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RESUMEN 

La Optimización Robusta (RO, por sus siglas en inglés) es una metodología para incluir 

la incertidumbre en modelos de optimización.  La incorporación de la incertidumbre en 

los modelos de toma de decisiones es de interés. Esto se debe a que asumir datos 

conocidos puede llevar a decisiones incorrectas, que se traducen en altos costos, 

importantes pérdidas e incluso infactibilidades para aplicar las acciones a seguir.  

En esta tesis, se exploró la hipótesis de que la RO es una herramienta eficiente para la 

planificación bajo incertidumbre. Específicamente, se estudió el uso de esta metodología 

en la industria forestal. El objetivo de la investigación fue analizar la aplicabilidad de la 

RO en la Gestión de la Cadena de Abastecimiento. 

Para alcanzar el objetivo y validar la hipótesis, se abordaron dos problemas típicos de la 

industria: la planificación de la producción de aserraderos y de bosques. Ambos 

problemas se abordaron a nivel táctico y la incertidumbre considerada afecta los 

rendimientos y disponibilidad de bosques respectivamente. Para evaluar la metodología, 

los problemas se formularon, resolvieron y compararon en sus versiones deterministas y 

robustas en términos de optimalidad, factibilidad y estabilidad (estructura) de la 

solución.  

Adicionalmente, ya que la planificación de la producción incluye decisiones en distintos 

niveles jerárquicos, que interactúan entre sí; se resolvió un caso específico para dos 

niveles de planificación (táctico y operativo). Esto con el objetivo de analizar la RO 

como herramienta para mejorar la coordinación y coherencia entre distintos niveles 

jerárquicos de planificación. En este sentido, se comparó el desempeño de modelos 

deterministas en ambos niveles, con una combinación de un modelo robusto a nivel 

táctico y uno determinista a nivel operativo.  
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Los resultados obtenidos indican que se validó la hipótesis y se cumplió el objetivo de la 

tesis. Por lo tanto, se concluyó que la RO: i) es una herramienta eficiente para el manejo 

de la incertidumbre, ii) es de simple aplicación, iii) no aumenta la dificultad de 

resolución de los modelos respecto al problema determinista ya que conserva la 

estructura del problema original, iv) facilita la interacción entre distintos niveles de 

planificación, v) a nivel de optimalidad no genera importantes pérdidas, vi) a nivel de 

factibilidad, mejora este indicador y vii) a nivel de estabilidad, genera soluciones en 

cierta medida constantes que facilitan la operación.  

 

Palabras Claves: Optimización robusta, incertidumbre, cadena de abastecimiento 

forestal. 
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ABSTRACT 

Robust Optimization (RO) is a methodology for the inclusion of uncertainty in 

mathematical optimization models. The incorporation of information regarding 

uncertainly in decision-making models is a topic of great interest. This is because the 

assumption that the data which feeds these models is known can lead to incorrect 

decisions, which translates into high costs, important losses and even infeasibilities to 

apply some actions. 

In this thesis, the hypothesis is that RO is an efficient tool for planning under 

uncertainty. Specifically, the use of this methodology was explored in a particular sector, 

the forestry industry. The objective of this thesis was to analyze the applicability of RO 

in forestry supply chain management. 

To validate the hypothesis and achieve the proposed objective, two typical problems in 

the forestry industry were studied, which correspond to production planning for 

sawmills and forest respectively. Both problems were dealt with on a tactical level and 

the uncertainty considered affected the performance and availability of the forests. To 

evaluate the RO methodology, deterministic and robust models were formulated, solved 

and compared in terms of the optimality, feasibility and stability (structure) of the 

solution. 

Additionally, given that the production planning problem includes decision making in 

distinct hierarchical levels, which interact between each other, this thesis focused on a 

specific case for two levels of planning (tactical and operational). The aim of this was to 

analyze RO as a tool to improve coordination and coherence between different levels of 

planning hierarchy. To achieve this, the performance of deterministic models was 

compared, on both hierarchical levels, with the combination of a robust model on a 

tactical level and a deterministic model on an operational level. 
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The results obtained in every situation indicate that the hypothesis and the objective 

were fulfilled. Then it was concluded that RO: i) is an efficient tool for managing 

uncertainty, ii) is simple to apply, iii) does not increase the difficulty of resolving 

models relative to deterministic problems, because the original structure is preserved, iv) 

facilitates the interaction between distinct planning levels, v) in terms of optimality, it 

does not generate important losses, vi) improves the level of feasibility, and vii) 

regarding stability, generates solutions which are constant to some extent, and which 

facilitate operations. 

 

Keywords: Robust optimization, uncertainty, forestry supply chain 
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1. INTRODUCTION 

The forestry industry in Chile is one of the most important sectors on a national level in 

economic terms, accounting for 3.1% of GDP (Gross Domestic Product). The industry is 

the country’s second largest exporter, and the largest based on renewable natural 

resources. Around 40 million cubic meters of wood are harvested annually, and the 

Central Bank indicates that forestry industry accounts for 7.8% of the country’s total 

annual exports, which reached US$53 billion in 2009. 

Given the importance of the forestry industry, the sector has been a pioneer in the use of 

tools associated with Operations Research to support decision making. Operations 

Research has produced a significant and positive change in the sector, generating annual 

savings in the order of US$13 million (Epstein et al., 1999), and there is still an 

extensive margin for improvement (Epstein et al., 2007). 

Optimization models have been characterized as being the principal tool associated with 

Operations Research in the industry. These models have been successfully implemented 

to support decision making on various problems, such as transport planning and trucks 

assignment, harvest planning, the machinery localization, road construction, logging, 

etc. (Epstein et al., 2007). 

To formulate and subsequently solve the models, a large quantity of data must be used. 

As in many other areas, the data is considered as known, but this assumption is usually 

incorrect. Generally, various elements in the models are uncertain, and this uncertainty 

can be due to distinct factors. In some cases there can be natural variability in the data, 

in others estimation errors can occur due to the difficulty and cost of obtaining high-

quality information to estimate parameters, and in some cases assumptions must be 

made about the data which is used due to the lack of available information. 

Particularly, the uncertainty associated to natural resources is very important because 

there are biological processes that affect the data. 
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Traditionally, decision makers tend to use estimated average values, most probable 

values, and other methods to avoid this difficulty. In some cases this can cause 

associated decisions to be incorrect, which leads to unnecessary costs and even 

impracticable decisions. 

For this reason, the incorporation of uncertainty in mathematical models is essential to 

guarantee that the decisions based on the model are feasible or assure some level of 

feasibility, according to certain criteria, despite what the data may indicate in reality. 

Although techniques to incorporate uncertainty in mathematical models exist, only some 

of them have been applied in the forestry sector. These techniques can be divided into 

two types of approach: one of them using probability based models, and the other 

applying fuzzy models. The latter use numerous approximates as parameters of the 

model and the constraints are dealt with as fuzzy sets (Ramik and Vlach, 2002; 

Rommelfanger, 1996), and as such certain violations of the constraints are permitted. 

However, fuzzy optimization has few applications in this sector. On the other hand, 

some approaches use probabilistic information such as stochastic programming, linear 

programming with probabilistic constraints, scenario analysis, Markov decision models 

and optimal control theory (Weintraub and Bare, 1996; Martell et al. 1998). For 

example, Weintraub and Vera (1991) present an algorithm to solve a linear 

programming problem with probabilistic constraints, that is to say, problems with 

random coefficients associated with the constraints. This algorithm was subsequently 

applied in forestry planning models by Weintraub and Abramovich (1995) but not 

extensively.  

One of the main difficulties of applying stochastic programming more extensively is the 

increase in complexity of the problems (both in terms of mathematical formulation and 

the application of algorithms to solve them) and the difficulties in adjusting reliable 

probability functions due, in part, to the lack of real and detailed data. As such, while 

various theoretical methods are available, only a few of them have been applied in 

practice (Weintraub and Romero, 2006). This leads to the possibility of using other 
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optimization techniques which do not require detailed knowledge of the probabilities, 

such as those which allow the calculation of robust solutions. That is to say, solutions 

which are less sensitive to uncertainty and which are, to some extent, independent of the 

variability of the data, at least within a certain range. Robust Optimization (RO) is one 

of the techniques developed along these lines. This methodology aims to determine 

solutions which remain feasible for all or almost all of the possible scenarios of the 

defined data in a certain set, and to prevent the failure to satisfy constraints (Ben-Tal and 

Nemirovski 1999; El Ghauoi et al. 1998, Bertsimas and Sim 2003).  

Kazemi et al. (2010b) apply the robust optimization approach, and they compare it with 

stochastic programming in a multi-period and multi-product production planning 

problem in sawmills, with uncertainty in process performance and product demand. The 

results indicate the high quality of the model and provide evidence for the advantages of 

the robust optimization approach over the stochastic programming approach. 

Following these lines, the current research pose the hypothesis that RO is an efficient 

tool for planning under uncertainty; and performs an applicability analysis of RO 

methodology in supply chain management, through the proposal and resolution of robust 

optimization models for particular cases in the forestry supply chain. 

As such, the objective of this thesis is supported by the fact that, in practice, the 

incorporation of uncertainty in the models which support decision making is limited. 

There are studies which use diverse methods to incorporate uncertainty, however due to 

the increase in complexity of formulating and resolving of the models, they are not 

practical to implement. 

This thesis therefore aims to provide information regarding a methodology which is 

simple to apply and which does not significantly increase the difficulty of resolving the 

problems involved. 
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Specifically in this research, RO methodology is applied to two typical problems in the 

forestry sector: the sawmill planning problem and the harvest planning problem. Both 

problems require robust tactical planning, due to variability in the performance and 

availability of the forests, which can result in suboptimal or unfeasible solutions. 

Additionally, it is not practicable to use the stochastic approaches due to the lack of 

high-quality probabilistic information and the difficulty of the resultant models. 

Additionally, an intertemporal production planning problem is solved for two planning 

horizons (tactical and operational), in which the performance of RO as a tool to facilitate 

coordination between distinct hierarchical planning levels is reviewed. This is due to the 

possible inconsistencies that could occur given the uncertainty between what is planned 

on a tactical level and what it is effectively possible to achieve on an operational level. 

This is particularly important in the forestry industry, as planning horizons present rather 

extensive time intervals, which further complicates the task of intertemporal 

coordination. 

In this sense, the contribution of this thesis is to apply and demonstrate that the use of 

RO can be introduced efficiently as a supporting tool in companies’ decision making 

processes. As an additional advantage, RO provides the possibility of easily analyzing 

the tradeoff between robustness and optimality, a calculation which can be used to 

measure the impact of uncertainty on the decision making process. That is to say, it is 

possible to manage the degree of conservatism of the solution without necessarily using 

protecting against the worst case, which is not very likely to occur. Using a set of 

uncertainty ensures this (Gabrel et al., 2014). This is one of the main benefits of RO.  

As such, this research is a contribution to the world of Operations Research as it presents 

experiments which demonstrate the efficiency of the mentioned methodology. 

Additionally, it provides an important contribution to the forestry industry, delivering 

new tools to support the decision making process. As mentioned above, in this industry 

it is important the study of uncertainty as, in the management of natural resources, 
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decisions are typically over long time horizons and there are biological processes that 

act, which cannot be predicted with accuracy. 

This thesis is structured as follows. The following chapter presents the hypothesis and 

the objectives. The chapter 3 describes the operations planning process in the forestry 

sector, covering the sawmilling, harvest planning and intertemporal planning areas. 

Then, in chapter 4, information is provided regarding how uncertainty has been managed 

in optimization models, including details of the RO methodology. Chapters 5, 6 and 7 

present the three applications respectively which were undertaken and the results that 

were obtained. The conclusions and recommendations for future research are in chapters 

8 and 9 respectively. 
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2. HYPOTHESIS AND OBJECTIVES 

2.1. Hypothesis 

The hypothesis to be tested in this research is that Robust Optimization is an 

efficient tool for planning under uncertainty. 

2.2. Objective 

2.2.1. General Objective 

Analyze the applicability of RO in forestry supply chain management. 

 

2.2.2. Specific Objectives  

 Evaluate the performance of RO as a tool to tackle problem of planning 

production with uncertainty. 

 Evaluate the usefulness of RO as a methodology to improve coordination 

between distinct time horizons. 
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3. FORESTRY OPERATIONS PLANNING 

Chile is a developing country where the majority of its trade is in raw materials. As has 

already been mentioned, the forestry industry is the second most important sector for 

Chilean exports, according to CORMA (Corporación Chilena de la Madera). More than 

70% of the Chilean forestry sector’s production is exported (Maturana et al., 2010). 

The Chilean forestry sector is completely private, and is mainly based on large 

companies which possess vertically integrated plantations, with pulp mills and sawmills. 

The Arauco holding company and Forestal Mininco (CMPC), the two largest companies, 

are among the largest forestry companies in the world (Epstein et al. 1999). In 2011, 

Arauco and CMPC occupied the second and fourth place in global cellulose production 

respectively1.  

Including all of the aspects related to forest planning (plantation, road construction, 

recollection, transport and the production of sawn timber, pulp, paper and heating plants) 

presents great difficulty. The diversity of the problems and the scale of task planning 

have increased over time. 

A common opinion in the forestry industry is there is potential to improve the 

integration between different parts of the flow (of timber) and the use of sophisticated 

techniques to increase the utilization of raw materials and production capacity. At the 

same time, client orientation is currently the center of attention. The idea behind this 

approach is that the appropriate type of products (or raw material) should be delivered to 

the client in the appropriate quantity and time (Rönnqvist, 2003). 

 

                                                
1http://www.economiaynegocios.cl/noticias/noticias.asp?id=80828.  

http://www.economiaynegocios.cl/noticias/noticias.asp?id=80828.
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3.1. Components of flow in the forestry supply chain 

The forestry supply chain (Figure 3.1-1) begins in the felling areas (stands) of 

the forests. Here, the trees are harvested (cut) and the branches are removed. In 

the majority of cases, the first cutting or “bucking” (the process of cutting felled 

trees into logs) is undertaken directly (Figure 3.1-2). When a tree is logged, there 

are often many possible types of logs which can be obtained in accordance with 

characteristics such as diameter, length, and the quality of the shaft (tree trunk). 

The logs are subsequently extracted from the forests. In some cases, the entire 

trees (with branches removed) are transported directly to sawmills, where the 

logging process can be conducted in a more efficient way (Rönnqvist, 2003). 

 

 

 

Figure 3.1-1: Flow in the forestry supply chain (Rönnqvist, 2003). 
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Figure 3.1-2: Example of “bucking” (Weintraub and Epstein, 2005). 

The transportation can be conducted in one or two steps depending on the season. 

When the roads are in good condition, it is possible to transport directly to the 

industry. In this case, the logs are taken to sawmills or ports for direct 

exportation; the pulp to the cellulose plants and/or paper plants and the wood fuel 

to the heating plants. This latter product type is transported by special vehicles, 

which generally require the wood to be chipped. On the other hand, when the 

weather conditions are poor or in periods of thawing, the logs are frequently 

transported to terminals for intermediate storage (Rönnqvist, 2003). 

To better illustrate the forestry supply chain, Figure 3.1-3 shows the physical 

flow of timber. 

Exportation  Sawlog  Pulpable  
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Figure 3.1-3: Physical forest supply chain (Weintraub and Epstein, 2005). 

3.2. Actors in the chain 

There are various actors involved in the flow of the forestry supply chain 

(Rönnqvist, 2003).  
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The main ones can be grouped as: 

 Forestry industry companies with large investments in forests, which also 

possess their own cellulose, paper and sawmilling industries. They can be 

privately or state-owned. 

 Forest owners associations, which represent private entities and have their 

own cellulose plants and sawmills. 

 Independent sawmills, without any type of assets in large forests. 

 Owners of independent forests which are not related to any industry. 

Apart from these primary agents which represent producers and consumers, there 

are also timber merchants and transporters, which collect and transport the timber 

from the forests. 

Although all of the actors involved recognize the importance of cooperation and 

integration throughout the flow chain, it is easy to see that different agents make 

decisions for their own benefit, which obstructs integration and cooperation 

(Rönnqvist, 2003). 

3.3. Intertemporal Planning 

As Bitran et al. (1982) signal, production management involves making complex 

decisions between a large numbers of alternatives. Given that, the production 

process is not immediate and must be anticipated with planning, a hierarchical 

structure is typically employed. 

Hierarchical planning aims to simplify complex planning problems, which 

include different objectives and resources and which cover different temporal 

scales. In a hierarchical system, the decisions are taken sequentially, and each 

decision is associated with a level of information aggregation (Hax and Meal, 
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1973). This strategy aims to divide a large and complex problem into smaller and 

more manageable parts (Gelders and Van Wassenhove, 1981). 

