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ABSTRACT

The present work models the dynamics of general skid-steer mobile manipulators us-

ing the formalism and tools of the spatial vectors algebra. A unified and general model of a

6-DOF floating base with a N-DOF manipulator is proposed considering traction forces and

also manipulator-vehicle and vehicle-ground interactions. This single model demonstrates

the benefits of using the spatial vector algebra formulation, unlike other of the existing

modeling approaches and simulation tools, thus opens the way to research on mechanically

more complex robot designs and their controllers. The model built is validated using iner-

tial measurements obtained during field tests with a compact skid-steer loader. It is to be

noted that most of the existing models and simulations of mobile manipulators often con-

sider two-wheeled differentially driven 3-DOF bases instead of skid-steering mobile bases

because of the complexity of simulating wheels that skid while rolling. However, skid-steer

traction is common in most of the industrial construction and mining machinery because

of their simpler mechanics, high reliability, and better mobility in rough terrains. Hence,

the development of physically accurate models of skid-steer manipulators is fundamental.

Furthermore, a model of a 6-DOF mobile base is developed considering non-permanent

contact points allowing to take into account the base interaction with the ground. The

model was validated using a Catr 262C compact-skid steer loader instead of a small mo-

bile manipulator common in robotics research laboratory to highlight the usefulness of the

presented model and the spatial vector algebra approach.

Keywords: Mobile Manipulator, Skid-Steer, Dynamic model, Experimental Valida-

tion, Spatial Vector Algebra.
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RESUMEN

El trabajo presentado modela la dinámica de un manipulador móvil con base giro

deslizante genérico utilizando el formalismo y herramientas del algebra de vectores es-

paciales. Se propone un modelo general y unificado de una base flotante de 6-DOF con

un manipulador de N-DOF, considerando fuerzas de tracción, ası́ como también la inter-

acción manipulador-vehı́culo y vehı́culo-terreno. Este modelo demuestra los beneficios de

utilizar la formulación de algebra de vectores espaciales sobre otros enfoques de mode-

lamiento y herramientas de simulación existentes y abre el camino para la investigación

de sistemas mecánicos más complejos y su control. Este modelo fue validado utilizando

medidas inerciales obtenidas durante pruebas de terreno utilizando un cargador frontal con

base giro deslizante. Se hace notar que la mayorı́a de los modelos y simulaciones existentes

de manipuladores móviles en general consideran sistemas de dos ruedas con movimiento

diferencial de 3-DOF en vez de modelos de bases giro deslizantes debido a la compleji-

dad de simular ruedas que deslizan mientras giran. Sin embargo, la tracción de bases giro

deslizante es la más utilizada por la maquinaria en la construcción industrial y minerı́a

debido a su sistema mecánico simple, alta confiabilidad y mejor movilidad en terrenos

complicados. Es por esto que el desarrollo de un modelo fı́sico preciso de un manipu-

lador móvil con base giro deslizante es fundamental. Además, se desarrolló un modelo

de una base móvil de 6-DOF considerando puntos de contactos no-permanentes que per-

miten tener tomar en consideración la interacción de la base con el terreno. Se escogió

validar el modelo utilizando un cargador frontal con base giro deslizante Catr 262C en vez

de los robots pequeños, generalmente utilizados en los laboratorios de investigación para

destacar la utilidad del modelo presentado y del enfoque que entrega el álgebra de vectores

espaciales.

Palabras Claves: Manipulador Móvil, Base Giro Deslizante, Validación Experimen-

tal, Algebra de Vectores Espaciales.
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1. INTRODUCTION

1.1. Motivation

Skid-steer mobile manipulators (SSMMs) are the integration of a robotic arm along

with a skid-steer mobile base. These two elements combine the dexterity of a manipula-

tor to interact with the environment and the mobility of the base to achieve and unlimited

workspace. Furthermore, the skid-steer main advantages over other drive-mechanisms are

their simpler mechanics, high reliability, and better mobility in rough terrains. The dy-

namics and control of manipulators have been investigated since the 70s with significant

breakthroughs (Lee, 1989; Brock & Kemp, 2010), while the research concerning mobile

bases dates back to the mid 90s with several of the main advances and contributions in dy-

namic and skidding models occurring during the last decade (Liu & Liu, 2009; Kozlowski,

Krzysztof, Pazderski, & Dariusz, 2004) . Yet the integration of arms and mobile bases is

still on early stages and extenive research in the dynamic modeling and control of mobile

manipulators needs to be done to accomplish more difficult autonomous tasks.

1.1.1. Some examples

Mobile manipulators (MMs) applications seem attractive for both industrial (Helms,

Schraft, & Hagele, 2002) and domestic (Simpkins & Simpkins, 2013) applications. In

agriculture autonomous MM could be used to perform crop inspection and harvesting task

(H. Tanner, Kyriakopoulos, & Krikelis, 2001; Auat Cheein & Carelli, 2013). In the aero-

nautics industry, coating removal or application to an airplane’s fuselage (Baker, Draper,

Pin, Primm, & Shekhar, 1996) is a task involving a large workspace which a single ma-

nipulator will be insufficient, but MM could easily cover. Compact loaders or load-haul-

dump (LHD) can also be considered as mobile manipulators and are widely use in mining

or construction sites. Thus making them autonomous would help to improve safety and

productivity (Stentz, Bares, Singh, & Rowe, 1999). Domestic or indoor tasks could also

benefit from mobile manipulators robots that could handle objects and solve domestic or

office chores.

1



1.2. Problem Description

Despite the advantages of skid-steer mobile manipulator, additional complexity arises

concerning the kinematic and the dynamic of the model (Kemp, Edsinger, & Torres-Jara,

2007). When a manipulator is attached to a mobile base, both bodies interact and the ve-

locities, accelerations and forces that act on one have an impact in the other. Movements of

the arm causes shifts in the robot center of mass (COM), while the interaction between the

mobile base and the ground propagates to the arm. Furthermore, skidding effect inherent to

skid-steer bases when turning is still under research (Yi et al., 2009; Mandow et al., 2007).

Even though models that describe the behavior of these machines exist, these models gen-

erally focus on the kinematic aspects, consider planar motions and treat the vehicle-ground

interaction as a permanent contact.

1.3. Objectives

The main objective is to obtain a general and unified dynamic model for skid-steer mo-

bile manipulators that considers the base as a 6-DOF floating base, which can move freely

in any direction and includes a vehicle-ground interaction forces with a non-permanent

compliant contact model.

1.4. Hypothesis

A general and unified dynamic model for a SSMM robot that considers a floating

base with non-permanent contact forces and the arm-base interaction dynamics can be ob-

tained using the spatial vector algebra formulation of the recursive Newton-Euler approach

proposed by (Featherstone, 2008). A model so obtained can be physically accurate and

represent better the effects of the vehicle-ground interaction and base-arm interaction.

1.5. Existing Approaches

To the best of our knowledge, only the work by Liu et al. (Liu & Liu, 2009) treats

the modeling of SSMMs with some detail. Liu et al. present a kinematic and dynamic

2



model of SSMMs that takes into account traction and skidding forces, as well shifts in the

COM of the robot due to changes in arm position. On the other hand, the model by Liu

presents expressions in which the propagation of ground interaction forces to the arm, or

the propagation of arm-accelerations back to the base are implicit. The model in (Liu &

Liu, 2009) assumes the mobile base moves in a 2D plane, therefore is not a fully 6-DOF

floating base with non-permanent ground contact interactions. While current work model

presents explicit equations for the arm and base accelerations for a 1-DOF arm that can be

extended to an N-link arm and solved in closed form provided that the computer has suffi-

cient computational capacity. Due to the lack of works treating the modeling of SSMMs,

we discuss next the existing research on mobile manipulators and skid-steer vehicles.

Different models for mobile manipulators have been developed over the last years,

such as the ones proposed by (De Luca, Oriolo, & Robuffo Giordano, 2010; Tan, Xi, &

Wang, 2003) that consider Ackermann steering geometry, (Q. Yu & Chen, 2002; White,

Bhatt, Tang, & Krovi, 2009; Li, Ge, & Ming, 2007), which consider differential-drive

schemes with caster wheels, or (Puga & Chiang, 2008), that considers a three wheeled base

with differential-drive and a steering wheel. In general, these models separate the vehicle

dynamics from that of the manipulator and do not consider the effects of the moving arm

over the base trajectory. This is usually because the arm mass and velocity are assumed to

be negligible, or because they focus on problems of redundancy resolution and trajectory

planning. Thus for the physically accurate modeling of mobile manipulators it is desriable

to establish unified dynamical models that simultaneously consider the coupled interaction

between the base and the manipulator.

A skid-steer base was selected over other bases with Ackermann steering or differential-

drive kinematics because it is a common type found in the industry, in such machines as

compact loaders, LHDs and in many universities with the P3-AT and other robotics sys-

tems. The main reasons for the use of this kind of base are: i) the simpler mechanics

as it only uses gears to adjust the the velocity and torque, while the Ackermann steering

introduces geometric arrangements of linkages to achieve the desired angle of rotation,

3



ii) high-reliability and better mobility through rough terrains because all the wheel have

torque.

Regarding skid-steer base models, the main difficulty is the modeling of the lateral

skidding of the wheels, produced by the lateral centrifugal acceleration when turning. Some

model the skid-steer as a differential drive base in which the lateral slippage may be ne-

glected (Mandow et al., 2007), while others take into account only longitudinal slipping (Yi

et al., 2009) or more detailed lateral skidding models (Kozlowski et al., 2004; Mohammad-

pour, Naraghi, & Gudarzi, 2010).

In general, a weakness of many of the published models is that they are only simulated

for controller development purposes and very few of them experimentally validate their

models. Some of these exceptions are found in (White et al., 2009; Mandow et al., 2007;

W. Yu, Chuy, Collins, & Hollis, 2010), which conduct experimental verifications using

small to medium size robots like like Pioneer P3-ATr used by several research groups. It

is however desirable from an application perspective to validate the models also with large

size and heavier industrial machinery.

1.6. Summary of Contributions/Original Contributions

The goal of the current research is to present a dynamical model for SSMMs built using

spatial vector algebra that is general enough and jointly takes into account the coupled

interaction between the mobile base and the manipulator, as well as the vehicle-ground

interaction in a single and unified fashion. To this end, we rely on the modeling approach

introduced by Featherstone using spatial vector algebra (Featherstone, 2008) for rigid body

dynamics. The spatial vector formalism allows to model complex kinematic trees with

compact equations and a high degree of generality. The model is built using the Spatial

Toolbox for Matlab (Spatial Vector Algebra Toolboox for Matlab, 2014) and provides a

nontrivial and enriching example that illustrates the capabilities of the modeling approach

and the toolbox applied to a real world robot.
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This paper also validates the model using data experimentally acquired from a compact

skid-steer loader Catr 262C Series 2, which is a good representative of similar machines

employed in construction and mining. The model developed and measurements have been

made publicly available at (SSMM Model Files, Experimental Data, Simulation Videos and

Spatial Vector Algebra Library, 2014) for other researchers and students.

1.7. Thesis Outline

The thesis is organized as follows. In chapter 2 we present the dynamic modeling of a

general SSMM using spatial vector algebra, is presented together with a model for contact

points. The explicit equations for the SSMM direct dynamics derived step by step. chap-

ter 3 describes the simulation details of the SSMM dynamic model developed in chapter 2.

The experimental model validation methodology, as well as the comparison between the

experimental and simulated results is presented chapter 4. chapter 5 presents another con-

tribution of this thesis, which is the development of a library in maple that implements the

spatial vector algebra operators and the articulated rigid body algorithm to obtain the direct

dynamic equations of an articulated kinematic tree with floating base. This library can be

very useful in future research about the dynamics of mechanical multibody systems because

it allows to obtain explicit equations provided the complexity of the system is not beyond

the computational power available to the user of the library. Finally, chapter 6 presents the

conclusions of this work and discusses some aspects concerning ongoing research.

5



2. MODEL OF A SKID-STEER MOBILE MANIPULATOR

This chapter presents a complete and general model of the motion dynamics of skid-

steer mobile manipulators. The model is derived using the spatial vector algebra formal-

ism and the Articulated Rigib Body algorithm proposed by R. Featherstone (Featherstone,

2008) to obtain the forward dynamics equations. The model considers a skid-steer mo-

bile base, an n-DOF manipulator, and also the ground-wheel interactions, as well as the

base-manipulator interactions. First, a brief explanation about spatial vector algebra and

reasons from choosing this modeling convention over others is presented.Folloginw the

mathematical background of spatial vector algebra, the description of a general SSMM

with an n-DOF arm using the spatial vector algebra formulation is introduced. Thirdly, a

model for the ground-wheels interaction is proposed in terms of an approximated wheel

with a finite number of contact points. The reaction forces acting on the contact points

are also explained in detail. Fourth, even though this model considers the mobile base and

manipulator as one entity, the kinematic considerations of a skid-steer mobile base are pre-

sented in order to fully understand the motion constraints that the model needs to fulfill.

Finally, the articulated rigid body procesure (Featherstone, 2008) is employed to solve the

direct dynamic of the mobile base without an arm and later with a 1-DOF. The equations

for the floating mobile base are compared to the standard model of aircraft dynamics as a

common example of a 6-DOF free floating platform approach.

2.1. Spatial Vector Algebra

The spatial vector algebra approach to modeling multibody mechanical systems offers

a higher level of abstraction and more compact notation that results in fewer equations.

The higher level of abstraction means among other things that the motion from one body

to another is propagated by generic joint transformation, while the the accelerations due

to velocity-product terms arising in rotating reference frames can be handled using the

algebraic rules for spatial vector products, thus reducing error prone calculations of stan-

dard recursive Newton-Euler or Lagrange method for deriving the differential equations

6



describing the motion dynamics of a robotic system. Other advantages of the spatial vector

algebra approach over classic modeling schemes is that it provides unified framework to

formulate the dynamic equations of both closed and open-loop kinematic trees, taking into

account non-permanent contact points and thus allowing to model robots on floating bases,

e.g. underwater vehicles, flying platforms, or ground vehicles on deformable terrains. De-

spite its higher level of abstraction, the spatial vector algebra formalism provides valuable

insight into the dynamics and physical properties of multibody robotic systems. For ex-

ample, the procedure to dervive motion equations preserves the intermediate information

about the propagation of forces across joints and links, much like the recursive Newton-

Euler approach. The approach also can be used to obtain the direct dynamics equations

that are useful for controller design purposes. In terms of modeling efficiency, the spatial

vector approach does not necessarily reduce the number of terms involved since in the end

all constants, vectors, operators must be evaluated to their actual definitions in order to

obtain the equations. In fact, for small serial kinematic chains with eight or less bodies,

the Articulated Rigid Body algorithm using spatial vector algebra is computationally more

expensive than the Composite Rigid Body Algorithm together with the recursive Newton-

Euler algorithm to obtain the forward dynamic equations. However, for branched kinematic

trees the advantages of the approach become more significant. An in depth discussion on

the computational complexity of the Articulated Rigid Body algorithm using spatial vector

algebra is found in (Featherstone, 2008).

Succinctly explained, spatial vectors are 6D vectors that describe the motion (or forces)

of a rigid body using Plücker coordinates for rotation and translation (or couples and linear

forces), i.e. a spatial velocity is a vector of the form v =
[
ωT vTO

]T , where ω = [ωx ωy ωz]
T

is the 3D vector describing the rotational velocity of the body about an axis passing through

a point O, and vO =
[
vOx vOy vOz

]T is the 3D vector describing the velocity of a point

O fixed to the body relative to some point O in space that coincides with O at a given

instant. The Plücker coordinates date back to the 19th century and Ball’s screw theory and

Von Mises’ motor algebra. However, Featherstone introduced the concept of Plücker basis

and defined one for a motion vector space and another for the a force vector space. This

7



formalism combined together with a set of algebraic properties of spatial vectors that arise

from the transformation rules for motion and force vectors expressed with respect to two

Plücker coordinate systems A and B that can move with respect to each other provide a

mathematical framework and tools that allow to express the motion of rigid bodies with

fewer equations and a higher level of abstraction, but at the same time providing valuable

insight into the dynamics and physical properties of multibody robotic systems. Instead of

requiring two 3D equations of the form fO = mv̇O and τO = IOω̇+ω×IOω to describe the

motion of each body in the mechanism, spatial vector reduce the expressions to an equation

of motion of the form f = Iv̇ + v ×∗ Iv, where f is the spatial force vector containing

the total moment and linear force acting on the body, and I is the spatial inertia matrix.

In addition to this simplification, spatial velocity and force vectors are tightly related to

the body’s velocity and force vector fields, and have some nice algebraic properties. For

example, the relative velocity vrel between two bodies B1 and B2 with spatial velocities v1

and v2 is simply vr = v2−v1; the total force on a body subject to spatial forces f1 and f2 is

simply ftot = f1 + f2; similarly the total inertia of two bodies B1 and B2 connected together

to form a composite rigid body is simply given the addition of their individual spatial

inertias, i.e. Itot = I1 + I2. The spatial motion and spatial force vectors, together with their

vector addition and multiplication rules define two dual vector spaces. The multiplication

operation for the motion vector space is denoted by the cross product operator×, while the

equivalent cross product on the dual vector space is denoted by ×∗. The main properties

connecting these two crosss products that are employed in this work are summarized in

table 2.1. For a complete exposition of the spatial vector algebra and how it allows to

reformulate the equation of motion of complex serial and closed-loop kinematic trees the

reader is referred to (Featherstone, 2008).

2.2. General Model of a Skid-Steer Mobile Manipulator

To build the model it is convenient to first define the bodies and joints of the robot.

To this end, the Cartesian coordinate frame F0 is first placed at a chosen fixed location in

space to serve as virtual fixed base (i.e. global inertial frame) fig. 2.1. Next the mobile base
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TABLE 2.1. Spatial cross product property table.

Motion Vector Product (×) Force Vector Product (×∗)

v×∗ = −v×T
u× v = −v × u

(Xv)× = Xv ×X−1 (Xv)×∗ = X∗v ×∗ (X∗)−1

(λv)× = λ (v×) (λv)×∗ = λ (v×∗)
(u× v) · = −v · u×∗ (u×∗ f) · = −f · u×

is labeled as body 1 with coordinate frame F1. A convenient location for F1 is the robots

center of mass. The mobile base (body 1) is treated as a body connected to the fixed base

(body 0) by a six-degree-of-freedom (6-DOF) joint, i.e. the mobile base is a floating base

allowed to move freely without any kinematic constraints save for non-permanent ground

contact constraints. Attached to the mobile base are the wheels connected to the base by

rotary joints. The wheels are bodies labeled 2, 3, 4 and 5 with corresponding Cartesian

frames Fi, i = 2, 3, 4, 5, as shown in fig. 2.1. Similarly, the robot arm is a series of bodies

with coordinate frames Fi, i = 6, 7, 8, . . . , N , where N is the last body of the arm and

represents also the total number of bodies of the robot. The connectivity graph for the N

bodies of the robot is shown in fig. 2.2. The nodes of the graph represent each body, while

the lines connecting the nodes represent the joints of the robot, such that joint i is the joint

that connects body i to its parent. The SSMM is a kinematic tree, hence its connectivity

graph is a topological tree. Adding more arms or wheels would add additional branches to

the tree in fig. 2.2.

