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The energy per particle of many body wavefunctions that mix Laughlin liquid with crystalline correlations
for periodic samples in the Haldane–Rezayi configuration is numerically evaluated for periodic samples.
The Monte Carlo algorithm is employed and the wave functions are constructed in such a way that have
the same zeroes as the periodic Laughlin states. Results with up to 16 particles show that these trial
wavefunctions have lower energy than the periodic Laughlin states for finite samples even at ν = 1

3 .
Preliminary results for 36 particles suggest that this tendency could reach the thermodynamic limit.
These results get relevance in view of the very recent experimental measures that indicate the presence
of periodic structures in the 2DEG for extremely small temperatures and clean samples, inclusive at main
FQHE filling fractions ν = 1

3 , 2
3 .

© 2010 Elsevier B.V. All rights reserved.
Although the Fractional Quantum Hall Effect (FQHE) is de-
scribed in its relevant aspects in terms of Jastrow-like many-
body wave functions, a link between this variational approach
and hamiltonian solutions is still desirable. The states introduced
by Laughlin cleanly incorporate the tendency of particles to be
as far away as possible from each other. On the other hand the
Hartree–Fock states discussed in the literature (see [1] and the
references therein) are approximate solutions of the Hamiltonian
and may have valuable information not taken care of by the vari-
ational states. With this possibility in mind we have constructed a
new type of trial wave function that incorporates a part of each
approach as described below. Precisely in these days this con-
struction gets relevance thanks to very recent experiments that
had detected the presence of surprising periodic structures in the
2DEG for highly clean samples subject to extremely small tempera-
tures [2]. Assuming that the proposed here wavefunctions maintain
their properties of showing lower energies than the so called peri-
odic Laughlin states (in the Haldane–Rezayi periodic scheme [3]) in
the thermodynamic limit, they could have the opportunity of de-
scribing the detected periodic structures. Qualitatively, the energy
dependence on the sample size obtained here suggests that the
energy is lower in the limit of infinite size samples. However, this
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important conclusion needs for more extensive calculations for its
full confirmation, that are expected to be considered elsewhere.

Analytic Hartree–Fock solutions in the lowest Landau level may
be written down for filling fractions of the form ν = 1/q. This un-
usual property was discovered after numerical results showed that
there is a self-consistent charge density wave (CDW) solution to
the Hartee–Fock (HF) equations that has a zero of order q − 1 in
each CDW plaquette. This property was then used to diagonalize
the eigenvalue matrix. The resulting charge density corresponds to
a lattice of holes, with percolating ridges that surround the zeroes.
The form of the associated single particle wavefunctions suggests
a way of constructing our new state incorporating both the Laugh-
lin correlation in part, as well as the HF crystalline correlations
(see [1]).

The appropriate framework to achieve this on the plane using
numerical procedures is to impose periodic boundary conditions
on the single particle states, as suggested by Haldane and Rezayi
many years ago [3]. This is done in Ref. [4]. The main idea is to ex-
ploit the fact that the mean field Slater determinant in this picture
can be written as the product of another determinantal function
containing the whole dependence on the quantum numbers of the
single particle HF states, times a factor whose zeroes are spatially
fixed and periodic with the periodicity of the density. Therefore,
the position of those zeroes has no dependence whatever on the
set of quantum numbers of the filled mean field states, and has
thus been factored out of the Slater determinant. Moreover, the
number of zeroes of those kinematical factors as a function of any
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of the identical particle coordinates is just (q − 1)Ne , where Ne is
the number of electrons.

Let us begin by writing the explicit form of the counterparts
of the Laughlin wavefunction in the Haldane–Rezayi scheme for
implementing periodic boundary conditions
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where z∗
j = x j − iy j , j = 1,2, . . . , Ne and Z∗ = X − iY are particles

and center of mass complex coordinates, respectively. L is the cell
size, R∗ = n1a1 + n2a∗

2 with n1 and n2 integers, τ ∗ = exp(−2π i/6),
and a1 = √

2πq/ sin (2π/6), a∗
2 = a1τ . The functions ϑ1(u|τ ) are

the odd elliptic theta functions and vanish as the first power in u
as this variable goes to zero. We notice that as one particle ap-
proaches another, ΨL vanishes as a power q, so that altogether it
includes q(Ne − 1) zeroes of this kind, plus q generated by the
center of mass factor. We can thus replace the factors with spa-
tially fixed zeroes in the HF solution, by a proper Laughlin factor
to obtain the same short range behavior (a zero of order q) when
any two particles approach each another. However, the presence
now of the determinantal function keeps the crystalline informa-
tion associated with the optimization of the mean field problem.
Therefore, the proposed states have an a priori chance of lowering
the energy per particle of the Laughlin states.

