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ABSTRACT

Sound field reconstruction (SFR) is a popular approach to recreate an auditory scene

over a region of interest using an arrangement of a few loudspeakers. Methods following

this approach typically aim to approximate the sound wave that created the desired audi-

tory scene by minimizing physically inspired error metrics such as the L2-norm. However,

these metrics do not account for psycho-acoustic effects. Hence, the auditory artifacts gen-

erated by these methods may be physically small, but psycho-acoustically large. Although

there are methods that incorporate psycho-acoustic principles, we believe there is still a

gap between them and the SFR approaches: the link between the precise control of the re-

constructed sound wave and the psycho-acoustic effectiveness of it has not been correctly

developed yet.

In order to fill the gap, in this work we define a sweet spot that comprises the region

where the generated sound wave is psycho-acoustically close to the desired auditory scene.

Then, we develop a method that aims to generate a sound wave that directly maximizes

this sweet spot. Our method incorporates psycho-acoustic principles from the onset and is

flexible: while it imposes little to no constraints on the regions of interest, the arrangement

of speakers, and the radiation pattern of the loudspeakers, it allows for a wide array of

psycho-acoustic models that include state-of-the-art monaural psycho-acoustic models.

Our method leverages tools from analysis and optimization that allow for its mathematical

analysis and efficient implementation. Our numerical results show that our method yields

larger sweet spots compared to state-of-the-art SFR methods for sinusoidal point sources

using van de Par’s psycho-acoustic model.

Keywords: Spatial sound, sweet spot, psycho-acoustics, non-convex DC optimization.

x
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RESUMEN

Sound field reconstruction (SFR) es un enfoque popular para recrear una escena au-

ditiva en una región de interés utilizando una cantidad finita de parlantes. Los métodos

que siguen este enfoque suelen tener como objetivo aproximar a la onda sonora que creó

la escena auditiva deseada minimizando métricas de error inspiradas fı́sicamente, como

la norma L2. Sin embargo, estas métricas no tienen en cuenta efectos psicoacústicos.

Por lo tanto, los artefactos auditivos generados por estos métodos pueden ser fı́sicamente

pequeños, pero psicoacústicamente grandes. Aunque existen métodos que incorporan

principios psicoacústicos, creemos que aún existe una brecha entre ellos y los enfoques

SFR: el vı́nculo entre el control preciso de la onda sonora reconstruida y la efectividad

psicoacústica de la misma no se ha desarrollado correctamente todavı́a.

Para cerrar la brecha, en este trabajo definimos un sweet spot que comprende la región

donde la onda sonora generada es psicoacústicamente cercana a la escena auditiva de-

seada. Luego, desarrollamos un método cuyo objetivo es generar una onda sonora que

maximice directamente este sweet spot. Este es flexible: impone pocas o ninguna re-

stricción en las regiones de interés, sobre la disposición espacial y el patrón de radiación

de los parlantes, y permite la aplicación de una amplia familia de modelos psicoacústicos

monoaurales, en particular de aquellos del estado del arte. Además, utiliza herramientas

de análisis matemático y optimización que permiten su interpretación e implementación

eficiente. Nuestros resultados numéricos muestran que nuestro método produce sweet

spots más grandes que los métodos de SFR del estado del arte para fuentes puntuales

sinusoidales bajo el modelo psicoacústico de van de Par.

Palabras Claves: Audio espacial, sweet spot, psicoacústica, optimización DC.

xi
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1. INTRODUCTION

“What could be meant by copying a fact would be hard to grasp even

if there were any such things as facts.”

Nelson Goodman

The field of spatial sound addresses the question: how do we create a desired auditory

scene over a spatial region of interest from a sound scene generated with a finite set of

loudspeakers? In this context, the sound scene represents the objective nature of a sound

wave propagating in the physical world, whereas the auditory scene represents the imprint

of the sound scene in our subjectivity, that is, the result of the auditory system perceiving

and organizing sound into meaning (Spors et al., 2013; Blauert, 1997).

Figure 1.1. Sound scenes, auditory scenes, and sweet spot in spatial sound.
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Over the last century, several methods have been proposed to answer this question.

They can be divided in three groups: i) simple/heuristic methods that implicitly exploit

psycho-acoustic features, e.g. stereophony, (Hacihabiboglu, De Sena, Cvetkovic, John-

ston, & Smith III, 2017); ii) methods that pursue to reconstruct the sound scene, i.e. sound

field reconstruction methods (also called sound field synthesis) (Spors et al., 2013); iii)

methods that explicitly exploit psycho-acoustic features (Ziemer, 2020).