Having numbered the bodies and joints, the connectivity of the robot can be completely

described by an array λ ∈ Z∗N , such that λ(i) (the i-th entry of the array), contains the

body number of the parent of body i. From the connectivity graph of fig. 2.2 it should

be clear that λ = [0, 1, 1, 1, 1, 1, 6, 7, . . . , N − 1]. The model geometric parameters are

summarized in table 2.2. Parameters a, b, c, d, e are common to skid-steer base model

as used in (Kozlowski et al., 2004), li is generally used to describe manipulator length

with σ the radius of the articulation, while r and w are used for wheels radius and width

respectively. Additionally, our model includes the parameter h to describe the location
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of the manipulator along the longitudinal axis of the mobile base. The location of the

children bodies i = 2, 3, 4, 5 corresponding to the wheels and the arm’s base body i = 6,

can be more easily described relative to the parent body using 3D position vectors ri =[
rix riyriz

]
, i = 2, 3, 4, 5, 6, in coordinates of the frame F1. The specific values for each

body’s position vector ri are summarized in table 2.3.

TABLE 2.2. Geometric and inertial parameters for the SSMM.

Symbol Description

Geometric parameters
a Base length.
b Base width.
c Base height.
d Distance between the rear wheels and the base COM.
e Distance between the front wheels and the base COM.
f Distance between the axles plane and COM.
h Distance the manipulator base and the base COM.
r Wheels radius.
w Wheels width.
li Length of i-th link.
σ Link cross-section radius.
F0 Cartesian coordinate inertial frame.
Fi Reference frame fixed to body i

Inertial parameters
λi Parent of body i.
Ii Body i inertia matrix at body’s COM.
mi Mass of body i.
Si Joint i motion subspace matrix.
g Gravity acceleration constant.

TABLE 2.3. Floating base children relative positions ri.

Body i rix riy riz Description

2 e −b/2 −f Front right wheel
3 −d −b/2 −f Rear right wheel
4 e b/2 −f Front left wheel
5 −d b/2 −f Rear left wheel
6 h 0 c/2 Manipulator first link
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In addition to the connectivity of the robot bodies, to complete the geometric descrip-

tion of the robot it is necessary to define the geometric transformations relating the location

of each joint relative to the reference frame of the body to which each joint is attached.

Formally, this requires first to introduce pair of coordinate frames for each joint i that links

body i to its parent λ(i). One frame is labeled Fi and fixed to the body i, while the other

is labeled Fλ(i),i is fixed to the parent body λ(i). To minimize the number of paremeters

required to describe the relative motion between Fi and Fλ(i),i it is convenient to locate

the frames such that both frames coincide when the joint variables are zero, and have axes

aligned following a set of rules like the widely employed Denavit and Hartenberg con-

vention to constrain the possible frame locations (Featherstone, 2008). Other conventions

than the D-H procedure to define coordinates frame are posible. In fact, the spatial vector

algebra approach does not require frames to be defined according to the D-H procedure.

However, using D-H procedure as part of the spatial vector algebra approach reduces the

number of joint paremeters to a minimum of four with one of the parameters acting as joint

variable. Noting that each body i contains a frame Fi and a variable number of frames

Fλ(j),j , for all j satisfying λ(j) = i (with frames Fλ(j),j located at the joints of the children

bodies j whose parent body is body λ(j) = i), it is convenient to select frame Fi as the

coordinate system for body i in terms of which will be defined the spatial inertia of body

i. Finally, a complete description of the robot geometry is obtained defining two transfor-

mations: XT (i) and XJ(i). The transformation XT (i) is the Plücker coordinate transform

from body λ(i) coordinates in frame Fλ(i) to the coordinates in frame Fλ(i),i located at joint

i, but fixed to body λ(i). The coordinate transform XJ(i) is the joint coordinate transform

mapping coordinates from frame Fλ(i),i to coordinates in the frame Fi fixed to the children

body i of parente body λ(i). Therefore, with these transforms it is possible to construct the

so-called link-to-link transform

iXλ(i) = XJ(i)XT (i) (2.1)

from coordinates in frame Fλ(i) of body λ(i) to coordinates in the coordinates of frame

Fi in body i. The complete set of transformations XT (i), i = 1, 2, . . . , N describes the
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location of each joint-frame Fi,j relative to its corresponding body-frame Fi within body

i. The body constant geometry data contained in XT (i), i = 1, 2, . . . , N , together with the

variable joint coordinate transforms XJ(i), i = 1, 2, . . . , N and the connectivity data in the

parent array λ, permit to completely describe the geometry of the robot and the position of

its bodies with respect to the global reference frame F0. The recursive formula based on

the link-to-link transformation (2.1):

iX0 = iXλ(i)
λ(i)X0, with λ(i) 6= 0. (2.2)

allows to compute the coordiante transform from the global reference frame F0 to the

body coordinate frame Fi, thus allowing to solve the forward kinematics. Equation (2.1)

and (2.2) are also at the base of the recursive inverse kinematics and forward/inverse dy-

namics computations with algorithms whose detailed discussion can be found in (Featherstone,

2008). It should be stressed that the transforms (2.1) and (2.2) are the basic building block

for the model of any mechanism, because in addition to transforming velocities and accel-

erations in the motion space, they can be used to implement the transformation of forces

in the dual space, i.e. if BXA is the motion transform from coordinate frame A to co-

ordinate frame B, then the force transform BX∗A can be expressed in terms of BXA as
BX∗A = BX−TA . A summary of the transformations, the dual relationship in terms of BXA

and their meaning is included in table 2.4. Since all other transformations can be computed

in terms of BXA, building the model requires only to define transformations BXA for each

body. The specific transformations required to build the SSMM model are summarized in

Table 2.5 together with the joint variables.

TABLE 2.4. Relationship between the spatial motion and force transformation ma-
trices in terms BXA.

Transformation Equivalent Description
BXA

BXA Motion transformation from frame A to B.
AXB

BX−1
A Motion transformation from frame B to A.

BX∗A BX−TA Force transformation from frame A to B.
AX∗B BXT

A Force transformation from frame B to A.
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TABLE 2.5. SSMM model parameters using spatial vector algebra.

Joint-i 1 2,3,4,5 6 7, 8, . . . , N
Type Floating Rotary yi, i = 2, 3, 4, 5 Rotary z6 Rotary yi, i = 7, 8, . . .

Body-i 1 2,3,4,5 6 7, 8, . . . , N
Description Mobile Base Wheels First Arm Link Remaining Arm Links

Parent Body λ(i) 0 1 1 6–(N − 1)

Dimensions
x a 2r ε ε
y b w ε ε
z c 2r l6 li

Joint-
location

Transforms
XT (i)

xlt([0, 0, 0]) xlt(ri) xlt(r6) xlt([0, 0, li−1])

Joint
Transforms

XJ(i)
rotu(·)xlt(E−1

u [px, py, pz]) roty(qi) rotz(q6) roty(qi)

Mass m1 m2 = m3 = m4 = m5 m6 mi

COM in Fi
coordinates

[0, 0, 0] [0, 0, 0] [0, 0, l6/2] [0, 0, li/2]

Inertia about COM m1

12

[
b2 + c2 0 0

0 a2 + c2 0
0 0 a2 + b2

]
mi

12

[
3r2 + w2 0 0

0 6r2 0
0 0 3r2 + w2

]
m6

12

[
3σ2 + l26 0 0

0 3σ2 + l260
0 0 6σ2

]
mi

12

[
3σ2 + l2i 0 0

0 3σ2 + l2i 0
0 0 6σ2

]

Summary of 3D arithmetic functions (cf. (Featherstone, 2008) for a complete list.)

Ex(θ) =

 1 0 0
0 c s
0 −s c

 , Ey(θ) =

 c 0 −s
0 1 0
s 0 c

 , Ez(θ) =

 c s 0
−s c 0
0 0 1

 , v× =

 0 −vz vy
vz 0 −vx
−vy vx 0


with c = cos(θ), s = sin(θ),v = [vx, vy, vz];

Eu(θ) =

 p20 + p21 − 1/2 p1p2 + p0p3 p1p3 − p0p2
p1p2 − p0p3 p20 + p22 − 1/2 p2p3 + p0p1
p1p3 + p0p2 p2p3 − p0p1 p20 + p23 − 1/2

 (rotation about axis u = [ux, uy, uz]);

with Euler parameters (unit quaternion) p0 = cos(θ/2), p1 = sin(θ/2)ux,

p2 = sin(θ/2)uy, p3 = sin(θ/2)uz, p
2
0 + p2

1 + p2
2 + p2

3 = 1.

Summary of spatial vector arithmetic functions (cf. (Featherstone, 2008) for a complete list.)

xlt(r) =

[
13×3 03×3

−r× 13×3

]
, rot∗ (θ) =

[
E∗(θ) 03×3

03×3 E∗(θ)

]
, ∗ = x, y, z, u

BXA(r,E) = rot(E)xlt(r) =

[
E 03×3

−Er× E

]
, BX∗

A(r,E) = rot(E)xlt(r)−T =

[
E −Er×

03×3 E

]
,

It is possible to observe in Table 2.5 that the mobile base is a free-floating body with

6-DOF (three for orientation and three for translation) as defined by the world-to-base trans-

form 1X0 = XJ(1)XT (1) = XJ(1) because XT (1) = I6×6 for the mobile base. However,

to avoid the singularities of Euler Angles (roll, pitch, yaw), the rotations in XJ(1) are ex-

pressed in term of Euler Parameters (unit quaternion) involving a rotation axis (ux, uy, uz)
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and an angular amount θ that give rise to four unit quaternion parameters (p0, p1, p2, p3).

Therefore, the description of the state of the first body involves a thirteen-dimensional vec-

tor:

x = [p0, p1, p2, p3,︸ ︷︷ ︸
Orientation

quaternion

px, py, pz,︸ ︷︷ ︸
Position

relative

to F0

ωx, ωy, ωz,︸ ︷︷ ︸
Angular

velocity in

F0

coordinates

vx, vy, vz︸ ︷︷ ︸
Linear

velocity in

F0

coordinates

]

For the remaing 1-DOF joints for the wheels and the manipulator only the angular position

qi and angular velocity q̇i, i = 2, 3, . . . , N , are required to complete the description of the

state of the bodies. Thus for a four-wheeled SSMM with an M degrees of freedom manip-

ulator, the full state vector would be given by qSSMM = [x|q2 q3 · · · qM+5|q̇2 q̇3 · · · q̇M+5],

requiring 13 + 4×2 +M ×2 = 13 + 2× (M + 4) joint variables. The complete list of mo-

tion and force variables is summarized in table 2.6. Throughout the thesis the notation vji is

employed to indicate that the vector v belongs to body i and its coordinates are expressed

in the frame Fj . When a variable of body i is expressed in the coordinates of the same

body, i.e. when j = i, then the superscript is omitted to simplify the notation, e.g. vii = vi.

The notation for the SSMM variables presented in table 2.6 corresponds to the typically

employed notation for multibody mechanical systems, for which vji and ωji are the linear

and angular velocities, and similarly, aji , α
j
i are the linear and angular accelerations, while

qi, q̇i and q̈i are used for the joints position, velocity and acceleration variables, respec-

tively. Here the joint force is denoted by τi, which for purely rotational joints corresponds

to the joint torque. To distinguish spatial vectors from common 3D vectors, the spatial

vector variables are display in bold as vji , aji and fji , while the latter employ non-bold fonts.

Considering the platform’s orientation quaternion variables p0, p1, p2, p3 and posi-

tion variables px, py, pz, that together define the pose of the platform, the world-to-base

transform 1X0 that maps spatial vectors with coordinates in the global frame F0 to spatial
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vectors with coordinates of the base frame F1, is given according to table 2.5 by:

1X0 =

 E 0

−Er× E

 , (2.3)

where the rotation matrix is

E =


2 p0

2 + 2 p1
2 − 1 2 p1p2 + 2 p0p3 2 p3p1 − 2 p0p2

2 p1p2 − 2 p0p3 2 p0
2 + 2 p2

2 − 1 2 p2p3 + 2 p0p1

2 p3p1 + 2 p0p2 2 p2p3 − 2 p0p1 2 p0
2 + 2 p3

2 − 1

, (2.4)

and the matrix form of the cross-product is

r× =


0 −pz py

pz 0 −px

−py px 0

. (2.5)

Similarly, the link-to-link transformation that maps spatial motion vectors expressed in the

coordinates of the base frame F1 to coordinates of the wheels or arm’s inital link frames

Fi, i = 2, 3, 4, 5, 6, is given by

iX1 = xlt(ri)roty(qi) (2.6)

=



cos (qi) 0 − sin (qi) 0 0 0

0 1 0 0 0 0

1 sin (qi) 0 cos (qi) 0 0 0

− sin (qi) riy cos (qi) riz + sin (qi) rix − cos (qi) riy cos (qi) 0 − sin (qi)

−riz 0 rix 0 1 0

cos (qi) riy sin (qi) riz − cos (qi) rix − sin (qi) riy sin (qi) 0 cos (qi)


. (2.7)

The motion transformations just defined in eqs. (2.3) and (2.7) are a basic part to build

the model, together with their correspoding dual tranformations for spatial force vectors,

which are computed from the motion transforms in (2.3) and (2.7).
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TABLE 2.6. Motion and force variables for the SSMM.

Symbol Definition Description

3D space motion and force variables

ωji

[
ωji x ω

j
i y ω

j
i z

]T
Angular velocity of the body i in frame Fj .

vji

[
vji x v

j
i y v

j
i z

]T
Linear velocity of the body i in frame Fj .

αji

[
αji x α

j
i y α

j
i z

]T
Angular acceleration of the body i in frame Fj .

aji

[
aji x a

j
i y a

j
i z

]T
Linear acceleration of the body i in frame Fj .

nji

[
nji x n

j
i y n

j
i z

]T
Torque applied to the body i in frame Fj.

f ji

[
f ji x f

j
i y f

j
i z

]T
Force applied to the body i in frame Fj.

qi Angular position of the joint i.
q̇i Angular velocity of the joint i.
q̈i Angular acceleration of the joint i.
τi Applied torque to the joint i.

[p0 p1 p2 p3]T Quaternion of the floating base orientation.
[px py pz]

T Position of the floating base in F0.
Spatial space motion and force variables

vji

[
ωji
vji

]
Spatial velocity of body i in frame Fj .

aji

[
αji
aji

]
Spatial acceleration of body i in frame Fj .

fji

[
nji
f ji

]
Spatial External force applied to the body i.

BXA Frame motion transformation from body A to B.
BX∗A Frame force transformation from body A to B.
Ii Spatial inertia of the body i in the frame Fi
IA/B Inertia propagated from body B to Body A.
I′i Body i total inertia due to children bodies inertia.
ci Joint i spatial acceleration due to velocity-product terms.
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2.3. Wheel-Ground Interaction

The model presented in the previous section is a model for any floating base with

an attached M -DOF manipulator and could be used for a ground vehicle, submarine or

even a spacecraft provided that the interaction forces between the vehicle and its environ-

ment are appropriately specified. Thus to complete the dynamic model of the skid-steer

mobile manipulator, the interaction between the ground and the vehicle must be defined.

To this end, in addition of the ground surface geometry and its terramechanical specifica-

tions, a set of contact points (CPs) attached to the bodies that can come into contact with

the ground, namely the wheels and the arm tool, must be defined together with the equa-

tions that describe the reaction forces. The next subsections explain the ground model and

vehicle-ground interaction forces.

2.3.1. Terrain-Vehicle Interaction Forces

Computing the contact and collision forces between moving bodies can be computa-

tionally very expensive because accurate geomtric models of real objects can have infinite

contact points, even when their geometry is relatively simple, as in the case of the contact

of an ideal wheel described by the circle equation and flat ground described by the plane

equation. This challenge has motivated significant research in compuational geometry al-

gortihms to efficiently solve the intersection of bodies described by large number of geo-

metric primitives (Mirtich & Mirtich, 1998). On the other hand, the study of different types

of wheels or tracks, the modeling of ground deformation and the effect of terramechanical

aspects on vehicle remains an open topic of research (Wong, 1989). However, what most

of the different approaches proposed to model ground-wheel forces have in common is that

contact forces consider a force decomposition into a normal and a traction force. In sim-

ple, terms the normal force is the projection of the vehicle weight onto the surface normal,

while the traction force is directly related to the applied wheel torque and several complex

effeccts that involve tangential and torsional restitution forces, ground internal deformation

forces (Wong, 1989; Iagnemma & Dubowsky, 2004), in addition to the tangential Coloumb

friction. The local deformation of bodies that are not really rigid causes the contact points
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to become contact areas. Despite this, a soft contact can be implemented as the contact be-

tween a point and a compliant surface in which the surface behaves as a first order massless

dynamical system that includes not only the tangential Coulomb friction, but also generates

damping and spring-like restitution forces that depend on the position and velocity of the

contact point relative to the ground surface. For simplicity, the surface is described as a

piecewise continuous concatenation of planes Πx,y with normal vector n̂x,y and a distance

to the world origin ρx,y in the global coordinate frameF0. The ground friction, stiffness and

damping coefficients that characterize the forces acting on the co ntact points are denoted

by µ, K and D, respectively. Contact points (CPs) are points fixed to any of the robot’s

bodies of the form Pk = [xk yk zk]
T , with coordinates expressed in the global reference

frame F0, and with absolute velocity v0
k = [v0

kx v
0
ky v

0
kz]

T in F0 coordinates. The purpose

of the CPs is to determine if a certain body is in contact with a surface and provides the

location at which the contact forces act while the point is in contact. The list of parameters

and variables of the contact model is presented in table 2.7.

n

Π

x,y

x,y

x

F

z

y

ρx,y Pk

FIGURE 2.3. Contact point Pk and ground surface a a plane Πx,y.

Considering the surface plane Π(n̂x,y, ρx,y) and CP Pk illustrated in fig. 2.3, the dis-

tance δk between Πx,y and Pk is given by

δk = n̂Tx,yPk − ρx,y. (2.8)
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TABLE 2.7. Parameters and variables for the contact point model.

Symbol Description

Ground geometry and contact force parameters
Πx,y Surface at the global position (x, y).
n̂x,y Normal vector of the surface Πx,y.
ρx.y Distance between the surface Πx,y and the origin of frame F0.
K Stiffness coefficient.
D Damping coefficient.
µ Friction coefficient.

Contact point variables
Pk Position of the contact point k in the global frame F0.
vjk Linear velocity of the contact point k in frame Fj .
v̂k Normalized velocity of the contact point k in frame F0

δk Distance between the contact point k and the surface Πx,y.
δ̇k Penetration velocity of the contact point k into the surface Πx,y.
εk Projection of the displacement of the contact point k onto the tangenital

plane of the surface at the point of contact.
Nk Force applied to the contact point k normal to the surface Πx,y.
ftk Force applied to the contact point k tangent to the surface Πx,y.
fstickk Maximum tangent force that can be applied to the contact point k.
Lvk Straight line passing through the contact point k along the direction v̂k.
L⊥k Straight line passing through the contact point k along the direction n̂x,y.

If δk > 0, the CP is not in contact with the surface and no further analysis needs to be done.

Otherwise, if δk ≤ 0, the the CP is in contact with the surface, and normal and friction

forces have to be computed. In order to evaluate these forces, the velocity of the CP and

two auxiliary lines are introduced as shown in fig. 2.4. The CP’s velocity is a vector with

magnitude and direction, while lines Lvk and L⊥k are two auxiliary lines that pass through

point Pk with direction v0
k and n̂x,y, respectively.