Then, in the Landau gauge A = −B(y,0,0), as it is proper of
the Haldane–Rezayi scheme, the state ansatz being proposed here
has the explicit form
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where Q = −π
a (q − 1), Z = ∑Ne

j=1 z j and r0 = √
h̄c/|eB|. The func-
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Here 	 = −k×a1/a1 and the argument Ck depending on the quan-
tum number k is given by

Ck = a

2π

(−k × a2 − k × a1τ
∗) + qaτ ∗

2
.

Our trial wave function Ψ is periodic, with a slanted periodicity
region of equal sides length L = Na1, and a slant angle of 2π/6.
The number of particles in the region is Ne = N2. The momenta
allowed by the periodic boundary conditions are

k = n1

L
s1 + n2

L
s2,

where the reciprocal lattice unit vectors and the normal vector are
defined by
Table 1
The results of the energy per particle for the counterparts of the Laughlin states in
the Haldane–Rezayi periodic boundary conditions. The state for Ne = 4 was evalu-
ated two times for different values of the Monte Carlo new configuration admission
coefficient ξ in order to check the independence of its value. The calculations were
done for Ne = 4,16 particles.

Ne = N2 ξ ε

4 0.3 −0.374476 ± 0.0000697292
4 0.25 −0.374245 ± 0.0000779082

16 0.3 −0.392032 ± 0.0000880513

Table 2
The results for the energy per particle for the trial state proposed in this work. The
same Haldane–Rezayi periodic boundary conditions were employed. In this case the
states for Ne = 4,16 were evaluated two times each one for different values of ξ to
check the independence of the result on this constant. The evaluations were done
for Ne = 4,16 and 36 particles in this case.

Ne = N2 ξ ε

4 0.2 −0.414112 ± 0.0000625317
4 0.25 −0.414191 ± 0.0000457599

16 0.25 −0.410156 ± 0.00006590
16 0.2 −0.410222 ± 0.00008659
36 0.25 −0.410943 ± 0.000486141
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The evaluations of the energy per particle of both states were
done by employing the Monte Carlo method for samples having
a number of particles Ne equal to 4 and 16 for the case of the
Laughlin states. As for the trial wavefunctions investigated here the
calculations were done for 4, 16 and 36 particles. The results are
illustrated in Tables 1 and 2 and in Fig. 1. As mentioned before,
the parameter ξ is the one defining the probability of admission
of new configurations as usually is needed to do in the Monte
Carlo algorithm. The margins of errors reported correspond to the
maximum deviation from the mean value of a set of the last 60
percent of the evaluated energies in the Monte Carlo iterative pro-
cess.

The expectation value of the many-particle Hamiltonian in the
Laughlin state was evaluated using the Monte Carlo method for
samples with Ne = 4,16. For our trial wavefunctions calculations
were done for 4, 16 and 36 particles. Results are shown in Tables 1
and 2. The parameter ξ defines the probability of admission of new
configurations in the Monte Carlo algorithm. The errors reported
in the third column correspond to the mean square of the fluctu-
ations in the Monte Carlo output after convergence was assured.
Our results are plotted in Fig. 1. The error bars are not resolved at
the scale of the plot.

Note that a linear extrapolation to the thermodynamical limit
N− > ∞ of the Laughlin state energy reproduces former estimates
of the energy of this state at ν = 1/3. It is also clear that the
energy per particle of each of the computed Laughlin values lies
above that obtained for our trial wave function for any of the eval-
uated finite size samples. Moreover, the behavior of the energy of
the latter for the largest number of particles evaluated, suggests
that the energy per particle in the thermodynamic limit is lower
than the one associated with the Laughlin state. In the contrary
case, the extrapolation curve in the variable 1/N which join the
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Fig. 1. Energy per particle as a function of the inverse square root of the number of
particles N = √

Ne . The picture shows that the introduction of correlations in the
HF crystalline states made their energies lower than the ones shown by the ver-
sions of the Laughlin state in the Haldane–Rezayi periodic scheme. Note also that,
if the behavior in the large N limit is confirmed by more extensive evaluations, the
results will imply the existence of a ground state with a slightly lower energy than
the Laughlin one for macroscopic samples. The curve joining the points of evalu-
ated energies for the new trial state is a fitting of these three points to a quadratic
polynomial in 1/

√
Ne . The lower straight line with negative slope is simply a linear

curve of 1/
√

Ne minimizing the mean square deviations from the three measured
energies.

there three evaluated points of the energy N = 2,4 and 6 should
change its monotonic change of slope upon enlarging the value
of N . However, being the number of Monte Carlo method itera-
tions for the 36 particles state (N = 6) yet limited, this indication is
not yet conclusive and further numerical evaluations will be done
to give a better foundation to this conclusion. Its validity, clearly
leads to the idea about that the recently detected periodic struc-
tures in extremely perfect 2DEG at very low temperatures, could
be associated to the here proposed translation symmetry breaking
states [2].