The performance of the methods can be compared in terms of the size of the region

where the sound scene creates an auditory scene that most closely resembles the desired

one. In this work, we call this region the sweet spot. It should be noted that in this

last definition we considered the auditory scene as a feature of the points of the region

of interest. However, our definition of an auditory scene is only properly clarified as a

feature of the subjectivity of a person. To transfer the definition from the person to the

region of interest, we must think the region of interest as a place for potential listeners

(see Fig. 1.1); the auditory scene is correctly recreated in a point of the region of interest

when the auditory scene of any potential listener lying over the point is correctly recreated.

For the description of the methods, we consider a region of interest Ω of arbitrary

shape, a set of loudspeakers located at x1, . . . , xns ∈ R3, and a target sound pressure wave

u0, as depicted in Fig. 1.2.

Figure 1.2. Sound field reconstruction settings: target region Ω, loudspeak-
ers, and target sound wave u0.
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1.1. Stereophony

One of the earlier and most widespread spatial sound approaches is stereophony (Union,

2012; Lipshitz, 1986). Its origins go back to 1931, when Alan Blumein introduced the first

two-loudspeaker sound system (Alexander, 2013). But its influence is still current: mod-

ern stereophonic systems as Dolby 5.1 are widely used in commercial products. These

methods, also called panning techniques, adjust the level and time-delay of the audio sig-

nals for each speaker utilizing a panning law to simulate steering the perceived direction

of the sound source.

For example, Vector Base Amplitude Panning (VBAP) (Pulkki, 1997, 2001) is a well

known amplitude based panning system that can reproduce 3D spatial sounds on sphere-

like settings. It is defined as follows: let the origin of the coordinate system be the center

of the target region Ω, the loudspeakers x1, . . . , xns ∈ ∂B(0, 1) and u0 produced by a

sound source located at x0 ∈ ∂B(0, 1). Then, select the positions of the loudspeakers

that optimally encloses x0 as x?1, x
?
2, x

?
3 and define L =

[
x?1 x?2 x?3

]
∈ R3×3. Assuming

that L is invertible, the VBAP system reproduces the time signal of the source at the

loudspeakers located at x?1, x
?
2, x

?
3 with gains equal to

g = (g1, g2, g3)T =
L−1x0

‖L−1x0‖2

Due to psycho-acoustic features of the auditory system such as the binaural decol-

oration mechanism, stereophonic systems work sufficiently well in some applications,

even with few speakers (Spors et al., 2013). However, they can only simulate sound

sources that lay approximately on the surface of the convex hull of the speakers. Fur-

thermore, its quality degrades rapidly as the listener moves away from the center of the

target region (Spors et al., 2013). Hence, the auditory scenes they can reproduce accurately

are limited, and their sweet spot seems to be very localized.
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1.2. Sound field reconstruction

A more ambitious strategy to recreate an auditory scene is to directly approximate the

sound wave that created it. In the literature, this strategy is called sound field reconstruc-

tion (or sound field synthesis (Spors et al., 2013)) and, in this context, the sweet spot is

assumed to be the same as the region where the generated sound wave closely resembles

the target sound wave.

Following Huygens’ principle, any sound scene can be approximated accurately with

a sufficiently dense arrangement of loudspeakers. However, selecting the audio signals

for the loudspeakers is an ill-conditioned problem (Fazi & Nelson, 2007a), that is, large

changes in the loudspeaker signals do not necessarily produce large changes in the ren-

dered sound wave and therefore small changes in the rendered sound wave may imply

large changes in the loudspeaker signals. Moreover, when the problem is tackled from a

continuous perspective (with a continuum of loudspeakers surrounding the target region),

there might be multiple solutions, rendering the problem ill-posed (Fazi & Nelson, 2012).

This means that the reconstruction problem may not be easy to solve; in some cases the

reconstruction will be prone to numerical issues.

Three classes of commonly used methods for sound field reconstruction are mode

matching methods, pressure matching methods and wave field synthesis. All of them rely

on an ondulatory physical description of sound, and over the wave equation that can be

derived from it, which for completeness we present before the exposition of the latter.

1.2.1. The Wave Equation

The simplest model of sound propagation over fluids rely over the linearization of three

principles (Pierce, 2019, Chapter 1.6): the conservation of mass, Newton’s force equation

and a pressure-density relation.
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(i) The conservation of mass: for a fixed volume Ω, the variation of net mass

in a volume Ω at any time can be expressed as the integral over Ω of the time

derivative of its density ρ: ∫
Ω

∂

∂t
ρ(x, t) dx. (1.1)

Also, the entrance and exit of mass through the boundary of Ω can be expressed

as the integral over the boundary of the density times the velocity of the flow ~v

through the boundary:∫
∂Ω

ρ(x, t)~v(x, t) · n dS(x) (1.2)

Then, the conservation of mass implies that the variation of the net mass over Ω

needs to be equal to the entrance/exit of mass by its boundary:∫
Ω

∂

∂t
ρ(x, t) dx =

∫
∂Ω

ρ(x, t)~v(x, t) · n dS(x)