The surface penetration distance δk and its rate of change, together with the surface

stiffness coefficient K and damping coefficient D are employed to compute the ground

contact normal reaction force as

Nk =
√
−δk

[
−Kδk −Dδ̇k

]
, (2.9)

20



n

Π

x,y

x,y

x

F

z

y

ρx,y
⊥L

⊥P k

k

v
Lv

k


Pvk

k

Pk

FIGURE 2.4. Projection of contact Pk onto the plane Πx,y along the line L⊥k or-
thogonal to Πx,y and the motion direction line Lvk.

where, by (2.8), the penetration velocity is given by

d
dt

(
n̂Tx,yPk

)
= d

dt
δk = n̂Tk

d
dt
Pk

δ̇k = n̂Tx,yv
0
k.

(2.10)

Similarly, the tangential compliance of the surface produces a contact tangential reac-

tion force ftk that satisfies a Coulomb friciton model with coefficient µ in which

ftk =

 µNk, |µNk| < |fstickk |
fstickk , |µNk| ≥ |fstickk |

. (2.11)

In this model, the tangential reaction force ftk is limited to a surface sticiking force fstickk
for which the contact point does not slip unless it applies a force on the surface that exceeds

the sticking force, i.e. as long as the contact point applies a force that is within the so-

called friction cone. Analogous to the ground normal reaction force at the contact point,

the tangential sticking force is given by

fstickk = −Ktεk −Dtvt
0
k (2.12)

where εk is the displacement of the surface from its equilibrium position in the tangent

direction and vt0k is the velocity of the surface’s tangential deformation.
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Two projections of the contact point Pk onto the surface Πx,y must be calculated in

order to obtain the tangential displacement εk and its velocity vt0k. First, the point Pvk =

Lvk(Pk, v̂k)∩Π(n̂x,y, ρx,y) arising from the intersection between the surface Πx,y and a line

Lvk(Pk, v̂k) passing through the point Pk in the direction of motion of the contact point:

v̂0
k =

v0
k

‖v0
k‖
. (2.13)

The point Pvk represents the location where the CP should be if it would not have penetrated

the surface. The second point P⊥k = L⊥k(Pk, n̂x,y) ∩ Π(n̂x,y, ρx,y) corresponds to the

perpendicular projection of the point Pk onto the surface Πx,y. Considering the equations

for the plane Πx,y and projection lines Lvk and L⊥:

Πx,y : {P ∈ R3|n̂Tx,yP − ρx,y = 0}, (2.14)

Lvk : {P ∈ R3|P = v̂0
ktv + Pk, ∀tV ∈ R}, (2.15)

L⊥k : {P ∈ R3|P = n̂x,yt⊥ + Pk, ∀t⊥ ∈ R}, (2.16)

substituting a point P of Lvk into the plane Πx,y equation yields

nTx,y
[
v̂0
ktv + Pk

]
− ρx,y = 0 ⇒ tv =

ρx,y − n̂Tx,yPk
n̂Tx,yv̂

0
k

, (2.17)

thus

Pvk = v̂k

[
ρx,y − n̂Tx,yPk

n̂Tx,yv̂k

]
+ Pk. (2.18)

Similarly, substituting a point P of L⊥k into the plane Πx,y equation yields

t⊥ =
ρx,y − n̂Tx,yPk
n̂Tx,yn̂x,y

(2.19)

and hence, the perpendicular projection of Pk onto plane Πx,y is given by

P⊥k = n̂x,y

[
ρx,y − n̂Tx,yPk
n̂Tx,yn̂x,y

]
+ Pk (2.20)
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The difference between P⊥k and Pvk corresponds to the motion direction vector of

point Pk projected onto the surface and provides information about the direction of the

tangential ground deformation. Subtracting P⊥k from Pvk, yields:

PvkP⊥k = Pvk − P⊥k = v̂0
k

[
ρx,y − n̂Tx,yPk

n̂Tx,yv̂
0
k

]
+ Pk − n̂x,y

[
ρx,y − n̂Tx,yPk
n̂Tx,yn̂x,y

]
− Pk

=

[
v̂0
k

n̂Tx,yv̂
0
k

− n̂x,y
n̂Tx,yn̂x,y

] (
ρx,y − n̂Tx,yPk

)
=

[
v̂0
k − n̂x,yn̂Tx,yv̂0

k

n̂Tx,yv̂
0
k

] (
ρx,y − n̂Tx,yPk

)
(2.21)

The tangential speed of the contact point Pk can now be calculated as the projection of v0
k

onto the normalized motion direction vector σ̂t = PvkP⊥k/‖PvkP⊥k‖ according to

‖vt0k‖ = σ̂Tt v
0
k, with σ̂t =

v̂0
k − n̂x,yn̂Tx,yv̂0

k

‖v̂0
k − n̂x,yn̂Tx,yv̂0

k‖
. (2.22)

Finally, the velocity vt
0
k = ‖vt0k‖σ̂t of the tangential surface displacement is integrated

while the CP is in contact to obtain the total tangential deformation εk at the contact point:

εk =

∫
vt

0
kdt (2.23)

For numerical simulation, the previous integral is replaced by a summation using a simple

rectangle approximation εk =
∑
vt

0
k∆t.

2.3.2. Wheel Contact Point Model

As previously mentioned an ideal wheel has infinite contact points. However, for prac-

tical numerical simulation purposes the ideal circular wheel of radius r is approximated by

a regular polygon inscribed in a circle of radius r with a total of Ncp contact points located

at each one of the vertices on the wheel perimeter as shown in fig. 2.5, which for simplicity

of expostion shows a wheel with Ncp = 6 in three different time instants at time t = 0,

t = ∆t and t = 2∆t from left to right. At each time instant the wheel has a translation and

rotational velocity, and each CP has a position defined as Pk, starting from P1 for the first

point explicitly shown on each wheel and numbered in a clockwise direction.
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FIGURE 2.5. Wheels contact points transition.

At each time instant, the distance of the contact point to the surface is verified accord-

ing to (2.8). For the first instant t = 0, the distances of the contact points to the ground

surface satisfy δk > 0, k = 1, 2, . . . , Ncp, because none of the points is in contact and thus

there is no reaction force of the ground acting on the wheel. At the second instant t = ∆t,

the wheel translates and rotates achieving a position in which the CP P3 is in contact since

δ3 ≤ 0, thus the interaction between the wheel and the ground needs to be evaluated. Even

though fig. 2.5 shows that the point has penetrated the surface, this situation is considered

under the soft contact model as a deformation of the compliant surface due to the forces

exerted on it by the wheel. According to (2.9) a normal force appears at the point P3 as

well as tangent forces that are related to the distance δ3 and the velocity of point P3. The

linear velocity of the contact points on the terrain is not necessarily the same as the wheel’s

velocity. The velocity of the wheel’s contact point is calculated as v0
3 = v−rω×N̂3, where

v is the wheel’s linear velocity, ω is its angular velocity, r the wheel’s radius, and N̂3 is the

unitary normal vector of the surface at the contact point (parallel to the normal force N̂3).

In the last instant, two contact points (P1 and P2) are active, thus normal and tangent forces

appear acting on each of them.

The accuracy of the model depends on the number of CPs employed to approximate

the ideal circular wheel and the step time. To ensure a reasonable level of accuracy the
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step time has to be small enough so that contact point penetration of the ground is small

from one simulation instant to the other. Due to the wheel approximation it is possible that

several contact points in a wheel have penetrated the ground and thus several normal forces

may appear, but their sum should be constant (up to numerical integration errors) when the

system has no acceleration and if the surface has no slope changes. As will be shown later

in section 4.2 for an SSMM on flat terrain, the total normal reaction force is equal to the

weight of the system as expected.

2.4. Skid-Steer Mobile Base Kinematics

Unlike a typical differential-drive mobile base, the skid-steer mobile base (SSMB) is a

slightly more complex base to model because of the skidding and slippage effects, which

add some non-holonomic constraints. In this section, the main kinematic features of the

skid-steer mobile base are revised focusing our attention on the 3-DOF planar kinematic

motion model, before deriving a general 6-DOF floating-base dynamic model.

The main feature of the SSMB is that the applied force/torque for the left-side wheels

is independent from the one applied to the right-side wheels. Thus it is possible to make

the base move in a straight line if the applied torque is the same for both sides or make the

base turn in-place if the applied torques have the same magnitude but opposite directions.

Circular paths can also be accomplish by combining different applied torques to each of

the sides.

The geometric description of the planar model for the skid-steer base is presented in

Fig 2.6, which among its main features includes the longitudinal distances d and e of the

wheels to the COM and the width of the base b corresponding to the distance between the

wheels on each side, similar to the model proposed by (Kozlowski et al., 2004). Despite

the simple geometric description, it should be sufficient to understand the kinematics of an

SSMB. The kinematic model considers that each wheel is located at a point pi, i = 2, 3, 4, 5,

relative to the base frame. If the mobile base is turning, an instantaneous center of rotation

(ICR) appears and each pi has a corresponding velocity v1
i in the base frame as illustrated
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in fig. 2.7a and a distance di to the ICR as shown in fig. 2.7b. The velocities v1
i of each

wheel can be used to compute the translation velocity v1 of the COM in the base frame and

its rotational velocity ω1.

COM

b

d

ea

θ

x

y

y

x
F

FIGURE 2.6. Skid-steer mobile base wheel dimensions.
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FIGURE 2.7. Skid-steer mobile base model
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Since the wheels cannot separate from the base, the longitudinal velocity of the wheels

on each side must be the same and thus must satisfy

v1
2x = v1

3x,

v1
4x = v1

5x,
(2.24)

while the lateral velocity of the front wheels, as well as that of the rear wheels, has also to

be the equal and satisfy

v1
2y = v1

4y,

v1
3y = v1

5y.
(2.25)

Furthermore, since all bodies of the base rotate at the same angular speed about the ICR,

considering the distances shown in fig. 2.7b between the wheels and the ICR, and that

between the COM and the ICR, the following relationships must be also satisfied

‖v1
i ‖
‖di‖

=
‖v1‖
‖dC‖

= ‖ω1‖. (2.26)

Combining (2.24), (2.25), (2.26) and the geometric dimensions of the base of fig. 2.6, the

following velocities equalities are established

v1
2x = v1

3x = v1x − b
2
ω1,

v1
4x = v1

5x = v1x + b
2
ω1,

v1
2y = v1

5y = (−xICR − d)ω1,

v1
3y = v1

4y = (−xICR + e)ω1.

(2.27)

These equations show the intrinsic relationship between the mobile base and how the ve-

locities from the wheel reflect on the body and vice-versa. Finally, the nonholonomic

constraint concerning the lateral velocity can be written as

v1y + xICRθ̇ = 0. (2.28)

This constraint implies that the magnitude of the mobile base lateral velocity is directly

related to the location of the ICR relative to the COM and if the ICR is not aligned with the

COM along the longitudinal axes, then the base will exhibit lateral skidding.
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2.5. Forward Dynamics Equations

This section presents the development of the model equations for the motion dynam-

ics of a SSMM using the spatial vector formalism and the Articulated Body Algorithm

(ABA) (Featherstone, 2008) for the calculation of the forward dynamics. Considering the

complexity of the system whose state vector involves 13 + 2× (M +W ) variables (13 for

the base, 2 ×M for M arm joints and 2 ×W for W wheels), the dynamics for the base

will be derived first without considering the wheels nor the arm. Since the base can trans-

late and rotate in 3D space the base model corresponds to that of a floating base, whose

motion is constrained later by the ground contact reaction forces. The dynamic equations

of the unconstrained floating base derived using the spatial vector algebra approach and

the Articulated Body Algortihm are compared to the well-known dynamic equations of

a general aircraft or satellite derived using the traditional Newton-Euler force balance as

an initial consistency check between both approaches. In the subsequent section an arm

is added to the base, and the wheel contact forces are also included. Due to the size of

the explicit equations, the arm considers only one degree of freedom. Obtaining symbolic

expressions for the forward dynamics of a SSMM with an arm that has more degrees of

freedoms should be possible provided the computer algebra software for symbolic compu-

tations can handle large expressions. In general this can prove to be a very difficult task,

even for simpler systems as shown in previous work (Torres-Torriti & Michalska, 2005).

Here we were able to compute closed-form explicit expressions only for an SSMM with a

1-DOF arm, since the spatial vector approach involves the inversion of several 6× 6 joint-

location and joint-tranform matrices as well as spatial 6 × 6 inertia matrices associated to

each body. However, in the numerical application of the algorithm it is possible to apply it

to more complex models, since each step evaluates matrix and vector operations that yield

numercial values that do not require the complex symbolic simplification of expressions

and symbol handling of the computer algebra software. Our implementation of a Maple

package for the symbolic computation of the spatial vector algerbra and the ABA is later

discussed in section 5.
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2.5.1. Dynamic Model of a Floating Base

The dynamic model equations of a floating base are obtained in this section using

Featherstone’s ABA and the spatial vector approach proposed in (Featherstone, 2008).

The spatial equation of motion of a body states that the net force acting on the body is

equal to the change of momentum, i.e. f = d
dt

(Iv) = Ia + v ×∗ Iv, where v ×∗ Iv is

the velocity-product term that accounts for the Coriolis and centrifugal forces. Crudely

stated, the body acceleration can be computed by subtracting the external forces to the

velocity-product term and multiplying the difference by the inverse of the spatial inertial

matrix to obtain a = −I−1 (v ×∗ Iv − f). The actual solution for a multibody system is

undoubtedly more complex, but it also involves the computation of the velocity-product

terms. In particular, the floating base model in the ABA implementation of Feather-

stone’s Spatial Toolbox for Matlab (Spatial Vector Algebra Toolboox for Matlab, 2014,

http://royfeatherstone.org/spatial/index.html) assumes that the spa-

tial velocities of the floating base are expressed using coordinates referred to the global

frame F0. However, in order to compare the resulting dynamic equations obtained for the

floating base using the ABA to those of an aircraft or free flying object obtained in (Cook,

2007) using the standard Newton-Euler method, for which the force balance is typically

carried out in body coordinates, it will be assumed here that the spatial velocity, accelera-

tion and force variables of the base v0
1, a0

1 and f0
1 in the global frame coordinates frame have

been expressed as a velocity, acceleration and force v1
1 ≡ v1, a1

1 ≡ a1 and f1
1 ≡ f1 in the

body frame coordinates using the base-to-body transformation 1X0 mapping coordinates

from the global frame F0 to the base frame F1. Since the computation of the base-to-body

transformation 1X0 applied to v1
0 generates large expressions for v1, it will be convenient
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to assume that the base velocity is simply declared as a spatial velocity vector

v1 =



ω1x

ω1y

ω1z

v1x

v1y

v1z


, (2.29)

whose angular and translational velocity components are referred to the floating body. For

comparison, the spatial velocity of the floating base using the notation in (Cook, 2007)

would have been written as v1 = [p q r U V W ]T .

The spatial inertial matrix of the floating base is defined in terms of the body inertia

relative to the COM and its mass as:

I1 =

 I1 O3×3

O3×3 m1I3×3

, with I1 =


Ixx1 Ixy1 Ixz1

Ixy1 Iyy1 Iyz1

Ixz1 Iyz1 Izz 1

. (2.30)
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The first step is to compute the velocity-product term that yields the Coriolis and cen-

trifugal forces:

f1c = v1 ×∗ I1v1 =
[
n1cx n1cy n1cz f1cx f1cy f1cz

]T (2.31)

=



(
−ω1zIxy1 + ω1yIxz 1

)
ω1x +

(
−ω1zIyy1 + ω1yIyz 1

)
ω1y +

(
−ω1zIyz 1 + ω1yIzz 1

)
ω1z

(ω1zIxx 1 − ω1xIxz 1 )ω1x +
(
ω1zIxy1 − ω1xIyz 1

)
ω1y + (ω1zIxz 1 − ω1xIzz 1 )ω1z(

−ω1yIxx 1 + ω1xIxy1
)
ω1x +

(
−ω1yIxy1 + ω1xIyy1

)
ω1y +

(
−ω1yIxz 1 + ω1xIyz 1

)
ω1z

−ω1zm1 v1y + ω1ym1 v1z

ω1zm1 v1x − ω1xm1 v1z

−ω1ym1 v1x + ω1xm1 v1y


.

The vector f1ext of external forces acting on the floating base 1 in body coordinates

includes the gravitational force f 0
1 grav expressed in the global frame F0, and other forces

f1o, which can vary depending on the system. For an aerial or underwater vehicle, f1o

includes drag, lift or buoyancy and thrust forces, which are normally expressed in coordi-

nates of the body frameF1, for ground vehicle, the other forces are typically ground normal

and trangential traction reaction forces which are expressed in the global frame F0 as f 0
1 o.

Therefore, before adding these forces to the platform’s velocity they have to be transformed

to coordinates of the body frame:

f1ext = 1X∗0(f 0
1 grav + f 0

1 o) =
[
n1extx n1exty n1extz f1extx f1exty f1extz

]T
. (2.32)

The inertial force acting on the floating body is given by

f1 = f1c − f1ext. (2.33)
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Hence, the inertial acceleration of the body is calculated as a1 = −I−1
1 f1 = a1c + a1ext,

with a1c = −I−1
1 f1c and a1ext = I−1

1 f1ext. Calculating the acceleration due to the velocity-

product terms yields

a1c =



[(
Iyz 1

2 − Izz 1 Iyy1
)
n1x +

(
Ixy1 Izz 1 − Iyz 1 Ixz 1

)
n1y +

(
Ixz 1 Iyy1 − Ixy1 Iyz 1

)
n1z

]
∆−1

I[(
Ixy1 Izz 1 − Iyz 1 Ixz 1

)
n1x −

(
Izz 1 Ixx 1 − Ixz 1

2
)
n1y +

(
Iyz 1 Ixx 1 − Ixy1 Ixz 1

)
n1z

]
∆−1

I[(
Ixz 1 Iyy1 − Ixy1 Iyz 1

)
n1x +

(
Iyz 1 Ixx 1 − Ixy1 Ixz 1

)
n1y −

(
Iyy1 Ixx 1 − Ixy1

2
)
n1z

]
∆−1

I

ω1z v1y − ω1y v1z

ω1x v1z − ω1z v1x

ω1y v1x − ω1x v1y


(2.34)

∆I = det(I) = Izz 1 Ixx 1 Iyy1 − Izz 1 Ixy1
2 − Ixz 1

2Iyy1 − Iyz 1
2Ixx 1 + 2 Iyz 1 Ixy1 Ixz 1

(2.35)

Similarly, the acceleration due to external forces is calculated as:

a1ext =

 I−1
1 O3×3

O3×3 m−1
1 I3×3

 f1ext (2.36)

The complete expressions for the acceleration due to velocity-product terms and external

forces are included in appendix A.1.

