lem([6] := MatrixScalarMultiply(Matrix( (Ixx[6], lyy[6], 1zz[6]), shape = diagonal), 1) :
lem[ 7] :== MatrixScalarMultiply(Matrix( (0, lyy[7], 0), shape = diagonal), 1) :
#lcm is the 3D inertia of the body in body coordinates about its center of mass.
> forifrom6bylto7do
In[i] := mcl(vecm(i —5), CoMT[i], lcm[i]) :
end do:
#In[i] is the spatial inertia of the body i in body frame coordinates.
> fixtree[7] = xlt(<a71, ar,, a73>) :
xtree[ 7] := xlt((0, 0, 0) ) :
#xtree is the translation matrix from body frame 6 to body frame 7.
> A:=(0,0,0,0,0,0,6) :
#The i-the element of the lambda vector stores the index of the parent body of body i.
> gn:=xfb[1..4]:
#qn is the orientation quaternion of the floating base.
> r:=xfb[5..7]:
#r is the global position of the floating base.
> vff := xfb[8..13]:
#vff is the velocity of the floating base in the global frame.
> E = simplify(rq(qgn)) :
#E is the rotation matrix between the world frame and the floating base frame.
> Xup[6] := convert( plux(E, r), Matrix) :
#Xup[6] is the transformation matrix from the global frame to the floating base frame. It
depends on the orientation of the floating base and its location.
> Fext[6] := (7Bextx, Bexty, Bextz, foextx, foexty, féextz) : Fext[7] := (77extx, 7exty, 77extz,
f7extx, f7exty, f7extz) :
#Fext[6] := (0,0,0,0,0,0) : Fext[7] := (0,0,0,0,0,0) :
#Fext are the spatial forces corresponding to the external spatial forces.
> NB:=7:
#NB is the number of bodies (the 6-DOF floating base counts as 6 bodies and the 1-DOF

manipulator counts as 1 body).

Basic body velocities

The direct dynamics algorithm takes as input the velocities of the system and the forces in the global
frame. But for floating bases it is easier to work with velocities expressed in the floating base frame.
Because of this, the velocity v[6] of the floating base expressed in the coordinates of the floating base
frame is calculated from vff , but replaced by a vector of parameters that will be employed along the
whole code.
> v[6] = simplify(MatrixVectorMultiply (Xup[61], vff) ) :
L #Floating base velocity in the coordinate frame of the floating base.
> v[6] = (P,QR UV, W) :
L # A substitution is made to simplify the equations and mathematical procedures.
> pA[6] := MatrixVectorMultiply (MatrixMatrixMultiply(convert(crf (v[6]), Matrix), In[6]),
v[6]):
#Coriolis and centrifugal forces due to the cross product between the velocity of the body and
the inertia transformed velocity.
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When the base velocities are calculated, the velocity of the base is propagated to the children,
expressing the velocity in the coordinate frame of the children bodies and added to their joint
velocity.

- V[i] is the velocity of the body i

- c[i] is the centrifugal force and Coriolis effects due to cross product between the joint velocity and
the floating base velocity.

- pA[i] is the force of the body i, due to the velocity of body i and the inertia of the body.

> forifrom 7 by 1toNBdo

XJ == roty(vecq(i —6)) :

S[i]:=(0,1,0,0,0,0) :

vJ :== vecqd(i —6)-S[i]:

Xup[i] := MatrixMatrixMultiply(XJ, xtree[l])

v[i] :== MatrixVectorMultiply( Xup[i], v[A[i]]) + VJ;

c[i] :== MatrixVectorMultiply(crm(v[i]), vJ);

pA[i] :== MatrixVectorMultiply (MatrixMatrixMultiply(convert(crf (v[i]), Matrix), In[i]),
vlil);

end do:

(> V[7]:c[7]:pAl7]:

V¥ External forces

Once the forces due to the velocity of the bodies have been calculated, the external forces are added.
The external forces are usually expressed in the global frame and have to be transform to the body
frame.

-Xa is the transformation matrix from the global frame to the body i.

| > Xa[6] := simplify(Xup[6]) :
> forifrom7 by 1toNBdo
Xa[i] = simplify( MatrixMatrixMultiply(Xup[i], Xa[A[i]]) ) :
L enddo:
> forifrom 6 by 1toNBdo
#pA[i] == pA[i] — MatrixVectorMultiply (MatrixInverse(Transpose(Xa[i])), Fext[i]);
PA[i] == pA[i] - Fext[i];
end do:

¥ Inertial and force reactions

Once each body forces are calculated in their own frame, these forces are propagated to their parents.
In addition to the force, also the apparent inertia of the children is propagated back to the parent and
added to the parent's own inertia.