= −
∫

Ω

∇ · (ρ(x, t)~v(x, t)) dx,

where the last equation follows from Gauss’ theorem (Apostol, 1969, Chapter

12.19). Then, by the linearity of the integral,∫
Ω

(
∂

∂t
ρ(x, t) +∇ · (ρ(x, t)~v(x, t))

)
dx = 0. (1.3)

Finally, since the latter is true for any arbitrary Ω, it implies the conservation of

mass equation

∂

∂t
ρ(x, t) +∇ · (ρ(x, t)~v(x, t)) = 0 (1.4)

(ii) Newton’s force equation: the net force over over the fluid inside a fixed volume

Ω can be expressed as the integral of the surface forces per unit area, denoted by
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~fS , exerted by the immediate surroundings of Ω:∫
∂Ω

~fS(x, t) dS(x), (1.5)

plus the integral of the the body forces per unit volume, denoted by ~fB, exerted

by non local forces such as gravity from the very outside of Ω:∫
Ω

~fB(x, t) dx. (1.6)

Although gravity is a fundamental force that is always present, it can be taken

as negligible in the context of acoustic disturbance phenomena at all but very

low (and inaudible!) frequencies (Pierce, 2019, Chapter 1.3). Also, a classical

assumption for ~fS (Pierce, 2019, Chapter 1.3) is that it is directed normally into

the surface ∂Ω, becoming

~fS = −u(x, t)~n, (1.7)

where u is called the pressure of the fluid and ~n(x) is the normal vector of

Ω at x pointing outwardly. On the other hand, the time variation of the net

momentum of the particles inside Ω can be expressed as the material derivative

of the vectorized integral of the density times the velocity of the fluid:

d

dt

∫
Ω

ρ(x, t)~v(x, t) dx. (1.8)
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Then, Newton’s force equation, i.e. the net force is equal to the derivative of the

momentum, gives

−
∫

Ω

∇u(x, t) dx =

∫
∂Ω

~fS(x, t) dS(x) (Gauss’ theorem)

=
d

dt

∫
Ω

ρ(x(t), t)~v(x(t), t) dx (Newton’s equation)

=

∫
Ω

d

dt
(ρ(x(t), t)~v(x(t), t)) dx (Regularity of ρ~v)

=

∫
Ω

ρ(x, t)
∂

∂t
~v + (~v · ∇)~v dx (Chain rule)

(1.9)

Finally, since the latter is true for any arbitrary Ω, it implies Euler’s equation for

fluids

∇u(x, t) + ρ(x, t)
∂

∂t
~v + (~v · ∇)~v = 0 (1.10)

(iii) Pressure-density relation: In modern physics, the pressure u of a fluid in a

specific moment and position over a region Ω can be regarded as a function of

the specific density ρ and the specific entropy s (Pierce, 2019, Chapter 1.4):

u = u(x, t, ρ, s). (1.11)

Over this, we will utilize the common assumption that the specific entropy of

a fluid particle is considered as constant in time, i.e. the material derivative is

equal to zero:
d

dt
s(x, t) = 0. (1.12)

The latter implies that the heat flow over Ω is negligible (Pierce, 2019, Chapter

1.4). Also, together with the assumptions that s is initially constant over Ω and

that the state equations are all equal over Ω, we have s(x, t) ≡ s0 and then

u = u(x, t, ρ, s0) = u(x, t, ρ). (1.13)

In practice, the pressure, velocity and density of a fluid in the acoustic disturbance pro-

cesses can be expressed as the sum of an ambient state (u0, ~v0, ρ0), related to the medium
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over which the acoustic disturbances occur, plus a perturbation (u′, ~v′, ρ′):

u = u0 + u′, ~v = ~v0 + ~v′, ρ = ρ0 + ρ′. (1.14)

We assume that the medium is homogeneous, i.e. the ambient state is independent of the

position over Ω; and quiescent, i.e. the ambient state is independent of time and ~v0 ≡ 0.

Then, equations (1.4), (1.10), and (1.13) become

0 =
∂

∂t
(ρ0 + ρ′) +∇ · ((ρ0 + ρ′)~v′) (1.15)

0 = ∇(u0 + u′) + (ρ0 + ρ′)
∂

∂t
~v′ + (~v′ · ∇)~v′ (1.16)

u(ρ0 + ρ′, s0) = u0 + u′ = u0 +

(
∂u

∂ρ

)
ρ0

ρ′ +
1

2

(
∂2u

∂2ρ2

)
ρ0

(u′)2 + . . . , (1.17)

where in (1.17) we have expanded the last expression into its Taylor series around ρ0.