The inertial force f1 and inertial acceleration a1 computed using the spatial vector

algebra approach were compared to the ones derived by the standard Newton-Euler method

and determined to be equal. Model simplifications often consider the inertia off-diagonal
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cross-terms to be zero, i.e. Ixy = Ixz = Iyz = 0, thus reducing the expressions to

f1 =



ω1yIzz 1 ω1z − ω1zIyy1 ω1y

ω1zIxx 1 ω1x − ω1xIzz 1 ω1z

ω1xIyy1 ω1y − ω1yIxx 1 ω1x

ω1ym1 v1z − ω1zm1 v1y

ω1zm1 v1x − ω1xm1 v1z

ω1xm1 v1y − ω1ym1 v1x


−



n1extx

n1exty

n1extz

f1extx

f1exty

f1extz


, (2.37)

and

a1 =



ω1zIyy1 ω1y−ω1yIzz 1 ω1z

Ixx 1

ω1xIzz 1 ω1z−ω1zIxx 1 ω1x

Iyy1

ω1yIxx 1 ω1x−ω1xIyy1 ω1y

Izz 1

ω1z v1y − ω1y v1z

ω1x v1z − ω1z v1x

ω1y v1x − ω1x v1y


+



n1extx

Ixx 1

n1exty

Iyy1

n1extz

Izz 1

f1extx
m1

f1exty
m1

f1extz
m1


. (2.38)

These equations correspond to those of any floating base like an aircraft, satellite, ship

or ground vehicle provided that the external forces are adequately defined; see for exam-

ple (Cook, 2007). In the specific case of a SSMM, the main external forces on the platform

are the gravity force, the ground normal and tangential reaction forces at the contact points

of the wheels on the terrain. These external forces are calculated as follows.

On each wheel acts a ground reaction force f 1
i w that can be decomposed into a normal

component Ni and a tangential force Fti. In turn, the tangential reaction force has longitu-

dinal and a lateral components ftxi and ftyi, respectively. If the ground under the robot is

assumed to be locally flat, the ground normal at each wheel will be parallel to the z1-axis,
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while the longitudinal and lateral components will be parallel to the robot’s base longitu-

dinal and lateral axes, x1 and y1, as illustrated in figure 2.8. Hence, the ground reaction

force at each wheel can be expressed as a linear force vector in the 3D space coordinates

of frame F1:

f 1
i w =


ftxi

ftyi

Ni

 .
Thus the external spatial force will be given by

f1ext =



n1extx

n1exty

n1extz

f1extx

f1exty

f1extz


=

 ∑5
i=2(ri + rk̂1)× f 1

i w∑5
i=2 f

1
i w


︸ ︷︷ ︸

f1o

+f1grav, (2.39)

where ri, i = 2, 3, 4, 5, is the position vector of each wheel relative to frame F1 (see

table), r is the wheel radius, k̂1 = [0 0 1]T is the unit vector parallel to the z1-axis, and

f1grav = 1X∗0[0 0 0 0 0 −m1g]T is the gravity force.

Since the terrain model is often expressed in the global frame F0, for numerical sim-

ulation purposes it can be more convenient to compute the ground contact forces also in

the global frame F0. If this is the case, the contact forces f0
i w, i = 2, 3, 4, 5 must be trans-

formed to forces expressed in the frame F0 before they can be added to the mobile base

using the transformation:

f1
i w = 1X∗0 f

0
i w, (2.40)

where jX∗0 is the force transform from frame 0 to 1 (see (2.2) and table 2.4).
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FIGURE 2.8. Skid-steer mobile manipulator with external forces: gravity and
ground reaction at the wheel contact points.

2.5.2. Dynamic Model of a Skid-Steer Mobile Manipulator

The skid-steer mobile base is extended in this section with a robotic arm and its dy-

namic model equiations are obtained using once again the spatial vector algebra approach.

Due to the large number of parameters associated to the motion and force link-to-link trans-

formations, the model is developed here for a SSMM with only 1-DOF. The model also as-

sumes the base inertia and mass is the lumped inertia of the body of the base and the wheels.

Moreover, the off-diagonal inertia cross-terms are assumed to be zero and the inertia of the

arm is considered to be non-zero only about its rotation axis. These simplifications are

made in order to reduce the length of the expressions. However, a computer algebra system

could be programmed to automate the development of the full equations for SSMMs with

more complex arms as explained later in section 5.

35



Considering the simplifications mentioned, the spatial inertia matrices for the base and

the arm are given by:

I1 =



Ixx 1 0 0 0 0 0

0 Iyy1 0 0 0 0

0 0 Izz 1 0 0 0

0 0 0 m1 0 0

0 0 0 0 m1 0

0 0 0 0 0 m1


(2.41)

and

I6 =



0 0 0 0 0 0

0 Iyy6 + 1
4
m6l6

2 0 0 0 −1
2
m6l6

0 0 1
4
m6l6

2 0 1
2
m6l6 0

0 0 0 m6 0 0

0 0 1
2
m6l6 0 m6 0

0 −1
2
m6l6 0 0 0 m6


. (2.42)

These spatial inertia matrices are calculated in terms of the body inertia Ii, the body mass

mi and the COM location ~ci in body coordinates relative to the body-frame using the pa-

rameters in table 2.5 and the formula for the generalized version of the parallel axis theorem

for spatial inertias:

Ii =

Ii +mi~ci× ~ci×T mi~ci×
mi~ci×T miI3×3


It is to be noted that because the origin of the coordinate frame F1 of the floating base

coincides with the COM location, i.e. ~c1 = [0, 0, 0], the spatial inertia is easy to build,

unlike the arm’s COM, which is located at a distance l6
2

from the arm frame F6, i.e. ~c6 =
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[0, 0, l6/2], causing off-diagonal elements to appear in the expression for I6. In fact, under

the assumption that the base is symmetric and its frame axes are aligned with the body’s

principal axes, the spatial inertia I1 is a diagonal matrix, unlike the inertia of the links of

the arm Ii, i = 6, 5, . . . , N .

Just like in the case of the floating base without an arm, the velocity of the base v1 is

declared in the body frame F1 according to (2.29) and an additional velocity variable q̇6 is

introduced for the arm joint. The spatial velocity of the manipulator can now be calculated

as the combined contributions of the effect of the base on the arm and the joint velocity as:

v6 = 6X1v1 + Sq̇6, (2.43)

where 6X1 is the transformation matrix from the body frame to the manipulator frame

given by

6X1 =



cos (q6) 0 − sin (q6) 0 0 0

0 1 0 0 0 0

sin (q6) 0 cos (q6) 0 0 0

0 0 0 cos (q6) 0 − sin (q6)

0 0 0 0 1 0

0 0 0 sin (q6) 0 cos (q6)


(2.44)

while S is the joint motion subspace matrix, which characterizes the motion constraint

imposed by the joint. Since the model in fig. 2.1 considers that arm joints allow arms to

rotate about their y-axis, then S6 = [0 1 0 0 0 0]T . The velocity of the arm in the arm’s

37



frame F6 is thus

v6 =



cos(q1)ω1x − sin(q1)ω1z

ω1x + q̇6

sin(q1)ω1x + cos(q1)ω1z

cos(q1)v1x − sin(q1)v1z

v1y

cos(q1)v1x − sin(q1)v1z


. (2.45)

The force due to the velocity-product terms fic = vi ×∗ Iivi can now be calculated

using the spatial velocity and inertia of each body yielding

f1c =



ω1yIzz 1 ω1z − ω1zIyy1 ω1y

ω1zIxx 1 ω1x − ω1xIzz 1 ω1z

ω1xIyy1 ω1y − ω1yIxx 1 ω1x

ω1ym1 v1z − ω1zm1 v1y

ω1zm1 v1x − ω1xm1 v1z

ω1xm1 v1y − ω1ym1 v1x


(2.46)
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and

f6c =



−Iyy6

(
sin (q6)ω1xω1y + sin (q6)ω1xq̇6 + cos (q6)ω1zω1y + cos (q6)ω1z q̇6

)
− 1/4m6l6

(
− l6 sin (q6)ω1z

2 cos (q6) + 2ω1y sin (q6) v1z + 2 q̇6 sin (q6) v1z

+ l6 cos (q6)ω1x
2 sin (q6)− 2 v1y sin (q6)ω1z + 2 v1y cos (q6)ω1x

+ 2 l6 cos (q6)2 ω1xω1z − 2ω1y cos (q6) v1x − 2 q̇6 cos (q6) v1x − l6ω1xω1z

)
− sin (q6)ω1zIyy6ω1y − 1/4 sin (q6)ω1zm6l6

2q̇6 − sin (q6)ω1zIyy6q̇6

− 1/4 sin (q6)ω1zm6l6
2ω1y + cos (q6)ω1xIyy6ω1y + cos (q6)ω1xIyy6q̇6

+ 1/4 cos (q6)ω1xm6l6
2ω1y + 1/4 cos (q6)ω1xm6l6

2q̇6 − 1/2m6l6ω1xv1z

+ 1/2m6l6ω1zv1x

1/2m6

(
− 2 l6 sin (q6)ω1x cos (q6)ω1z − 2 v1y sin (q6)ω1x + 2ω1y sin (q6) v1x

+ 2 q̇6 sin (q6) v1x − l6 cos (q6)2 ω1z
2 − 2 v1y cos (q6)ω1z + 2 q̇6 cos (q6) v1z

+ 2ω1y cos (q6) v1z − l6ω1y
2 − 2 l6ω1y q̇6 − l6q̇2

6 − l6ω1x
2 + l6ω1x

2 cos (q6)2
)

1/2m6

(
− l6 sin (q6)ω1z q̇6 − l6 sin (q6)ω1zω1y + 2ω1zv1x

− 2ω1xv1z + l6 cos (q6)ω1xω1y + l6 cos (q6)ω1xq̇6

)
1/2m6

(
− l6 sin (q6)ω1z

2 cos (q6) + 2ω1y sin (q6) v1z + 2 q̇6 sin (q6) v1z

+ l6 cos (q6)ω1x
2 sin (q6)− 2 v1y sin (q6)ω1z + 2 v1y cos (q6)ω1x

+ 2 l6 cos (q6)2 ω1xω1z − 2ω1y cos (q6) v1x − 2 q̇6 cos (q6) v1x − l6ω1xω1z

)



.

(2.47)

The expression for the force f6c on the arm due to the velocity-product terms provides

insight into the effect of the base motion on the arm force in addition to the Coriolis and

centrifugal forces generated by the joint velocity q̇6.

The inertial force on the arm is

f6 = f6c − f6ext (2.48)

where f6ext =
[
n6extx n6exty n6extz f6extx f6exty f6extz

]T is the external force acting on the

arm defined in a similar way to that in (2.39) including a contact and gravity force due to

the payload. The inertial force on the arm can now be propagated back to the base and used
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to compute the inertial force on the base according to

f1 = f1c + 1X∗6f6 − f1ext. (2.49)

where f1c is the force due to the velocity-product terms and is f1ext the external force on the

base introduced in the previous section. If the arm has additional links, the inertial force of

the i-th link has to be propagated back to its parent body λ(i) and then to the grandparent

following the kinematic tree till the base using the transformation matrix 1X∗i .

Before computing the inertial acceleration, it is necessary to compute the apparent

inertia of the manipulator as seen by the base. The spatial inertia of the arm is propagated

back to the base according to

I1/6 = I6 − I6S6

(
ST6 I6S6

)−1
ST6 IT6 (2.50)

and results in the spatial inertia matrix

I1/6 =



Γ l6 sin(q6)2 0 Γ l6 cos(q6) 0 2Γ sin(q6) 0

0 0 0 0 0 0

Γ l6 cos(q6) 0 Γ cos(q6)2l6 0 2Γ cos(q6) 0

0 0 0
m6(cos(q6)

2m6l6
2+4 Iyy6)

4 Iyy6+m6l6
2 0 − cos(q6)m6

2 sin(q6)l6
2

4 Iyy6+m6l6
2

2Γ sin(q6) 0 2Γ cos(q6) 0 m6 0

0 0 0 − cos(q6)m6
2 sin(q6)l6

2

4 Iyy6+m6l6
2 0

m6(4 Iyy6+sin(q6)
2m6l6

2)
4 Iyy6+m6l6

2


(2.51)

where Γ = 1
4
m6l6. Now the total spatial inertia of the floating base I′1 that includes the arm

and the base own inertia can be calculated as

I′1 = I1 − I1/6. (2.52)
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Using the inertial force on the base and the total spatial inertia of the base, the inertial

acceleration of the base is simply given by

a1 = (I′1)−1f1

=
(
I′−1
1

)
·
[
f1c + 1X∗6 (f6c − f6ext)− f1ext

]
=

(
I′−1
1

)
f1c + (

(
I′−1
1

)
1X∗6f6c︸ ︷︷ ︸

a1c

−
(
I′−1
1

)
1X∗6f6ext︸ ︷︷ ︸

a1/6ext

−
(
I′−1
1

)
f1ext︸ ︷︷ ︸

a1ext

The inertial acceleration of the base a1 can be split into an acceleration arising from the
velocity-product terms a1c, and accelerations due to the external forces on the arm and the
base a1/6ext and a1ext, respectively. The angular and linear components of the acceleration
due to the velocity-product terms about/along the axes x, y and z of the base coordinate
frame F1 are:

α1cx =
(
cos (q6)

2 l6
2m1m6ω1zIyy6ω1y + cos (q6)

2 l6
2m1m6ω1zIyy6q̇6

−2m1Izz1m6l6
2 cos (q6)

2 ω1z q̇6 − 2ω1zω1y cos (q6)
2m1Izz1m6l6

2

+cos (q6)
2m1m6l6

2ω1zω1yIyy1 −m1m6l6
2 cos (q6) sin (q6)ω1yω1xIxx1

+cos (q6) l6
2m6m1 sin (q6)ω1xIyy6ω1y + cos (q6) l6

2m6 sin (q6)m1ω1xIyy6q̇6

− cos (q6) l6
2m6m1Izz1 sin (q6)ω1xω1y − 2 cos (q6) l6

2m6m1Izz1 sin (q6)ω1xq̇6

+cos (q6) l6
2m6m1 sin (q6)ω1yω1xIyy1 +m1Izz1ω1zm6l6

2ω1y

+2m1Izz1ω1zm6l6
2q̇6 + 4 Izz1m6ω1zIyy6ω1y + 4 Izz1m6ω1zIyy6q̇6

−4ω1zω1yIzz1
2m6 + 4ω1zω1yIzz1m6Iyy1 − 4ω1zω1ym1Izz1

2

+4ω1zω1ym1Izz1Iyy1 + 4m1Izz1ω1zIyy6ω1y + 4m1Izz1ω1zIyy6q̇6
)/

(
− cos (q6)

2m1Izz1m6l6
2 +m1 cos (q6)

2m6l6
2Ixx1

+m1Izz1m6l6
2 + 4 Izz1Ixx1m6 + 4m1Ixx1Izz1

)

α1cy = − (ω1zIxx1ω1x − ω1xIzz1ω1z + τ1)
/

(Iyy1)
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α1cz =
(
− 2m1Ixx1 cos (q6) sin (q6)ω1zm6l6

2q̇6 −m1Ixx1 cos (q6) sin (q6)ω1zm6l6
2ω1y

+m1m6l6
2 cos (q6) sin (q6)ω1zω1yIyy1 −m1m6l6

2 cos (q6) sin (q6)ω1zω1yIzz1

+sin (q6)m1m6l6
2 cos (q6)ω1zIyy6q̇6 + sin (q6)m1m6l6

2 cos (q6)ω1zIyy6ω1y

+4m1Ixx1ω1xIyy6ω1y + 4m1Ixx1ω1xIyy6q̇6 +m1m6l6
2ω1xIyy6ω1y

+m1m6l6
2ω1xIyy6q̇6 + 2ω1yω1xm1 cos (q6)

2m6l6
2Ixx1

+2m1Ixx1 cos (q6)
2 ω1xm6l6

2q̇6 − ω1yω1xm1 cos (q6)
2m6l6

2Iyy1

−4ω1yω1xm1Ixx1
2 − 4ω1yω1xm6Ixx1

2 + 4ω1yω1xm1Ixx1Iyy1

−ω1yω1xm1m6l6
2Ixx1 + ω1yω1xm1m6l6

2Iyy1 + 4ω1yω1xm6Ixx1Iyy1

+4m6Ixx1ω1xIyy6ω1y + 4m6Ixx1ω1xIyy6q̇6 −m1m6l6
2 cos (q6)

2 ω1xIyy6ω1y

−m1m6l6
2 cos (q6)

2 ω1xIyy6q̇6
)/(

cos (q6)
2m1Izz1m6l6

2

−m1 cos (q6)
2m6l6

2Ixx1 −m1Izz1m6l6
2 − 4 Izz1Ixx1m6 − 4m1Ixx1Izz1

)

a1cx = −1/2
(
8 Iyy6m1

2ω1yv1z − 16 Iyy6m6m1ω1zv1y − 8 Iyy6m6
2v1yω1z

+8 Iyy6m6
2ω1yv1z − 8 Iyy6m1

2ω1zv1y + 2m1
2m6l6

2ω1yv1z

+2m6
2l6

2m1ω1yv1z − 2m1
2m6l6

2ω1zv1y + 16 Iyy6m6m1ω1yv1z

−2m6
2l6

2m1ω1zv1y − 4 cos (q6) Iyy6l6m6
2ω1z

2 − 4 l6 sin (q6) τ1m6
2

−4 cos (q6) Iyy6l6m6
2ω1y

2 − 8 cos (q6) Iyy6l6m6
2ω1y q̇6 − 4 cos (q6) Iyy6l6m6

2q̇26

−4 cos (q6) Iyy6l6m6m1q̇
2
6 − 4 cos (q6) Iyy6l6m6m1ω1z

2 − cos (q6) l6
3m6

2m1ω1x
2

−4 l6 sin (q6)m1τ1m6 − 4 Iyy6l6 sin (q6)m1ω1zω1xm6 + cos (q6)
3 l6

3m6
2m1ω1x

2

−2 sin (q6)m1ω1zω1xm6
2l6

3 cos (q6)
2 − 4 cos (q6) Iyy6l6m6m1ω1y

2

−8 cos (q6) Iyy6l6m6m1ω1y q̇6 − 2 cos (q6) l6
3m6

2m1ω1y q̇6 − cos (q6) l6
3m6

2m1q̇
2
6

− cos (q6) l6
3m6

2m1ω1y
2 − 4 Iyy6l6 sin (q6)ω1zω1xm6

2

− cos (q6)
3 l6

3m6
2m1ω1z

2
)/(

4 Iyy6m1
2 + 4 Iyy6m6

2 + 8 Iyy6m1m6

+m1m6
2l6

2 +m1
2m6l6

2
)
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a1cy =
(
− 2 Izz1m6l6 sin (q6)ω1zIyy6ω1y + 4 Izz1Ixx1m6l6 sin (q6)ω1z q̇6

−2 Izz1m6l6 sin (q6)ω1zω1yIyy1 + 2 Izz1Ixx1m6l6 sin (q6)ω1zω1y

+2 Izz1
2m6l6 sin (q6)ω1zω1y − 2 Izz1m6l6 sin (q6)ω1zIyy6q̇6

+4m1Izz1Ixx1ω1xv1z − 4m1Izz1Ixx1ω1zv1x + 2 cos (q6)m6l6Ixx1ω1xIyy6q̇6

+2 cos (q6)m6l6Ixx1ω1xIyy6ω1y − 2 cos (q6)m6l6Ixx1
2ω1yω1x

−m1Izz1m6l6
2ω1zv1x +m1Izz1m6l6

2ω1xv1z − 4 Izz1Ixx1m6v1xω1z

+4 Izz1Ixx1m6ω1xv1z −m1 cos (q6)
2m6l6

2Ixx1ω1zv1x

+m1Izz1 cos (q6)
2m6l6

2ω1zv1x +m1 cos (q6)
2m6l6

2Ixx1ω1xv1z

+2 cos (q6)m6l6Ixx1ω1yω1xIyy1 −m1Izz1 (cos (q6))
2m6l6

2ω1xv1z

−2 Izz1Ixx1m6l6 cos (q6)ω1xω1y − 4 Izz1Ixx1m6l6 cos (q6)ω1xq̇6
)/

(
− cos (q6)