- la is the apparent inertia transmited from i to lambda[i].
- pa is the force transmited from i to lambda[i].
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> forifromNB by -1t0o7 do
UUTi] := MatrixVectorMultiply(In[i], S[i]);
d[i] :== Multiply(Transpose(S[i]), UU[i]);
uli] == vecz(i — 6) - Multiply(Transpose(S[i]), pA[i]);

it — Mudgingy( WYL 0.
la:=In[i] Multlply( dril ,Transpose(UU[l])), . -
pa = pA[i] + MatrixVectorMultiply(la, c[i]) + UUlilufi]

d[i] '

In[A[i]] == In[A[i]] + MatrixMatrixMultiply( MatrixMatrixMultiply( Transpose (Xup[i]),
la), Xup[i]);

PA[A[i]] :== pA[A[i]] + MatrixVectorMultiply(Transpose (Xup[i]), pa);

end do:

Y Body accelerations

The last iteration of the algorithm calculates the accelerations of each body.

First, the acceleration of the floating base a[6] is calculated as the inverse of the updated inertia of the
base postmultipled by the total applied force.

Similarly to velocities, body accelerations are propagated from each parent to its children.

Finally, the acceleration of the children is calculated addint the acceleration of the parent and the
bodies own acceleration.

|:> a[6] := simplify(MatrixVectorMultiply ( - MatrixInverse(In[6]), pA[6])) :
> forifrom 7 by 1toNB do

a[i] := MatrixVectorMultiply(Xup[i], a[A[i]]) +c[i];

qdd[i —6] == (ufi] — MuItipIy(Trer?;]mse(UU[i]), ali])) :

ali]:=a[i] + S[i]-qdd[i —6];
end do:

The accelerations of each body in its own frame can be easily transformed into an acceleration expressed
in the global frame using the inverse of the transformation matrix Xa[i].



6. CONCLUSION AND FUTURE RESEARCH

6.1. Review of the Results and General Remarks

The forward dynamics equations for a generic skid-steer mobile manipulator consider-
ing the base as a 6-DOF floating base with non-permanent ground contacts was developed
using the spatial vector algebra and the Articulated Body Algorithm. Unlike the existing
models for mobile manipulators, the model developed provides explicit expressions for the
arm-vehicle and the wheel-ground interactions. Due to the growing number of parameters
when the arm includes several links, the model in this work is developed for an arm with
only one degree-of-feedom. However, the approach can be extended to arms with several
degrees-of-freedom, or mobile bases with more than one arm or wheels. The limitations to
the symbolic modeling are in the number of parameters that can reasonably be dealt with
in calculations by hand, or using a computer algebra system for symbolic manipulation of

mathematical expressions.

Another contribution of this work is the development of a software library for sym-
bolic spatial algebra computations in Maple®. This library can be employed to derive the
dynamic model of traditional robot arms, mobile robot bases, an other multi-body systems

whose topology may corresponds to a kinematic trees.

To validate the dynamic model of the SSMM, the model the simulation results were
compared to measurements acquired from the inertial sensors installed on board of a Cat® 262C
compact skid-steer loader. The accuracy between the model and the experimental data re-
assures the usefulness of the spatial vector formulation and the model built enriches the
set of examples included with the Spatial Toolbox. Both the model and experimental data
collected during the field tests have been made publicly available at (

, ) for the
robotics community interested in studying the dynamics, motion control and mechanical
design of SSMMs, among other related topics. Even though the model equations and the

modeling approach has been validated for a specific machine, it should be easily adaptable
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to other machines given the generality of the approach and provided that the paramters
in tables 2.5 and 3.1 are adequately set. In addition to providing a dynamic model for a
compact skid-steer loader that can be employed to develop control strategies and trajectory
tracking controllers that optimize the machine performance under terrain disturbances, this
work shows that the spatial vector algebra formulation allows to obtain a unified model
that takes into account the vehicle-terrain and arm-vehicle interaction in a single set of
equations. This is difficult to do with traditional Newton-Euler o Lagrange methodologies
without introducing problem specific terrain constraints that are more difficult to generalize

to different mechanical systems or environments.

The work presented also improves the standard planar wheel-terrain contact model on a
flat terrain and extends it so that the new model considers also the tangential wheel-ground
traction and lateral skidding reaction forces arising under the assumption of a compliant
deformable terrain. Furthermore, the terrain can be modeled as a piecewise continuous

concatenation of planes.