The number of decision levels depends on the specific application (Gelders and 

Van Wassenhove, 1981).Traditionally, three planning levels are considered: 

strategic, tactical and operational. The higher levels establish activities and 

define the resources available for the lower levels. The lower levels must 

implement the activities established by the higher levels and provide feedback 

regarding feasibility to the higher levels. Maintaining adequate feedback between 

the planning levels is a fundamental process to ensure the efficient and viable use 

of resources (Bitran and Tirupati, 1993). 

The hierarchical approach methodology for production planning is used to 

organize coordination between distinct planning levels effectively (Bitran, 1982). 

The main difficulty is that due to lack of reliable data, forecasts or estimations 

must be made which can be erroneous. 

As such, there are three main benefits of hierarchical planning, according to 

Boyland (2003): 

 The reduction of problem complexity as a result of division into smaller sub 

problems and management of the required level of detail.  

 Better management of uncertainty by postponing decisions for as long as 

possible. 

 Increasing the specialization of each planning level.  

In the particular case of the forestry industry, the hierarchical approach is used in 

supply chain management, with three levels, according to the impact on the 

company and the time periods for planning. These approaches are: 

 Strategic level planning: Strategic plans refer to long term (30-50 years) and 

the large scale of resource assignment. The large scale nature of strategic 
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plans allows for the use of aggregated data to simplify the plans. Large 

investments in factories are planned to increase production or improve the 

quality of the products. These investments are made with regard to the market 

situation and availability of timber. 

 Tactical level planning: Tactical plans are for activities throughout the 

medium scale and medium term (1-5 years) zones. Tactical planning is 

mainly based on the reviewing of annual and quarterly budgets. The plan is 

reviewed whenever necessary. 

 Operational level planning: Operational plans are the lowest level of planning 

(1-30 days) which detail exactly how each of the activities will be carried out. 

A central part of operational planning is the monthly adjustment to the 

production plan that is carried out with the aim of determine exactly when to 

change from one product to another. This depends on the results of recent 

production, as well as current inventory and orders. Operational plans are 

required to program the labor force and machinery for each of the activities 

planned on a tactical level.  

In particular, three operational problems of great importance exist, which are: the 

daily programming of trucks, the location of harvesting machinery, and the short 

term harvest. Distribution of the operating costs is typically 30% for harvesting, 

42% for transport 14% for road construction, 4% for loading and 10% for other 

processes (Epstein et al. 1999). 

Despite the extensive use of the hierarchical approach in production planning, it 

has some drawbacks. This approach can lead to suboptimality, inconsistencies 

and even infeasibility. This is due to incorrect coordination between distinct 

hierarchical levels, errors in the aggregation and disaggregation of information 

and the existence of conflicting objectives between the distinct levels (Beaudoin 

et al., 2008). 
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For this reason, correct interactions between the decision models used by 

different levels are fundamental to assure the consistency of the global 

production plan. According to Bitran and Tirupati (1993), there is a lack of good 

models for systems characterized by uncertainty. 

As such, due to the possible variability and uncertainty present in the forestry 

sector, it is necessary to consider distinct methodologies to achieve coordination 

in intertemporal planning and production. 
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4. MANAGING UNCERTAINTY 

As has already been mentioned, the data used in optimization problems is not known 

exactly, and cannot be anticipated with certainty. This translates into the possibility that 

variations could be produced which significantly affect the solutions of the models; that 

is to say, the solutions could cease being optimal and could even become unfeasible due 

to small variations or disturbances in the nominal values considered (Shapiro, 2008). 

Because of this, it is desirable to consider uncertainty in the mathematical optimization 

models.  

In Operations Research, the treatment of uncertainty was first studied in the 1950s in a 

work developed by Dantzig (1955). The author treats uncertainty using different 

scenarios, each one with a certain probability of occurring. This study is considered as 

one of the first steps in stochastic programming. Specifically, in this work Dantzig 

analyzed general mathematical models in which the activities could be divided in two 

stages or states. The first stage would require the activities to be undertaken to be 

determined. However, in the second stage the activities, as they depend on the first 

stage, did not necessarily have to be determined in advance. Following the previously 

mentioned study, optimization in uncertain conditions has evidenced extensive 

development, both from a theoretical and algorithmic point of view (Sahinidis, 2004), 

mainly for linear problems, but not so for nonlinear problems or integer programming. It 

is important to highlight that the inclusion of uncertainty in mathematical problems to 

support decisions has few real applications and has been limited largely to case studies. 

This is due to the difficulties in implementation, such as the determination of decision 

makers’ preferences and the calculation of probabilities associated with certain events 

(Bjørndal et al., 2012). 

The principal methods developed to consider the lack of certainty in optimization 

models will now be briefly described. 
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4.1. Methods for managing uncertainty 

4.1.1. Using Average Values 

Random parameters are replaced by the most probable value or average value, 

and as such the mathematical model is transformed in a deterministic model. 

However, the variability of the values in relation to the expected value is not 

considered, and as such the solution which is obtained could be substantially 

suboptimal and not very representative of reality (Kouvelis and Yu, 1997). 

Because of this, decision making becomes quite myopic. 

However, in the case of problems in which the level of uncertainty is low, or the 

impact of uncertainty is not relevant, this method can be used (Vladimirou and 

Zenios, 1997). In fact, it is extensively employed given its simplicity when 

considering a deterministic model. 

4.1.2. Using the Worst Case 

As in the previous case, it is possible to replace the value of uncertain parameters 

with their worst value and use this as a deterministic model. However, the use of 

this methodology leads to very conservative and high cost results (Vladimirou 

and Zenios, 1997) due to the loss of optimality of the solutions.   

4.1.3. Using Scenarios 

This method involves using a finite number of scenarios and resolving each one 

of them independently. However, this technique is only useful for comparing the 

solutions obtained given distinct scenarios and selecting one of them in 
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accordance with the criteria of the decision maker. Maturana and Contesse 

(1998) present an application for the mixed integer programming model for the 

case of sulfuric acid logistics in Chile. In the forest sector, it is also been applied 

this method (Klenner et al., 2000; von Gadow, 2000; Peter and Nelson, 2005). 

Nevertheless, a large number of scenarios are need, so the applicability is 

reduced. 

The use of scenarios can also be combined with stochastic programming, 

associating probabilities of the distinct scenarios and considering each one of 

them as a particular manifestation of reality, as can be observed in Mulvey et al. 

(1995). 

4.1.4. Sensitivity and Post-Optimal Analysis 

Sensitivity and post-optimal analysis measures the impact which disturbances in 

the input data produce in the model’s solutions. This is, therefore, a reactive 

approach which does not provide any mechanism with which sensitivity can be 

managed (Hillier and Lieberman, 1997). 

This analysis is focused in identify key parameters in the models. Key 

parameters are those that generate big impact in the solutions when they change. 

So, in real problems with uncertainty, this method is not useful (Pickens and 

Dress, 1988). 

4.1.5. Stochastic Programming 

This methodology arises as an extension of linear and non-linear optimization 

models, where the uncertain coefficients are represented according to a 

probability distribution, either with discrete or continuous functions. It aims to 
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maximize (minimize) some measure of expected behavior and every situation is 

weighted for its probability of occurring (Birge and Loveaux, 1997). However, it 

ignores higher order moments and the preferences of the decision maker 

regarding risk (Vladimirou and Zenios, 1997).  

This methodology can be divided in:  

 Programming with recourse: 

In this case, decision variables are divided into two stages, the first of which 

corresponds to the variables which must be determined prior to the 

implementation of uncertain parameters. The second stage corresponds to the 

recourse variables. These variables can be considered as corrective measures or 

recourses against any unfeasibility due to a particular implementation. As such, 

the objective is to choose the first stage variables (here and now) in such a way 

that the sum of costs of the first stage plus the expected value of costs in the 

second stage is minimized (Sahinidis, 2004). The recourse concept can be 

applied in linear, nonlinear and integer programming. 

 Probabilistic Programming: 

Unlike the previous method, in probabilistic programming or “chance constraint” 

some infeasibilities are permitted with determined penalties (Shapiro et al., 

2009). However, this methodology is difficult to manage, both numerically and 

from the point of view of modeling (Shapiro, 2008). 

Another standard formulation in stochastic programming is the use of decision 

models in multiple stages with adaptive decisions. In a typical two-stage 

stochastic programming approach the set of decisions can be divided in two 

groups: the decisions which must be taken “here and now”, before the uncertain 

events are implemented, and the decisions which are taken following the events 

and, therefore, adapt and are sequential in character. This approach is powerful 

but, as Chen and Zhang (2009) note, it could give rise to large scale problems 
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which are very difficult to resolve in terms of optimality. As well as this, 

stochastic programming requires detailed knowledge of the distribution of 

uncertain data, which is normally not known or difficult to obtain. 

4.1.6. Fuzzy Programming 

An alternative to stochastic programming is fuzzy programming, which makes a 

distinction between randomness and imprecision, and the main difference with 

the stochastic approach being that in practice instead of assuming probability 

functions, ownership functions are assumed (Jensen and Maturana, 2002). That is 

to say, the means of modeling uncertainty differs between the two approaches 

(Sahinidis, 2004). 

4.1.7. Dynamic Programming 

This term was proposed by Bellman (1956) to describe the mathematical theory 

he developed to deal with multistage decision problems (Sahinidis, 2004). In a 

system, it is possible to inspect a finite number of stages. Frequently, the stages 

are considered as points in time, which is the reason why the term “dynamic” is 

used. Furthermore, in any stage of the system it is possible to be in one state out 

of many possibilities. Additionally, in any moment a decision will have influence 

over the state of the system in a subsequent stage. As such, a return function 

associated with the decision is generated (Kall and Wallace, 1982). That is to 

say, with dynamic programming methodology an optimal solution is found for a 

problem with n variables broken down in n stages, and as such each stage 

corresponds to a sub-problem composed of a single variable. Now, given that the 

solution of a sub-problem is used as data for the following sub-problem, the 

resolution of dynamic programming problems is undertaken in a recursive way 
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(Taha, 2004). Specifically, in the case of probabilistic dynamic programming, the 

stages and returns or rewards in each stage are probabilistic. 

4.1.8. Robust Programming 

Specifically, Mulvey et al. (1995), consider robust programming as a stochastic 

programming approach which provides solutions which are less sensitive to 

variations in the data of the model, but which have a higher cost (Vladimirou and 

Zenios, 1997). Robust models explicitly incorporate random parameters, 

minimizing both the expected cost value as well as certain penalties for 

infeasibilities. 

As such, the general model used in this methodology is presented in the 

following way (4.1.1): 

 

   1 1, ,..., ,...,
. .

0, 0

S S

s s s s s

s

Min x y y z z
s a Ax b

B x C y z e s
x y s

 


    

   

 

(4.1.1) 

 

The variables x are named design variables and are not subject to uncertainty, 

while the variables y, or control variables, are subject to uncertainty. 

Furthermore, a set of scenarios is defined in problem (4.1.1), 

and each scenario is associated with a set of possible outcomes  

The variables z correspond to variables which measure the 

infeasibility allowed for the control constraints under scenario s. 

In this robust programming approach, a solution is robust if the optimal solution 

is maintained sufficiently optimal when the input data changes. Furthermore, the 

 1, 2 , .. . , S 

s  

 , , ,s s s sd B C e
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model is defined as robust if the optimal solution is maintained sufficiently 

feasible in the face of variations in the data. 

Applications of this methodology and resolutions methods can be found in 

Mulvey et al. (1995), Albornoz (1998), Bai et al. (1997), Leung et al. (2002), 

Takriti and Ahmed (2004), Yang and Zenios (1997) and Yu (1996), as well as 

various others. 

4.1.9. Simulation 

In cases where developing mathematical or analytical models is too complex, 

there is the possibility of using systems simulation, where a system is defined as 

a set of entities (people, machines, etc.) which act and interact to achieve a goal 

(Law and Kelton, 2000). Systems simulation corresponds to a computational tool 

in which the system being studied is designed to scale and each time the 

computer program is run it represents an implementation of the real system. 

In this way, when the simulation program is run various times, we can obtain the 

most probable value of one or more performance variables (Gazmuri, 1994). As 

such, the simulation is a statistical experiment and in consequence the results 

must be interpreted with the appropriate statistical tests (Taha, 2004). 

Because of the disadvantages and difficulties in using the techniques mentioned 

above, RO methodology is now described. This method associates with each 

constraint with uncertain information, a protective function that improves the 

robustness of the solutions. This methodology, as is proposed in the literature 

should be an interesting tool for decision making under uncertainty. 
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4.2. Robust Optimization 

The need to obtain robust solutions, that is to say, solutions which are immune to 

variability in the data, has been a relevant issue for a long time, particularly in the 

formulation of mathematical programming models. Soyster (1973) was the first 

to investigate this area. He proposed an approach to generate robust solutions in a 

linear model with the assumption that the parameters would vary within certain 

intervals, and consider all possible scenarios within those intervals. The resulting 

model provides a high protection level against uncertainty, but it is a very 

conservative model and it can generate an optimal value quite a lot worse than 

the deterministic problem’s optimal value (which does not consider uncertainty).  

In recent years some important advances have been made in RO (Ben-Tal and 

Nemirovski 1999; Bertsimas and Sim 2003), with different approaches and 

applications. As such, the approach developed by Ben-Tal and Nemirovski 

(1999) and independently by El Ghaoui et al. (1998) considers linear 

programming problems in the form expressed in (4.2.1). 

 

 
0

0 0 0
,

: ( , ) 0, ( , ) 0, 1,...,
n i

x R x R
Min x f x x f x i m 
 

     (4.2.1) 

 

In line with Ben-Tal and Nemirovski’s (2002) notation, in this model x is the 

design vector, the functions f0 (objective function) and f1,…,fm are structural 

elements of the problem, and  represents the specific data of a particular 

instance. 

The entry data is generally considered uncertain to some degree in the real world, 

and as such it is necessary to deal with this uncertainty in some way. 

To differentiate it from the approach developed by Mulvey et al. (1995), Ben-Tal 

and Nemirovski (1999) consider the existence of “hard” constraints, which 



23 

  

means constraints that must be satisfied independently of the specific 

implementation of the data. In this way, the candidate solution (x0, x) must satisfy 

a semi-infinite system of constraints (4.2-2): 

 

 0 0( , ) , ( , ) 0, 1,...,if x x f x i m U        (4.2-2) 

 

Where U is the uncertain data set (Ben-Tal and Nemirovski 2002). With this 

assumption, the original linear programming problem can be reformulated as: 

 

  
0

0 0 0,
: ( , ) , ( , ) 0, 1,...,ix x

Min x f x x f x i m U        (4.2.3) 

 

Problem (4.2.3) is known as the “robust counterpart” of the original problem. 

This is a semi-infinite linear problem which appears to be computationally 

intractable. However, depending on the specific set U, the robust counterpart 

could be a tractable convex mathematical problem. Typically, the robust 

equivalent is a linear problem or a conic quadratic problem (Ben-Tal et al. 2005) 

which can be resolved using algorithms for linear problems, or interior point 

methods (Ben-Tal and Nemirovski 1998). 

Some applications of this methodology can be found in Ben-Tal and Nemirovski 

(1999, 2000 and 2002), Ben-Tal et al. (2000) and Ben-Tal et al. (2004). Ben-Tal 

and Nemirovski (1999) develop an example of portfolio optimization in which 

the methodology is explained and furthermore, the results are compared with 

those obtained by the methodology proposed by Mulvey et al. (1995). What is 

more, Ben-Tal and Nemirovski (2000) used the methodology for the construction 

of robust solutions for the Netlib bookstore problems, as well as demonstrating 

that for many of these problems the robust solutions presented a low loss of 

optimality. Ben-Tal et al. (2000) presented an example of a portfolio problem 
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and compared the results through the application of a linear programming model 

which substitutes the uncertain data with their expected values, as well as with 

stochastic programming, with RO resulting to be the superior approach. 

A different approach, but one based on the same idea, is that developed by 

Bertsimas and Sim (2003, 2004). These authors propose a reformulation which 

conserves the linear structure of the problem, which is very attractive due to its 

applicability. 

The authors consider linear problems in the form (4.2.4): 

 

. .

TMax c x
s t Ax b

l x u


 
 

(4.2.4) 

 

Without losing generality, it is assumed that uncertainty affects the coefficients 

aij of the matrix A of problem (4.2.4). Each entry aij can be modeled as a 

symmetric and bounded random variable ãij which takes values of [aij - âij, aij + 

âij]. The advantage of use this uncertain data set is to maintain the structure of the 

original problem (Palma and Nelson, 2014). On the other hand, Ji is the set of 

coefficients aij, j  Ji, which are subject to uncertainty. For each row i the 

parameter i is introduced. This parameter indicates the protection level in the 

model, as this can be associated with the amount of uncertain coefficients in each 

constraint. It is important to note that only a subset of the coefficients which can 

vary will do so. This approach assumes previous behavior, but what is more, if 

more coefficients change, the robust solution continues to be feasible with a high 

probability.  
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To obtain the robust counterpart to problem (4.2.4), each constraint with 

uncertainty is reformulated, adding a protection function, in the following way 

(4.2.5): 

 

 ,ij j i i i
j

a x x b i     (4.2.5) 

The protection function corresponds to expression (4.2.6): 
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(4.2.6) 

 

Note that when i = 0,  ,i ix  =0 represents the original situation of the 

deterministic problem. On the other hand, when i =|Ji| it is being faced with the 

greatest protection, and it coincides with Soyster’s method. In this way, when i 

varies between [0, |Ji|] the protection level can be adjusted and the constraint i is 

partially protected against uncertainty.   