2m1Izz1m6l6
2 +m1 cos (q6)

2m6l6
2Ixx1

+m1Izz1m6l6
2 + 4 Izz1Ixx1m6 + 4m1Ixx1Izz1

)

a1cz = 1/2
(
m1m6

2l6
3 cos (q6)

2 ω1x
2 sin (q6)− 2m1m6

2l6
3ω1x cos (q6)ω1z

+4m1 cos (q6)m6l6τ1 + 8 Iyy6v1xω1ym1
2 − 8 Iyy6m1

2ω1xv1y + 8 Iyy6m6
2ω1yv1x

−2m6
2m1l6

2ω1xv1y + 2m6
2m1l6

2ω1yv1x + 16 Iyy6m6m1ω1yv1x

−16 Iyy6m6m1ω1xv1y + 2m1m6
2l6

3 cos (q6)
3 ω1xω1z + 2m1

2m6l6
2ω1yv1x

−2m1
2m6l6

2ω1xv1y − 8 Iyy6m6
2v1yω1x − 2m1 sin (q6)m6

2l6
3ω1y q̇6

−m1 sin (q6)m6
2l6

3q̇26 −m1 sin (q6)m6
2l6

3ω1y
2 − sin (q6)m1m6

2l6
3ω1x

2

−m1 sin (q6)m6
2l6

3 (cos (q6))
2 ω1z

2 − 4 Iyy6m6
2 sin (q6) l6q̇

2
6

−8 Iyy6m6
2 sin (q6) l6ω1y q̇6 − 4 Iyy6m6

2l6ω1x cos (q6)ω1z

−4 Iyy6m1 sin (q6)m6l6q̇
2
6 − 4 Iyy6m6

2 sin (q6) l6ω1y
2

−8 Iyy6m1 sin (q6)m6l6ω1y q̇6 − 4 Iyy6 sin (q6)m1m6l6ω1x
2

−4 Iyy6 sin (q6)m6
2l6ω1x

2 − 4 Iyy6m1m6l6ω1x cos (q6)ω1z + 4m6
2 cos (q6) l6τ1

)
/(

4 Iyy6m1
2 + 4 Iyy6m6

2 + 8 Iyy6m1m6 +m1m6
2l6

2 +m1
2m6l6

2
)
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The angular and linear components of the base acceleration due to the external forces on
the arm a1/6ext in the coordinates of F1 are given by:

α1/6extx
=

(
4 cos (q6)m1Izz 1n6extx + 4 cos (q6) Izz 1n6extxm6

+4m1Izz 1 sin (q6)n6extz − 2 l6m6Izz 1 sin (q6) f6exty + 4m6 sin (q6) Izz 1n6extz

+cos (q6) l6
2m6m1n6extx

)/(
− cos (q6)

2m1Izz 1m6l6
2

+m1 cos (q6)
2m6l6

2Ixx 1 +m1Izz 1m6l6
2 + 4 Izz 1Ixx 1m6 + 4m1Ixx 1Izz 1

)

α1/6exty
= 0

α1/6extz
= −

(
m1m6l6

2 sin (q6)n6extx + 2 cos (q6)m6l6Ixx 1f6ext y

−4m1Ixx 1 cos (q6)n6extz + 4 Ixx 1m6 sin (q6)n6extx − 4 Ixx 1m6 cos (q6)n6extz

+4m1Ixx 1 sin (q6)n6extx

)/(
− cos (q6)

2m1Izz 1m6l6
2

+m1 cos (q6)
2m6l6

2Ixx 1 +m1Izz 1m6l6
2 + 4 Izz 1Ixx 1m6 + 4m1Ixx 1Izz 1

)

a1/6extx =
(
l6

2m1m6 sin (q6) f6ext z + 4 cos (q6) Iyy6m1f6ext x + 4 Iyy6m6 sin (q6) f6ext z

+2 l6m6m1 sin (q6)n6exty + 2m6
2 sin (q6) l6n6exty + 4 Iyy6m1 sin (q6) f6ext z

+4 cos (q6) Iyy6m6f6ext x +m6
2 sin (q6) f6ext z l6

2

+cos (q6)m1m6l6
2f6ext x

)/(
4 Iyy6m1

2 + 4 Iyy6m6
2

+8 Iyy6m1m6 +m1m6
2l6

2 +m1
2m6l6

2
)

a1/6exty =
(
− 2 Izz 1m6l6n6extz + Izz 1m6l6

2f6ext y + cos (q6)
2m6l6

2Ixx 1f6ext y

−2 Izz 1m6l6 sin (q6) cos (q6)n6extx + 2 cos (q6)
2 Izz 1m6l6n6extz

+2 cos (q6)m6l6Ixx 1 sin (q6)n6extx − 2 cos (q6)
2m6l6Ixx 1n6extz

−Izz 1 cos (q6)
2m6l6

2f6ext y + 4 Izz 1Ixx 1f6ext y

)/(
− cos (q6)

2m1Izz 1m6l6
2

+m1 cos (q6)
2m6l6

2Ixx 1 +m1Izz 1m6l6
2 + 4 Izz 1Ixx 1m6 + 4m1Ixx 1Izz 1

)
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a1/6extz = −
(
−m1 cos (q6) f6ext z m6l6

2 − 2m6
2 cos (q6) l6n6exty

+4 Iyy6m6 sin (q6) f6ext x − 4 Iyy6m1 cos (q6) f6ext z + 4 Iyy6m1 sin (q6) f6ext x

−4 Iyy6m6 cos (q6) f6ext z −m6
2 cos (q6) f6ext z l6

2 +m1 sin (q6) f6ext x m6l6
2

−2m1 cos (q6)m6l6n6exty

)/(
4 Iyy6m1

2 + 4 Iyy6m6
2

+8 Iyy6m1m6 +m1m6
2l6

2 +m1
2m6l6

2
)

Finally, the angular and linear components of the base acceleration due to the external
forces on the base a1ext in the coordinates of F1 are given by:

α1extx =
(
4m6Izz 1n1extx − cos (q6) l6

2m6m1 sin (q6)n1extz − 2 l6m6Izz 1 sin (q6) f1ext y

+4m1Izz 1n1extx + cos (q6)
2 l6

2m6m1n1extx

)/(
− cos (q6)

2m1Izz 1m6l6
2

+m1 cos (q6)
2m6l6

2Ixx 1 +m1Izz 1m6l6
2 + 4 Izz 1Ixx 1m6 + 4m1Ixx 1Izz 1

)

α1exty = n1exty

/
Iyy1

α1extz =
(
4 Ixx 1m6n1extz + 4m1Ixx 1n1extz +m1m6l6

2n1extz

−m1m6l6
2 (cos (q6))

2 n1extz − 2 cos (q6)m6l6Ixx 1f1ext y

−m1m6l6
2 sin (q6) cos (q6)n1extx

)/(
− cos (q6)

2m1Izz 1m6l6
2

+m1 cos (q6)
2m6l6

2Ixx 1 +m1Izz 1m6l6
2 + 4 Izz 1Ixx 1m6 + 4m1Ixx 1Izz 1

)

a1extx = −
(
−m6

2f1ext x l6
2 − cos (q6)m6

2 sin (q6) l6
2f1ext z + cos (q6)

2m6
2f1ext x l6

2

−l62m1m6f1ext x − 4 Iyy6f1ext x m1 − 4 Iyy6m6f1ext x

)/(
4 Iyy6m1

2 + 4 Iyy6m6
2

+8 Iyy6m1m6 +m1m6
2l6

2 +m1
2m6l6

2
)

a1exty = −
(
Izz 1 cos (q6)

2m6l6
2f1ext y + 2 cos (q6)m6l6Ixx 1n1extz

−Izz 1m6l6
2f1ext y − cos (q6)

2m6l6
2Ixx 1f1ext y + 2 Izz 1m6l6 sin (q6)n1extx

−4 Izz 1Ixx 1f1ext y

)/(
− cos (q6)

2m1Izz 1m6l6
2

+m1 cos (q6)
2m6l6

2Ixx 1 +m1Izz 1m6l6
2 + 4 Izz 1Ixx 1m6 + 4m1Ixx 1Izz 1

)
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a1extz =
(
m1f1ext z m6l6

2 + (cos (q6))
2m6

2l6
2f1ext z + 4 Iyy6m6f1ext z + 4 Iyy6f1ext z m1

+cos (q6)m6
2 sin (q6) l6

2f1ext x

)/(
4 Iyy6m1

2 + 4 Iyy6m6
2

+8 Iyy6m1m6 +m1m6
2l6

2 +m1
2m6l6

2
)

In the same way the velocity of the base was propagated to the arm in (2.43), the

acceleration of the base is propagated to the arm and added to the arm acceleration due

to the joint acceleration and the velocity-product term (corresponding to the spatial cross

product of the arm velocity and joint velocity) to obtain the arm acceleration:

a6 = 6X1a1 +



(− sin(q1)ω1x − cos(q1)ω1z) q̇6

0

(cos(q1)ω1x − sin(q1)ω1z) q̇6

(− sin(q1)v1x − cos(q1)v1z) q̇6

0

(cos(q1)v1x − sin(q1)v1z) q̇6


︸ ︷︷ ︸

c6=v6×Sq̇6

+S6q̈6. (2.53)

The arm’s spatial acceleration can now be employed to calculate the arm-joint acceler-

ation, which is given by

q̈6 =
(
τ6 − ST6 f6 − I6S6

(
6X1a1 + c6

)) (
ST6 I6S6

)−1
. (2.54)

In an analogous way to the computation of the base acceleration, the joint acceleration q̈6

can be split into a term associated to the velocity-product terms q̈6c, i.e. does not include

the external forces, and two other terms that include the external forces acting on the arm

46



and the base, q̈6ext and q̈6/1ext, respectively. These terms are:

q̈6c =
(

4 Iyy6m1ω1zIxx 1ω1x − 4 Iyy6m1ω1xIzz 1ω1z −m1ω1xIzz 1ω1zm6l6
2

−m1m6l6
2Iyy1ω1zω1x + 2m1m6l6

2Iyy1 cos (q1)2 ω1xω1z

−m1m6l6
2Iyy1 sin (q1)ω1z

2 cos (q1) +m1ω1zIxx 1ω1xm6l6
2

+m1m6l6
2Iyy1 cos (q1)ω1x

2 sin (q1) + 4m1τ6Iyy1 + 8 Iyy6τ6m1

+2m1τ6m6l6
2 − 8 Iyy6ω1xIzz 1ω1zm6 + 16 Iyy6m6τ6 + 8 Iyy6ω1zIxx 1ω1xm6

+8 τ6Iyy1m6

)/((
4m1Iyy6 +m1m6l1

2 + 8 Iyy6m6

)
Iyy1

)
,

q̈6ext =
(
4n6extym1 + 4n6extym6 + 2m6l6f6ext z

)/
(
4 Iyy6m1 +m6l6

2m1 + 4m6Iyy6

)
,

q̈6/1ext =
(
− 4m1Iyy6n1exty − 4 Iyy6n1extym6 − n1extym6l6

2m1

+2m6l6Iyy1 cos (q6) f1ext z + 2m6l6Iyy1 sin (q6) f1ext x

)/
( (

4 Iyy6m1 +m6l6
2m1 + 4m6Iyy6

)
Iyy1

)
.

These equations show that the joint acceleration q̈6 does not only depend on the applied

torque τ6 supplied by the joint actuator, but also on the external forces that propagate from

the base to the arm, as well as the load and possible contact forces on the arm.

The forward dynamics equations just obtained allow to simulate the model of a SSMM

with 1-DOF arm and develop a motion and joint controllers. The simulation of the SSMM

model implemented with the forward dynamics equations is presented in the next chapter,

which also discusses the measurements obtained during the field tests and validate the

model’s physical compliance.
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3. SIMULATION

To corroborate the dynamic model of the SSMM, a SSMM was simulated using the

Spatial Toolbox (version 2) for Matlab (Spatial Vector Algebra Toolboox for Matlab, 2014).

This toolbox provides a set of algorithms and functions for simulating the motion dynamics

of multibody mechanical systems using the spatial vector algebra approach. The toolbox

allows to build models in terms of easy to use data structures that only require one to

fill in the parent array λ of the the kinematic structure, the position of the joints relative

to the parent body (i.e. the parameters of the joint-location transform XT ), the location

of the COM of each body and the mass and inertia matrices of the bodies. The toolbox

contains functions for computing the forward and inverse dynamics that can be called from

Matlab scripts or from Simulink simulation models. The functions provided also allow

to include user-defined contact and motion constraints. The results from the simulations

can be visualized using functions that are part of the toolbox and that allow to create 3D

graphical representations of the robot or multibody mechanical system.

The SSMM model built for the simulations corresponds to the one presented in chap-

ter 2 with a 1-DOF manipulator to provide a realistic representation of a Catr 262C Series

2 compact skid-steer loader that was robotized for teleoperation and autonomous navi-

gation experiments. The simulation results of the Catr 262C are later compared to the

measurements obtained with the real Catr 262C skid-steer loader.

In this chapter, the multiple considerations of the simulation are discussed as model

parameters, internal friction and viscosity of the joints and the simulation scheme.

3.1. SSMM Model Parameters

The Catr 262C will be modeled as a floating base with four wheels and a one-DOF

manipulator. As shown on the model illustrated in fig. 2.1, the mobile base is assigned

body number 1, the wheels are bodies 2, 3, 4, 5 and the arm is the sixth body. The arm

of the Catr 262C is implemented in the simulation as a 1-DOF rotary joint with axis-

y parallel to y1. Extra bodies and joints can be easily added to represent the motion of
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the loader’s bucket. However, to reduce the number of variables the experiments were

carried out using a fixed bucket positon and therefore bodies i = 7, 8, . . . , N of the general

SSMM model were not defined in the model script that can be obtained from (SSMM Model

Files, Experimental Data, Simulation Videos and Spatial Vector Algebra Library, 2014,

http://ral.ing.puc.cl/ssmm.htm). The specific values for the geometric and

inertial parameters in Table 2.5 of the Catr 262C model are summarized in Table 3.1. It is

to be noted that the joint location parameter h of the loader arm corresponding to frame F6

in fig. 2.1 shown in Table 3.1 is negative. This is because the Cat 262C arm is positioned at

the rear-end of the machine, opposite to the front location of the arm in the general SSMM

model shown in fig. 2.1.

TABLE 3.1. Catr 262 Modeled Parameters in SI Units.

Description Mobile Base Wheels Manipulator
x a = 3 2r = 0.9 ε = 0.15

Dimensions y b = 1.6 w = 0.25 ε = 0.15
z c = 1.2 2r = 0.9 l6 = 3.3

Mass m1 = 2389 m2,3,4,5 = 47.7 m6 = 1034

Joint
Location

Parameters

d = 0.2
− e = 1 h = −1.2

f = 0.5

Once each body is declared, the ground contact points are defined with respect to each

body’s frame Fi in 3D coordinates. More specifically, eight CPs are defined at each corner

of the mobile base represented by a rectangular box, one CP is defined at the end of the

manipulator arm where the tip of the bucket is located, and each of the four wheels has

32 CPs distributed around its perimeter. Such number of contact points on the wheels was

choosen to obtain a more realistic simulation of the ground-wheel interaction. Fig. 3.1

shows the simulated SSMM model through the spatial vector algebra toolbox.
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FIGURE 3.1. Simulated SSMM model.

3.2. Joints Friction, Viscosity and Control

3.2.1. Response to step inputs

When a step command is send to the Catr 262C, the response is not instantaneous

due to the response dynamics of the different mechanical subsystems (diesel engine, pump,

hydraulic motors). A basic model of the engine is shown if fig. 3.2. The first input of

the system is the accelerator throttle that set the power of the diesel engine. The engine

moves an hydrostatic pump which supplies hydraulic pressure to the left and right hydraulic

motors through the corresponding servovalves.

The diesel engine, the hydrostatic pump and the hydraulic motors each have an inertia

and friction constants which add to the total response time and efficiency reductions of the

power train. It was measured from the data collected in the experiments that the machine

velocity profile is such that the acceleration period last 0.2 s, while the deceleration period
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FIGURE 3.2. Mobile base engine model.

is 0.1 seconds. These times where included as a velocity ramping in the simulated model.

These ramping periods are implemented on the machine for safety reasons and to reduce

mechanical wear-off and damages that could be caused by sudden braking.

3.2.2. Wheel torque model

The net torque of each wheel assumes the standard viscous friction force proportional

to the wheel velocity q̇i. Thus each wheel satisfies a first order equation of the form

Jiq̈i = τi − cq̇i, i = 2, 3, 4, 5 (3.1)

where Ji is the moment of inertia of the wheel, τi the torque applied to the wheel and c is

the viscous friction coefficient. The viscous friction coefficient can be obtained from (3.1)

as

c =
τi − Jiq̈i

q̇i
,

which should be valid also when the machine achieves a steady-state velocity q̇max with

steady-state torque τmax. Since in steady-state equilibrium q̈i = 0, then

c =
τmax
q̇max

.
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From the machine design specifications it is possible to obtain Pmax, which allows to cal-

culate c = Pmax

q̇2max
since τmax = Pmax

q̇max
.

3.2.3. Arm torque model

Similar to the wheels, the arm also has a viscous friction force that is proportional to

the arms velocity (q̇6) and its coefficient is calculated using (3.1) and experimental data

acquired of the falling arm. The torque applied by the arm joint controller is assumed to

follow a PID control law:

τ(q6e) = Kp · q6e +Kd ·
d

dt
q6e +Ki

∫
q6edt− cq̇6 (3.2)

where q6e = q6
r − q6 is the error between the reference position q6

r and the measured joint

position q6. The controller proportional constant was set to

Kp =

[
l6
2
m6g + l6mloadg

]
.

The chosen value for Kp is equal to the torque that should be applied by the arm at an

horizontal equilibrium position while holding a load of size mload. While the derivative

and integral constants were set to Kd = 0.5KpT, Ki = Kp

2T
, where T is the dead time,

and Ki and Kd are tuned according to the Ziegler-Nichols method. With this selection of

controller parameters, it is ensure that the controller’s response does not compromise the

stability of the arm and dampens arm oscillation that affect the vehicle’s displacement.

3.3. Simulation Flowchart

A simulation flowchartfor the SSMM model is shown in fig. 3.3. The simulation starts

with the initial conditions for the joint states (position and velocities contained in x, q and

q̇), the joint applied and dissipative torques represented by τj and the external forces as CP

forces and load force represented by Fext. The first four terms (x, q, q̇, τi) are needed to

calculate the SSMM foward dynamics and the Fext is needed to simulate the interaction

with the environment.
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Simultaneously, the user supplies the joystick setpoints (torque, right and left wheels

throttles) that results in the applied torque to each wheel and the arm joint setpoint that

provides the reference signal to the 1-DOF arm. The applied torque of the wheels and the

arm joint torque minus the viscous friction torques feedback to the system’s model. The

ground contact points are calculated and supplied to for the next iteration of the model.

x

ẋ

q

q̇

Fexti

q̇̇

Floating Base
Foward Dynamics
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τ

τ

τ
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FIGURE 3.3. Simulation flowchart.
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4. SIMULATION AND EXPERIMENTAL VALIDATION

In order to validate the SSMM model, motion experiments were conducted using the

Catr 262C skid-steer loader shown in fig. 4.1. The tests were carried out on asphalt pave-

ment with the machine being remotely operated. The tests consisted of two driving ma-

neuvers (i) straight line motion for approximately 4 m, and (ii) in-place 360◦ rotations

carried out with and without load. The load applied to the bucket corresponds to 5×80 liter

drums of water totaling 400 kg (approx.). This load is equivalent to roughly 11% of the un-

loaded machine weight and is sufficient to considerably affect the location of the loader’s

COM. The four set of experiments were repeated ten times each. The acceleration and

heading data was acquired using a high precision Crossbowr IMU and gyroscope model

RGA300CA. This device outputs linear accelerations in the X , Y and Z axes, angular

velocity ωz, roll and pitch angles φ and θ, respectively.