6.2. Ongoing Research Topics

The motion dynamics equations derived for the SSMM are being employed in the
design and development of motion controllers that can compensate or attenuate the dis-
turbances propagated across the base to the arm due to terrain unevenness. Ongoing re-
search efforts are also concerned with the development of state observers to estimate wheel
slippage and identify changes in terrain type, which in turn are necessary to compute the
optimal application of torque to a robot’s wheels in order to reduce slippage. Another
goal of our current research is to improve the capabilities of the developed software pack-
age for symbolic spatial algebra computations, in particular, the efforts are focused on the
implementation of algorithms to model more complex closed-loop kinematic trees. The
development of physically accurate models for automonous mobile manipulators is essen-
tial in the future development of autonomous robots, especially of load-haud and dump

machines for the mining industry and crops and harvest handling robots.
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A.2. Spatial Vector Algebra Library

[Spatial Vector Algebra Library

L> restart:
> #

# Simple Package
# Sergio Aguilera Marinovic (¢) 07. AUG.2014
# Previous version: 20.JUN.2014, 27. APR.2014
# Last Updated: 07.AUG.2014
#
Librerial :=module( )
export crm, crf, rq, plux, roty, rotx, rotz, mcl, skew, xlt,
local startup, shutdown;
option package, load = startup, unload = shutdown,
“Copyright (c) 07.VII1.2014 Sergio Aguilera Marinovic™;

startup :=proc( )

with(LinearAlgebra) :

printf ("Startup procedure of SimplePack load the package 'LinearAlgebra’\n");
end proc:
shutdown =proc( )

printf ("Shutdown procedure of SimplePack does nothing!\n");
end proc:

# The funtion "crm" describes the special cross product for motion, defined and used by the
spatial vector algebra.
crm :=proc(x)
({0, x[3],-x[2], 0, x[6],-x[5]) [ (-x[3], 0, x[1],-x[6], 0, x[4]) [{x[2],-x[1], 0, x[5],
-x[41],0)¢0,0,0,0,x[3],-x[2])](0, 0, 0,-x[3],0, x[1])](0, 0, 0, x[2],-x[ 1], 0) ) ;
end proc:

# The funtion "crf" describes the special cross product for force, defined and used by the
spatial vector algebra.
crf :=proc(x)
local g;
a = crm(x);
evalm( -transpose(a));
end proc:

# The funtion "rq" transform the quaternion into a 3x3 rotation matrix.
rq :=proc(x)
local ¢0s, q1s, q2s, q3s, q01, q02, q03, q12, q13, q23, a, q, ng;
X
" VectorNorm(x, 2, conjugate =false) ~
#The vector g must be normalize, but we assume that it comes normalize.

#q -

q=x
q0s == q[1]*q[1];
qls == q[2]*q[2];
q2s = q[3]1*q[3];
q3s = ql4]*q[4];
q01 = q[1]1*q[2];
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q02 = q[1]*q[3];
q03 := q[1]1*q[4];
q12 = q[2]*q[3];
q13 = q[4]*q[2];
423 = q[31*q[4];

a:= ((2- q0s+2 qls —1,2-ql2 -2-q03,2-q13 +2-q02)|(2-qI2 +2-q03, 2-q0s
+2-q2s —1,2-q23 -2-q01)|(2-q13 -2-q02,2-q23 +2-q01,2-q0s +2-q3s —1));
end proc:

#The funtion "skew" is the skew simetric matrix, defined by the given global location "i2".
skew := proc(i2)

(€0,i2[3,-i2[2])[(-i2[3], 0, 2[ 1] [€i2[2],-i2[1], 0));

end proc:

# The funtion "plux" compose the Plucker transformation with the given rotation matrix
"il1" and the global posicion "i2".

plux ==proc(il, i2)

local a, b;

b = skew(i2);

a = MatrixMatrixMultiply( (-il), b) ;

((i11((0, 0, 0)[(0,0,0)[(0,0,0))), (alil));

end proc:

# The funtion "rotx" assemble the spatial rotation matrix along the x-axis with the given
angle "0".
rotx :=proc(0)
((1,0,0,0,0,0)[(0, cos(8),-sin(8), 0, 0,0)|(0, sin(8), cos(8), 0, 0, 0)|(0, 0,0, 1, 0, 0)
1{0, 0, 0,0, cos(8),-sin(0))[(0,0,0,0,sin(0), cos(0)));
end proc:

# The funtion "roty" assemble the spatial rotation matrix along the y-axis with the given
angle "0".
roty :=proc(8)
{{cos(8),0,5in(8),0,0,0)[¢0,1,0,0,0,0)|{-sin(8), 0, cos(8), 0, 0, 0)[{0, 0, 0, cos(8),
0,sin(0))](0,0,0,0, 1,0)[(0,0,0,-sin(8), 0, cos(8) ) );
end proc:

# The funtion "rotz" assemble the spatial rotation matrix along the z-axis with the given
angle "0".

rotz :=proc(0)

({cos(8),-sin(0),0,0,0,0)|(sin(8), cos(8), 0, 0,0, 0)[(0,0, 1,0,0,0) (0, 0,0, cos(8),
-sin(8),0)](0,0,0,sin(8), cos(8), 0)[(0,0,0,0,0, 1) );

end proc:

o

# The funtion "mcl" assemble the rigid body inertia matrix by the given mass the center of

"ot

mass and 3x3 inertia matrix "I1"
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mcl :==proc(m, c, I1)
local C, Caux, laux;
C = skew(c);
Caux = Transpose(C);
laux = MatrixScalarMultiply(MatrixMatrixMultiply(C, Caux), m);
((MatrixAdd(11, Iaux), MatrixScalarMultiply( Caux, m) ) | (MatrixScalarMultiply(C, m),
MatrixScalarMultiply(Matrix(3, shape = identity), m)))
end proc:

# The funtion "xIt" assemble calculates the transform matrix from the frame A to B for spatial
motion vectors, where "r" is the distance between the frames
xlt :== proc(r)
((1,0,0,0,-7[31, 7[21)1(0, 1,0, 7[3],0,-7[11)|(0, O, 1,-r[2], 7[ 1], 0)|(0, 0, 0, 1, 0, 0) | (O,
0,0,0,1,0)[¢(0,0,0,0,0, 1))
end proc

end module:

> # Create/save the package.
libname = "C:/Users/Sergio Aguilera/Dropbox/Magister/MapleFuctions/lib", 1ibname :

march( 'create', libname[l], 100) :

savelib( 'Librerial') :
# saves to the first path in libname unless savelibname is

defined
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Skid-Steer Mobile Manipulator Model and Simulation Using the

Spatial Toolbox for Rigid Body Dynamics

Copyright (c) 2014.02.01

Sergio Aguilera-Marinovic (sfaguile@uc.cl)
Miguel Torres-Torriti (mtorrest@ing.puc.cl)
Robotics and Automation Laboratory
Pontificia Universidad Catolica de Chile

http://ral.ing.puc.cl/ssmm.htm

Version 2.0 - 2014.08.07

Description

This Matlab script shows how to build the model for an SSMM using
the

Spatial Toolbox for rigid body dynamics modeling developed by Roy

Featherstone available at http://royfeatherstone.org.

The model considers a floating base with four wheels and a
simplfied

1-DOF arm. It is possible to easily add more degrees of freedom to
the

arm by copying the data structure for the 1-DOF arm and updating
the

parent link data where appropriate. The reason of implementing 1-
DOF 1is

to keep the code as simple and illustrative as possible, but more

important, to replicate the dynamics of a Caterpillar CAT262C skid-
steer

compact loader.
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The model simulation results have been compared with IMU
measuremnts

obtained from experiments with a real CAT262C machine. The data
from

the experiments is available at http://ral.ing.puc.cl/ssmm.htm.

Instructions

1. Prerequisites in addition to a standard installation of Matlab
and

Simulink is two download and setup the Spatial Toolbox version 2 by

Roy Featherstone available at http://royfeatherstone.org.

2. Initialize the Spatial Toolbox with the command 'startup.m',
which

adds its installation path to Matlab's environment list of paths.

3. Change the directory to the location of the SSMM script files

(this model and simulation files).

4. Run the SSMM_model.m file, it will create and store the SSMM
model
in variable 'model'. At the end of these code, few examples are

presented

6. Run the Simulink simulation file SSMM_sim.slx. The output of the
simulation is stored in the variable xout, which is a 23x1xN

array structure. To reduce the singleton dimension you may execute
res = squeeze (xout), which will store the results in variable res

23xN array.