Additionally, it is possible associated approximate boundaries linking protection 

parameter (gamma) with a constraint satisfaction probability (Bertsimas et al., 

2004; Bertsimas and Sim, 2004). Palma and Nelson (2009) note that as in chance 

constraint programming, RO methodology uses the idea of increasing the 

probability of satisfying the constraints. Particularly in Li and Li (2015) the 

relationship between the two methods (RO and chance constraint problem) is 

proposed. 

The protection function mentioned previously is equivalent to linear 

programming problem (4.2.7): 
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(4.2.7) 

When the dual problem from the previous model is written, it results in problem 

(4.2.8): 
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(4.2.8) 

Replacing the previous dual problem in the protected constraint, Bertsimas and 

Sim (2004) propose the following problem (4.2.9) as a robust counterpart to the 

original model (4.2.4): 
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(4.2.9) 

 

As can be observed, the original linear structure is conserved, so the solution 

technique is the same used in the original problem, and it is possible to control 

the degree of conservatism in satisfying a constraint. What is more, this approach 

can be extended to discrete mathematical programming problems without large 

modifications. Various applications have been developed, for example in 
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network design (Bertimas and Sim, 2003; Ordóñez and Zhao, 2007), in 

engineering (Ben-Tal and Nemirovski, 2002) and in inventory theory (Bertsimas 

and Thiele, 2006).  

Also the methodology has been applied in natural resources planning. Bohle et 

al. (2010) use this approach in a grape harvest programming problem for 

fermentation. Varas et al. (2014) used the RO to solve a scheduling production 

problem in a sawmill. Palma and Nelson (2009 and 2014) solve forestry 

problems (harvest-scheduling and road-building models), Carlsson et al. (2014) 

work in the distribution and inventory planning in a pulp producer and they 

compare RO with a traditional deterministic approach using safety stock policy. 

The objective of safety stock is to consider the uncertainty in demand and 

transportation capacity. The advantage of this methodology is the size of the 

problem, but is needed determine the level of the safety stock. Carlsson et al. 

(2014) indicates that RO is considerably better than the best deterministic 

approaches that include safety stock levels.     

So, all these applications demonstrate that robust optimization is a useful 

methodology to deal with data variability. 

Specifically, in this research, we work with the approach of Bertsimas and Sim 

(2004) because we want to find a methodology of easy implementation and low 

complexity. Other approaches such as Ben-Tal and Nemirovski (2000) results in 

models that are computationally more complex and in some cases intractable due 

to the uncertain data sets used to model uncertainty (Bertsimas et al., 2011).  
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5. FIRST APPLICATION: PRODUCTION PLANNING PROBLEM IN 
SAWMILLS 

5.1. Problem description  

In a typical forestry company in Chile, the supply chain is divided into areas, 

such as the forestry division, the sawmill division, the cellulose plant division, 

etc. In this context, a complete set of interrelated decisions must be dealt with. 

In particular, the sawmill division, possibly with various installations, aims to 

maximize the revenues which come from the sale of sawn timber. This timber 

can consist of “dry” or “green” boards in accordance with the percentage of 

humidity. There are specific markets for both types. 

The raw material of sawmill consists of logs which come from the forests or 

stands. The logs are classified according to diameter, length and quality. 

Depending on the products demanded and the production process, each sawmill 

will have to determine the quantity of different types of logs required to satisfy 

the demand for boards. These requirements for logs must be satisfied by the 

company’s forestry division, although, in general, the decision processes in both 

divisions are not coordinated (Epstein et al. 2007). If the forestry division cannot 

fulfill the demand with its own forests, the sawmill can acquire logs from 

smallholders. It is important to point out that in Chile, the large forestry 

companies possess large expanses of forest, principally of radiata pine 

plantations. 

The logs are transported by trucks from the forests, and once they arrive at the 

sawmill they are stored according to diameter and quality. The logs remain stored 

until they are used. When they are required in the process, the logs enter the 

sawmilling line where they are cut in accordance with a previously defined 
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cutting pattern which is appropriate for the diameter of the log. This sawmilling 

process transforms the logs into rectangular cuts (Singer and Donoso, 2007) 

which depend on the characteristics of the log, producing boards of different 

sizes (Figure 5.1-1). In some cases, the process is divided in two, in which some 

boards “in process” go directly to the reprocessing phase and are eventually 

stored, resulting in “green” boards. Another quantity of boards “in process” go to 

the drying unit where the humidity content is regulated, resulting in “dry” boards. 

In some cases, the drying process can be subcontracted. Finally, some of the 

“dry” boards can go to the reprocessing plant. 

 

 

Figure 5.1-1: Example cutting pattern. 

The process is concluded when the boards are ready to be dispatched, either to 

the local market or to ports to be shipped to different destinations around the 

world. Each process has costs associated with it and limited capacity. The same 

thing occurs in the inventory phases. Figure 5.1-2 represents the general schema 

of sawmill operations. This schema is modeled in the following diagram. 
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Figure 5.1-2: Schematic of a sawmill processes. (Source: Authors). 

5.2. Deterministic production planning model 

The production planning problem in sawmills can be modeled as a linear 

program (Weintraub and Epstein 2005; Singer and Donoso 2007). The 

deterministic model considered will now be presented. In this model uncertainty 

is not considered, although there are several sources of variability, the decisions 

are dangerous in the sense of the demand may not be fulfilled.  

The consideration of uncertainty in this type of problem has been carried out 

through a combination of optimization with real time simulations (Kazemi et al. 

2010a), although this type of analysis takes a lot of time. 

The following notation is used in the formulation of the model: 

 Sets 

J Set of sawmills. 

M Set of types of boards.  
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K Set of types of logs.  

T Set of time periods.  

E Set of cutting patterns.  

 Variables 

xjmt Volume of boards type m  M (“green” o “dry”) for sale in the sawmill  

j  J in the time period t  T (m3). 

yjkt  Volume of logs type k  K demanded by the sawmill j  J in the time 

period t  T (m3). 

zjkt  Volume of logs type k  K in the sawmill’s inventory j  J in the time 

period t  T (m3). 

wjmt  Volume of boards type m  M in the sawmill’s inventory j  J in the 

time period t  T (m3). 

vjmt  Volume of boards type m  M sent to outsourcing by the sawmill j  J 

 in the time period t  T (m3). 

rjmt  Volume of boards type m  M to be produced by the sawmill j  J in 

the time period t  T  (m3). 

sjekt  Volume of logs type k  K to be processed with the cutting pattern e  

E in the sawmill j  j in the time period t  T (m3).  

 Parameters 

δt  Discount factor for the time period t  T. 

Am  Price of boards type m  M (US$/ m3). 
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ajkt  Purchasing cost of logs type k  K in the sawmill j  J in the time 

period t  T (US$/ m3). 

bj  Inventory cost of logs in the sawmill j  J (US$/ m3). 

cj  Inventory cost of boards in the sawmill j  J (US$/ m3). 

d  Cost of outsourcing (US$/ m3). 

fj  Reprocessing cost in the sawmill j  J (US$/ m3). 

F  Fraction of wood which is reprocessed (%). 

gj  Drying cost in the sawmill j  J (US$/ m3). 

hj  Cost of sawmilling in the sawmill j  J (US$/ m3). 

Rjekm  Performance of the cutting pattern e  E in the sawmill j J, applied to 

logs type k  K, given that as boards type m  M produced (m3 boards/ 

m3 logs). 

φj  Sawmilling capacity in the sawmill j  J (m3). 

ψj  Log inventory capacity in the sawmill j  J (m3). 

μj  Board inventory capacity in the sawmill j  J (m3). 

θj  Drying capacity in the sawmill j  J (US$/ m3). 

ηj  Reprocessing capacity in the sawmill j  J (m3). 

Bmt  Estimated demand for boards type m  M in the time period t  T (m3). 
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 Optimization model 
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(5.2.1) 

Subject to: 
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, , , , , , 0 , , , ,jmt jkt jkt jmt jmt jmt jektx y z w v r s j J m M e E k K t T        (5.2.11) 

   

 
 

Expression (5.2.1) specifies the objective function of the problem, maximizes the 

economic benefit obtained from the sale of boards and considers the following 

costs: purchasing of logs, inventory, outsourcing, drying, reprocessing and 

sawmilling. Transport costs are not considered. Constraints (5.2.2) and (5.2.3) 

correspond to inventory constraints of logs and boards (“green” and “dry”), 

respectively. The set of constraints (5.2.4) transforms the logs into boards 

depending on the specific performance of sawmill. This performance is a 
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function of the type of log, cutting pattern, sawmill and boards which need to be 

produced. Constraints (5.2.5), (5.2.6), (5.2.7), (5.2.8) and (5.2.9) correspond to 

the capacity limits of each phase (sawmilling, log and plank inventory, drying 

and reprocessing). The fulfillment of demand is represented by the set of 

constraints (5.2.10). Finally, constraints (5.2.11) are specifications of the nature 

of the variables. 

It can be seen that the model includes various potentially uncertain parameters, 

such as demand, price, costs, performance or conversion efficiency in sawmills. 

Carino and Willis (2001a, 2001b) present a linear model to solve the production-

inventory problem, and the results demonstrate that the model is highly sensitive 

to changes in conversion efficiency in sawmills. Additionally, as Rönnqvist et al. 

(2000) indicate, the logs which arrive at the sawmill are not straight or 

cylindrical, they can have curvatures or defects which cause losses in 

performance. In the current study, these results are followed and uncertainty in 

performance parameters (Rjekm) is considered. The RO methodology is proposed 

as a means of obtaining solutions which are immune, to some extent, to this 

variability. 

It is assumed that the forestry division is capable of delivering all of the volume 

required by the sawmill. There is no loss of generality in this assumption, as the 

sawmill can buy logs from other producers if necessary. 

5.3. Methodology to tackle the sawmill production planning problem 

To evaluate the performance of robust optimization as a tool to tackle problem of 

planning production with uncertainty, the following steps will be taken: 

 Formulate a robust counterpart to the deterministic sawmill planning problem 

 Solve the deterministic program for a particular instance. 
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 Solve the robust counterpart for the same case. 

 Compare the obtained results in both cases. The comparison considers three 

aspects: optimality, feasibility and solution structure. 

In the case of optimality, the possible losses in value of the objective function 

when using robust optimization to consider uncertainty in the performance data is 

evaluated. On the other hand, in relation to feasibility, the behavior of the 

solutions regarding possible data instances is to be analyzed, for which is used 

Monte–Carlo simulation by generating 600 scenarios for different values of  

performance of logs for the production of boards. Also different levels of 

protection will be tested. 

Finally, the analysis of the solution structure aims to determine the stability of 

the solution and its applicability when faced with uncertain data. 

5.4. Robust production planning model 

To formulate the robust counterpart to the problem presented, the first thing to do 

is substitute the decision variable rjmt using equation (5.2.4). This substitution 

alters the objective function and several of its constraints, but it eliminates the 

equality constraint (which limits the use of RO by not incorporating protection 

functions), leaving the parameter uncertain in terms of restriction associated with 

demand (inequality). Although the objective function is affected by performance 

uncertainty, the construction of a robust counterpart is not considered. This is 

justified on the basis that the objective is to determine robust solutions. As such, 

the study is focused on the satisfaction of the constraints and the objective 

function is subordinated to this goal. 

The principal constraint modified by the substitution is the demand constraint 

(5.2.10). Following the transformation and application of the robust specification 
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previously described, the demand constraint is substituted for the following 

inequalities (5.4.1), resulting in a robust model: 



1
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, , , ,
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(5.4.1) 

 

The previous expression contains new variables (βjekt, αmt, jekm) introduced to 

generate the robust reformulation, in accordance with the approach of Bertsimas 

and Sim (2003). The parameter mt represents the degree of robustness for each 

constraint. 

Is important to indicate that the parameter Rjekm not depend the period of time, so 

the robust counterpart correspond a simplify model based on Bertsimas and Sim 

(2003).    

5.5. Data instances and size of the problems 

A prototype problem instance corresponding to a typical situation in a Chilean 

forestry company was considered. The structure consists in a firm which 

manages three sawmills. Each of them is capable of processing 6 different types 

of logs with 3 cutting patterns. There are a total of 7 types of boards to be sold to 

clients, and the planning horizon considered is one year, divided into monthly 

periods. 

As has already been mentioned, the parameter considered is subject to 

uncertainty, and corresponds to the performance of transforming logs in boards 



37 

  

(Rjekm). This parameter represents the performance of a log type k when the 

cutting pattern e is applied to it in sawmill j for the production of boards type m 

(m3 plans / m3 logs). This parameter affects sawmill production, which indicates 

an exchange rate between the logs and boards for each sawmill, and obviously, 

the variations in performance affect total production. 

Regarding uncertainty, distinct scenarios are assumed in which the performance 

parameters could vary by 5%, 10%, 15% or 20% from the average value. 

Furthermore, variation in the “uncertainty budget” was also considered, which is 

represented by the parameter . This parameter can have values of between 0 

(deterministic case) and 104 (worst case) in the specific instance considered. 

Under these assumptions, the behavior of the robust counterpart is analyzed and 

the results are compared with those of the deterministic model. In the following 

subsections the results are presented in terms of optimality, feasibility and 

solution structure. 

Given these instances, the size of the deterministic model is 1,296 decision 

variables and 1,848 constraints. When the expressions to formulate the robust 

counterpart are included, the model considers 3,972 decision variables and 

13,776 constraints. Although the robust model is bigger than the deterministic 

problem, the linear structure is maintained and as such so are its advantages. 

5.6. Results and comparison 

The results of the deterministic and robust sawmill production planning models 

described in the previous sectors were represented through AMPL and were 

resolved using CPLEX software. Resolution times were not registered, as the 

models maintained their linear structure in the robust and deterministic case, 

which does not alter the complexity of the resolution. 
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The main decision variables which the problem considers correspond to the 

volume of logs type k to be processed with cutting pattern e in sawmill j in the 

time period t (sjekt). With this decision variable, and given equation (5.2.4) of the 

model, it is possible to determine the production of each sawmill. This also 

permits the determination of the volume of logs type k required by each sawmill 

in each period (yjkt).  

For example, for the deterministic model, Table 5.6-1 indicates the type of 

layout required for logs in each sawmill to achieve the maximization of benefits. 

Table 5.6-1: Type of logs demanded by sawmills 

Sawmill Log´s type 
L1 L2 L3 L4 L5 L6 

1       
2       
3       

 

As can be observed, not all sawmills require the same types of logs, there is 

“specialization” based on productivity. Furthermore, the type of log L2 is not 

necessary in any sawmill. This is due to the fact that L2 logs only participate in 

the production of 4 types of boards with low performance, while the other types 

of logs have a more extensive register to produce boards with better performance. 

Table 5.6-2 shows the relationships which exists between logs and boards, that is 

to say, the types of boards that can be obtained from distinct types of logs. 
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Table 5.6-2: Relationship log-board 

Log Board type 

B1 B2 B3 B4 B5 B6 B7 
L1        
L2        
L3        
L4        
L5        
L6        

 

Finally, Table 5.6-3 shows the types of boards to be produced by each sawmill 

for the deterministic model, which is calculated in line with equation (5.2.4) for 

an arbitrary period of time. 

Table 5.6-3: Boards to produce 

Sawmill Board type 
B1 B2 B3 B4 B5 B6 B7 

1        
2        
3        

 

a) Optimality 

The results for the deterministic model indicate that the maximum benefit which 

can be obtained (optimal) is 3,252,270 U$$. In the case of the robust model, 

there will be variations according to the scenarios considered and the degree of 

robustness defined. As such, Figure 5.6-1 shows the optimal values for the 

different uncertainty scenarios (variation of the performance coefficient of 

5%,10%, 15% and 20%) and according to the protection level considered (). 
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The protection level was made to vary in a regular way from 0 (without 

protection) up to 104 (maximum protection). 

 
 

 

Figure 5.6-1: Optimal values – Robust model 

As can be observed in the case of the least protection (when  is equal to 0), the 

optimal solution coincides with the optimal solution of the deterministic model, 

as in this case no protection is considered. 