Then, neglecting all the non linear terms we get the linear acoustic equations

0 =
∂

∂t
ρ′ + ρ0∇ · ~v′ (1.18)

0 = ∇u′ + ρ0
∂

∂t
~v′ (1.19)

u′ = c2ρ′, c2 =

(
∂u

∂ρ

)
ρ0

, (1.20)

where
(
∂u
∂ρ

)
ρ0

is taken positive for thermodynamic considerations (Pierce, 2019, Chap-

ter 1.5). In the following, for simplicity, we will omit the superscript for the perturbed

variables. Then, substituting (1.20) into (1.18) we have

0 =
1

c2

∂

∂t
u+ ρ0∇ · ~v

⇒ 0 =
1

c2

∂2

∂2t
u+ ρ0

∂

∂t
(∇ · ~v) (Partial differentiation in time)

⇔ 0 =
1

c2

∂2

∂2t
u−∇ ·

(
ρ0
∂

∂t
~v

)
(Regularity of ~v)

⇒ 0 =
1

c2

∂2

∂2t
u−∇2u (Using (1.19)),

(1.21)
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which is the so called wave equation. Taking a time Fourier transform on it and fixing a

specific angular frequency ω leads to the Helmholtz equation,

0 = k2û+∇2û, (1.22)

where k = ω/c is called the wave number and u = u(x, ω) = u(x) because ω is fixed. If

we rewrite (1.21) in terms of the spherical coordinates, see Fig. 1.3,

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(1.23)

then we obtain

0 =
1

r

∂2

∂2r
(ru) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂2φ
− 1

c2

∂2u

∂2t
. (1.24)

Figure 1.3. Cartesian and spherical coordinates.
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If we suppose that u is radially symmetric, i.e. u = u(r, θ, φ, t) = u(r, t), then (1.24)

simplifies into

0 =
1

r

∂2

∂2r
(ru)− 1

c2

∂2u

∂2t

⇔ 0 =
∂2

∂2r
(ru)− 1

c2

∂2

∂2t
(ru) (Multiplying by r)

⇔ 0 =

(
∂

∂r
− 1

c

∂

∂t

)(
∂

∂r
+

1

c

∂

∂t

)
(ru) (a2 − b2 = (a− b)(a+ b))

⇔ 0 = − 4

c2

∂

∂ξ

∂

∂η
h

(
ξ = t− r

c
, η = t+

r

c
, h = ru

)
⇔ h = g1

(
t− r

c

)
+ g2

(
t+

r

c

)
(Integrating)

⇔ u =
1

r
g1

(
t− r

c

)
+

1

r
g2

(
t+

r

c

)
,

(1.25)

where g1 and g2 are arbitrary functions. This means that the solution to the wave equation

in the radially symmetric case is the sum of an outgoing wave g1 and an incoming wave

g2. But g2 ≡ 0 because of causality, i.e. a wave cannot exist in the medium before the

excitation that originated it at the origin of the coordinate system. Thus, we conclude that

u(t, r) =
1

r
g
(
t− r

c

)
. (1.26)

This establishes that a radially symmetric wave propagates outwardly at velocity c de-

creasing its pressure magnitude as the inverse of the distance from the origin. Then, we

can call c the speed of sound. In the Fourier domain, (1.26) is equivalent to

û(ω, r) = ĝ(f)
e−ikr

r
. (1.27)

In the latter case, the frequency information of the signal is encapsulated in ĝ whereas the

spatial propagation information is contained in e−ikr/r, which is called a monopole. The

Green function of the wave equation, actually not a function but a generalized function,

DocuSign Envelope ID: 38CFC6CA-781E-4C73-911C-83D4715CD6F5



11

satisfies by definition (Pierce, 2019, Chapter 4.3.3)

−4πδ0 =

(
∇2 − 1

c2

∂2

∂2t

)
G. (1.28)

In an unbounded domain it turns out (Pierce, 2019, Chapter 4.3.3) that it also satisfies

(1.26) with g = δ0/4π, ĝ = 1/4π. Thus, in the frequency domain it becomes the normal-

ized monopole

û(ω, r) =
e−ikr

4πr
. (1.29)

1.2.2. Mode Matching Methods

Mode matching methods find an approximation to the desired sound wave u0 by

matching, usually in an L2 sense, its oscillatory spatial modes with the ones of the sum

of the loudspeakers. The theory for the latter starts by finding a solution to (1.24) using

separation of variables, i.e.

u(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)T (t). (1.30)

Equation (1.30) leads to four ordinary differential equations (Skudrzyk, 2012, Chapter

19.2)

1

c2T

d2T

d2t
= k1 (1.31)

1

Φ

d2Φ

d2φ
= k2 (1.32)

r2

R

d2R

dr2
+

2r

R

dR

dr
+ k2

1r
2 = k3 (1.33)