The 23 model state variables are the following:

1. The floating base varaibles:
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x = [x]1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
| . [ [ |

| | | |->Linear Velocity in

| | | F1 Coordinates

[
| | |->Angular Velocity in
| | F1 Coordinates

| |->Position relative to F_O

|->Orientation Quaternion

2. The 1-DOF joint positions:

q = [gl g2 g3 g4 g5]'

| [

| |->Arm joint position
|

| ->Wheel joint positions

3. The 1-DOF joint velocities:

gd = [gdl gd2 gd3 gd4 gd5]'
| |

| |->Arm joint velocity

| ->Wheel Jjoint velocities

x13]"';

The full state vector with results of the simulation is stored in

the variable xout and contains the previous vectors, as follows:

xout = [x g gd]'

7. At the end of the simulation you may execute:
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res = squeeze (xout)

plot (tout, res(1ll,:)) % plots the longitudinal velocity of the
mobile

% base

plot (tout, res(5,:)) % plots the longitudinal displacement of the

Q

% mobile base

plot (tout,res(18,:)) % plots the arm position
The following command renders a 3D representation of the
model and its motion using showmotion provided with the Spatial

Toolbox:

showmotion (model, tout, [fbanim(xout) ; squeeze (xout (14:18,:,:))1])

= == == SSMM Model

The model script stars here...

Q

lear all; clc; % Clear the workspace and erase the command window.

————————————————————— Reference Frame FO ——————————————————————
Draw the reference frame F_0 axes X _0, Y_0 and Z_0 using the "
appearance"

attribute to provide a visual reference in space

model.appearance.base =

{ 'colour', [0.9 0 0], '"line', [0 O 0; 2 0 07,
'colour', [0 0.9 0], 'line', [0 O O; O 2 0],
'colour', [0 0.3 0.9], 'line', [0 O 0; O O 2] };
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o\

Store all model parameters in a variable called "model".

o\

model .NB: is the number of bodies in the model.

o\

Variable model.NB is initialized in zero and incremented whenever a

new

o\

body is added to the model... This allows to easily expand any
model!

model.NB = 0;

e — Floating Base——————="""""——————————

% To create a floting base, a body (with frame F1) is added and "
connected"
% to the reference frame FO by any 1-DOF joint (e.g. rotary or

prismatic),

o\

which will be later replaced by a full 6-DOF joint using the

function

o\

floatbase. The 1-DOF Jjoint is simply a temporary placeholder for
the

o\

6-DOF joint.
i=1; % This is the first body, and it's index 1is one.

model .NB=model .NB+1; % model.NB is updated with the new body.

model. jtype{i} = 'R'; % Any type of joint may be selected
model.parent (i) = 0 ; % The floating base parent is the fixed frame,
% i.e. \lambda(l) = 0

% The initial link-to-link transform from F_0O to F_1 is the identity,

[

% because at the initial state both frames are align.

model.Xtree{i} = x1t ([0 O 0]);

mass (i) = 2389; % The mass of the CAT 262C is for about 1150 kg
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For modeling simplicity, the center of mass (COM) of the base is

defined
at the origin of frame F1.

oM(i,:) = [0 O 0];

The rotational inertia for the SSMM is approximated to the
rotational
inertia of a cube of size [3 1.6 1.2] with uniform density and
total mass
equal to mass (i) .
cm(i:1i42,:) = mass(i)+[1.672+1.272 0 0;...
0 372+1.272 0; ...
0 0 372+1.672]1/12;

The mass, COM and Icm are employed to build the rigid-body's
spatial

inertia, which is stored in the model parameter "model.I{1l}".

model.I{i} = mcI(mass (i), CoM(i,:), Icm(i:1+2,:));

I3

°

o

°

Define the floating base appearance to display/visualize the
simulation

results.

model.appearance.body{l} = {'colour', [250 137 45]1/255, 'box', [-1

o)
°

f

-0.8 -0.6; 1.8 0.8 07]...

.2

"colour', [250 137 45]1/255, 'box', [-1.2 -0.8 0;

-0.3 0.8 0.6]...
'colour', [0.5 0.5 0.5], 'box', [ 0 -0.7 0;
0.7 0.85] };

777777777777777777777 Wheels ————————----—-—————————
Wheels are the bodies 2, 3, 4 and 5.

or i = 2:5

model .NB=model.NB+1; % Update the body number for each wheel

1.