On the other hand, as can be expected, the graph shows that the reduction in 

value of the objective function is greater in cases with high variability. At the 

other extreme, if all the performance parameters were to reach their worst case 

simultaneously, this would be in line with the approach of Soyster (1973). Table 

5.6-4 shows the optimal value obtained with the greatest degree of protection 

possible against uncertainty (when   is equal 104), for each variability scenario 

in the performance parameters.  
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Table 5.6-4: Optimal value for the worst case 

Variability 
(%) 

Optimal Value 
(US$) 

Reduction 
(%) 

0 3,252,270 - 
5 3,206,530 1.41 

10 3,156,790 2.94 
15 3,102,940 4.59 
20 3,047,810 6.29 

 

Another important result is that from a certain protection level onwards, there is 

no significant difference in the optimal value, even with respect to the worst case. 

In this data instance, when  (protection level) is around 60 or higher, the curve 

is fairly stable. This means that guarantee 100% of robustness is not significantly 

more expensive than guarantee at 60%. 

Also, it is possible indicate, that, despite we are talking about costs, the 

protection against almost the worst case is achieved with even an intermediate 

amount of protection against variability. 

The decision maker must select the tradeoff between optimality and protection, 

and if the demand is not fulfil evaluate the options in terms of costs and 

applicability to compensate the loss in optimality. 

 

b) Feasibility 

It is important to analyze the obtained solutions in terms of an a posteriori 

feasibility analysis. The robust solutions guarantee the 100% feasibility of the 

solution only when   reaches its maximum value (in this case 104). In any 

intermediate case, the possibility exists that in some scenarios the chosen 

solution could be infeasible. Through the Monte-Carlo simulation the behavior of 

solutions for distinct values of   and distinct variability was observed. In the 



42 

  

simulation, 600 scenarios were considered for the parameter, which was subject 

to uncertainty Rjekm. Of these scenarios, 300 were generated following a uniform 

distribution in the variation interval, and for each of the variability scenarios 

(5%, 10%, 15% and 20%). The other 300 scenarios correspond to a normal 

distribution which is defined in such a way that 95% of the probability is within 

the interval.Figure 5.6-2 and Figure 5.6-3 show the results of the simulation for 

both distributions. The numbers indicate the percentage of scenarios in which the 

robust solution calculated is feasible. Feasibility is considered as the full 

satisfaction of the model’s constraints. 

 

 

Figure 5.6-2: Simulations results under uniform distribution. 
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Figure 5.6-3: Simulations results under normal distribution. 

The previous figures are very useful when combined with Figure 5 -3. These 

figures can determine an acceptable value of  for the calculation of robust 

solutions. The experience of the decision maker and their degree of risk aversion 

will affect the selection of a specific value of , but for both distributions it can 

be seen that if  = 50, the estimated probability of infeasibility is less than 65% 

and furthermore, in any case, the loss of optimality never exceeds 7%. This 

percentage is considered not too high because if the demand is not meet, some 

actions could be taken. 

With a higher value of , the estimated feasibility of the solutions is closer to 

100%, particularly in the case of normal distribution, as is expected given that 

normal distribution is more concentrated closer to the average. The conclusion is 

that a highly acceptable solution can be obtained with a value of  in the middle 

range, without being excessively conservative. 

It is also important to precisely quantify the percentage of demand which is not 

satisfied when the solution is infeasible. Table 5.6-5 shows, the percentage of 

lost viability in the demand constraints for three values of . This is calculated by 
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comparing unsatisfied demand with total demand, and determining the 

proportion. The table shows the results for the scenarios generated using normal 

distribution; the results for uniform distribution are similar. 

 

Table 5.6-5: Percentage of unsatisfied demand. 

 Variability 
 5% 10% 15% 20% 
10 35% 36% 40% 40% 
60 17% 20% 20% 23% 
100 10% 14% 15% 18% 

 

It can be observed that for high variability and low values of , the percentage of 

infeasibility is higher. This result is to be expected, as a low value of  provides 

low protection in the face of uncertainty. However, an intermediate range of 

uncertainty generates robust solutions which work reasonable well in terms of 

feasibility. It is important not to forget that the scenarios are based on a normal 

distribution, which covers only 95% of the range, and as such, could include 

infeasibility by design.  

A deeper analysis can be undertaken by classifying the infeasibilities in 

accordance with the percentage of unsatisfied demand. Unfeasibility can be 

considered as significant if the percentage of unsatisfied demand is greater than 

5% of total demand. This is considered reasonable in practice, as it is possible for 

the administration to manage these situations on an operative level, either by 

buying the demand which is lacking from other sawmills or accepting a penalty 

for unsatisfied demand. Table 5.6-6 shows the percentage of scenarios which are 

infeasible within 5% of total demand. 
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The results are consistent with the previous conclusion that an increase in 

protection level generates fewer infeasibilities. 

 

Table 5.6-6: Percentage of unsatisfied demand over 5%. 

 Variability 
 5% 10% 15% 20% 
10 23% 22% 25% 27% 
60 7% 9% 10% 14% 
100 2% 3% 5% 8% 

 

c) Structure of the solution 

Another important aspect to analyze is the structure of the solutions in terms of 

their robustness. It is not desirable in a management context for production plans 

to change in an important way when uncertainty is taken into account. Robust 

solutions also have the goal of obtaining a stable production plan in spite of the 

variability in the data. The stability of the solution also helps, independently of 

variability in the data, to define the equipment setup in order to facilitate work on 

an operational level.  

The main decision variables mentioned previously are yjkt and sjekt, which 

represent the volume of logs demanded and the volume of logs processed in the 

sawmills. Table 5.6-7 shows, for variable yjkt, the comparison between the 

production plan based on the deterministic solution and the plan generated using 

the robust model for a variability of 10% and a  value of 60. 
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Table 5.6-7: Deterministic and Robust Solutions. 

 Log type 

Sawmill 
Deterministic solution 

VOF: 3,252,270 
Robust solution 
VOF: 3,138,840 

L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6 
1             
2             
3             

 

This behavior is similar to that of other solutions. The decision variables which 

take values are repeated in at least 51% of the combinations of logs and sawmills, 

which in the worst case is a much higher percentage than in the intermediate 

cases. 

Of course, the values of the decision variables change in the different scenarios 

analyzed. The sawmills demand more logs and process a greater volume to 

satisfy demand, but the specific logs which are required from the forestry 

division by the sawmills follows, in general, the same pattern as in Table 4-1. 

That is to saw, of the 6 types of logs, 5 are demanded in every uncertainty 

scenario and for any value of the parameter . This, as has already been pointed 

out, is due to the fact that these logs have high levels of performance and can be 

used to produce more types of boards, which gives them greater flexibility. 

On the other hand, the volume of logs processed by the sawmills depends to a 

great extent on the logs which come from the forest. The interesting thing is that 

the cutting patterns used for each log are independent of the uncertainty scenario 

used. This is shown in Table 5.6-8, where it can be observed that cutting patterns 

e1 and e2 are the most frequently used in the planning problem. 
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Table 5.6-8: Comparison of cutting patterns. 

   Log type 
 Cuting 

pattern 

Deterministic solution 
VOF: 3,252,270 

Robust solution 
VOF: 3,138,840 

 L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6 

Sawmill 1 
e1             
e2             
e3             

Sawmill 2 
e1             
e2             
e3             

Sawmill 3 
e1             
e2             
e3             

5.7. Sawmill production planning problem conclusions 

In this application, we have shown how the RO approach can be used to improve 

the performance and reliability of the solutions obtained from a linear 

programming model to support production planning in a sawmill. 

The approach permits natural variability induced by variation in the performance 

of different cutting patterns used in operations to be considered. The main 

advantage of this approach is that it allows the equilibrium between the 

requirements for robustness and the loss of optimality to be studied. The 

approach which we have followed, that of Bertsimas and Sim (2003, 2004), also 

conserves the original linear structure of the problem.  

The main conclusion is that the “Price of robustness” for this particular problem 

is not very high, as the objective function did not deteriorate by more than 7% in 

all of the scenarios considered (5%, 10%, 15% and 20% of total variability, 

taking into account the most conservative protection against uncertainty). This is, 

of course, a conclusion based on a particular case which we have tested for this 

problem, but one which could reflect a property of the model. The concrete case 

presents high flexibility in obtaining boards from logs. What is more, the solution 
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obtained guarantees certain immunity with respect to variations in performance, 

which are variations which correspond approximately to what is observed in 

practice. It is also interesting to note that deterioration of the worst case is 

obtained for protection values against uncertainty which are in the middle range, 

and as such more losses are not generated as a result of being conservative. 

These conclusions are supported by the results of the simulation as the robust 

solutions obtained conserve a high percentage of feasibility, as can be observed 

in the Figures 5-4 and 5-5. In fact, the feasibility percentage is always above 50% 

and rapidly increases in the extent to which the protection level is increased, 

reaching practically 100%. 

When feasibility is measured using loose dimensions, that is to say, dimensions 

which allow a violation of up to 5% of the demand constraints, the percentage of 

feasibility increases to a minimum of approximately 70%. Feasibility also 

increases rapidly in the extent to which the protection level is increased, as is 

shown in table 5-6. This result is very important as it indicates that a robust 

solution can be selected, for example, with an intermediate protection range, and 

guarantee good performance of the solution with a price of robustness which is 

never greater than 7% of the objective function. 

This suggests that the RO methodology is a good tool to improve the current 

deterministic model, with the aim of permitting the inclusion of variability and 

uncertainty in the model. This does not involve a significant computational cost 

or the need to use highly specialized software. The use of this methodology 

allows for robust solutions to be obtained, and at the same time, for the 

sensitivity of the model to tactical decisions related to uncertainty in the 

performance parameters to be evaluated. 

Another important conclusion is that the decision principals do not present 

significant changes in structure, that is to say, the types of logs required by the 
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sawmills and the types of plank which are produced do not alter significantly 

with respect to the deterministic or nominal solution. Furthermore, the cutting 

patterns used tend to be the same in different variability scenarios. This is 

important as it indicates that the model is robust and can be used with confidence 

in a real management environment. This further reinforces the applicability of 

this methodology in the problems associated with the supply chain of Chilean 

forests. 
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6. SECOND APPLICATION: HARVEST PRODUCTION PLANNING 
PROBLEM 

6.1. Problem description  

The harvest planning problem consists of determining the surface of each forest 

or stand, in terms of the age of the harvest, and to cut in each period in such a 

way as to maximize the financial benefits. Revenues come from the sale of 

distinct products (logs) which can be obtained from each stand and the 

operational costs are associated with the harvest, transport and maintenance or 

inventory of the logs in intermediate locations. This is a tactical/operational 

problem in nature. Figure 6.1-1 presents a diagram of the problem. 

 

Figure 6.1-1: Flows in the harvest planning problem. 

Given the existing transport costs, the volume to be transported from the stands 

or intermediate locations to the demand centers must also be determined; and 

from the intermediate locations to the consumption centers, assuring that demand 

will be fulfilled in each of these areas. 

Additionally, to determine the surface area to be harvested proximity constraints, 

which aim to reduce the visual and environmental impact of the harvest, are also 
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incorporated. This means that if a stand is harvested, none of the neighboring 

stands can be harvested in the same period, given a certain definition of what is 

considered as neighboring. 

6.2. Deterministic model for harvest production planning 

In the following section, a deterministic mathematical model which represents 

the previously described problem is presented. It is important to signal that the 

inclusion of proximity constraints implies the formulation of a model which 

includes binary variables in order to be resolved. 

The notation used and the formulation of the model are as follows: 

 

 Sets 

I Sets of stands. 

T Sets of time periods.  

J Sets of intermediate locations.  

P Sets of produce.  

K Sets of consumption centers.  

 Variables 

xit Surface area of the stand to be harvested i  I in the time period t  T 

(ha). 

wijpt  Volume of produce p  P to be transported from the stand i  I to the 

intermediate location j J in the time period t  T (m3). 
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wjkpt Volume of produce p  P to be transported from the intermediate 

location j  J to the consumption center k  K in the time period t  T 

(m3). 

wikpt  Volume of produce p  P to be transported from the stand i  I to the 

consumption center k  K in the time period t  T (m3). 

rjpt  Volume of produce p  P which is stored in the intermediate location j 

J in the time period t  T (m3). 

vit  Binary variable, which takes the value of 1 if the stand i  I is harvested 

in the time period t  T, and 0 if this is not the case. 

 Parameters 

Bpkt  Selling price of the produce p  P to the consumption center k  K in 

the time period t  T ($/m3). 

Hit  Cost of harvesting the stand i  I in the time period t  T ($/ha). 

Wjt  Storage costs in the intermediate location j  J in the time period t  T 

($/m3). 

T1
ijt  Transport costs from the stand i  I to the intermediate location j  J in 

the time   period t  T ($/m3). 

T2
jkt  Transport costs from the intermediate location j  J to the consumption 

center  K in the time period t  T ($/m3). 

T3
ikt  Transport costs from the stand i  I to the consumption center k  K in 

the time period t  T ($/m3). 

C1
t  Maximum production capacity in the time period t T (ha). 
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C2
jt  Maximum storage capacity in the intermediate location j  J in the time 

period t  T (m3). 

Rpi  Performance of one hectare of the stand i  I in terms of volume of 

produce p  P (m3/ha). 

Dpkt  Demand from the consumption center k  K for product p in the time 

period t  T (m3). 

Si  Total surface area of the stand i  I (ha). 

P  Activation cost of the harvest variable, which is the same for every 

stand ($). 

 Optimization model 

  1

2 3
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t T

x S i I


    (6.2.3) 

, ,jkpt ikpt pkt
j J i I

w w D p P k K t T
 

        (6.2.4) 

1
it t

i I
x C t T



    (6.2.5) 

, ,pi it ijpt ikpt
j J k K

R x w w i I t T p P
 

         (6.2.6) 

,it i itx S v i I t T      (6.2.7) 

1 , ,ijpt jkpt jpt jpt
i I k K

w w r r j J t T p P
 

         (6.2.8) 

2 ,jpt jt
p P

r C j J t T


     (6.2.9) 
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 
, , , , 0 , , ,

0,1 ,
it ijpt ikpt jkpt jpt

it

x w w w r i I j J p P t T

v i I t T

     

   
 

(6.2.10) 

     
   

 

 

  
 

Expression (6.2.1) represents the objective function of the problem, which aims 

to maximize the revenues of the Division. The group of constraints (6.2.2) 

corresponds to the proximity limitations, as it is not possible to harvest 

neighboring forests in the same time period, or to harvest greater surface area 

than that of each stand (6.2.3). The set of constraints (6.2.4) model the 

satisfaction of demand and necessary flows to meet requirements. Constraint 

(6.2.5) models the maximum production capacity in each period and constraints 

(6.2.9) model the maximum storage capacity in each period and sawmill. The 

constraints (6.2.6) represent the harvest flows according to production. The 

inventory in the intermediate locations is represented by equations (6.2.8), and 

the set of constraints (6.2.7) which indicate that it is only possible to harvest a 

certain surface area of a stand if it is included in the stands to be harvested. 

Finally, the nature of the variables is reflected in the relations (6.2.10). 

6.3. Methodology to tackle the harvest production planning problem 

To evaluate the performance of Robust Optimization as a tool to tackle the 

production planning problem with uncertainty, the following steps will be taken: 

 Formulate a robust counterpart to the deterministic harvest production 

planning problem 

 Resolve the deterministic problem. 

 Resolve the robust counterpart for the same data. 

 Compare the results obtained for both cases. The comparison considers three 

aspects: optimality, feasibility and structure of the solution. 
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As in the previous application, in the case of optimality, the aim is to evaluate the 

possible losses in value of the objective function when using robust optimization 

to consider uncertainty in the performance data. On the other hand, in relation to 

feasibility, the behavior of the solutions regarding possible data instances is to be 

analyzed, for which scenarios are generated via Monte-Carlo simulation and 

distinct protection levels are tested. 

Finally, the analysis of the structure of the solution aims to determine the 

stability of the solution. 

6.4. Robust harvest production planning model 

To formulate the robust counterpart to the problem presented, the two groups of 

constraints that contain the uncertain parameter Rpi are reformulated. As such, 

constraints (6.2.6) are substituted for constraints (6.4.1) to generate the robust 

counterparts. 

1 1 1 , ,pi it ipt ipt ijpt ikpt
j J k K

R x z w w i I t T p P
 

            

1 1 1ˆ , ,ipt ipt pi itz a y i I t T p P        

1 1 ,it it ity x y i I t T       

1 1 1, , 0 , ,ipt it iptz y i I t T p P       

(6.4.1) 

6.5. Data instances and size of the problems 

As an application, data from a typical situation of a forestry company was used. 