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+
(
k2 + k3 sin2 θ

)
Θ = 0, (1.34)

where, in principle, k1, k2 and k3 are arbitrary constants. However, in view of (1.31) we

choose k1 as negative, i.e. k1 = −(k′1)2; in this way we obtain from (1.31) solutions of the

form

T (t) = T2e
−ik′1ct + T1e

ik′1ct, (1.35)
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instead of exponentially time-decaying functions. Moreover, it is clear that the angular

frequency of the solution corresponds to ω = k′1c, and thus k1 = k in the sense of the

Helmholtz equation (1.22). Furthermore, we only keep the part of the solution that evolves

from the past to the future, which by convention correspond to the first term, giving

T (t) = T1e
−iωt. (1.36)

In view of (1.32), the positiveness of k2 is assumed by the same considerations as for k1:

we take m2 = k2. Furthermore, since Φ informs the azimuthal angle we need Φ(φ) =

Φ(φ + 2π). For simultaneously guaranteeing this and the continuity of Φ, we need m to

be an integer. In this way we obtain from (1.32) solutions of the form

Φ(φ) = Φ1e
−imφ + Φ2e

imφ. (1.37)

Equation (1.34) can be solved in a procedure (Skudrzyk, 2012, Chapter 19.3) that ulti-

mately leads to the need for k3 = n(n+1), where n is an integer and solutions of the form

Θ(θ) = Θ1Pn,m(cos θ), (1.38)

where Pn,m is a Legendre Polynomial (also called Legendre Function (Williams, 1999,

Chapter 6.3.2)). Equation (1.33) can be solved by a procedure related to the Bessel equa-

tion (Skudrzyk, 2012, Chapter 19.4), that leads to solutions of the form

R(r) = R1h
(1)
n (kr) +R2h

(2)
n (kr), (1.39)

where h(1)
n (kr) ∝ eikr and h(2)

n (kr) ∝ e−ikr are spherical Hankel functions of the first

and second kind, representing incoming and outgoing waves, respectively. Gathering up

(1.30), (1.36), (1.37), (1.38) and (1.39) we get that every solution to the 3D wave equation

for a fixed angular frequency ω, i.e. to the Helmholtz equation (1.22) can be written as an
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infinite sum of terms of the form

u(ω, r, θ, φ) =
∞∑
n=0

n∑
m=−n

Dn,m(r, k)Yn,m(θ, φ) (1.40)

where Dn,m(r, k) = Bn,mh
(1)
n (kr) + Cn,mh

(2)
n (kr) is called the harmonic coefficient of

order n and mode m (Ward & Abhayapala, 2001), and

Yn,m(θ, φ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pn,m(cos θ)eimφ (1.41)

is called the order n and mode m spherical harmonic. The reason of the omission of first

component of (1.37) in (1.41) is that it is superfluous for a complete description of the so-

lution; the spherical harmonics are a complete orthonormal base of L2(∂B(0, 1)) (Kirsch

& Hettlich, 2016, Theorem 2.19), which also explains the normalizing coefficient in (1.41)

given by
√

(2n+1)
4π

(n−m)!
(n+m)!

. Thus,

∫
∂B(0,1)

Yn,m(θ, φ)∗Yn′,m′(θ, φ) dθdφ =

0 if n = n′ ∧m = m′

1 i.o.c.
(1.42)

Equations (1.40) and (1.42) imply that, for a fixed radius r, one can encode a known

(measured or simulated) sound wave u by taking the inner products

Dn,m(r, k) =

∫
∂B(0,1)

u(ω, r, θ, φ)Yn,m(θ, φ) dθdφ (1.43)

up to a given order n0. Then, MMMs find an approximation to a target sound wave

by matching the first no order harmonic coefficients of the target and generated sound

waves (Daniel, 2000). This match is usually done by L2 minimization as follows: let

Ω = B(0, r), {D`
n,m} the harmonic coefficients of the loudspeaker `, and {D0

n,m} the har-

monic coefficients of the target sound wave u0. Since any reconstructed sound wave is a

linear combination of the sound waves generated by the loudspeakers and the harmonic

representations converge uniformly on every compact set (Kirsch & Hettlich, 2016, Theo-

rem 2.33), the harmonic coefficients of the reconstructed sound wave are equal to the linear
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combination of the harmonic coefficients of the loudspeakers. Then, a L2-minimization

MMM system of order n0 searches for the optimal linear combination of the sound waves

generated by the loudspeakers by solving the following convex problem

minimize
g∈Cns

n0∑
n=0

n∑
m=−n

∣∣∣∣∣D0
m,n −

ns∑
`=1

g`D
`
m,n

∣∣∣∣∣
2

. (1.44)