FIGURE 4.1. Compact skid-steer loader at the experiment site with unloaded
bucket (left) and loaded bucket (right).

In this section three main results are shown, one comparing the simulated against the

experimentally acquired data in order to evaluate the physical accuracy of the model. The

other two results correspond to the simulation of the contact points and wheels velocities.

These results are discussed in the context of theoretical background in the following sub-

sections.
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4.1. Comparison of Experimental and Simulated Results

The measurements for both straight line motion and in-place rotation show a reason-

able agreement with the simulated values. This can be confirmed from fig. 4.2, which

shows the machine position for the twice integrated acceleration measured in the straight

line motion experiment without load (blue lines) and the simulated value for the machine

longitudinal position (red line). Similarly, the in-place rotation experiment, whose results

are shown in fig. 4.3, display great consistency with the simulated turning rate of the ma-

chine. From the straight line experiments and simulation of fig. 4.2 it is also possible to

see that the both the measured and simualated velocities are consistent. In the case of the

turning speed shown in fig. 4.3, the agreement between the measured and simulated acceler-

ation and deceleration is clear. The mismatch in the final linear and angular displacements

is due to the fact that setpoints were manually issued, and there is a ±1 second difference

in triggering the stopping command.
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FIGURE 4.2. Straight line motion experimental data compared to the simulated
model with the SSMM without load.

The experiments carried out with load show that the machine’s acceleration was slightly

reduced. This can be observed in the straight line motion experiment of fig. 4.4, which
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FIGURE 4.3. On place turn motion experimental data compared to the simulated
model with the SSMM without load.

shows that the position curve has a slightly smaller slope when compared to the same

curves in fig. 4.2. Similarly, the in-place turn with the loaded bucket took about 4 seconds

more to complete the 360◦ turn, and the measured turning velocity decreased from roughly

37±2 ◦/s to 27±2 ◦/s as apparent from the comparison of figs. 4.3 and 4.5.

It is to be noted that the ripple in the simulated turning speed of the loaded and un-

loaded machine shown in figs. 4.3 and 4.5 is produced by the skidding, which is not con-

stant because the active CPs change while the machine rotates. Also minor arm oscillations

due to controller tuning induce small disturbances in the forces or the active CPs. These

results confirm the power of the spatial vector algebra modeling approach in capturing the

force interactions between bodies of the SSMM.

To quantify the error between the simulated values and the real measurements obtained

during the straight line and in-place turn experiments, the measurements were averaged to

obtain the mean error and its standard deviation. In the computation of the average trajec-

tory, the worst four experiments were discarded because of noticeable discrepancies in the
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FIGURE 4.4. Straight line motion experimental data compared to the simulated
model with the SSMM with 400 kg load.
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FIGURE 4.5. On place turn motion experimental data compared to the simulated
model with the SSMM with 400 kg load.
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trajectories length caused by the ±0.75 s reation-time errors of manually issuing the stop-

ping commands. Due to this reason, it was only after computing the position curves from

the inertial measurements that the outliers could be identified and discarded. The figs. 4.6

and 4.7 present the mean error between the simulation and the measurements (blue line)

bounded by a lower and upper curve corresponding to one-standard deviation (red line).

Fig. 4.6 shows that the accumulative error increases from 0.01 m to 0.06 m roughly after 4

seconds of motion. This result shows that the error at any given time is below 1.25% of the

total distance traveled. This accumulative error is expected because the model parameters,

such as mass and COM location, are not perfectly known and any discrepancy between

the simulated and measured acceleration is integrated in time to yield an increasing error.

On the other hand, the polygonal approximation of the wheels can cause other errors in

the traction model that affect the estimated displacement. Nonetheless, the relative error of

1-2% is reasonable considering that an IMU was employed to estimate the motion. This re-

sult provides significant evidence that the simulated instantaneous accelerations and forces

are very close to the correct ones, since after four seconds of motion the standard deviation

is less than σ = ±0.03 m for a 4 m long trajectory. Considering n = 9 valid experiments,

the 95% confidence interval after four seconds is ±1.96σ/
√
n = 0.02 m, which in relative

terms with respect to the mean value µ = 4 m corresponds to a small confidence interval

of ±0.5%.

Regarding the average error between the simulation and the measurments for the in-

place turn experiment, the results in fig. 4.7 show that the error is smaller than a 2-3◦,

with a significantly noisier curve because of the angular velocity measurement noise of the

gyroscope as can be seen in the experiments shown in fig. 4.3. In this case it is possible to

see that the mean error is approximately −2 /s and stays bounded unlike the longitudinal

motion measurements. This is because the angular velocity measurment is not computed

by integrating accelerations like in the case of the longitudinal motion experiments. The

mean error between the simulated and measured angular velocities is approximately 6 %

of the theoretical value. However, the error oscillates and the final angular value of the

simulated turn fits well with the experimental observations as shown in fig. 4.3.
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FIGURE 4.6. Error between the simulation and the mean value of the experiments
for straight line motion.
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FIGURE 4.7. Error between the simulation and the mean value of the experiments
for turn on place motion.
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4.2. Contact Points Simulation Results

The simulation results for the normal forces acting on each of the active contact points

of the n-sided polygonal approximation to the wheels of the SSMM are presented in fig. 4.8,

which shows how each point becomes gradually active as the wheel turns and sinks in the

compliant terrain surface when the machine is translating and turning along and arc of a

circle. The curves in fig. 4.8 correspond to a segment of the graph of the normal forces

acting on the contact points of the right-front wheel of the SSMM that is presented in

fig. 4.9. It is possible to observe in fig. 4.9 that the envelope curve of the contact point

forces has a maximum value which is different for the left/right and front/rear wheels. This

is because the centrifugal acceleration forces of the turning SSMM causes a roll moment

about its longitudinal axis x1 that makes the SSMM lean towards the outside of the turn,

thus increasing the pressure on the external wheels. In the simulation, the SSMM was made

to turn to the left, i.e. counter-clockwise about the z1 axis, therefore, the right-side wheels

are subject to larger normal forces than the left wheels. Also due to the weight distribution

of the SSMM, in which the COM is closer to the rear wheels, the rear wheels have a normal

force that is almost twice the normal force of the front wheels.
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FIGURE 4.8. Evolution of the normal forces acting on the contact points of the
rotating right-front wheel.
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FIGURE 4.9. Evolution of the normal forces acting on the contact points of the
wheels of the SSMM turning left.

If all the normal forces acting on the active contact points of each of the four wheels

are added together, the curves for the total computed normal force shown in fig. 4.10 are

obtained. These curves show the total resulting normal force when the wheels are approxi-

mated by n-sided polygons with n = 32, 64, 128. It is possible to see that with more contact

points, the normal force oscillates less as the contact between the wheels and the terrain

is produced in a more continuous way. Nonetheless, regardless of the number of contact

points and the amplitude of the oscillations, the average total normal force is 35429.1 N.

This number is consistent with the total weight Wtot = mtot · g = 35451.4 N computed

using the total mass mtot = mbody + marm + 4mwheel = 3613.8 kg and the gravity ac-

celeration constant g = 9.81 m/s2. This confirms the validity of the contact point model

as it provides a reasonable description of the ground-wheel interaction forces. The error
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between the theoretical normal force and the one obtained from the simulations is less than

0.3% for n = 32, and less than 0.1% for n = 128.
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FIGURE 4.10. Total normal force on the SSMM computed from the sum of the
normal forces acting on all the active contact points of each of the four wheels.

To understand better the results presented in fig. 4.10, the fast Fourier transform (FFT)

was calculated for the normal forces arising for each of the polygonal approximations to

the wheel. The frequency spectrum amplitude obtained is shown in fig. 4.11. Considering

that for a given linear longitudinal velocity v, a wheel of radius r with p CPs will have a CP

bumping frequency given by (vp) / (2πr), then for the simulated SSMM, if v is approxi-

mately 1 m/s and r = 0.45 m, the bumping frequencies can be calculated to be 11.32 Hz,

22.64 Hz, and 45.28 Hz, for n = 32, 64, 128, respectively. As expected, the peak ampli-

tudes of the FFT occur at frequencies 11.7 Hz, 23.4 Hz and 46.8 Hz, once again confirming

the accuracy of the simulation. It is also possible to see in the FFT plot of fig. 4.11 that

in all simulations there is a response with an oscillation frequency of 3 Hz. This low fre-

quency oscillation is produced by the arm controller, which cannot filter the disturbances

propagated from the wheels to the base up to the arm. This coupling between the arm and

the base is propagated back to the wheels which experiment a variation in the normal forces

due to the vibrations of the arm.
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4.3. Skid-Steer Base Model Validation

The relationship between the longitudingal and lateral velocities of the wheels’ centers

with respect to the COM’s velocity expressed in coordinates of the floating base frame F1

were computed from the numerical simulation results and checked for consistency with

respect to the expected behaviour described by (2.24) and (2.25) for the case the vehicle

is turning along a semi-circle trajectory. The mobile base starts its motion from an initial

rest position according to a trapezoidal velocity profile applied to the wheels in which the

left-side wheels have a higher velocity reference set-point than those on the right to make

the machine turn right.

According to (2.24), the longitudinal velocity of the wheels on a give side (right or

left) must be the same. This is indeed the case as shown in the curves of fig. 4.12. It is also

possible to notice that for the SSMM turning to the right from an initial rest position, the

interior wheels to the curve, i.e. those on the right side, initially have a negative velocity

as they skid due to the large torque applied on the left-side wheels. Once the torque on the

right-side wheels is increased, these wheels gain traction and start rolling. Due to the initial

difference between the velocities of the left-side and right-side, with ω1 � v1, the SSMM

turns almost in-place and the right wheels briefly move backwards as observed in the real

machine.

On the other hand, according to (2.25), the lateral velocity of the front wheels must

be the same, and likewise, the lateral velocity of the rear wheels must be equal to each

other. This is verified in the simulation results for the wheels’ lateral velocities presented

in fig. 4.13. Since the COM is closer to the rear axle than to the front axle, the lateral

velocity of the rear-wheels is significantly smaller than the lateral velocity of the front

wheels.

Even though this results may seem trivial because the wheels in the real skid-steer

loader are rigidly attached to the mobile base and cannot separate from it, the results con-

firm that the model built using spatial vector algebra approach is consistent with the theo-

retical kinematic constraints stated in (2.24) and (2.25).
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FIGURE 4.12. Longitudinal velocities of wheels.
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FIGURE 4.13. Lateral velocities of the wheels.
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4.4. Base-Arm Interaction

The propagation of the forces acting on the base due to the wheel-ground interaction,

more specifically the normal and tangential reaction forces at the contact points, produces

disturbances on the SSMM’s arm whose position is held close to a fixed reference value

using a PID controller as explained in section 3.2.3. The closed-loop response of the arm

when the base is commanded to move according to a trapezoidal velocity profile is shown

in fig. 4.14. It is possible to observe that the arm initially goes down from a starting po-

sition of -14◦ to -14.5◦ when the base is accelerated until the speed of the base levels to

a value of almost 1 m/s. The opposite effect occurs on the arm when the base deceler-

ates as may be seen in the third graph of fig. 4.14. The transient perturbations occurring

during acceleration and deceleration of the base are more notorious in the fourth graph of

fig. 4.14, which shows the angular velocity. of the arm joint. It is also possible to observe

that there is a permanent oscillation in the arm velocity which is caused by the periodicity

of the normal forces acting on the contact points that become active as the wheels rotate.

Considering that the mobile base is translating at a velocity of vx = 1 m/s, the angular ve-

locity of the wheels is ω = vx/(2πr) = 1/(2π0.45) = 0.35 revolutions per second. Thus it

takes the wheel 1/0.35=2.83 seconds to complete one turn, and since the wheel has 32 con-

tact points, the contact interaction period is approximately 2.83/32=0.088 seconds. This

contact interaction period is precisely the period of the oscillations that can be observed

in fig. 4.14 during the time lapse at which the mobile base moves with constant velocity

roughly between seconds 2 and 4. This behaviour can also be observed in the controller’s

response curve which applies a torque that attempts to compensate the arm position. It is

also possible to confirm that the controller applies a torque which has an average value of

16.14 kNm, consistent with the theoretically expected torque which for a 3.3 m long arm

that has a mass of 1034 kg and is held at -14.5◦ angle with respect to the horizon should ap-

proximately be (3.3/2) cos(−14.5π/180) · 1034 · 9.81 ≈ 16.16 kNm in steady-state. These

allows us to conclude that the spatial vector algebra modeling approach provides physically

accurate results and allows to take into account the arm and base interactions. This feature

66



is very useful for the desing of controllers that could effectively reduce the disturbances

produced by rough terrains on the arm.
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FIGURE 4.14. Closed-loop response of the SSMM’s arm when the mobile base
follows a trapezoidal velocity profile.
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5. A MAPLE PACKAGE FOR SPATIAL VECTOR ALGEBRA SYMBOLIC COM-

PUTATIONS

An additional contribution of this research is the implementation of a Mapler pack-

age for spatial vector algebra computations and modeling of the motion dynamics equatios

of multybody systems. This software tool was employed to check the derivation of the

equations of motion for the SSMM that were presented in chapter 2. This software pack-

age for the symbolic manipulation and computation of spatial vector algebra expressions

could also be useful to understand and learn how to work with spatial vector algebra. The

complete code for this software tool is presented in the appendix A.2 and can be obtained

from the website (SSMM Model Files, Experimental Data, Simulation Videos and Spatial

Vector Algebra Library, 2014). A summary of the main functions of the software library

for symbolic spatial vector algebra computations is presented in table 5.1 below.

An example showing how the developed software library for symbolic spatial vector

algebra computations can be employed to obtain the model equations that were derived

in 2 for the SSMM are presented next. For the sake of clarity, the example is divided into

five sections: “Floating base model variables and parameters”, “Basic body velocities”,

“External forces”, “Inertial and force reactions” and “Body accelerations”. The first section

defines the model parameters, and is the main section that has to be updated or modified by

the user to describe a different robot. In the example, the first section defines a floating base

with 1-DOF manipulator. The remaining sections are rather general and can be executed

to derive the forward dynamics equations of any system using Featherstone’s Articulated

Body Alogrithm provided the user has adequately described system in the first section

and that the number of parameters does not exceed the amount of data/memory Mapler

can handle. The variable Xup [i] is employed in the example code to define the motion

transformation between the the parent body λ(i) of body i, i.e. Xup [i] represents the motion

transform iXλ(i) presented in table 2.5 of chapter 2.
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TABLE 5.1. Maple implemented library.

Function Inputs Description

crm x ∈ R6 Returns the cross-product operator for spatial
motion vectors x.

crf x ∈ R6 Returns the spatial cross-product operator for
spatial forces x.

rq x ∈ R4 Converts quaternions x to 3x3 rotation matri-
ces.

skew x ∈ R3 Calculates the 3x3 skew-symmetric cross-
product matrix for vector x.

plux x ∈ R3x3, y ∈ R3

Returns the Plücker coordinate transformation
corresponding to a rotation matrix x and a trans-
lation y. If the motion transformation from
frame A to B is parameterized by a rotation
matrix BEA and a translation BrA, this func-
tion returns BXA. To make the code more com-
pact, the notation Xup [i] is employed to define
the motion transformation between the the par-
ent body λ(i) of body i, i.e. Xup [i] represents
iXλ(i).

rotx
θ ∈ R

Returns the spatial rotation matrix
corresponding to a rotation θ radians about the
x, y or z axis.

roty
rotz

xtl x ∈ R3 Returns the spatial translation matrix from A to
B by a 3D vector x.

mcI m ∈ R, c ∈ R3, I ∈ R3,3
Returns the rigid body inertia computed in
terms of the body mass m, the center of mass
c, and the 3D inertia matrix I .
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

Direct Dynamics Algorithm
This file implements the algorithm for spatial vector algebra for direct dynamics presented in the book 
"Rigid Body Dynamics Algorithms" by Roy Featherstone.
The code implemented below corresponds to the Articulated Body Algorithm presented in Ch. 7, p. 
132, table 7.1, applied to the Skid-Steer Mobile Manipulator with 1-DOF arm.  The code can be 
modified and extended to implement the model of any other robot provided that the user has adequately
defined the model parameters and that the number of parameters does not exceed the amount of 
data/memory that Maple can handle. 

Remarks:
- The model presented below employs some simplifying assumptions like diagonal body inertia 
matrices and an arm location centered in the base in order to minimize the parameters required for the 
symbolic computations.
- The ABA algorithm for forward dynamics applied to the SSMM with 1-DOF arm has been writen in a
general way.  If additional DOFs for the arm or wheels are needed, the code only requires the addition 
of some extra parameters in the  section "Floating base model variable and parameters".
- In order to properly execute the code, the "libname" variable containing the path to the library 
directory has to be updated.
- Any question concerning the algorithm implementation or further results may be sent to sfaguile@uc.
cl.

restart;

libnamed "C:/Users/Sergio Aguilera/Dropbox/Magister/MapleFuctions/lib", libname :
 with LibrarySVA ;
with LinearAlgebra :

This file models a floating base with a 1-DOF manipulator attached to it. 

Floating base model variable and parameters
First, the local variables are declared. Because of the the base is a 6-DOF floating base, six bodies 
connected by 1-DOF joints are employed to account for the 6-DOF.  Following Roy Featherstone's 
approach, the six bodies with 1-DOF joints are combined together and their properties are stored in 
element 6 of the parameter vectors, while the manipulator is labeled as body  7.

xfb d p 0 , p 1 , p 2 , p 3 , p x , p y , p z , ω x , ω y , ω z , v x , v y , v z :
 

# xfb: is the state of the floating base in the global frame coordinates described by the 
orientation quaternion, its global position and spatial global velocity.

vecqd q 7 : 
 # q[1] is the joint position of the arm. For a rotary joint, it represent the rotation angle.
vecqdd qd 7 :
# qd[1] is the joint velocity.

vecτ d τ 7 :
# τ 7  : is the applied torque to the manipulator joint.
vecm d m 6 , m 7 :
# m[6] and m[7] are the mass of the floating base and the manipulator, respectively.

CoM 6 d 0, 0, 0 : CoM 7 d 
l 7

2
, 0, 0 :

#CoM is the center of mass location in the body frame coordinates.
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

Icm 6 d MatrixScalarMultiply Matrix Ixx 6 , Iyy 6 , Izz 6 , shape = diagonal , 1 :
Icm 7 d MatrixScalarMultiply Matrix 0, Iyy 7 , 0 , shape = diagonal , 1 :
 #Icm is the 3D inertia of the body in body coordinates about its center of mass.
for i from 6 by 1 to 7 do
 In i  d mcI vecm iK5 , CoM i , Icm i :
 end do:
#In[i] is the spatial inertia of the body i in body frame coordinates.
#xtree 7 d xlt a71, a72, a73 :

xtree 7 d xlt 0, 0, 0 :
 #xtree is the translation matrix from body frame 6 to body frame 7.