7
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175
176
177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196
197
198

199

#OO

P01
202
P03

204

% Wheels are modeled as rotary joints that rotate about the Y-axis of

% frames F2, F3, F4, and F5 (children of parent frame F1).

model. jtype{i} = 'Ry';

% The wheels' parent body is the floating base, i.e. \lambda (i) = 1
model.parent (i) = 1 ;

R = 0.45; % The wheels radius is .45 m

T = 0.25; % The thickness of the wheels is .25 m

density = 300; % THe density of each wheel is 300 kg/m”3

% As shown in the paper, each wheel has a different location and the
% link-to-link transform is only a translation of the wheel frame
with

% to the body frame without rotation.

if (i==2)model.Xtree{i} = x1t([ 1 -0.8+T/4 -0.5]);end
if (i==3)model.Xtree{i} = x1t([-0.2 -0.84T/4 -0.5]);end
if (i==4)model.Xtree{i} = x1lt([ 1 0.8-T/4 -0.5]);end
if (i==5)model.Xtree{i} = x1t([-0.2 0.8-T/4 -0.5]);end

[

% The mass of the wheels equals to the volumen of the wheel times the

% density

mass (1) = pixR"2+xTxdensity;

% Because of the wheel clindrical shape the COM is located at the
origin

% of their frame which also coincides with the geometrical centroid
of the

% wheel.

CoM(i,:) = [0 O 01;

% The wheels are modeled as solid cylinders of radius of .45 m and

94




#M

206
R07
P08
209

210

P11
212
213

214

216
217
218
219
220

R21

222
P23
p24
P25
226

R27

228
P29
230
P31

232

[

% thickness of .25 m for the purpose of calculating and approximation
to
% their rotational inertia.
Ibig = mass (i) *R"2/2;
Ismall = mass(i)*(3*xR"2 +T7°2)/12;
% The spatial rigid-body inertia is calculated for each wheel using
the

% mass, COM and inertia tensor.

model.I{i} = mcI(mass(i),CoM(i,:),diag([Ismall Ibig Ismalll));

o\°

Define the wheels' visual representation attributes. Also, a red

dot is

o

added to each wheel as a visual reference, to appreciate the turn

of the

o\

wheels

model.appearance.body{i} = { 'colour', [0.1 0.1 0.17],...

'facets', 32,...
'cyl', [0 -T/2 0; 0 T/2 01, R,...
'colour', [0.8 0.1 0.17,...
‘cyl', [0 -T/2-2e-3 -0.3; 0 T/2+2e-3 -0.31,0.05
}i
end
e Manipulator —————————-————————————
% This is a 1-DOF simplified arm, so only 1 joint will be defined.
% However, the next block of code can be copied to create additional
joints
% and add DOFs as needed.
i=6; % The arm is the body number six.

model .NB=model .NB+1; % The model's body count is updated.
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o\

For the CAT 262C skid-steer loader bucket arm movement is simplfied

in

o\°

this model to a rotary Jjoint that rotates about the Y-axis of frame

Fo.

o

While the actual machine has hydraulic (linear) pistons that

actuate on

o\°

the bucket arm, the pistons are hinged and the arm is in fact
attached
% to rotary joint on a hinged mechanism with multiple bars. This
mechanism
% allows the pivoting point to move a little forward/backward when
the
% the arm is fully up/down. This feature has been left out of the

model

o\

to keep it simple and pedagogical, but can be modeled defining the

o

additional linking bodies and passive (i.e. non-actuated) joints to

o\

create a closed-chain type of four-bar mechanism.

model.jtype{i} = 'Ry';

% The manipulator parent is also the floating base, so the sixth
element of
% the parent array is set to 1 (the floating base), i.e. \lambda(6) =
1.

model .parent (i) = 1;

o\

The link-to-link transform for the manipulator arm corresponds to a

% translation of frame F6 by [-1.2 0 0.6] relative to frame F1l. This

% translation positions the arm at the top-rear of the CAT 262C.

% The initial joint position with g6=0 is defined to be the position
where

% the arm's end-effector (bucket) is almost touching the ground.

% To this end, a 15 rotation about the Y-axes of F6 is applied.

model.Xtree{i} = roty (15%pi/180)*x1t([-1.2 0 0.6]);
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1l _arm(i) = 3.3; % The arm's length

mass (i) = 1034; % The arm's mass

r = 0.15; % The arm is modeled as a cylinder of radius r

% The center of mass of the arm is located at the mid-point of the

arm's
% length.

CoM(i,:) = 1l_arm(i)=[0.5,0,0];

o)

% The inertia matrix of the arm is approximated to that of a solid
cylinder

% (like in the case of the wheels), and is given by

Icm(i+3:1+45,:) = mass(i)*«[ r"2+x6 0 0; ...
0 r*2+x3+1_arm(i) "2 0; ...
0 0 r'2+x3+1_arm(i)"2]1/12;
% The spatial rigid-body inertia of the arm link is calculated using

the

% mass, the COM and the inertia matrix:

model.I{i} = mcI (mass (i), CoM(i,:), Icm(i+3:1i+5,:));

% Finally, define the arm's visual representation attributes to
ressemble

% that of a compact skid-steer loader.

rotation = roty(-15%pi/180);

rot = rotation(1:3,1:3);

model . appearance.body{i} =

{ '"colour', [0 O 17,...