Some well-known MMMs are Ambisonics (Gerzon, 1973), Higher-Order Ambison-

ics (HOA), and Near-Field Compensated Ambisonics (NFC-HOA) (Daniel, Moreau, &

Nicol, 2003; Poletti, 2005). Ambisonics assumes the loudspeakers emit plane waves and

uses only the leading harmonic coefficient, whereas HOA uses a larger but fixed num-

ber of coefficients. In contrast, NFC-HOA assumes the loudspeakers are monopoles,

or even higher order loudspeakers, (Samarasinghe, Poletti, Salehin, Abhayapala, & Fazi,

2013). Ambisonics, HOA and NFC-HOA, by their construction, are designed for circu-

lar or spherical regions of interest. When approximating a plane wave, NFC-HOA create

a spherical sweet spot with a radius that is inversely proportional to the frequency of

the source (Ward & Abhayapala, 2001). Some variations of these methods consider a

weighted mode matching problem to prioritize certain spatial regions (Ueno, Koyama, &

Saruwatari, 2019), or a mixed pressure-velocity mode matching problem, exploiting the

modes of the velocity to achieve a better accuracy (Zuo, Abhayapala, & Samarasinghe,

2020). Furthermore, MMMs have been analyzed in the limit of a continuum of speak-

ers (Ahrens & Spors, 2008; Fazi, Nelson, Christensen, & Seo, 2008; Wu & Abhayapala,

2009).

1.2.3. Pressure Matching Methods

Instead of using expansions in spatial spherical harmonics, Pressure Matching Meth-

ods (PMM) minimize the L2 spatio-temporal error between the the target and generated

sound waves (Kirkeby & Nelson, 1993; Kirkeby, Nelson, Orduna-Bustamante, & Hamada,

DocuSign Envelope ID: 38CFC6CA-781E-4C73-911C-83D4715CD6F5



15

1996; Gauthier, Berry, & Woszczyk, 2005). Due to Parseval-Plancherel’s identity, this

problem can be tackled in the Fourier domain minimizing each frequency separately as

follows: let {xn}ndn=1 ⊆ Ω a discretization scheme of Ω and û`(x, ω; g`) the pressure sound

wave of the loudspeaker ` at the Fourier domain. Then, a L2-PMM system searches for the

optimal linear combination of the sound waves generated by the loudspeakers by solving

the convex problem

minimize
g∈Cns

nd∑
n=1

∣∣∣∣∣û0(xn, ω)−
ns∑
`=1

û`(xn, ω; g`)

∣∣∣∣∣
2

, (1.45)

where, typically the loudspeakers are modeled as monopoles, i.e.

û`(x, ω; g`) = g`
e−ik‖x−x`‖

4π‖x− x`‖
. (1.46)

The magnitude of the loudspeaker gains g` are often penalized by theirLp-norm to mitigate

the effects of ill-conditioning or to promote sparse representations of the reconstructed

sound wave (Lilis, Angelosante, & Giannakis, 2010; Radmanesh & Burnett, 2013; Gau-

thier, Lecomte, & Berry, 2017; Jia, Zhang, Wu, & Wang, 2018; Feng, Yang, & Yang,

2018).

Besides PMMs’ flexibility, in most cases, its solution can only be found numerically,

and the discretization of the region of interest plays an important role: with an uniform

discretization only local sound field reconstruction works reasonably well, i.e. when the

loudspeakers are sufficiently far from Ω. A modification to PMMs considers an additional

term accounting for the error in the velocity of the target and generated sound waves.

This modification yields robust results even when matching the pressure and velocity at

points that lie only along the boundary of the region of interest (Buerger, Hofmann, &

Kellermann, 2018; Buerger, Maas, Löllmann, & Kellermann, 2015; Shin, Nelson, Fazi, &

Seo, 2016).
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1.2.4. Wave Field Synthesis

Wave Field Synthesis (WFS) solves the reconstruction problem searching a driving

function D(x, ω) according to the single-layer potential (Spors et al., 2013)

P (x, ω) =

∫
∂Ω

D(xs, ω)G(x− xs, ω) dS(xs). (1.47)

This representation models the problem as if Ω were covered with a continuum of mono-

pole loudspeakers. Then, practical implementations with non continuum real loudspeakers

are treated as a discretization of the potential. To find an explicit form to D(x, ω), WFS

utilizes the fact that every solution of the 3D wave equation over an open and bounded re-

gion Ω free of sources can be represented using Kirchoff-Helmholtz’ formula (Williams,

1999, Chapter 8.3)

∫
∂Ω

[
P (xs, ω)

∂G(x− xs, ω)

∂n
+
∂P (xs, ω)

∂n
G(x− xs, ω)

]
dS =


P (x, ω) if x ∈ Ω

1
2
P (x) if x ∈ ∂Ω

0 if x ∈ Ω
c

.