λd 0, 0, 0, 0, 0, 0, 6 :
 #The i-the element of the lambda vector stores the index of the parent body of body i.
qn d xfb 1 .. 4 :
#qn is the orientation quaternion of the floating base.
r d xfb 5 ..7 :
#r is the global position of the floating base.
vffd xfb 8 ..13 :
#vff is the velocity of the floating base in the global frame.
E d simplify rq qn :
 #E is the rotation matrix between the world frame and the floating base frame.
Xup 6 d convert plux E, r , Matrix :
 #Xup[6] is the transformation matrix from the global frame to the floating base frame. It 
depends on the orientation of the floating base and its location.

Fext 6 d τ6extx, τ6exty, τ6extz, f6extx, f6exty, f6extz : Fext 7 d τ7extx, τ7exty, τ7extz,
f7extx, f7exty, f7extz :

#Fext 6 d 0, 0, 0, 0, 0, 0 : Fext 7 d 0, 0, 0, 0, 0, 0 : 
#Fext are the spatial forces corresponding to the external spatial forces.
NB d 7 :
#NB is the number of bodies (the 6-DOF floating base counts as 6 bodies and the 1-DOF 
manipulator counts as 1 body).

Basic body velocities
The direct dynamics algorithm takes as input the velocities of the system and the forces in the global 
frame. But for floating bases it is easier to work with velocities expressed in the floating base frame. 
Because of this, the velocity v[6] of the floating base expressed in the coordinates of the floating base
frame is calculated from vff , but replaced by a vector of parameters that will be employed along the 
whole code.

v 6  d simplify MatrixVectorMultiply Xup 6 , vff :
#Floating base velocity in the coordinate frame of the floating base.
v 6 d P, Q, R, U, V, W :
# A substitution is made to simplify the equations and mathematical procedures.
pA 6 d MatrixVectorMultiply MatrixMatrixMultiply convert crf v 6 , Matrix , In 6 ,

v 6 :
#Coriolis and centrifugal forces due to the cross product between the velocity of the body and 
the inertia transformed velocity.
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> > 

> > 

> > 

> > 

> > 

When the base velocities are calculated, the velocity of the base is propagated to the children, 
expressing the velocity in the coordinate frame of the children bodies and added to their joint 
velocity.
- v[i] is the velocity of the body i
- c[i] is the centrifugal force and Coriolis effects due to cross product between the joint velocity and 
the floating base velocity.
- pA[i] is the force of the body i, due to the velocity of body i and the inertia of the body.

for i from 7 by 1 to NB do 
XJ d  roty vecq iK6 :
 S i  d 0, 1, 0, 0, 0, 0 :
 vJ d vecqd iK6 $S i :
 Xup i  d MatrixMatrixMultiply XJ,  xtree i ;
 v i d MatrixVectorMultiply Xup i , v λ i CvJ;
 c i d MatrixVectorMultiply crm v i , vJ ;
 pA i  d MatrixVectorMultiply MatrixMatrixMultiply convert crf v i , Matrix , In i ,

v i ;
 end do:

v 7 : c 7 : pA 7 :

External forces
Once the forces due to the velocity of the bodies have been calculated, the external forces are added. 
The external forces are usually expressed in the global frame and have to be transform to the body 
frame.

-Xa is the transformation matrix from the global frame to the body i.

Xa 6  d simplify Xup 6 :

for i from 7 by 1 to NB do
 Xa i  d simplify MatrixMatrixMultiply Xup i , Xa λ i :
 end do:
for i from 6 by 1 to NB do
 #pA i  d pA i K MatrixVectorMultiply MatrixInverse Transpose Xa i , Fext i ;
 pA i  d pA i K Fext i ;
end do:

Inertial and force reactions
Once each body forces are calculated in their own frame, these forces are propagated to their parents. 
In addition to the force, also the apparent inertia of the children is propagated back to the parent and 
added to the parent's own inertia.

- Ia is the apparent inertia transmited from i to lambda[i].
- pa is the force transmited from i to lambda[i].
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> > 

> > 

> > for i from NB by K1 to 7 do
 UU i  d MatrixVectorMultiply In i , S i ;
 d i  d Multiply Transpose S i , UU i ;
 u i  d vecτ iK6 KMultiply Transpose S i , pA i ;
 

 Ia d In i KMultiply
UU i
d i

, Transpose UU i ;

 pa d pA i  C MatrixVectorMultiply Ia, c i C
UU i $u i

d i
;

 
 In λ i  d In λ i CMatrixMatrixMultiply MatrixMatrixMultiply Transpose Xup i ,

Ia , Xup i ;
pA λ i d pA λ i  CMatrixVectorMultiply Transpose Xup i , pa ;  
 
 end do:

Body accelerations
The last iteration of the algorithm calculates the accelerations of each body.
First, the acceleration of the floating base a[6] is calculated as the inverse of the updated inertia of the
base postmultipled by the total applied force.
Similarly to velocities, body accelerations are propagated from each parent to its children.
Finally, the acceleration of the children is calculated addint the acceleration of the parent and the 
bodies own acceleration.

a 6  d simplify MatrixVectorMultiply KMatrixInverse In 6 , pA 6 :

for i from 7 by 1 to NB do
 a i d MatrixVectorMultiply Xup i , a λ i Cc i ;

 qdd iK6 d 
u i KMultiply Transpose UU i , a i

d i
;

 a i d a i  C S i $qdd iK6 ;
 end do:

The accelerations of each body in its own frame can be easily transformed into an acceleration expressed
in the global frame using the inverse of the transformation matrix Xa[i].
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6. CONCLUSION AND FUTURE RESEARCH

6.1. Review of the Results and General Remarks

The forward dynamics equations for a generic skid-steer mobile manipulator consider-

ing the base as a 6-DOF floating base with non-permanent ground contacts was developed

using the spatial vector algebra and the Articulated Body Algorithm. Unlike the existing

models for mobile manipulators, the model developed provides explicit expressions for the

arm-vehicle and the wheel-ground interactions. Due to the growing number of parameters

when the arm includes several links, the model in this work is developed for an arm with

only one degree-of-feedom. However, the approach can be extended to arms with several

degrees-of-freedom, or mobile bases with more than one arm or wheels. The limitations to

the symbolic modeling are in the number of parameters that can reasonably be dealt with

in calculations by hand, or using a computer algebra system for symbolic manipulation of

mathematical expressions.

Another contribution of this work is the development of a software library for sym-

bolic spatial algebra computations in Mapler. This library can be employed to derive the

dynamic model of traditional robot arms, mobile robot bases, an other multi-body systems

whose topology may corresponds to a kinematic trees.

To validate the dynamic model of the SSMM, the model the simulation results were

compared to measurements acquired from the inertial sensors installed on board of a Catr 262C

compact skid-steer loader. The accuracy between the model and the experimental data re-

assures the usefulness of the spatial vector formulation and the model built enriches the

set of examples included with the Spatial Toolbox. Both the model and experimental data

collected during the field tests have been made publicly available at (SSMM Model Files,

Experimental Data, Simulation Videos and Spatial Vector Algebra Library, 2014) for the

robotics community interested in studying the dynamics, motion control and mechanical

design of SSMMs, among other related topics. Even though the model equations and the

modeling approach has been validated for a specific machine, it should be easily adaptable
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to other machines given the generality of the approach and provided that the paramters

in tables 2.5 and 3.1 are adequately set. In addition to providing a dynamic model for a

compact skid-steer loader that can be employed to develop control strategies and trajectory

tracking controllers that optimize the machine performance under terrain disturbances, this

work shows that the spatial vector algebra formulation allows to obtain a unified model

that takes into account the vehicle-terrain and arm-vehicle interaction in a single set of

equations. This is difficult to do with traditional Newton-Euler o Lagrange methodologies

without introducing problem specific terrain constraints that are more difficult to generalize

to different mechanical systems or environments.

The work presented also improves the standard planar wheel-terrain contact model on a

flat terrain and extends it so that the new model considers also the tangential wheel-ground

traction and lateral skidding reaction forces arising under the assumption of a compliant

deformable terrain. Furthermore, the terrain can be modeled as a piecewise continuous

concatenation of planes.

6.2. Ongoing Research Topics

The motion dynamics equations derived for the SSMM are being employed in the

design and development of motion controllers that can compensate or attenuate the dis-

turbances propagated across the base to the arm due to terrain unevenness. Ongoing re-

search efforts are also concerned with the development of state observers to estimate wheel

slippage and identify changes in terrain type, which in turn are necessary to compute the

optimal application of torque to a robot’s wheels in order to reduce slippage. Another

goal of our current research is to improve the capabilities of the developed software pack-

age for symbolic spatial algebra computations, in particular, the efforts are focused on the

implementation of algorithms to model more complex closed-loop kinematic trees. The

development of physically accurate models for automonous mobile manipulators is essen-

tial in the future development of autonomous robots, especially of load-haud and dump

machines for the mining industry and crops and harvest handling robots.
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a1ext =



−
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n1ext x Izz 1 Iyy1 − n1ext x Iyz 1

2 − n1ext y Ixy1 Izz 1 + n1ext y Iyz 1 Ixz 1 − n1ext z Ixz 1 Iyy1 + n1ext z Ixy1 Iyz 1
]

∆−1
I[

n1ext x Ixy1 Izz 1 − n1ext x Iyz 1 Ixz 1 − n1ext y Izz 1 Ixx 1 + n1ext y Ixz 1
2 + n1ext z Iyz 1 Ixx 1 − n1ext z Ixy1 Ixz 1

]
∆−1
I

−
[
−n1ext x Ixz 1 Iyy1 + n1ext x Ixy1 Iyz 1 − n1ext y Iyz 1 Ixx 1 + n1ext y Ixy1 Ixz 1 + n1ext z Iyy1 Ixx 1 − n1ext z Ixy1

2
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∆−1
I

−f1ext xm−1
1

−f1ext ym−1
1

−f1ext zm−1
1


(A.2)

∆I = det(I) = Izz 1 Ixx 1 Iyy1 − Izz 1 Ixy1
2 − Ixz 1

2Iyy1 − Iyz 1
2Ixx 1 + 2 Iyz 1 Ixy1 Ixz 1 (A.3)
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A.2. Spatial Vector Algebra Library

OOOO OOOO 

OOOO OOOO 

Spatial Vector Algebra Library
restart :

 # ------------------------------------------------------------
 # Simple Package
 # Sergio Aguilera Marinovic c  07. AUG.2014
 # Previous version: 20.JUN.2014, 27. APR.2014
 # Last Updated: 07.AUG.2014
 # ------------------------------------------------------------
 Libreria1 dmodule
 export crm, crf, rq, plux, roty, rotx, rotz, mcI, skew, xlt;
 local startup, shutdown;
 option package, load = startup, unload = shutdown,

 `Copyright (c) 07.VIII.2014 Sergio Aguilera Marinovic ;̀
 startup dproc
    with LinearAlgebra :
    printf "Startup procedure of SimplePack load the package 'LinearAlgebra'\n" ;

 end proc:
 shutdown dproc
    printf "Shutdown procedure of SimplePack does nothing!\n" ;
 end proc:
 
 

# The funtion "crm" describes the special cross product for motion, defined and used by the
spatial vector algebra. 

 crm dproc x
     0, x 3 ,Kx 2 , 0, x 6 ,Kx 5 Kx 3 , 0, x 1 ,Kx 6 , 0, x 4 x 2 ,Kx 1 , 0, x 5 ,

Kx 4 , 0 0, 0, 0, 0, x 3 ,Kx 2 0, 0, 0,Kx 3 , 0, x 1 0, 0, 0, x 2 ,Kx 1 , 0 ;
 end proc:
  
 

# The funtion "crf" describes the special cross product for force, defined and used by the 
spatial vector algebra.

 crf dproc x
    local a;
    a d crm x ;
    evalm Ktranspose a ;
 end proc:
 
 # The funtion "rq" transform the quaternion into a 3x3 rotation matrix.
 rq dproc x
    local q0s, q1s, q2s, q3s, q01, q02, q03, q12, q13, q23, a, q, nq;

    #qd 
x

VectorNorm x, 2, conjugate = false
: 

    #The vector q must be normalize, but we assume that it comes normalize.
    q d x;
    q0s d q 1 * q 1 ;
    q1s d q 2 * q 2 ;
    q2s d q 3 * q 3 ;
    q3s d q 4 * q 4 ;
    q01 d q 1 * q 2 ;
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    q02 d q 1 * q 3 ;
    q03 d q 1 * q 4 ;
    q12 d q 2 * q 3 ;
    q13 d q 4 * q 2 ;
    q23 d q 3 * q 4 ;
    a d 2$ q0sC2$ q1sK1, 2$ q12 K2$ q03, 2$ q13 C2$ q02  2$q12 C2$ q03, 2$ q0s

C2$q2sK1, 2$q23 K2$ q01 2$q13 K2$ q02, 2$ q23 C 2$q01, 2$ q0sC2$q3sK1 ; 
 end proc:
 
  #The funtion "skew" is the skew simetric matrix, defined by the given global location "i2".
 skew d proc i2  
 0, i2 3 ,Ki2 2 Ki2 3 , 0, i2 1 i2 2 ,Ki2 1 , 0 ; 
 end proc:
  
 

# The funtion "plux" compose the Plucker transformation with the given rotation matrix 
"i1" and the global posicion "i2".

 plux dproc i1, i2
 local a, b;
 b d skew i2 ;
 a d MatrixMatrixMultiply Ki1 , b  ;

i1 0, 0, 0 0, 0, 0 0, 0, 0 , a i1 ;
 end proc:
 
 

# The funtion "rotx" assemble the spatial rotation matrix along the x-axis with the given 
angle "θ".

rotx dproc θ  

 1, 0, 0, 0, 0, 0 0, cos θ ,Ksin θ , 0, 0, 0 0, sin θ , cos θ , 0, 0, 0 0, 0, 0, 1, 0, 0

0, 0, 0, 0, cos θ ,Ksin θ 0, 0, 0, 0, sin θ , cos θ ;

 end proc: 
 

 
# The funtion "roty" assemble the spatial rotation matrix along the y-axis with the given 
angle "θ".

roty dproc θ  

 cos θ , 0, sin θ , 0, 0, 0 0, 1, 0, 0, 0, 0 Ksin θ , 0, cos θ , 0, 0, 0 0, 0, 0, cos θ ,

0, sin θ 0, 0, 0, 0, 1, 0 0, 0, 0,Ksin θ , 0, cos θ ;

 end proc:
  
 

# The funtion "rotz" assemble the spatial rotation matrix along the z-axis with the given 
angle "θ".

rotz dproc θ  

 cos θ ,Ksin θ , 0, 0, 0, 0 sin θ , cos θ , 0, 0, 0, 0 0, 0, 1, 0, 0, 0 0, 0, 0, cos θ ,

Ksin θ , 0 0, 0, 0, sin θ , cos θ , 0 0, 0, 0, 0, 0, 1 ;

 end proc:  
 
# The funtion "mcI" assemble the rigid body inertia matrix by the given mass "m", the center of 

mass "c" and 3x3 inertia matrix "I1"
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mcIdproc m, c, I1
 local C, Caux, Iaux;
   C d skew c ;
   Caux d Transpose C ;
   Iaux d MatrixScalarMultiply MatrixMatrixMultiply C, Caux , m ;
 MatrixAdd I1, Iaux , MatrixScalarMultiply Caux, m MatrixScalarMultiply C, m ,

MatrixScalarMultiply Matrix 3, shape = identity , m
 end proc:
 
# The funtion "xlt" assemble calculates the transform matrix from the frame A to B for spatial 

motion vectors, where "r" is the distance between the frames
xltd proc r
  1, 0, 0, 0,Kr 3 , r 2 0, 1, 0, r 3 , 0,Kr 1 0, 0, 1,Kr 2 , r 1 , 0 0, 0, 0, 1, 0, 0 0,

0, 0, 0, 1, 0 0, 0, 0, 0, 0, 1

 end proc 

 end module:
 

# Create/save the package.

libnamed "C:/Users/Sergio Aguilera/Dropbox/Magister/MapleFuctions/lib", libname :

march 'create', libname 1 , 100 :

savelib 'Libreria1' :

# saves to the first path in libname unless savelibname is 

defined 
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A.3. SSMM Matlab model

1 % Skid-Steer Mobile Manipulator Model and Simulation Using the

2 % Spatial Toolbox for Rigid Body Dynamics

3 %

4 % Copyright (c) 2014.02.01

5 % Sergio Aguilera-Marinovic (sfaguile@uc.cl)

6 % Miguel Torres-Torriti (mtorrest@ing.puc.cl)

7 % Robotics and Automation Laboratory

8 % Pontificia Universidad Catolica de Chile

9 % http://ral.ing.puc.cl/ssmm.htm

10 %

11 % Version 2.0 - 2014.08.07

12 %

13 % Description

14 % This Matlab script shows how to build the model for an SSMM using

the

15 % Spatial Toolbox for rigid body dynamics modeling developed by Roy

16 % Featherstone available at http://royfeatherstone.org.

17 %

18 % The model considers a floating base with four wheels and a

simplfied

19 % 1-DOF arm. It is possible to easily add more degrees of freedom to

the

20 % arm by copying the data structure for the 1-DOF arm and updating

the

21 % parent link data where appropriate. The reason of implementing 1-

DOF is

22 % to keep the code as simple and illustrative as possible, but more

23 % important, to replicate the dynamics of a Caterpillar CAT262C skid-

steer

24 % compact loader.

25 %
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26 % The model simulation results have been compared with IMU

measuremnts

27 % obtained from experiments with a real CAT262C machine. The data

from

28 % the experiments is available at http://ral.ing.puc.cl/ssmm.htm.

29 %

30 %

31 % Instructions

32 % 1. Prerequisites in addition to a standard installation of Matlab

and

33 % Simulink is two download and setup the Spatial Toolbox version 2 by

34 % Roy Featherstone available at http://royfeatherstone.org.

35 %

36 % 2. Initialize the Spatial Toolbox with the command 'startup.m',

which

37 % adds its installation path to Matlab's environment list of paths.

38 %

39 % 3. Change the directory to the location of the SSMM script files

40 % (this model and simulation files).

41 %

42 % 4. Run the SSMM_model.m file, it will create and store the SSMM

model

43 % in variable 'model'. At the end of these code, few examples are

44 % presented

45 %

46 % 6. Run the Simulink simulation file SSMM_sim.slx. The output of the

47 % simulation is stored in the variable xout, which is a 23x1xN

48 % array structure. To reduce the singleton dimension you may execute

49 % res = squeeze(xout), which will store the results in variable res

50 % 23xN array.