The company is assumed to have 380 stands of different sizes, 5 intermediate 

locations, 17 consumption centers, 5 products (trimmed, thick saw wood, thin 

saw wood, short saw wood, pulpwood) and two periods (winter – summer) to be 

planned.  
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The uncertain parameter corresponds to the performance of the forests (Rpi). This 

parameter represents the performance of one hectare of forest or stand i to obtain 

a certain volume quantity of produce p (m3/ha).  

With respect to uncertainty, it is considered that performance can vary by 10% 

following the previously defined uncertainty model U. As in the previous 

application, variation in the “uncertainty budget” is considered, and is 

represented by the parameter . As there are two constraints which contain the 

uncertain parameter, a parameter  is defined for each constraint. As such, for 

this case in particular 1 can take values between 0 and 5 to adjust the 

uncertainty assumed. Under these assumptions, the performance of the robust 

counterpart is analyzed and the results are compared with the deterministic 

model. In the following subsections the results are presented in terms of 

optimality, feasibility and structure of the solution.  

Given these instances, the size of the deterministic model is 86,020 decision 

variables and 91,355 constraints. When the expressions to formulate the robust 

counterpart are included, this model considers 94,380 decision variables and 

103,113 constraints. Although the robust model is bigger than the deterministic 

problem, its linear structure is maintained and as such so are its advantages. It is 

important to highlight that although this is a linear problem (both the 

deterministic and the robust problem), they are also mixed problems which 

contain binary variables in their formulation, which makes their resolution more 

difficult. 
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6.6. Results and comparison 

Table 6.6-1 presents the main results of the forest harvest planning model. 

Table 6.6-1: Deterministic model results. 

Index Results 
Period 1 Period 2 Total 

Number of stands harvested (N°) 105 78 183 
Area harvested (ha) 1,050 1,050 2,100 

Inventory (m3) 10,000 0 10,000 
Sales (m3) 197,905 278,281 476,185 

 

Given the data instance, the results reflect the fact that both harvest capacity and 

inventory storage capacity are limited, and as such are scarce resources. The 

quantity of stands to be harvested is approximately 50% of the available stands.  

a) Optimality 

Table 6.6-2 shows the cases analyzed for distinct combinations of the protection 

level, depending on the constraints subject to uncertainty. Figure 6.6-1 presents 

the optimal value for each of the cases. 

 

 

 

 

 

 



58 

  

Table 6.6-2: Gamma values. 

Case 1   2   
Deterministic 

(0) 
- - 

1 0.1 0.5 
2 0.2 1 
3 0.3 1.5 
4 0.4 2 
5 0.5 2.5 
6 0.6 3 
7 0.7 3.5 
8 0.8 4 
9 0.9 4.5 

10 0.95 4.75 

 

 

Figure 6.6-1: Optimal values in different cases. 
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As can be appreciated in the previous figure (Figure 6.6-1) and in Table 6.6-3, 

when the protection level is increased, the optimal value decreases. However, the 

difference when compared with the deterministic case does not exceed 10% even 

with the highest protection level considered.  

Table 6.6-3: Percentage change in the optimal value. 

Case Variation respect the 
deterministic model 

(%) 
Deterministic 

(0) 
- 

1 0.7% 
2 1.4% 
3 2.2% 
4 3.0% 
5 3.8% 
6 4.9% 
7 6.0% 
8 7.1% 
9 8.3% 

10 9.1% 

 

In the extent to which uncertainty increases, the value of the objective function 

decreases because the costs and quantity of stands harvested increases as a result 

of lower performance. In Table 6.6-4 the results are presented for case 9. 

Table 6.6-4: Robust model results. 

Index Results 
Period 1 Period 2 Total 

Number of stands harvested (N°) 101 105 206 
Area harvested (ha) 1,050 1,050 2,100 

Inventory (m3) 10,000 0 10,000 
Sales (m3) 197,905 275,661.10 473,566.10 
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As in the previous case, the harvest capacity and inventory storage capacity are 

limited resources.  

 

b) Feasibility 

To test the robustness of the solution in terms of feasibility, that is to say, in 

terms of how the obtained solutions behave in the face of distinct data instances, 

diverse data instance scenarios were stimulated and the robust model solution 

was tested. 100 scenarios are created randomly within the uncertainty set. 

To evaluate feasibility, the constraints which contain uncertainty parameters are 

revised, considering one group of constraints with 1,900 constraints, which 

correspond to constraints (6.2.6). The results are shown in Table 6.6-5. 

Table 6.6-5: Summary feasibility. 

Percentage of 
scenarios infeasible 

(%) 

Average infeasibility 
(%) 

10.0 0.71 

 

In the previous table, it can also be observed that on average, the percentage of 

infeasibility (cubic meters of produce which are lacking in order to meet 

demand) is 0.71%. 

 

c) Structure of the solution 

When the solutions obtained are analyzed, it can be observed that the 

deterministic model solution is large part repeated in the different uncertainty 

scenarios, that is to say, the stands harvested and the quantity to be harvested are 
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fairly homogenous. For example, in uncertainty case 1, 94.51% of the stands 

harvested (and their quantity in hectares) are the same as the stands to be 

harvested according to the deterministic model solution. Table 6.6-6 shows the 

percentage of stands and quantities which are repeated with regard to the 

deterministic model in the different uncertainty cases. 

Table 6.6-6: Robustness in the structure of the solution. 

Case Maintenance of the 
structure (%) 

1 94.5 
2 91.8 
3 85.1 
4 78.1 
5 78.0 
6 77.4 
7 77.8 
8 75.2 
9 74.2 

10 74.0 

 

This is interesting as the solution demonstrates robust behavior and does not vary 

to a large extent when the protection level is increased in the face of uncertainty. 

It can be concluded that in the extent to which uncertainty increases, the value of 

the variable associated with the harvest does not vary largely, and as such the 

solution is stable and robust. 

6.7. Harvest production problem conclusions 

With the results obtained, the analysis undertaken and conditions given, it should 

be highlighted that the results of the problem for all cases are limited by the 
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harvest quantity and storage capacity in each period. Naturally, in the extent to 

which uncertainty increases, the number of stands harvested increases, and as 

such the costs associated with the harvest increase and the value of the objective 

function decreases. 

The OR methodology is, in this sense, an excellent option. It is a methodology 

which is easy to implement, its solutions are robust and stable, with a high rate of 

feasibility and stability in the conservation of the deterministic solution structure. 
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7. THIRD APPLICATION: INTERTEMPORAL PLANNING PROBLEM 

7.1. Problem description  

The problem corresponds to the sawmill planning problem explained in previous 

sections. Specifically, the coordination problem between the tactical and 

operational planning levels is considered. The decisions which are taken on a 

tactical level affect performance on an operational level. Given the uncertainty in 

performance, or the availability of logs, the solution could be altered on an 

operational level or be infeasible. 

Typically, on a tactical level decisions are taken on an aggregate level, and in this 

particular case, these decisions correspond to the volume of logs requested from 

the forestry division to satisfy the demand of the sawmill. In this way, the 

requested logs should arrive at the sawmill and with this information, the 

operative model should be used to determine the volumes to be cut with 

determined cutting patterns, with the aim of satisfying final demand. 

In this way, trying to coordinate decisions between different decision levels is a 

complex task due to the variability and limited knowledge of the probabilistic 

behavior of the data. 

7.2. Methodology to tackle intertemporal production planning problem 

To evaluate the usefulness of RO as a methodology to improve coordination 

between distinct time horizons, a comparison of intertemporal planning is 

performed using only the deterministic model versus the utilization of a robust 

model which explicitly includes uncertainty in its formulation. 
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As a first step, the deterministic model is solved on a tactical level. With this 

model the quantity of logs which must be requested to the forestry division in 

monthly periods is obtained. On this level (tactical), the performance of the logs 

is on an aggregated level. The logs are transformed in boards and the boards must 

satisfy demand, which on a tactical level is also considered in an aggregated way. 

Subsequently, on an operational level, where the boards must be produced to 

satisfy real demand, the first thing which occurs is the arrival of the requested 

logs to the sawmill from the forest. As the level of work is operational, the 

information is disaggregated in weekly periods in which the requirements must 

arrive. This information generates the real availability of the logs on an 

operational level, with which the operation planning problem is solved. In this 

problem, the information of specific cutting pattern performance is also 

disaggregated, and in this way boards are produced with the available logs. 

On this short term level, although it could be expected that monthly demand for 

logs (determined on a tactical level) would be distributed in a homogenous way 

in each week, on an operational level this is not very likely. On the one hand, the 

logs which are actually sent each week from the forests are not necessarily 

distributed in a uniform way and, what is more, do not necessary meet the total 

quantity agreed, and as such lower than planned volume can arrive at the 

sawmills. That is to say, the forestry division does not necessarily satisfy the 

requested quantities, even on average. It is presupposed that the forestry division 

takes its own decisions and sends certain quantities to the sawmill. 

To test the performance of RO methodology, simulation was used 100 data 

scenarios are run, varying the availability of logs on a weekly level and the 

percentage of unfulfilled demand during the first month of planning. 

With these quantities (scenarios), which are the quantities of logs which are 

actually available, the sawmill executes its deterministic operational model. 



65 

  

Therefore, this is the point at which uncertainty emerges, in the real availability 

of specific logs on an operational level. Evidently, this affects real performance 

in terms of the final products which it is possible to obtain. 

The results of the resolution, first of the deterministic tactical model and then the 

operational model, which is also deterministic, are analyzed. 

Subsequently, to consider the uncertainty which could present itself on an 

operational level due to the real availability of logs, possible variability in 

aggregated performance is incorporated on a tactical level. In this way the robust 

tactical model and subsequently the deterministic operational model are resolved, 

and the behavior of the data scenarios generated is analyzed. 

In this way, the methodology to evaluate RO in intertemporal planning is 

presented in the Figure 7.2-1. 

Deterministic 
Tactical Model

Robust Tactical 
Model

Deterministic 
Operational Model

Deterministic 
Operational Model

Logs required to forest

Logs actually
provided by the forest

Logs required to forest

Logs actually
provided by the forest

Comparison
 

Figure 7.2-1: Flows in the planning problem. 
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7.3. Deterministic and robust tactical model 

Firstly, the mathematical sawmill production planning model previously 

described is considered. However, some simplifications are considered and the 

information is aggregated to differentiate the tactical and operational models. 

Specifically, the simplifications consider reduce the number of sawmill (used 

only 1 sawmill), eliminate constraints of drying capacity, reprocessing and not 

use cutting patterns.  

 

a) Deterministic model 

The notation used and formulation of the model are as follows: 

 Sets 

M Set of types of boards.  

K Set of types of logs.  

T Set of time periods.  

 Variables 

skt  Volume of logs type k  K demanded and processed by the sawmill in 

the time period t  T (m3). 

wmt  Volume of board type m  M in inventory in the sawmill in the time 

period t  T (m3). 

 Parameters 

CT
kt  Buying cost of logs type k  K in the sawmill in the time period t  T  

(US$/ m3). 
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CA
kt Sawmilling cost of logs type k  K in the sawmill in time period t  T  

(US$/ m3). 

CB
mt  Inventory cost of boards type m  M in the sawmill in the time period t 

 T (US$/  m3). 

Rkm  Performance of logs type k  K to produce boards type m  M (m3 

boards/ m3 logs). 

PA
t  Sawmilling capacity in the sawmill in time period t  T (m3). 

PB
t  Inventory capacity in the sawmill in time period t  T (m3). 

Dmt  Estimated demand for boards type m  M in the time period t  T (m3). 

 Optimization model 

 T A B
kt kt kt mt mt

t T k K m M
Min z C C s C w

  

 
     

 
    

(7.3.1) 

Subject to:  

A
kt t

k K
s P t T



    (7.3.2) 

B
mt t

m M
w P t T



    (7.3.3) 

1 ,mt km kt mt mt
k K

w R s w D m M t T


         (7.3.4) 

, 0 , ,mt ktw s m M k K t T        (7.3.5) 

 

The deterministic tactical model considers in expression (7.3.1) the minimization 

of cost of acquiring and sawmilling the logs, and the inventory costs of the 

boards. Constraints (7.3.2) and (7.3.3) correspond to the capacity constraints of 

sawmilling and inventory, respectively. The set of constraints (7.3.4) reflects the 

fulfillment of demand for boards in each period. Finally, constraints (7.3.5) are 

specifications of the nature of the variables. 
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In this study, uncertainty in performance parameters (Rkm) is considered and the 

utilization of RO methodology is proposed to obtain solutions which are 

immune, to some extent, to this variability in order to improve coordination 

between tactical and operational planning levels. 

 
b) Robust model 

Considering that constraint (7.3.4) contains the uncertain parameter, it is that 

constraint which is protected, obtaining the following robust model: 

 

 T A B
kt kt kt mt mt

t T k K m M
Min z C C s C w

  

 
     

 
    

(7.3.6) 

Subject to:  

A
kt t

k K
s P t T



    (7.3.7) 

B
mt t

m M
w P t T



    (7.3.8) 

1 ,mt km kt mt mt kmt mt
k K k K

w R s w D m M t T 
 

 
          

 
   

(7.3.9) 

 , ,kmmt kmt ktR m M k K t T           (7.3.10) 

,kt kt kts k K t T         (7.3.11) 
, , , , 0 , ,mt kt mt km ktw s m M k K t T           (7.3.12) 

 

7.4. Operational model 

At operational level also is a simplified model, but the information is more 

disaggregate in shorter periods of time and the use of cutting patterns. 

The notation used and formulation of the model is as follows: 
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 Sets 

M Set of types of boards.  

K Set of types of logs.  

T Set of time periods.  

E Set of cutting patters.  

 
 Variables 

s°ekt  Volume of logs type k  K processed with cutting pattern e  E by the 

sawmill in the time period t  T (m3). 

w°mt  Volume of boards type m  M in inventory in the sawmill in time 

period t  T (m3). 

z°kt  Volume of logs type k  K in inventory in the sawmill in the time 

period t  T (m3). 

 Parameters 

CP
kt  Inventory cost of logs type k  K in the sawmill in the time period t  T 

(US$/ m3) 

CA
kt Sawmilling cost of logs type k  K in the sawmill in time period t  T 

(US$/ m3). 

CB
mt  Inventory cost of boards type m  M in the sawmill in time period t  T 

(US$/m3). 

DT
kt  Availability of logs type k  K in the sawmill in time period t  T 

(US$/m3). 
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R°ekm  Performance of logs type k  K to produce boards type m  M using 

cutting pattern e  E (m3 boards/ m3 logs). 

PA
t  Sawmilling capacity in the sawmill in time period t  T (m3). 

PB
t  Inventory capacity of boards in the sawmill in time period t  T (m3). 

PP
t  Inventory capacity of logs in the sawmill in time period t  T (m3). 

D°mt  Estimated demand for boards type m  M in the time period t  T (m3). 

 Optimization model 

 
B o A o P o
mt mt kt ekt kt kt

t T m M e E k K k K
Min z C w C s C z

    

 
      

 
     

(7.4.1) 

Subject to:  

1 ,o T o o
kt kt kt ekt

e E
z D z s k K t T



        (7.4.2) 

1 ,o o o o o
mt ekm ekt mt mt

k K e E
w R s w D m M t T

 

         (7.4.3) 

o A
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e E k K
s P t T

 

    (7.4.4) 

o P
kt t

k K
z P t T



    (7.4.5) 

o B
mt t

m M
w P t T



    (7.4.6) 

,o p m
mt mt mtw w w m M t T       (7.4.7) 

, , , , 0 , , ,o o o p m
mt ekt kt mt mtw s z w w e E m M k K t T          (7.4.8) 

 
 

As in the tactical model, the operational model considers the minimization of 

costs as its objective function (7.4.1). The costs considered correspond to the 

sawmilling and inventory costs of the logs, and the inventory cost of the boards. 

The constraints (7.4.2) model the volume of logs which are processed in each 

period in the sawmill. These logs can come from the available inventory in the 
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sawmill or directly from the forest. The set of constraints (7.4.3) represents the 

fulfillment of demand for boards in each period. Constraints (7.4.4), (7.4.5) and 

(7.4.6) correspond to the capacity constraints of sawmilling and inventory of logs 

and boards, respectively. The set of constraints (7.4.7) is used to segment the 

inventory of boards and to be able to determine if breaking points are produced 

which will not allow demand to be satisfied. Finally, constraints (7.4.8) are 

specifications of the nature of the variables. 

7.5. Data instances and size of the problems 

Data from a typical situation of a forestry company was used. The company is 

assumed to have 6 types of logs and 7 types of measured timber both on a tactical 

and operational level. For the tactical planning level a time horizon of 12 months 

is considered, divided in monthly periods. 

The uncertainty parameter, on a tactical level, is that which corresponds to the 

performance of the logs (Rkm). This parameter represents the performance of a 

log to obtain a certain volume in quantity of boards. 