(1.48)

This means that the sound wave inside Ω is fully characterized by its pressure and the nor-

mal derivative of its pressure over ∂Ω. If we take Ω as an unbounded region whose bound-

ary is a plane, the Kirchoff-Helmoltz representation can be simplified to the Rayleigh

formula (Williams, 1999, Chapter 2.10): for x ∈ Ω,

P (x, ω) = −2

∫
∂Ω

∂P (xs, ω)

∂n
G(x− xs, ω) dS(xs). (1.49)

Then,

D(x, ω) = −2
∂P (x, ω)

∂n
. (1.50)

Unfortunately, for practical reasons it is preferable to have an horizontal line of loudspeak-

ers more than plane. To transfer the Rayleigh formula to a line setting, WFS utilizes the
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stationary phase approximation (SPA) (Williams, 1999, Chapter 4.6.1), which for func-

tions f, φ ∈ C2(R;R) such that φ′ � f ′ yields the following approximation∫
R
f(z)eiφ(z) dz ≈ f(z∗)eiφ(z∗)

∫
R
ei

1
2
φ′′(z∗)(z−z∗)2 dz

=

√
2π

|φ′′(z∗)|
f(z∗)eiφ(z∗)+iπ

4
sgn(φ′′(z∗)),

(1.51)

where z∗ is such that φ(z∗)′ = 0. For simplicity, in the following we will assume that

Ω = {x = (x, y, z) ∈ R3 | y > 0}, and then the Rayleigh formula can be written as

P (x, ω) = −2

∫
R

∫
R

∂P (xs, ω)

∂y
G(x− xs, ω) dzsdxs. (1.52)

Traditional WFS, initially developed by Berkhout (Berkhout, de Vries, & Vogel, 1993;

Berkhout, 1988), assumes that the desired sound wave is produced by a monopole source,

lying at x0 = [x0, y0 < 0, 0], and applies the SPA over the z-coordinate over z∗ = 0. This

gives (Start, 1996)

P (x, ω) ≈ −2

∫ ∞
−∞

√
2π

ik

√
|xs − x0| · |x− xs|
|xs − x0|+ |x− xs|

∂P (xs, ω)

∂y
G(x− xs, ω) dxs. (1.53)

Then,

Dtrad(x, ω) = −2

√
2π

ik

√
|x− x0| · |xr − x|
|x− x0|+ |xr − x|

∂P (x, ω)

∂y
, (1.54)

where xr ∈ Ω is a reference point where the amplitude of the reconstruction is approx-

imately exact when the stationary phase approximation is valid. Revisited WFS (Spors,

Rabenstein, & Ahrens, 2008) assumes that the desired sound wave is essentially 2D,

i.e. P ((x, y, z), ω) = P ((x, y, z′), ω) for all z, z′ ∈ R, and applies the SPA over the

z-coordinate and z∗ = 0. This gives

P (x, ω) = −2

∫
R

∂P (xs, ω)

∂y

∫
R
G(x− xs, ω)dzsdxs

≈ −2

∫
R

√
2π|x− xs|

ik

∂P (xs, ω)

∂y
G(x− xs, ω)dxs.

(1.55)
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Then,

Drev(x, ω) = −2

√
2π|xr − x|

ik

∂P (x, ω)

∂y
, (1.56)

To deal with non planar regions of interest, it was proposed in Revisited WFS to apply the

derived driving function for planar boundaries multiplied by a window function (Spors et

al., 2008)

w(x) =

1 if 〈 ~Iu0(x), n(x)〉 < 0

0 elsewhere
, (1.57)

where ~Iu0(x) is the averaged acoustic intensity vector (Pierce, 2019, Chapter 1.11) of u0

at x and ~n(x) is the normal vector of Ω at x pointing outwardly. The window function acti-

vates only the part of the boundary of the interest region that is ’illuminated’ by the desired

sound wave. When the surface is smooth, convex and its curvature is small compared with

the wavelength of the desired sound wave, this planar approximation is considered valid.

Further generalizations and unifications of the theory of WFS, that encompass the

Traditional and Revisited ones, are developed in (Firtha, Fiala, Schultz, & Spors, 2017;

Firtha, 2019). It has been shown that the spatial properties of the auditory scene are

correctly simulated by WFS and do not depend on the position of the listener over the

region of interest (Wierstorf, Raake, & Spors, 2013). However, it suffers from coloration

effects due to spatial aliasing artifacts (Wierstorf, Hohnerlein, Spors, & Raake, 2014).

1.2.5. Why sound field reconstruction is not the best approach?

There is extensive literature analyzing these methods and comparing their perfor-

mance (Daniel et al., 2003; Spors & Ahrens, 2008; Fazi, Nelson, & Potthast, 2009;

Franck, Wang, & Fazi, 2017; Firtha, Fiala, Schultz, & Spors, 2018). In fact, they become

equivalent in the limit of a continuum of loudspeakers, differing only when using a finite

number (Fazi & Nelson, 2007b). Although they are amenable to mathematical analysis

and have computationally efficient implementations, there is no natural psycho-acoustic
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justification for minimizing the `2-error for the coefficients of the expansion in spherical

harmonics, the L2-error for the pressure or velocity, nor the solution to an integral equa-

tion, to produce a large sweet spot as we have defined it. As a consequence, the artifacts

introduced by these methods, due to approximation errors, may produce noticeable, and

possibly avoidable, psycho-acoustic artifacts.