51 %

52 % The 23 model state variables are the following:

53 % 1. The floating base varaibles:

54 %
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55 % x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13]';

56 % |_________| |______| |_______| |_________|

57 % | | | |->Linear Velocity in

58 % | | | F1 Coordinates

59 % | | |

60 % | | |->Angular Velocity in

61 % | | F1 Coordinates

62 % | |

63 % | |->Position relative to F_0

64 % |

65 % |->Orientation Quaternion

66 %

67 % 2. The 1-DOF joint positions:

68 %

69 % q = [q1 q2 q3 q4 q5]'

70 % |________| |

71 % | |->Arm joint position

72 % |

73 % |->Wheel joint positions

74 %

75 % 3. The 1-DOF joint velocities:

76 %

77 % qd = [qd1 qd2 qd3 qd4 qd5]'

78 % |_____________| |

79 % | |->Arm joint velocity

80 % |

81 % |->Wheel joint velocities

82 %

83 % The full state vector with results of the simulation is stored in

84 % the variable xout and contains the previous vectors, as follows:

85 %

86 % xout = [x q qd]'

87 %

88 % 7. At the end of the simulation you may execute:
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89 % res = squeeze(xout)

90 % plot(tout,res(11,:)) % plots the longitudinal velocity of the

mobile

91 % % base

92 % plot(tout,res(5,:)) % plots the longitudinal displacement of the

93 % % mobile base

94 % plot(tout,res(18,:)) % plots the arm position

95 %

96 % The following command renders a 3D representation of the

97 % model and its motion using showmotion provided with the Spatial

98 % Toolbox:

99 %

100 % showmotion(model,tout,[fbanim(xout);squeeze(xout(14:18,:,:))])

101 %

102

103 % ============================ SSMM Model

============================

104

105 % The model script stars here...

106 %

107 clear all; clc; % Clear the workspace and erase the command window.

108

109 %--------------------- Reference Frame F0 ----------------------

110 % Draw the reference frame F_0 axes X_0, Y_0 and Z_0 using the "

appearance"

111 % attribute to provide a visual reference in space

112 model.appearance.base = ...

113 { 'colour', [0.9 0 0], 'line', [0 0 0; 2 0 0], ...

114 'colour', [0 0.9 0], 'line', [0 0 0; 0 2 0], ...

115 'colour', [0 0.3 0.9], 'line', [0 0 0; 0 0 2] };

116

117

118 %--------------------- SSMM Model ----------------------

119 %
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120 % Store all model parameters in a variable called "model".

121 % model.NB: is the number of bodies in the model.

122 % Variable model.NB is initialized in zero and incremented whenever a

new

123 % body is added to the model... This allows to easily expand any

model!

124 model.NB = 0;

125

126

127 %---------------------Floating Base----------------------

128 %

129 % To create a floting base, a body (with frame F1) is added and "

connected"

130 % to the reference frame F0 by any 1-DOF joint (e.g. rotary or

prismatic),

131 % which will be later replaced by a full 6-DOF joint using the

function

132 % floatbase. The 1-DOF joint is simply a temporary placeholder for

the

133 % 6-DOF joint.

134 i=1; % This is the first body, and it's index is one.

135 model.NB=model.NB+1; % model.NB is updated with the new body.

136

137 model.jtype{i} = 'R'; % Any type of joint may be selected

138

139 model.parent(i) = 0 ; % The floating base parent is the fixed frame,

140 % i.e. \lambda(1) = 0

141

142 % The initial link-to-link transform from F_0 to F_1 is the identity,

143 % because at the initial state both frames are align.

144 model.Xtree{i} = xlt([0 0 0]);

145

146 mass(i) = 2389; % The mass of the CAT 262C is for about 1150 kg

147
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148 % For modeling simplicity, the center of mass (COM) of the base is

defined

149 % at the origin of frame F1.

150 CoM(i,:) = [0 0 0];

151

152 % The rotational inertia for the SSMM is approximated to the

rotational

153 % inertia of a cube of size [3 1.6 1.2] with uniform density and

total mass

154 % equal to mass(i).

155 Icm(i:i+2,:) = mass(i)*[1.6ˆ2+1.2ˆ2 0 0;...

156 0 3ˆ2+1.2ˆ2 0;...

157 0 0 3ˆ2+1.6ˆ2]/12;

158

159 % The mass, COM and Icm are employed to build the rigid-body's

spatial

160 % inertia, which is stored in the model parameter "model.I{1}".

161 model.I{i} = mcI(mass(i), CoM(i,:), Icm(i:i+2,:));

162

163 % Define the floating base appearance to display/visualize the

simulation

164 % results.

165 model.appearance.body{1} = {'colour', [250 137 45]/255, 'box', [-1.2

-0.8 -0.6; 1.8 0.8 0]...

166 'colour', [250 137 45]/255, 'box', [-1.2 -0.8 0;

-0.3 0.8 0.6]...

167 'colour', [0.5 0.5 0.5], 'box', [ 0 -0.7 0; 1.7

0.7 0.85] };

168

169

170 %--------------------- Wheels ----------------------

171 % Wheels are the bodies 2, 3, 4 and 5.

172 for i = 2:5

173 model.NB=model.NB+1; % Update the body number for each wheel
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174

175 % Wheels are modeled as rotary joints that rotate about the Y-axis of

176 % frames F2, F3, F4, and F5 (children of parent frame F1).

177 model.jtype{i} = 'Ry';

178

179 % The wheels' parent body is the floating base, i.e. \lambda(i) = 1

180 model.parent(i) = 1 ;

181

182 R = 0.45; % The wheels radius is .45 m

183 T = 0.25; % The thickness of the wheels is .25 m

184 density = 300; % THe density of each wheel is 300 kg/mˆ3

185

186 % As shown in the paper, each wheel has a different location and the

187 % link-to-link transform is only a translation of the wheel frame

with

188 % to the body frame without rotation.

189 if(i==2)model.Xtree{i} = xlt([ 1 -0.8+T/4 -0.5]);end

190 if(i==3)model.Xtree{i} = xlt([-0.2 -0.8+T/4 -0.5]);end

191 if(i==4)model.Xtree{i} = xlt([ 1 0.8-T/4 -0.5]);end

192 if(i==5)model.Xtree{i} = xlt([-0.2 0.8-T/4 -0.5]);end

193

194

195 % The mass of the wheels equals to the volumen of the wheel times the

196 % density

197 mass(i) = pi*Rˆ2*T*density;

198

199 % Because of the wheel clindrical shape the COM is located at the

origin

200 % of their frame which also coincides with the geometrical centroid

of the

201 % wheel.

202 CoM(i,:) = [0 0 0];

203

204 % The wheels are modeled as solid cylinders of radius of .45 m and
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205 % thickness of .25 m for the purpose of calculating and approximation

to

206 % their rotational inertia.

207 Ibig = mass(i)*Rˆ2/2;

208 Ismall = mass(i)*(3*Rˆ2 +Tˆ2)/12;

209

210 % The spatial rigid-body inertia is calculated for each wheel using

the

211 % mass, COM and inertia tensor.

212 model.I{i} = mcI(mass(i),CoM(i,:),diag([Ismall Ibig Ismall]));

213

214 % Define the wheels' visual representation attributes. Also, a red

dot is

215 % added to each wheel as a visual reference, to appreciate the turn

of the

216 % wheels

217 model.appearance.body{i} = { 'colour', [0.1 0.1 0.1],...

218 'facets', 32,...

219 'cyl', [0 -T/2 0; 0 T/2 0], R,...

220 'colour', [0.8 0.1 0.1],...

221 'cyl', [0 -T/2-2e-3 -0.3; 0 T/2+2e-3 -0.3],0.05

};

222 end

223

224

225 %--------------------- Manipulator ----------------------

226 % This is a 1-DOF simplified arm, so only 1 joint will be defined.

227 % However, the next block of code can be copied to create additional

joints

228 % and add DOFs as needed.

229

230 i=6; % The arm is the body number six.

231

232 model.NB=model.NB+1; % The model's body count is updated.
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233

234 % For the CAT 262C skid-steer loader bucket arm movement is simplfied

in

235 % this model to a rotary joint that rotates about the Y-axis of frame

F6.

236 % While the actual machine has hydraulic (linear) pistons that

actuate on

237 % the bucket arm, the pistons are hinged and the arm is in fact

attached

238 % to rotary joint on a hinged mechanism with multiple bars. This

mechanism

239 % allows the pivoting point to move a little forward/backward when

the

240 % the arm is fully up/down. This feature has been left out of the

model

241 % to keep it simple and pedagogical, but can be modeled defining the

242 % additional linking bodies and passive (i.e. non-actuated) joints to

243 % create a closed-chain type of four-bar mechanism.

244 model.jtype{i} = 'Ry';

245

246 % The manipulator parent is also the floating base, so the sixth

element of

247 % the parent array is set to 1 (the floating base), i.e. \lambda(6) =

1.

248 model.parent(i) = 1;

249

250 % The link-to-link transform for the manipulator arm corresponds to a

251 % translation of frame F6 by [-1.2 0 0.6] relative to frame F1. This

252 % translation positions the arm at the top-rear of the CAT 262C.

253 % The initial joint position with q6=0 is defined to be the position

where

254 % the arm's end-effector (bucket) is almost touching the ground.

255 % To this end, a 15 rotation about the Y-axes of F6 is applied.

256 model.Xtree{i} = roty(15*pi/180)*xlt([-1.2 0 0.6]);
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257

258 l_arm(i) = 3.3; % The arm's length

259 mass(i) = 1034; % The arm's mass

260 r = 0.15; % The arm is modeled as a cylinder of radius r

261

262 % The center of mass of the arm is located at the mid-point of the

arm's

263 % length.

264 CoM(i,:) = l_arm(i)*[0.5,0,0];

265

266

267 % The inertia matrix of the arm is approximated to that of a solid

cylinder

268 % (like in the case of the wheels), and is given by

269 Icm(i+3:i+5,:) = mass(i)*[ rˆ2*6 0 0;...

270 0 rˆ2*3+l_arm(i)ˆ2 0;...

271 0 0 rˆ2*3+l_arm(i)ˆ2]/12;

272

273 % The spatial rigid-body inertia of the arm link is calculated using

the

274 % mass, the COM and the inertia matrix:

275 model.I{i} = mcI(mass(i), CoM(i,:), Icm(i+3:i+5,:));

276

277 % Finally, define the arm's visual representation attributes to

ressemble

278 % that of a compact skid-steer loader.

279 rotation = roty(-15*pi/180);

280 rot = rotation(1:3,1:3);

281 model.appearance.body{i} = ...

282 { 'colour', [0 0 1],...

283 'cyl', [0 0 0; 3.3 0 0], 0.15};

284 % 'colour', [250 137 45]/255,...

285 % 'cyl', [0 0.9 0; 1.3 0.9 0]*rot, 0.15, ...

286 % 'cyl', [1.2 0.9 0; 3.25 0.9 -0.6]*rot, 0.15, ...
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287 % 'cyl', [3.15 0.9 -0.5; 3.15 0.9 -0.9]*rot, 0.15, ...

288 % ...

289 % 'cyl', [0 -0.9 0; 1.3 -0.9 0]*rot, 0.15, ...

290 % 'cyl', [1.2 -0.9 0; 3.25 -0.9 -0.6]*rot, 0.15, ...

291 % 'cyl', [3.15 -0.9 -0.5; 3.15 -0.9 -0.9]*rot, 0.15, ...

292 % ...

293 % 'cyl', [0 -1.05 0; 0 1.05 0]*rot, 0.18, ...

294 % 'colour', [0.1 0.1 0.1],...

295 % 'cyl', [3.15 -1 -0.9; 3.15 1 -0.9]*rot, 0.1,...

296 % 'box', [3.15 -1.1 -0.95;3.6 1.1 -0.85]*rot};

297

298 % To see the idealized (cylindrical) model arm, instead of an arm

that

299 % visually ressembles that of the compact skid-steer loader, comment

the

300 % previous appearance attributes and uncomment the folowing line:

301 % model.appearance.body{i} = { 'cyl', [0 0 0; 3.3 0 0], 0.15};

302

303

304 %--------------------- Additional Model Parameters

----------------------

305 % The default gravity is zero, so it must be defined as:

306 model.gravity = [0 0 -9.8];

307

308 % Once each body in the model has been defined, the first body must

be

309 % turned into a floating base:

310 model = floatbase(model);

311 % By doing this, the body 1 has now 6 DOFs and can be tought as if it

would

312 % be formed by the composition of 6 bodies each having a 1-DOF joint.

So

313 % the first six joint variables belong to body 1, while the wheels

which
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314 % to be associated to bodies/frames 2, 3, 4, 5 are now bodies/frames

7, 8,

315 % 9, 10. Similarly, the arm body 6 is now boy 11, and the model

variable

316 % model.NB is now valued model.NB+5.

317

318 %--------------------- Contact Points (CPs) ----------------------

319 % The contact points are defined as point that cannot penetrate the

ground

320 % plane defined as the plane z=0 in the frame F0. Each contact point

321 % contains information about the body to which it belongs and its

location

322 % in the body's reference frame.

323

324 % Floating Base CPs --------------------------------------------

325 CP_Base =[-1.2 1.8 -1.2 1.8 -1.2 1.8 -1.2 1.8;... X parameter of each

CP

326 -0.8 -0.8 0.8 0.8 -0.8 -0.8 0.8 0.8;... Y parameter of each

CP

327 -0.6 -0.6 -0.6 -0.6 0.6 0.6 0.6 0.6]; %Z parameter of each CP

328

329 % The body number of each CP

330 CP_Base_Body_Labels = 6*ones(1,length(CP_Base));

331

332 % Total number of CPs for the floating base

333 CP_Base_Num = length(CP_Base_Body_Labels);

334

335

336 % Wheels' CPs---------------------------------------------------

337 % Because of the wheels' simmetry, all CPs are located equidistant

one

338 % from another about the perimeter of each wheel.

339 npt_1 = 32; % 32 CPs per wheel are been modeled

340
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341 % The position for each CP on a wheel is calculated next.

342 ang = (0:npt_1-1) * 2*pi / npt_1;

343 Y = ones(1,npt_1) * T/2;

344 X = sin(ang) * R;

345 Z = cos(ang) * R;

346

347 CP_Wheel = [ X;...

348 Y;...

349 Z ];

350

351 % A contact point at the center of each wheel is added just to

extract the

352 % position and velocity of each of the wheels.

353 CP_Wheel = [CP_Wheel [0;0;0]];

354

355 % Define the corresponding body for the wheels' CPs

356 CP_Wheel_1_Body_Labels = 7*ones(1,length(CP_Wheel(1,:)));

357 CP_Wheel_2_Body_Labels = 8*ones(1,length(CP_Wheel(1,:)));

358 CP_Wheel_3_Body_Labels = 9*ones(1,length(CP_Wheel(1,:)));

359 CP_Wheel_4_Body_Labels = 10*ones(1,length(CP_Wheel(1,:)));

360

361 % The CPs of all four wheels are store in a single variable:

362 CP_Wheels = [CP_Wheel CP_Wheel CP_Wheel CP_Wheel];

363

364 % All the corresponding body label for the wheels' CPs are also

stored

365 % in a single variable:

366 %Wheels_Parent = [Cuerpo_wheel_1 Cuerpo_wheel_2 Cuerpo_wheel_3

Cuerpo_wheel_4];

367 CP_Wheels_Body_Labels = [CP_Wheel_1_Body_Labels

CP_Wheel_2_Body_Labels...

368 CP_Wheel_3_Body_Labels CP_Wheel_4_Body_Labels];

369

370 % Total number of wheel contact points
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371 CP_Wheels_Num = length(CP_Wheel_1_Body_Labels)*4;

372

373

374 % Manipulator CP -----------------------------------------------

375 % Only one CP is defined at end of the arm where the end-effector (

bucket

376 % of the skid-steer loader) is located

377 CP_Arm = [l_arm(6);...

378 0;...

379 0 ];

380

381 % The arm contact point belogs to body 11

382 %Arm_Parent

383 CP_Arm_Body_Labels = 11*ones(1,length(CP_Arm(1,:)));

384

385 % Total number of arm contact points

386 CP_Arm_Num = length(CP_Arm_Body_Labels);

387

388 %------------------------- Model Format ------------------------

389 % All the contact points and parents position previously defined

390 % are put on the Spatial Toolbox format as shown below

391 model.gc.point = [CP_Base CP_Wheels CP_Arm];

392 model.gc.body = [CP_Base_Body_Labels CP_Wheels_Body_Labels

CP_Arm_Body_Labels];

393

394 % The simulation in Simulink needs some auxiliar variables that

define

395 % the starting index of the wheels's CPs within the general CP array

396 % (model.gc.point) for each wheel separately.

397 CP_Wheel_1_Index = length(CP_Base_Body_Labels)+1;

398 CP_Wheel_2_Index = length(CP_Base_Body_Labels)+length(

CP_Wheels_Body_Labels)/4+1;

399 CP_Wheel_3_Index = length(CP_Base_Body_Labels)+length(

CP_Wheels_Body_Labels)*2/4+1;
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400 CP_Wheel_4_Index = length(CP_Base_Body_Labels)+length(

CP_Wheels_Body_Labels)*3/4+1;

401 CP_Wheels_Final_Index = length(CP_Base_Body_Labels)+length(

CP_Wheels_Body_Labels)*4/4;

402

403 % Auxiliar variables are declared to store the total number of CPs in

the

404 % simulation considering the external forces and without including

the

405 % external forces:

406 CP_Num = CP_Base_Num + CP_Arm_Num + CP_Wheels_Num;

407 CP_Num_aux = CP_Base_Num + CP_Arm_Num + CP_Wheels_Num;

408

409

410

411 %-------------------- Initialization --------------------------------

412 % Finally, the initial condition is declared:

413 x_init = [1 0 0 0 0 0 0.95 0 0 0 0 0 0]';

414 % |______| |_______| |_____| |____|

415 % | | | |->Linear Velocity in F_1

416 % | | | Coordinates

417 % | | |

418 % | | |->Angular Velocity in F_1 coordinates

419 % | |

420 % | |->Position relative to F_0

421 % |

422 % |->Orientation Quaternion

423 %

424 % q_init(1:4) contains the wheels' initial position and q_init(5)

contains

425 % the arm's initial position

426 q_init = [0 0 0 0 -30*pi/180]';

427
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428 % qd_init(1:4) contains the wheels' initial velocities and q_init(5)

contains

429 % the arm's initial velocity

430 qd_init = [0 0 0 0 0]';

431

432

433

434 % Example 1: Straight motion without load

435 Instants = [-7 0.5 0.9 5.1 5.3 6.5]+7;

436 Values = [0 0 1 1 0 0];

437 Accelerator = 0.3;

438 Linear = 1;

439 Turn = 0;

440 Extra_weight = [0;0;0];

441

442 % % Example 2: On-place turn motion without load

443 % Instants = [-1 0.5 0.9 10.8 11 11.5]+1;

444 % Values = [0 0 1 1 0 0];

445 % Accelerator = 0.3;

446 % Linear = 0;

447 % Turn = 1;

448 % Extra_weight = [0;0;0];

449

450 % % Example 3: Straight motion with load

451 % Instants = [-1 0.5 0.7 5.5 5.7 6.5]+1;

452 % Values = [0 0 1 1 0 0];

453 % Accelerator = 0.3;

454 % Linear = 1;

455 % Turn = 0;

456 % Extra_weight = [0;0;400];

457

458 % Example 4: In-place turn motion with load

459 % Instants = [-3 0.5 0.7 13.8 14.8 15.5]+3;

460 % Values = [0 0 1 1 0 0];
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461 % Accelerator = 0.3;

462 % Linear = 0;

463 % Turn = 1;

464 % Extra_weight = [0;0;400];

465

466 % % Example 5: Circular motion

467 % Instants = [-5 0.5 0.9 10.8 11 11.5]+5;

468 % Values = [0 0 1 1 0 0];

469 % Accelerator = 0.4;

470 % Linear = 0.3;

471 % Turn = 0.7;

472 % Extra_weight = [0;0;0];
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