With respect to uncertainty, it is considered that performance can vary by 5% in 

line with the previously defined uncertainty model U. As in the previous 

applications, variation in the “uncertainty budget” is considered, and is 

represented by the parameter . This parameter can take values between 0 and 6, 

to adjust to the uncertainty assumed. 

On an operational level, the planning horizon considered is monthly, and is 

divided into weeks. Additionally, 5 cutting patterns are proposed. 
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7.6. Results 

a) Results of the deterministic tactical model 

Table 7.6-1 presents the results of the tactical deterministic model, regarding the 

quantity of logs (m3) to be requested from the forest each month. 

Table 7.6-1: Logs demanded to forest (m3) as tactical deterministic model. 

Period 
Logs demanded to forest (m3) 

LOG1 LOG2 LOG3 LOG4 LOG5 LOG6 

1 5,585 0 0 0 17,340 2,573 
2 7,140 0 0 0 2,885 15,474 
3 7,911 0 0 0 5,617 11,971 
4 5,420 0 0 0 20,079 0 
5 3,770 0 0 0 21,729 0 
6 8,425 0 0 0 7,419 9,655 
7 5,400 0 0 0 20,099 0 
8 7,874 0 0 0 11,176 6,449 
9 7,491 0 0 0 0 18,008 

10 8,517 0 0 0 0 16,982 
11 0 0 5,982 0 18,649 0 
12 0 0 4,869 0 20,439 0 

 

The results obtained on an operational level (Table 7.6-2) show that not 

considering possible variability on a tactical level can lead to demand not being 

fulfilled on an operational level, putting business continuity at risk. As such, of 

the 100 scenarios simulated, only 66.6% of them were feasible given the 

availability of logs. On the other hand, in these feasible scenarios, a cost increase 

is produced, which on average was 3.03%. 
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Table 7.6-2: Summary of scenarios at the operational level. 

Unmet demand (%) 
Average increase in 

the value of the 
objective function (%) 

33.3 3.03 

 

b) Results of the tactical robust model 

Similarly, Table 7.6-3 presents the results of the tactical model. In this case the 

robust counterpart for  is equal to 6, which as such considers the highest 

protection level possible. The numbers represent the quantity of logs (m3) to be 

requested from the forest each month. 

Table 7.6-3: Logs demanded to forest (m3) as tactical robust model. 

Period 
Logs demanded to forest (m3) 

LOG1 LOG2 LOG3 LOG4 LOG5 LOG6 

1 7,822 1,962 0 0 0 15,714 
2 2,397 6,952 0 0 826 15,324 
3 0 11,674 0 0 715 13,110 
4 6,052 0 0 0 19,447 0 
5 7,399 0 0 0 5,053 13,047 
6 10,385 0 0 0 0 15,114 
7 9,753 0 0 0 0 15,746 
8 9,156 0 0 0 7,347 8,996 
9 7,909 0 0 0 0 17,590 

10 8,989 0 0 0 0 16,510 
11 1,175 0 5,314 0 19,010 0 
12 3,125 0 2,511 0 19,862 0 
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Following the same exercise as previously, 100 scenarios are simulated, varying 

the weekly availability of logs and the percentage of unfulfilled demand for the 

first month of planning. 

When uncertainty is incorporated on a tactical level, the operational level 

becomes more robust with 100% of scenarios being feasible, and therefore 

satisfying all of the demand. No cost increases were generated; on the contrary, 

there is an average reduction of 10% on an operative level. And on a tactical 

level, for the most conservative case, the increase in the objective value is 12.6%. 

For distinct protection levels () the results are similar. 

c) Comparison and conclusions 

As can be observed in Table 7.6-4, the quantities required on a tactical level, 

either using the deterministic model or the robust model, independently of the 

protection level, are the same. However, the specific volumes and types of logs 

would vary, in order to favor those logs assigned to a greater quantity of final 

products (boards). 

Table 7.6-4: Comparison between robust and deterministic tactical model. 

Case Period 
Logs demanded to forest (m3) Total Volume 

(m3) LOG1 LOG2 LOG3 LOG4 LOG5 LOG6 

Deterministic 1 5,585 0 0 0 1,7340 2,573 2,550 
Robust (=6) 1 7,822 1,962 0 0 0 15,714 2,550 
Robust (=5) 1 7,822 1,962 0 0 0 15,714 2,550 
Robust (=4) 1 7,822 1,962 0 0 0 15,714 2,550 
Robust (=3) 1 8,075 1,436 0 0 833 15,154 2,550 
Robust (=2) 1 8,955 327 0 0 802 15,415 2,550 
Robust (=1) 1 8,177 0 0 0 5,960 11,361 2,550 
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On the other hand, regarding costs on an operational level, when variability is 

introduced in an explicit way through the robust counterpart it can be observed 

that the increase in costs, when comparing the robust approach with the 

deterministic approach, is not more than 12.6% (Table 7.6-5 and Figure 7.6-1). 

Table 7.6-5: Optimal value – Deterministic and Robust model. 

Case Optimal value 
(US$) 

Variation 
(%) 

Deterministic 47,652,700 - 
Robust 
 (=1) 50,747,000 6.5 

Robust 
 (=2) 52,247,500 9.6 

Robust  
(=3) 53,387,900 12.0 

Robust 
(=4) 53,676,200 12.6 

Robust  
(=5) 53,676,200 12.6 

Robust 
(=6) 53,676,200 12.6 
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Figure 7.6-1: Optimal value – Tactical model. 

It can be concluded that when the robust model is used on a tactical level in the 

medium term, short term decisions are more consistent, thus guaranteeing 

customer service. Additionally, losses in optimality on a tactical level are not 

significant, do not exceed 12.6% and, at least in the instances studied, the optimal 

value on an operational level improve using RO. 
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8. GENERAL CONCLUSIONS AND DISCUSSION 

In this research the applicability of the RO is explored in some applications of 

production planning problem in the supply chain in a major national industries, the 

forest industry. In particular, three exploratory examples were developed to test the 

hypothesis and achieve the objectives. 

A first model examines how the production plan for a sawmill is affected due the 

uncertainty in the performance of different cutting patterns. The uncertainty is because 

the variability in the logs from forests. 

The second model, studies the problem of harvest stands to provide logs, considering the 

variability in productivity per hectare of forest for different types of product (export, 

sawlog and pulpwood). 

Finally, a production problem in two hierarchical levels is analyzed, and the 

methodology used a robust model at the tactical level to analyze the impact of 

uncertainty at the operational level. 

The main conclusion which is obtained from this study is effectively that the Robust 

Optimization methodology, following the approach of Bertsimas and Sim, is a very good 

tool to support decision making in uncertain situations. In problems where the 

probability distribution of the data is not known or cannot be determined, RO and its 

simplicity in the construction of uncertain sets facilitates the incorporation of 

uncertainty, notably improving the performance of the solutions. 

This methodology, as was expected, is very simple to apply, and given that the robust 

models maintain the same structure as the original deterministic models, does not 

increase resolution difficulty. Particularly, in the applications presented in this research, 

deterministic models and their robust counterpart are linear. This represents a significant 

advantage associated with this method. With the applications or exploratory examples 
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developed in this study it was shown that the RO can be used in actual practice in large 

problems. By keeping the same structure to the original model, it can be solved using the 

same techniques of resolution without increasing the complexity of analysis to users. 

As can be observed in the cases studied, the loss of optimality due to the inclusion of 

protection against uncertainty is low and can be disregarded. It never exceeded 10% and 

what is more, with this methodology a tradeoff between optimality and robustness can 

be established. Therefore, it is possible to manage the loss of optimality within the limits 

which the decision maker considers appropriate.  

Regarding robustness, the methodology turns out to be robust, with the percentage of 

feasibility of the solutions increasing between the deterministic model and the robust 

model in all of the cases analyzed. Similarly, in terms of optimality, it is possible for the 

decision maker to define how robust they expect the solution to be. 

This feature of the RO is relevant because the decision maker can choose how 

conservative or risky to be. Through the parameter gamma it is possible to move from 

insuring against the worst case (conservative) and, in the other extreme, to not consider 

the uncertainty at all and using the deterministic model (risky). Between these points, it 

is possible choose the desired level of robustness, which is possible to associate with 

percentages of feasibility according to the literature. 

Finally, in relation to the stability of the solutions, it is observed that a fairly high 

percentage of the decisions are maintained stable. This is desirable and can even be 

considered a further demonstration of the robustness of this methodology. The stability 

of the solution also helps, independently of the data variability, to define the equipment 

setups which will facilitate work on an operational level. 

Additionally, in the intertemporal production planning case studied, it is observed that 

RO is also a tool to support the coordination of distinct hierarchical planning levels in a 

more efficient way. This provides greater versatility to this methodology.  
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Particularly, the use of the RO to study the coherence between different decisions 

hierarchical level opens an alternative way to study this important issue. This problem is 

still not solved completely. So, this research is becoming an initial methodological 

contribution to explore in future research. In fact, this thesis and in particular the third 

application associated with decision making between different hierarchical levels led to 

an undergraduate thesis (Espinoza, 2013). 

Finally, through production models present general structure makes it possible to extend 

these results to supply chains in other sectors of economic activity (retail, energy 

production, etc.) 
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9. FUTURE RESEARCH 

Some of the challenges for future research which have been identified in this thesis 

correspond to the use of a moving horizon for the robust model, in order to be able to 

adjust the decisions which are taken through various periods, incorporating the 

possibility of modifying them when uncertainty disappears given that the present time 

has been executed. In this way, an action plan can be adjusted in each period, with the 

objective of incorporating performances which are currently taking place. As such, only 

the decision regarding the optimal solution for the first period would be adopted, and 

from then on modifications can be incorporated in accordance with what occurs in 

reality. This, of course, is an approximation to introduce some adaptability in the 

decisions, but it does not optimize in time in the same way as a formulation of dynamic 

stochastic programming. However, the utilization of decision models in moving 

horizons is a habitual practice. 

On the other hand, the uncertain data in our case studies (performance coefficients) is 

also present in the objective function, and in various constraints which are repeated. This 

indicates that an implicit relationship exists between the constraints and the objective 

function. This relationship was not considered in this study, and the solution obtained is 

probably more conservative than is really necessary. The question which should be 

investigated is whether or not it would really be relevant to consider these relationships 

between the coefficients. Future research on this issue should include extensions to the 

RO methodology to manage this situation. 

Finally, it is important to evaluate the applicability of this RO methodology for the 

forestry supply chain as a whole, integrating solutions which connect different problems 

in diverse divisions (sawmills, forests, etc.). 

As a final comment regarding the approach of this thesis; the models presented are 

static, which means that all of the decisions must be taken before the implementation of 
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uncertain data (Chen and Zhang, 2009). This assumption could produce solutions which 

are too conservative and restrictive. For example, for the sawmill production planning 

model, some of the decisions, as is the case with the product inventory decisions, could 

be adapted according to the information that is known. A two stage stochastic problem 

would allow for this. However, in this study the robust model presented has been 

considered as it has the advantage of easy applicability. However, the authors Ben-Tal et 

al. (2004) have developed extensions to the robust optimization approach which 

consider adaptable decisions. They introduce the concept of an Adjustable Robust 

Counterpart (ARC) to include decisions which must be taken after the implementation of 

uncertain events. ARC generates less conservative solutions, but a price is paid as the 

resulting problems are computationally difficult to resolve (NP-hard). However, they 

also propose some simplifications which could be implemented and applied to the 

models presented in this thesis. Therefore, future research could compare the adaptive 

robust approach with the more traditional approach in two phases of stochastic 

programming. 
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11. ANNEXES 

ANNEX A: MATHEMATICAL MODEL SAWMILL PLANNING PROBLEM 

################################################# 

#       Conjuntos aserraderos 

################################################# 

 

set ASERRADERO;     # Aserraderos de la división 

set TROZA;     # Tipos de trozas 

set CORTES;     # Tipos de corte en aserradero 

set TABLA;     # Especificación de tablas 

set TABLAVERDE;     # Tablas sin secado 

set TABLASECA;     # Tablas con secado  

 

################################################## 

#       Parametros generales 

################################################## 

 

param T>=0;     # Períodos 

param descuento {i in 1..T};   # Descuento 

 

 

################################################### 

#        Parametros aserradero 

################################################### 

 

param PR{TABLA}>=0;    # Precio tabla 

param CA{ASERRADERO} default 99999;  # Costo aserrío 

param CS{ASERRADERO} default 99999;  # Costo secado 

param CR{ASERRADERO} default 99999;  # Costo reproceso 

param CO default 99999;    # Costo outsourcing 

param CT{ASERRADERO} default 99999;  # Costo inventario 

trozas 
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param CP{ASERRADERO} default 99999;  # Costo inventario 

patio 

param CB{ASERRADERO} default 99999;  # Costo inventario 

bodega 

param PF{ASERRADERO,TROZA} default 0;  # Precio troza 

param CAPA{ASERRADERO}>=0;   # Capacidad aserradero 

param CAPC{ASERRADERO}>=0;   # Capacidad cancha de trozas 

param CAPP{ASERRADERO}>=0;   # Capacidad patio 

param CAPS{ASERRADERO}>=0;   # Capacidad secado 

param CAPB{ASERRADERO}>=0;   # Capacidad bodega 

param CAPR{ASERRADERO}>=0;   # Capacidad reproceso 

param DD{TABLA, t in 1..T}>=0;   # Estimación de 

demanda 

param RM{ASERRADERO,CORTES,TROZA,TABLA} default 0; # Rendimiento a 

tabla 

param VD >=0;     # Parámetro para variar 

demanda 

param CTS>=0;     # Parámetro para variar 

capacidad bodega 

param CTV>=0;     # Parámetro para variar 

capacidad patio 

param CAPOT{ASERRADERO}>=0;   # Capacidad outsourcing 

param VR>=0;     # Parámetro que hace variar 

el rendimiento 

 

################################################### 

#        Parametros iniciales 

################################################### 

 

param IT0 {ASERRADERO,TROZA}>=0;  # Inventario inicial troza 

param IP0 {ASERRADERO, TABLAVERDE}>=0;  # Inventario inicial 

patio 

param IB0 {ASERRADERO, TABLASECA}>=0;  # Inventario inicial 

bodega 
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####################################################### 

#   Variables aserradero 

####################################################### 

 

var IT{ASERRADERO,TROZA, t in 0..T}>=0;  # Inventario  troza 

var IP{ASERRADERO,TABLAVERDE, t in 0..T}>=0; # Inventario patio 

var IB{ASERRADERO,TABLASECA, t in 0..T}>=0; # Inventario bodega 

var AT{ASERRADERO,CORTES,TROZA, t in 1..T}>=0; # Trozas aserrar 

var PT{ASERRADERO,TABLA, t in 1..T}>=0;   # Producción tabla 

var OT{ASERRADERO,TABLASECA, t in 1..T}>=0; # Outsourcing 

var VV{ASERRADERO,TABLA, t in 1..T}>=0;  # Ventas estimadas 

var DT{ASERRADERO,TROZA, t in 1..T};  # Demanda por trozas 

var TT>=0;     # Cota (FO) 

 

##################################################### 

#   FUNCION OBJETIVO_1 

##################################################### 

 

maximize GANANCIA_1:  

 TT; 

 

################################################################## 

#             RESTRICCIONES ASERRADERO 

##################################################################  

    

subject to INVENTARIO_CANCHA {j in ASERRADERO, k in TROZA, t in 

1..T}: 

   DT[j,k,t] =IT[j,k,t] + sum {e in CORTES} AT[j,e,k,t] - IT[j,k,t-

1]; 

         

subject to CAP_ASERR {j in ASERRADERO, t in 1..T}: 

    sum {e in CORTES, k in TROZA} AT[j,e,k,t]<= CAPA[j]; 
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subject to CAP_CANCHA {j in ASERRADERO, t in 1..T}: 

    sum {k in TROZA} IT[j,k,t]<=CAPC[j]; 

 

subject to CAP_PATIO {j in ASERRADERO, t in 1..T}: 

    sum {m in TABLAVERDE} IP[j,m,t]<= CTV*CAPP[j]; 

 

subject to CAP_BODEGA {j in ASERRADERO, t in 1..T}: 

    sum {m in TABLASECA} IB[j,m,t]<= CTS*CAPB[j];      

 

#### Condiciones iniciales ####### 

 

subject to INVENTARIO_TROZA_INICIAL {j in ASERRADERO, k in TROZA}: 

    IT[j,k,0]= IT0[j,k]; 

 

subject to INVENTARIO_PATIO_INICIAL {j in ASERRADERO, m in 

TABLAVERDE}: 

    IP[j,m,0]= IP0[j,m]; 

 

subject to INVENTARIO_BODEGA_INICIAL {j in ASERRADERO, m in 

TABLASECA}: 

    IB[j,m,0]=IB0[j,m]; 

 

#### Con sustitución ######## 

 

subject to COTA_FO_C:  