'‘ecyl', [0 O 0; 3.3 0 0], 0.15};

o

'colour', [250 137 45]1/255, ...

o\°

'cyl', [0 0.9 0; 1.3 0.9 O]*rot, 0.15,

o\

'‘cyl', [1.2 0.9 0; 3.25 0.9 -0.6]*rot, 0.15,
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o\

'cyl', [3.15 0.9 -0.5; 3.15 0.9 -0.9]xrot, 0.15,

o\

% 'cyl', [0 -0.9 0; 1.3 -0.9 0]*rot, 0.15,
% 'cyl', [1.2 -0.9 0; 3.25 -0.9 -0.6]*rot, 0.15,
% 'cyl', [3.15 -0.9 -0.5; 3.15 -0.9 -0.9]*rot, 0.15,

$ 'cyl', [0 -1.05 0; 0 1.05 O]lxrot, 0.18,

% 'colour', [0.1 0.1 0.17,...

% 'cyl', [3.15 -1 -0.9; 3.15 1 -0.9]xrot, 0.1,...
% 'box', [3.15 -1.1 -0.95;3.6 1.1 -0.85]xrot};

% To see the idealized (cylindrical) model arm, instead of an arm
that

% visually ressembles that of the compact skid-steer loader, comment
the

% previous appearance attributes and uncomment the folowing line:

o

model . appearance.body{i} = { 'cyl', [0 O O0; 3.3 0 0], 0.15};

o\

The default gravity is zero, so it must be defined as:

model.gravity = [0 0 -9.8];

% Once each body in the model has been defined, the first body must
be

% turned into a floating base:

model = floatbase (model) ;

% By doing this, the body 1 has now 6 DOFs and can be tought as if it
would

% be formed by the composition of 6 bodies each having a 1-DOF joint.

So

% the first six joint variables belong to body 1, while the wheels

which
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o\

to be associated to bodies/frames 2, 3, 4, 5 are now bodies/frames
T, 8,
% 9, 10. Similarly, the arm body 6 is now boy 11, and the model

variable

o\

model.NB is now valued model.NB+5.

e e Contact Points (CPs) ——————————————————————
% The contact points are defined as point that cannot penetrate the
ground

% plane defined as the plane z=0 in the frame FO. Each contact point

% contains information about the body to which it belongs and its
location
% in the body's reference frame.
% Floating Base CPs ——————————————————————————
CP_Base =[-1.2 1.8 -1.2 1.8 -1.2 1.8 -1.2 1.8;... X parameter of each
Cp
-0.8 -0.8 0.8 0.8 -0.8 -0.8 0.8 0.8;... Y parameter of each
CPp

-0.6 -0.6 -0.6 -0.6 0.6 0.6 0.6 0.6]; %Z parameter of each CP

% The body number of each CP

CP_Base_Body_Labels = 6+xones (1, length (CP_Base));
% Total number of CPs for the floating base

CP_Base_Num = length (CP_Base_Body_Labels);

% Wheels' CPs—————"—"—"—"""""""""""""""—"—
% Because of the wheels' simmetry, all CPs are located equidistant
one

% from another about the perimeter of each wheel.

npt_1 = 32; % 32 CPs per wheel are been modeled
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o)

% The position for each CP on a wheel is calculated next.
ang = (O:npt_1-1) * 2+pi / npt_1;

Y = ones(l,npt_1) = T/2;

X = sin(ang) * R;
Z = cos(ang) * R;
CP_Wheel = [ X;
Y;
z 1;
% A contact point at the center of each wheel is added just to

extract the

% position and velocity of each of the wheels.
CP_Wheel = [CP_Wheel [0;0;011];
% Define the corresponding body for the wheels' CPs

CP_Wheel_1_Body_Labels = 7%ones(l,length (CP_Wheel (1,:)));
CP_Wheel_2_Body_Labels = 8xones(l,length(CP_Wheel(1l,:)));
CP_Wheel_ 3_Body_Labels = 9xones(l, length (CP_Wheel (1,:)));
CP_Wheel_4_Body_Labels = 10xones(1l,length (CP_Wheel(1,:)));

% The CPs of all four wheels are store in a single variable:
CP_Wheels = [CP_Wheel CP_Wheel CP_Wheel CP_Wheel];