Let us now address a question that could arise in the read-
ers in connection with the structure of the zeroes of the ansatz
wavefunction (1). As it can be noticed, the position of the zeroes
of the HF originated determinant (defined also in (1)) as a func-
tion of any of the electron coordinates, let say z∗

i , are precisely
located at the rest of the electron coordinates z∗

j , for all values
of j not coinciding with i. That is, the zeroes of the determi-
nant as a function of any particular coordinate are coinciding with
the ones associated to the Jastrow factors

∏
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π
L (z∗
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j )| − τ ∗)}, entering the definition of the Laughlin trial func-
tions. Therefore, the above mentioned question might be posed
as follows: Is not this described coincidence of a large set of
zeroes, implying that the ansatz wavefunction should basically
coincide with the Laughlin state for periodic boundary condi-
tions (pbc), with the only freedom of a multiplicative center of
mass wavefunction? However, in spite of the described shared
common set of zeroes, it is possible to argue that the freedom
within the LLL in functions having zeroes of order q for any
electron coordinate z∗

i at the positions of the rest of all parti-
cles z∗

j �= z∗
i , is in fact much larger than that one being spanned

by a factor given by a center of mass coordinate wavefunction.
The proof is simply following after considering the class of func-
tions
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in which rs∗
k ,k = 1, . . . , Ne and s = 1, . . . ,q are the qNe 2D zeroes

within the principal region, of all the qNe theta functions defining
the first two products in the above formula. Note that q differ-
ent positions of the zeroes for each coordinate, can be arbitrarily
fixed. These wavefunctions all satisfy the periodic boundary con-
ditions. This is indicated by the fact that they show a number of
zeroes in the principal region, which coincides with the number
of flux quanta piercing this region [3]. To see this property, note
that there are qNe theta functions entering in the first two prod-
ucts in (2), and only a finite set of q of them is associated to each
one of the different electron coordinate of the Ne existing ones.
Then, the fact that the specific theta functions ϑ1 being employed
in the definitions, show only one zero within the principal region,
implies that the number of zeroes of (2) as a function of any of
the particle coordinates is exactly qNe . That is, as given by the
sum of q(Ne − 1) zeroes of the third product in (2) and the q
zeroes shown by the corresponding product of q theta functions
depending of the considered coordinate in the first two products
appearing in (2).

The previous remark suggests an alternative proposal of ansatz
wavefunctions which possibly can show a crystal symmetry. They
will be defined as follows
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where P indicates the permutation of the coordinates as defined
above. The function R∗(k) is a bijective mapping of the integer par-
ticle indices k = 1, . . . , Ne , to the lattice points generated by the
unit cell vectors a1 and a2, which also obey the condition of laying
inside the first periodicity region. Note that the unit cell defined by
a1 and a2 has q flux quanta passing through it, and thus, the num-
ber of lattice point being inside the periodicity region is just equal
to Ne . The vectors rs define an arbitrary set of q points inside each
cell, devoted to set fixed relative positions within the lattice unit
cells for the zeroes of the theta functions for each particular coor-
dinate. The translation symmetric form of the definition suggests
that in fact the proposed states could result to be equivalent, or
contains as particular cases the ansatz states (1). These connec-
tions are expected to be investigated in coming extensions of the
present work.

In ending we would like to underline that the present Letter
consider a particular HF state showing one electron per its pe-
riodicity unit cell. For fillings of the form 1/q the HF solution
produces a gap for all integers q. The experiment suggests, how-
ever, that even and odd q values are qualitatively different states.
It has been shown in the past that if only half electron is cap-
tured by the unit crystalline cell this distinction is properly borne
out [5]. Future work will extend to cover such states, and will be
reported elsewhere. It should be underlined that similar searches
to the one undertaken here, aiming to incorporate correlations in
initial HF states, were before considered in the literature. In par-
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ticular in Ref. [6,7], the investigation employed the disk geome-
try.
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