 TT<=  

 sum {t in 1..T} descuento[t]*( 

 +sum {j in ASERRADERO,m in TABLAVERDE}  

 PR[m]*(IP[j,m,t-1]+ sum {e in CORTES, k in TROZA} 

AT[j,e,k,t]*VR*RM[j,e,k,m] - IP[j,m,t])        # Ventas 

estimadas 

 +sum {j in ASERRADERO,m in TABLASECA}  
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 PR[m]*(IB[j,m,t-1]+ sum {e in CORTES, k in TROZA} 

AT[j,e,k,t]*VR*RM[j,e,k,m] + OT[j,m,t] - IB[j,m,t])     # Ventas 

estimadas 

 -sum {j in ASERRADERO, e in CORTES, k in TROZA} CA[j]*AT[j,e,k,t]    

      # Costos Aserrío 

 -sum {j in ASERRADERO, m in TABLASECA} CS[j]*(sum {e in CORTES, k 

in TROZA} AT[j,e,k,t]*VR*RM[j,e,k,m])          # Costo secado 

 -sum {j in ASERRADERO, m in TABLASECA} 0.2*CR[j]*(sum {e in 

CORTES, k in TROZA} AT[j,e,k,t]*VR*RM[j,e,k,m])      # Costo 

reproceso seca 

 -sum {j in ASERRADERO, m in TABLAVERDE} CR[j]*(sum {e in CORTES, k 

in TROZA} AT[j,e,k,t]*VR*RM[j,e,k,m])         # Costo reproceso 

verde 

 -sum {m in TABLASECA} CO*(sum {j in ASERRADERO} OT[j,m,t])              

 # Costo Outsourcing 

 -sum {j in ASERRADERO, k in TROZA} CT[j]*IT[j,k,t]                   

# Costo inventario trozas 

 -sum {j in ASERRADERO, m in TABLAVERDE} CP[j]*IP[j,m,t]                

 # Costo inventario patio 

 -sum {j in ASERRADERO, m in TABLASECA} CB[j]*IB[j,m,t]                 

 # Costo inventario bodega  

 -sum {j in ASERRADERO, k in TROZA} PF[j,k]*DT[j,k,t]      

 # Precio de las trozas 

 ); 

 

subject to CAP_SECADO_C {j in ASERRADERO, t in 1..T}: 

    sum {m in TABLASECA, e in CORTES, k in TROZA} 

AT[j,e,k,t]*VR*RM[j,e,k,m]<= CAPS[j]; 

 

subject to CAP_REPROC_C {j in ASERRADERO, t in 1..T}: 

    0.2*(sum {m in TABLASECA,e in CORTES, k in TROZA} 

AT[j,e,k,t]*VR*RM[j,e,k,m]) +  

    (sum {m in TABLAVERDE,e in CORTES, k in TROZA} 

AT[j,e,k,t]*VR*RM[j,e,k,m]) <= CAPR[j]; 
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subject to REPROCESO {j in ASERRADERO, t in 1..T}:    

    sum {m in TABLASECA} OT[j,m,t] <= CAPOT[j];  

 

subject to DDA_EST_VERDE_C {m in TABLAVERDE , t in 1..T}: 

    sum {j in ASERRADERO} (IP[j,m,t-1]+ sum {e in CORTES, k in 

TROZA} AT[j,e,k,t]*VR*RM[j,e,k,m]  

    - IP[j,m,t])>=VD*DD[m,t];    

 

subject to DDA_EST_SECA_C {m in TABLASECA , t in 1..T}: 

     sum {j in ASERRADERO} (IB[j,m,t-1]+ sum {e in CORTES, k in 

TROZA} AT[j,e,k,t]*VR*RM[j,e,k,m] + OT[j,m,t] 

     - IB[j,m,t])>=VD*DD[m,t]; 
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ANNEX B: MATHEMATICAL MODEL HARVEST PLANNING PROBLEM 

MODEL: !MODELO ASERRADERO ROBUSTO; 

 

SETS: 

ASERRADERO/MULCHEN,NACTO,BUCA/:CA,CS,CR,CT,CP,CB,CAPA,CAPC,CAPP,CAPS,CA

PB,CAPR,CAPOT; 

TROZA/C32,C38,M26,M34,I24,I34/:; 

CORTES/E1,E2/; 

TABLAVERDE/MAS,TAP/:PRV; 

TABLASECA/MSH,MUE,REM,EST,MAK/:PRS; 

PERIODOS/1..12/:DESCUENTO; 

ARCO_JK(ASERRADERO,TROZA):PF; 

ARCO_MT(TABLAVERDE,PERIODOS):DDV,ZMT4,GAM4; 

ARCO_NT(TABLASECA,PERIODOS):DDS,ZNT5,GAM5; 

ARCO_JEKM(ASERRADERO,CORTES,TROZA,TABLAVERDE):RMV,AV,RO3,RO4; 

ARCO_JEKN(ASERRADERO,CORTES,TROZA,TABLASECA):RMS,AS,RO1,RO2,RO5; 

ARCO_JNT(ASERRADERO,TABLASECA,PERIODOS):OT,IB; 

ARCO_JKT(ASERRADERO,TROZA,PERIODOS):IT,DT; 

ARCO_JEKT(ASERRADERO,CORTES,TROZA,PERIODOS):AT,YJ1,YJ2,YJ3,YJ4,YJ5; 

ARCO_JMT(ASERRADERO,TABLAVERDE,PERIODOS):IP; 

ARCO_JT(ASERRADERO,PERIODOS):ZJT1,ZJT2,ZJT3,GAM1,GAM2,GAM3; 

 

ENDSETS 

 

DATA: 

DESCUENTO,VD,CTS,CTV,VR,CO,CA,CS,CR,CT,CP,CB,PRS,PRV,PF,CAPA,CAPC,CAPP,

CAPS,CAPB,CAPR,CAPOT,DDS,DDV,RMS,RMV,GAM1,GAM2,GAM3,GAM4,GAM5,AS,AV=@OL

E('C:\Users\Cata\Desktop\Datos_aserradero.xls'); 

@OLE('C:\Users\Cata\Desktop\Datos_aserradero.xls')=AT,IT,OT,DT,IP,IB,ZJ

T1,ZJT2,ZJT3,ZMT4,ZNT5,RO1,RO2,RO3,RO4,RO5,YJ1,YJ2,YJ3,YJ4,YJ5; 

ENDDATA 

 

MAX=@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(1)*PRV(M)*(0+@SUM(C

ORTES(E):@SUM(TROZA(K):AT(J,E,K,1)*VR*RMV(J,E,K,M)))-

IP(J,M,1))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(2)*PRV(M)*

@OLE('C:\Users\Cata\Desktop\Datos_aserradero.xls')=AT,IT,OT,DT,IP,IB,ZJ
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(IP(J,M,1)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,2)*VR*RMV(J,E,K,M)))-

IP(J,M,2))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(3)*PRV(M)*

(IP(J,M,2)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,3)*VR*RMV(J,E,K,M)))-

IP(J,M,3))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(4)*PRV(M)*

(IP(J,M,3)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,4)*VR*RMV(J,E,K,M)))-

IP(J,M,4))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(5)*PRV(M)*

(IP(J,M,4)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,5)*VR*RMV(J,E,K,M)))-

IP(J,M,5))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(6)*PRV(M)*

(IP(J,M,5)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,6)*VR*RMV(J,E,K,M)))-

IP(J,M,6))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(7)*PRV(M)*

(IP(J,M,6)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,7)*VR*RMV(J,E,K,M)))-

IP(J,M,7))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(8)*PRV(M)*

(IP(J,M,7)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,8)*VR*RMV(J,E,K,M)))-

IP(J,M,8))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(9)*PRV(M)*

(IP(J,M,8)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,9)*VR*RMV(J,E,K,M)))-

IP(J,M,9))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(10)*PRV(M)

*(IP(J,M,9)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,10)*VR*RMV(J,E,K,M)))

-

IP(J,M,10))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(11)*PRV(M

)*(IP(J,M,10)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,11)*VR*RMV(J,E,K,M)

))-

IP(J,M,11))))+@SUM(ASERRADERO(J):@SUM(TABLAVERDE(M):DESCUENTO(12)*PRV(M

)*(IP(J,M,11)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,12)*VR*RMV(J,E,K,M)

))-

IP(J,M,12))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(1)*PRS(N)*

(0+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,1)*VR*RMS(J,E,K,N)))+OT(J,N,1)

-

IB(J,N,1))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(2)*PRS(N)*(

IB(J,N,1)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,2)*VR*RMS(J,E,K,N)))+OT

(J,N,2)-

IB(J,N,2))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(3)*PRS(N)*(

IB(J,N,2)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,3)*VR*RMS(J,E,K,N)))+OT

(J,N,3)-

IB(J,N,3))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(4)*PRS(N)*(

IB(J,N,3)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,4)*VR*RMS(J,E,K,N)))+OT

(J,N,4)-
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IB(J,N,4))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(5)*PRS(N)*(

IB(J,N,4)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,5)*VR*RMS(J,E,K,N)))+OT

(J,N,5)-

IB(J,N,5))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(6)*PRS(N)*(

IB(J,N,5)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,6)*VR*RMS(J,E,K,N)))+OT

(J,N,6)-

IB(J,N,6))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(7)*PRS(N)*(

IB(J,N,6)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,7)*VR*RMS(J,E,K,N)))+OT

(J,N,7)-

IB(J,N,7))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(8)*PRS(N)*(

IB(J,N,7)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,8)*VR*RMS(J,E,K,N)))+OT

(J,N,8)-

IB(J,N,8))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(9)*PRS(N)*(

IB(J,N,8)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,9)*VR*RMS(J,E,K,N)))+OT

(J,N,9)-

IB(J,N,9))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(10)*PRS(N)*

(IB(J,N,9)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,10)*VR*RMS(J,E,K,N)))+

OT(J,N,10)-

IB(J,N,10))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(11)*PRS(N)

*(IB(J,N,10)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,11)*VR*RMS(J,E,K,N))

)+OT(J,N,11)-

IB(J,N,11))))+@SUM(ASERRADERO(J):@SUM(TABLASECA(N):DESCUENTO(12)*PRS(N)

*(IB(J,N,11)+@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,12)*VR*RMS(J,E,K,N))

)+OT(J,N,12)-IB(J,N,12))))-

@SUM(ARCO_JEKT(J,E,K,T):DESCUENTO(T)*CA(J)*AT(J,E,K,T))-

@SUM(PERIODOS(T):DESCUENTO(T)*@SUM(ARCO_JEKN(J,E,K,N):CS(J)*AT(J,E,K,T)

*VR*RMS(J,E,K,N)))-

@SUM(PERIODOS(T):DESCUENTO(T)*@SUM(ARCO_JEKN(J,E,K,N):(0.2)*CR(J)*AT(J,

E,K,T)*VR*RMS(J,E,K,N)))-

@SUM(PERIODOS(T):DESCUENTO(T)*@SUM(ARCO_JEKM(J,E,K,M):CR(J)*AT(J,E,K,T)

*VR*RMV(J,E,K,M)))-@SUM(ARCO_JNT(J,N,T):DESCUENTO(T)*CO*OT(J,N,T))-

@SUM(ARCO_JKT(J,K,T):DESCUENTO(T)*CT(J)*IT(J,K,T))-

@SUM(ARCO_JMT(J,M,T):DESCUENTO(T)*CP(J)*IP(J,M,T))-

@SUM(ARCO_JNT(J,N,T):DESCUENTO(T)*CB(J)*IB(J,N,T))-

@SUM(ARCO_JKT(J,K,T):DESCUENTO(T)*PF(J,K)*DT(J,K,T)); 

 

mailto:@SUM(PERIODOS(T):DESCUENTO(T)*@SUM(ARCO_JEKN(J,E,K,N):(0.2)*CR(J)*AT(J,
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!1; 

@FOR(ARCO_JK(J,K):DT(J,K,1)=IT(J,K,1)+@SUM(CORTES(E):AT(J,E,K,1))-0); 

@FOR(ARCO_JK(J,K):DT(J,K,2)=IT(J,K,2)+@SUM(CORTES(E):AT(J,E,K,2))-

IT(J,K,1)); 

@FOR(ARCO_JK(J,K):DT(J,K,3)=IT(J,K,3)+@SUM(CORTES(E):AT(J,E,K,3))-

IT(J,K,2)); 

@FOR(ARCO_JK(J,K):DT(J,K,4)=IT(J,K,4)+@SUM(CORTES(E):AT(J,E,K,4))-

IT(J,K,3)); 

@FOR(ARCO_JK(J,K):DT(J,K,5)=IT(J,K,5)+@SUM(CORTES(E):AT(J,E,K,5))-

IT(J,K,4)); 

@FOR(ARCO_JK(J,K):DT(J,K,6)=IT(J,K,6)+@SUM(CORTES(E):AT(J,E,K,6))-

IT(J,K,5)); 

@FOR(ARCO_JK(J,K):DT(J,K,7)=IT(J,K,7)+@SUM(CORTES(E):AT(J,E,K,7))-

IT(J,K,6)); 

@FOR(ARCO_JK(J,K):DT(J,K,8)=IT(J,K,8)+@SUM(CORTES(E):AT(J,E,K,8))-

IT(J,K,7)); 

@FOR(ARCO_JK(J,K):DT(J,K,9)=IT(J,K,9)+@SUM(CORTES(E):AT(J,E,K,9))-

IT(J,K,8)); 

@FOR(ARCO_JK(J,K):DT(J,K,10)=IT(J,K,10)+@SUM(CORTES(E):AT(J,E,K,10))-

IT(J,K,9)); 

@FOR(ARCO_JK(J,K):DT(J,K,11)=IT(J,K,11)+@SUM(CORTES(E):AT(J,E,K,11))-

IT(J,K,10)); 

@FOR(ARCO_JK(J,K):DT(J,K,12)=IT(J,K,12)+@SUM(CORTES(E):AT(J,E,K,12))-

IT(J,K,11)); 

!2; 

@FOR(ASERRADERO(J):@FOR(PERIODOS(T):@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E

,K,T)))<=CAPA(J))); 

!3; 

@FOR(ASERRADERO(J):@FOR(PERIODOS(T):@SUM(TROZA(K):IT(J,K,T))<=CAPC(J)))

; 

!4; 

@FOR(ASERRADERO(J):@FOR(PERIODOS(T):@SUM(TABLAVERDE(M):IP(J,M,T))<=(CTV

*CAPP(J)))); 

!5; 

@FOR(ASERRADERO(J):@FOR(PERIODOS(T):@SUM(TABLASECA(N):IB(J,N,T))<=(CTS*

CAPB(J)))); 
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!6 (INCERTIDUMBRE); 

@FOR(ASERRADERO(J):@FOR(PERIODOS(T):@SUM(TABLASECA(N):@SUM(CORTES(E):@S

UM(TROZA(K):AT(J,E,K,T)*VR*RMS(J,E,K,N))))+(ZJT1(J,T)*GAM1(J,T))+@SUM(T

ABLASECA(N):@SUM(CORTES(E):@SUM(TROZA(K):RO1(J,E,K,N))))<=CAPS(J))); 

@FOR(PERIODOS(T):@FOR(ARCO_JEKN(J,E,K,N):(ZJT1(J,T)+RO1(J,E,K,N))>=(AS(

J,E,K,N)*YJ1(J,E,K,T)))); 

@FOR(ARCO_JEKT(J,E,K,T):(-YJ1(J,E,K,T))<=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ1(J,E,K,T)>=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ1(J,E,K,T)>=0); 

@FOR(ARCO_JEKN(J,E,K,N):RO1(J,E,K,N)>=0); 

@FOR(ARCO_JT(J,T):ZJT1(J,T)>=0); 

 

!7(INCERTIDUMBRE); 

@FOR(ASERRADERO(J):@FOR(PERIODOS(T):(0.2)*@SUM(TABLASECA(N):@SUM(CORTES

(E):@SUM(TROZA(K):AT(J,E,K,T)*VR*RMS(J,E,K,N))))+(ZJT2(J,T)*GAM2(J,T))+

@SUM(TABLASECA(N):@SUM(CORTES(E):@SUM(TROZA(K):RO2(J,E,K,N))))+@SUM(TAB

LAVERDE(M):@SUM(CORTES(E):@SUM(TROZA(K):AT(J,E,K,T)*VR*RMV(J,E,K,M))))+

(ZJT3(J,T)*GAM3(J,T))+@SUM(TABLAVERDE(M):@SUM(CORTES(E):@SUM(TROZA(K):R

O3(J,E,K,M))))<=CAPR(J))); 

@FOR(PERIODOS(T):@FOR(ARCO_JEKN(J,E,K,N):(ZJT2(J,T)+RO2(J,E,K,N))>=(AS(

J,E,K,N)*YJ2(J,E,K,T)))); 