% All the corresponding body label for the wheels' CPs are also

stored
% in a single variable:
$Wheels_Parent = [Cuerpo_wheel_1 Cuerpo_wheel_2 Cuerpo_wheel_ 3
Cuerpo_wheel_4];
CP_Wheels_Body_Labels = [CP_Wheel_1_Body_Labels
CP_Wheel_2_Body_Labels...
CP_Wheel_3_Body_Labels CP_Wheel_4_Body_Labels];
% Total number of wheel contact points
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CP_Wheels_Num = length (CP_Wheel_1_Body_Labels) *x4;

% Manipulator CP - -
% Only one CP is defined at end of the arm where the end-effector
bucket

% of the skid-steer loader) is located

CP_Arm = [1l_arm(6);...
0;...
015
% The arm contact point belogs to body 11

$Arm_Parent

CP_Arm_Body_Labels = llxones(l,length(CP_Arm(1l,:)));

o)

% Total number of arm contact points

CP_Arm_Num = length (CP_Arm_ Body_Labels);

g Model Format —-—-——————————————————————

o)

% All the contact points and parents position previously defined

o)

% are put on the Spatial Toolbox format as shown below

(

model.gc.point = [CP_Base CP_Wheels CP_Arm];

model.gc.body = [CP_Base_BRody_Labels CP_Wheels_Body_Labels
CP_Arm_Body_Labels];

% The simulation in Simulink needs some auxiliar variables that
define

% the starting index of the wheels's CPs within the general CP array

% (model.gc.point) for each wheel separately.

CP_Wheel_1_TIndex = length (CP_Base_Body_Labels)+1;

CP_Wheel_2_Index = length (CP_Base_Body_Labels)+length (
CP_Wheels_Body_Labels) /4+1;

CP_Wheel_3_TIndex = length (CP_Base_Body_Labels)+length (

CP_Wheels_Body_Labels) *2/4+1;
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CP_Wheel_4_TIndex = length (CP_Base_Body_Labels)+length (
CP_Wheels_Body_Labels) *3/4+1;

CP_Wheels_Final Index = length (CP_Base_Body_Labels)+length (
CP_Wheels_Body_Labels) «4/4;

% Auxiliar variables are declared to store the total number of CPs in

the

<)

% simulation considering the external forces and without including
the

% external forces:

CP_Num = CP_Base_Num + CP_Arm_Num + CP_Wheels_Num;

CP_Num_aux = CP_Base_Num + CP_Arm_Num + CP_Wheels_Num;

o)

e e Initialization - - ——

o)

% Finally, the initial condition is declared:

x_init = [1 0 0 0 0 0 0.95 0 0 0 O O O]"';
% | I I [ |

% | | | |->Linear Velocity in F_1

%$ | | | Coordinates

o\

| |->Angular Velocity in F_1 coordinates

| |->Position relative to F_0O

o o o\° oe

o\

| -=>Orientation Quaternion

o\

o°

g_init(1:4) contains the wheels' initial position and g_init (5)
contains
% the arm's initial position

g_init = [0 O O O -30xpi/180]1"';
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[

contains
o

% the arm's initial velocity

gd_init = [0 0 O O O]"';

[

% Example 1: Straight motion without load
Instants = [-7 0.5 0.9 5.1 5.3 6.5]+7;

Values = [0 O 1 1 0 0];

Accelerator = 0.3;
Linear = 1;

Turn = 0;

Extra_weight = [0;0;0];

[

% % Example 2: On-place turn motion without load
% Instants = [-1 0.5 0.9 10.8 11 11.51+1;

$ Values = [0 O 1 1 0 0];

% Accelerator = 0.3;

% Linear = 0;

% Turn = 1;

% Extra_weight = [0;0;0];

Q

% % Example 3: Straight motion with load
% Instants = [-1 0.5 0.7 5.5 5.7 6.5]+1;
% Values = [0 O 1 1 0 071;

% Accelerator = 0.3;

% Linear = 1;

$ Turn = 0;

% Extra_weight = [0;0;400];

% Example 4: In-place turn motion with load
% Instants = [-3 0.5 0.7 13.8 14.8 15.5]1+3;

% Values = [0 O 1 1 0 0];

% gd_init (1:4) contains the wheels' initial velocities and g_init (5)
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169

#70
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H72

o

o\°

o\

o\°

o\°

Accelerator
Linear = 0;
Turn = 1;
Extra_weight

Q

% Example 5:

Instants = [-5 0.5 0.9 10.8 11 11.5]+5;

Circular motion

0.3;

[0;0;4007;

Values = [0 O 1 1 0 0];

Accelerator
Linear = 0.3
Turn = 0.7;

Extra_weight

4

0.4;

[0;0;01;
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