@FOR(PERIODOS(T):@FOR(ARCO_JEKM(J,E,K,M):(ZJT3(J,T)+RO3(J,E,K,M))>=(AV(

J,E,K,M)*YJ3(J,E,K,T)))); 

@FOR(ARCO_JEKT(J,E,K,T):(-YJ2(J,E,K,T))<=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ2(J,E,K,T)>=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):(-YJ3(J,E,K,T))<=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ3(J,E,K,T)>=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ2(J,E,K,T)>=0); 

@FOR(ARCO_JEKT(J,E,K,T):YJ3(J,E,K,T)>=0); 

@FOR(ARCO_JEKN(J,E,K,N):RO2(J,E,K,N)>=0); 

@FOR(ARCO_JEKM(J,E,K,M):RO3(J,E,K,M)>=0); 

@FOR(ARCO_JT(J,T):ZJT2(J,T)>=0); 

@FOR(ARCO_JT(J,T):ZJT3(J,T)>=0); 

 

!8; 

mailto:@FOR(ASERRADERO(J):@FOR(PERIODOS(T):(0.2)*@SUM(TABLASECA(N):@SUM(CORTES
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@FOR(ASERRADERO(J):@FOR(PERIODOS(T):@SUM(TABLASECA(N):OT(J,N,T))<=CAPOT

(J))); 

!9(INCERTIDUMBRE); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(0+@SUM(CORTES(E):@SUM(TROZA(K):A

T(J,E,K,1)*VR*RMV(J,E,K,M)))-IP(J,M,1)))-(ZMT4(M,1)*GAM4(M,1))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M)))) 

>=VD*DDV(M,1)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,1)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,2)*VR*RMV(J,E,K,M)))-IP(J,M,2)))-(ZMT4(M,2)*GAM4(M,2))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,2)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,2)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,3)*VR*RMV(J,E,K,M)))-IP(J,M,3)))-(ZMT4(M,3)*GAM4(M,3))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,3)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,3)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,4)*VR*RMV(J,E,K,M)))-IP(J,M,4)))-(ZMT4(M,4)*GAM4(M,4))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,4)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,4)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,5)*VR*RMV(J,E,K,M)))-IP(J,M,5)))-(ZMT4(M,5)*GAM4(M,5))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,5)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,5)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,6)*VR*RMV(J,E,K,M)))-IP(J,M,6)))-(ZMT4(M,6)*GAM4(M,6))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,6)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,6)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,7)*VR*RMV(J,E,K,M)))-IP(J,M,7)))-(ZMT4(M,7)*GAM4(M,7))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,7)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,7)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,8)*VR*RMV(J,E,K,M)))-IP(J,M,8)))-(ZMT4(M,8)*GAM4(M,8))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,8)); 
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@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,8)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,9)*VR*RMV(J,E,K,M)))-IP(J,M,9)))-(ZMT4(M,9)*GAM4(M,9))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,9)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,9)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,10)*VR*RMV(J,E,K,M)))-IP(J,M,10)))-

(ZMT4(M,10)*GAM4(M,10))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,10)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,10)+@SUM(CORTES(E):@SUM(T

ROZA(K):AT(J,E,K,11)*VR*RMV(J,E,K,M)))-IP(J,M,11)))-

(ZMT4(M,11)*GAM4(M,11))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,11)); 

@FOR(TABLAVERDE(M):@SUM(ASERRADERO(J):(IP(J,M,11)+@SUM(CORTES(E):@SUM(T

ROZA(K):AT(J,E,K,12)*VR*RMV(J,E,K,M)))-IP(J,M,12)))-

(ZMT4(M,12)*GAM4(M,12))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO4(J,E,K,M))))>=VD*DDV

(M,12)); 

@FOR(PERIODOS(T):@FOR(ARCO_JEKM(J,E,K,M):(ZMT4(M,T)+RO4(J,E,K,M))>=(AV(

J,E,K,M)*YJ4(J,E,K,T)))); 

@FOR(ARCO_JEKT(J,E,K,T):(-YJ4(J,E,K,T))<=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ4(J,E,K,T)>=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ4(J,E,K,T)>=0); 

@FOR(ARCO_JEKM(J,E,K,M):RO4(J,E,K,M)>=0); 

@FOR(ARCO_MT(M,T):ZMT4(M,T)>=0); 

 

!10(INCERTIDUMBRE); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(0+@SUM(CORTES(E):@SUM(TROZA(K):AT

(J,E,K,1)*VR*RMS(J,E,K,N)))+OT(J,N,1)-IB(J,N,1)))-

(ZNT5(N,1)*GAM5(N,1))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,1)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,1)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,2)*VR*RMS(J,E,K,N)))+OT(J,N,2)-IB(J,N,2)))-

(ZNT5(N,2)*GAM5(N,2))-
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@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,2)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,2)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,3)*VR*RMS(J,E,K,N)))+OT(J,N,3)-IB(J,N,3)))-

(ZNT5(N,3)*GAM5(N,3))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,3)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,3)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,4)*VR*RMS(J,E,K,N)))+OT(J,N,4)-IB(J,N,4)))-

(ZNT5(N,4)*GAM5(N,4))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,4)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,4)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,5)*VR*RMS(J,E,K,N)))+OT(J,N,5)-IB(J,N,5)))-

(ZNT5(N,5)*GAM5(N,5))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,5)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,5)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,6)*VR*RMS(J,E,K,N)))+OT(J,N,6)-IB(J,N,6)))-

(ZNT5(N,6)*GAM5(N,6))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,6)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,6)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,7)*VR*RMS(J,E,K,N)))+OT(J,N,7)-IB(J,N,7)))-

(ZNT5(N,7)*GAM5(N,7))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,7)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,7)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,8)*VR*RMS(J,E,K,N)))+OT(J,N,8)-IB(J,N,8)))-

(ZNT5(N,8)*GAM5(N,8))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,8)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,8)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,9)*VR*RMS(J,E,K,N)))+OT(J,N,9)-IB(J,N,9)))-

(ZNT5(N,9)*GAM5(N,9))-
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@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,9)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,9)+@SUM(CORTES(E):@SUM(TRO

ZA(K):AT(J,E,K,10)*VR*RMS(J,E,K,N)))+OT(J,N,10)-IB(J,N,10)))-

(ZNT5(N,10)*GAM5(N,10))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,10)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,10)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,11)*VR*RMS(J,E,K,N)))+OT(J,N,11)-IB(J,N,11)))-

(ZNT5(N,11)*GAM5(N,11))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,11)); 

@FOR(TABLASECA(N):@SUM(ASERRADERO(J):(IB(J,N,11)+@SUM(CORTES(E):@SUM(TR

OZA(K):AT(J,E,K,12)*VR*RMS(J,E,K,N)))+OT(J,N,12)-IB(J,N,12)))-

(ZNT5(N,12)*GAM5(N,12))-

@SUM(ASERRADERO(J):@SUM(CORTES(E):@SUM(TROZA(K):RO5(J,E,K,N))))>=VD*DDS

(N,12)); 

@FOR(PERIODOS(T):@FOR(ARCO_JEKN(J,E,K,N):(ZNT5(N,T)+RO5(J,E,K,N))>=(AS(

J,E,K,N)*YJ5(J,E,K,T)))); 

@FOR(ARCO_JEKT(J,E,K,T):(-YJ5(J,E,K,T))<=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ5(J,E,K,T)>=AT(J,E,K,T)); 

@FOR(ARCO_JEKT(J,E,K,T):YJ5(J,E,K,T)>=0); 

@FOR(ARCO_JEKN(J,E,K,N):RO5(J,E,K,N)>=0); 

@FOR(ARCO_NT(N,T):ZNT5(N,T)>=0); 

 

!11; 

@FOR(ARCO_JNT(J,N,T): OT(J,N,T)>=0); 

@FOR(ARCO_JNT(J,N,T): IB(J,N,T)>=0); 

@FOR(ARCO_JMT(J,M,T): IP(J,M,T)>=0); 

@FOR(ARCO_JKT(J,K,T): IT(J,K,T)>=0); 

@FOR(ARCO_JKT(J,K,T): DT(J,K,T)>=0); 

@FOR(ARCO_JEKT(J,E,K,T): AT(J,E,K,T)>=0); 

 

END 
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ANNEX C: MATHEMATICAL MODEL INTERTEMPORAL PLANNING 

PROBLEM 

 
################################################# 

#       MODELO TACTICO DETERMINISTA, OPERATIVO Y ROBUSTO 

################################################# 

 

################################################# 

#       Conjuntos aserraderos 

################################################# 

 

set TROZA;       # Tipos de trozas 

set TABLA;       # Especificación de 

tablas 

set CORTE;       # Patron de corte 

 

 

################################################### 

#        Parametros aserradero 

################################################### 

 

param Tp>=0;       # Períodos a 

planificar 

param CTt{TROZA,t in 1..Tp} default 99999;  # Costo compra 

trozas 

param CBt{TABLA,t in 1..Tp} default 99999;  # Costo 

inventario tablas 

param CAt{t in 1..Tp} default 99999;   # Costo aserrío 

param Rt{TROZA,TABLA} default 0;   # Rendimiento troza-

tabla 

param PAt{t in 1..Tp}>=0;     # Capacidad 

proceso de aserrío 
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param PBt{t in 1..Tp}>=0;     # Capacidad 

bodega de tablas 

param D{TABLA, t in 1..Tp}>=0;    # Estimación de 

demanda 

param To>=0;       # Períodos a 

planificar operativo 

param CB{TABLA,t in 1..To} default 99999;  # Costo 

inventario tablas 

param CP{TROZA,t in 1..To} default 99999;  # Costo 

inventario trozas 

param CA{t in 1..To} default 99999;   # Costo aserrío 

param R{CORTE,TROZA,TABLA} default 0;  # Rendimiento troza-

tabla por patron 

param PA{t in 1..To}>=0;     # Capacidad 

proceso de aserrío 

param PB{t in 1..To}>=0;     # Capacidad 

bodega de tablas 

param PP{t in 1..To}>=0;     # Capacidad 

bodega de trozas 

param Do{TABLA, t in 1..To}>=0;    # Estimación de 

demanda 

param DT{TROZA, t in 1..To}>=0;   # Disponibilidad de 

trozas 

 

################################################### 

#        Parametros iniciales 

################################################### 

 

param w0t {TABLA}>=0;     # Inventario inicial 

tabla tactico 

param w0 {TABLA}>=0;     # Inventario inicial 

tabla operativo 

param z0 {TROZA}>=0;     # Inventario inicial 

troza operativo 
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################################################### 

#        Parametros ROBUSTO 

################################################### 

 

#param GAMMA{TABLA,t in 1..Tp} >=0;   

param GAMMA >=0;   

param RR >=0;  

 

####################################################### 

#   Variables aserradero 

####################################################### 

 

var wt{TABLA, t in 0..Tp}>=0;    # Inventario 

tabla tactico 

var rt{TABLA, t in 1..Tp}>=0;      # Producción 

tablas tactico 

var st{TROZA, t in 1..Tp}>=0;    # Trozas aserrar 

tactico 

 

var w{TABLA, t in 0..To};    # Inventario tabla 

operativo 

var wp{TABLA, t in 0..To}>=0;    # Inventario 

tabla operativo 

var wm{TABLA, t in 0..To}>=0;    # Faltante tabla 

operativo 

 

## var r{TABLA, t in 1..To}>=0;      # Producción 

tablas operativo 

var s{CORTE,TROZA, t in 1..To}>=0;   # Trozas aserrar 

operativo 

var so{TROZA, t in 1..To}>=0;   # Trozas aserrar 

operativo sin diferenciar corte 
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var z{TROZA, t in 0..To}>=0;    # Inventario trozas 

operativo 

 

####################################################### 

#   Variables robusto 

####################################################### 

 

var phi{TABLA, t in 1..Tp}>=0;     

var omega{TROZA, TABLA,t in 1..Tp}>=0;     

var mu{TROZA, t in 0..Tp}>=0;   

 

  

##################################################### 

#   FUNCION OBJETIVO 

##################################################### 

 

minimize COSTOS_TAC:  

 sum {t in 1..Tp} ( 

  +sum {k in TROZA} CTt[k,t]*st[k,t]  # Costo compra 

trozas 

  +sum {m in TABLA} CBt[m,t]*wt[m,t]  # Costo 

inventario tablas 

  +sum {k in TROZA} CAt[t]*st[k,t]  # Costo aserrío 

  );  

 

minimize COSTOS_OP:  

 sum {t in 1..To} ( 

  +sum {m in TABLA} CB[m,t]*w[m,t]    # Costo 

inventario tablas 

  +sum {k in TROZA,e in CORTE} CA[t]*s[e,k,t]  # Costo 

aserrío 

  +sum {k in TROZA} CP[k,t]*z[k,t]    # Costo 

aserrío 

        +sum {m in TABLA} (100000)*wm[m,t] 
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  ); 

 

minimize COSTOS_OP1:  

 sum {t in 1..To} ( 

  +sum {m in TABLA} CB[m,t]*w[m,t]    # Costo 

inventario tablas 

  +sum {k in TROZA} CA[t]*so[k,t]                # Costo 

aserrío 

  +sum {k in TROZA} CP[k,t]*z[k,t]    # Costo 

aserrío 

        +sum {m in TABLA} (100000)*wm[m,t] 

  );  

 

################################################################## 

#             RESTRICCIONES  

##################################################################  

    

#### Condiciones iniciales ####### 

 

subject to INVENTARIO_PATIO_INICIAL_T {m in TABLA}: 

    wt[m,0]= w0t[m]; 

 

#### Restricciones ####### 

 

subject to CAP_ASERR {t in 1..Tp}: 

    sum {k in TROZA} st[k,t]<= PAt[t]; 

 

subject to CAP_BODEGA {t in 1..Tp}: 

    sum {m in TABLA} wt[m,t]<= PBt[t]; 

 

   

subject to DDA_TABLAS {m in TABLA, t in 1..Tp}: 

     wt[m,t-1]+ sum {k in TROZA} Rt[k,m]*st[k,t]-wt[m,t]>=D[m,t]; 
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subject to TABLAS {m in TABLA, t in 1..Tp}: 

     sum {k in TROZA} Rt[k,m]*st[k,t]=rt[m,t]; 

      

     #### Condiciones iniciales operativo ####### 

 

subject to INVENTARIO_PATIO_INICIAL {m in TABLA}: 

    wp[m,0]= w0[m]; 

 

subject to INVENTARIO_TROZA_INICIAL {k in TROZA}: 

    z[k,0]= z0[k]; 

 

#### Restricciones ####### 

 

subject to INVENTARIO_TABLAS {m in TABLA, t in 1..To}: 

   w[m,t-1]+sum {e in CORTE, k in TROZA} R[e,k,m]*s[e,k,t]-w[m,t] 

>= Do[m,t]; 

 

subject to INVENTARIO_TABLAS1 {m in TABLA, t in 1..To}: 

   w[m,t-1]+sum {k in TROZA} Rt[k,m]*so[k,t]-w[m,t] >= Do[m,t]; 

 

subject to INVENTARIO_TROZAS {k in TROZA, t in 1..To}: 

   z[k,t-1] + DT[k,t] - z[k,t] = sum {e in CORTE} s[e,k,t]; 

 

subject to INVENTARIO_TROZAS1 {k in TROZA, t in 1..To}: 

   z[k,t-1] + DT[k,t] - z[k,t] =  so[k,t]; 

 

subject to CAP_ASERR_O {t in 1..To}: 

    sum {k in TROZA, e in CORTE} s[e,k,t]<= PA[t]; 

 

subject to CAP_ASERR_O1 {t in 1..To}: 

    sum {k in TROZA} so[k,t]<= PA[t]; 

 

subject to CAP_BODEGA_O {t in 1..To}: 

    sum {m in TABLA} wp[m,t]<= PB[t]; 
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subject to CAP_PATIO {t in 1..To}: 

 sum {k in TROZA} z[k,t]<= PP[t]; 

 

subject to DEF_W {m in TABLA, t in 0..To}: w[m,t] = wp[m,t] - 

wm[m,t]; 

 

#### Restricciones ROBUSTAS ####### 

   

subject to DDA_TABLAS_R {m in TABLA, t in 1..Tp}: 

     (wt[m,t-1]+ sum {k in TROZA} Rt[k,m]*st[k,t]-wt[m,t])- 

phi[m,t]*GAMMA - sum {k in TROZA} omega[k,m,t] >=D[m,t]; 

 

subject to R1 {m in TABLA, k in TROZA, t in 1..Tp}: 

     phi[m,t] + omega[k,m,t] >= RR*Rt[k,m]*mu[k,t]; 

 

#subject to R2 {k in TROZA, t in 1..Tp}: 

#    -mu[k,t]<=st[k,t]; 

 

subject to R3 {k in TROZA, t in 1..Tp}: 

    st[k,t]<=mu[k,t]; 

 

   

 

 