1.3. Psycho-acoustic approaches

An alternative to reproduce better the auditory scene is to explicitly account for psycho-

acoustic principles (Zwicker & Fastl, 2007; Blauert, 1997) in the methods. The first steps

in this direction were taken in (Johnston & Lam, 2000) by proposing a simple model that

aims to preserve the spatial properties of the desired auditory scene. They emphasized that

a perception based system should recreate the interaural level difference (ILD) and inter-

aural time difference (ITD) of the potential listeners. This way, it would at least correctly

recreate the horizontal spatial properties of the desired auditory scene.

A method to reproduce an active intensity field, itself a proxy for the spatial prop-

erties, that is largely uniform in space was then proposed in (Sena, Hacihabiboglu, &

Cvetkovic, 2013). It is based on an optimization problem yielding audio signals where

at most two loudspeakers are active simultaneously. However, it makes the restrictive

assumption that the target sound wave is a plane wave, and that the loudspeakers emit

plane waves. In (Ziemer & Bader, 2017) the radiation method and the precedence fade

are proposed. The former is equivalent to applying a PMM over a selection of frequencies

that are most relevant psycho-acoustically, whereas the latter is a method to overcome the

localization problems associated to the precedence effect (Blauert, 1997). Finally, in (Lee,

Nielsen, & Christensen, 2020) a PMM is extended to account for psycho-acoustic effects

by considering the L2-norm of the differences in pressure convolved in time by a suitable
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filter, i.e. it is based on the convex problem

minimize
g∈Cns

nd∑
n=1

nt∑
m=1

|ε(xn, tm; g)|2 , (1.58)

where ρ is the convolution filter and ε is the convolved error between the synthesized and

the target sound waves, i.e.,

ε(x, t; g) =

(
ρ ∗

[
u0 −

ns∑
`=1

u`(g`)

])
(x, t). (1.59)

Note that the structure of (1.58) generalizes the radiation method, since selecting specific

frequency bands is equal to the convolution with a sum of weighted sinc functions.

1.4. Contributions

We believe that there is a gap between methods that aim to directly approximate a

sound wave to reproduce a desired auditory scene, and methods that leverage psycho-

acoustic models to reproduce the same auditory scene. In this work, we develop a method

from first principles that incorporates monaural psycho-acoustic models to generate a

sound wave that directly maximizes the sweet spot. This method is amenable to mathe-

matical analysis, has an efficient computational implementation, and incorporates psycho-

acoustic principles from the onset. Our numerical results over sinusoidal instances and

van de Par’s spectral psycho-acoustic model (van de Par, Kohlrausch, Heusdens, Jensen,

& Jensen, 2005) show our method outperforms the most common state-of-the-art methods

for sound field reconstruction in three senses: (i) we generate the largest monaural sweet

spots in every instance evaluated, (ii) we implicitly perform intensity direction reconstruc-

tion (a proxy for binaural cues) with consistently better results than the other methods, (iii)

differently from other methods, we guarantee no discomfort for every potential listener ly-

ing on the target region. Also, the latter benefits of our method are preserved in multiple

zones (with a zone of silence) instances.
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1.5. Structure of the thesis

This work is organized as follows. In Section 2.1 we introduce the main physical and

psycho-acoustic models that we use. In Section 2.2 we formulate the variational problem

of maximizing the sweet spot, proposing an accurate approximation, and analyzing its

properties. In Section 2.3 we show this approximation can be recast as a Difference-of-

Convex (DC) program, and we introduce the SWEET algorithm as an efficient method to

solve it approximately. In Section 2.4 we show a concrete implementation of our method

based on van de Par’s spectral psycho-acoustic model (van de Par et al., 2005). Finally,

in Section 2.5 we perform several numerical experiments analyzing its performance, com-

paring its results with WFS, NFC-HOA and PMM over sinusoidal instances, and showing

some concrete applications in multiple frequency and multiple zones (with a zone of si-

lence) instances.
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2. MAXIMIZING THE PSYCHO-ACOUSTIC SWEET SPOT

2.1. Mathematical model

2.1.1. Acoustic framework

Consider an array of ns speakers located at x1, . . . , xns ∈ R3. When the medium is

assumed homogeneous and isotropic, and each loudspeaker is modeled as an isotropic

point source, the sound wave they generate is (Evans, 2010, Section 2.5.2)

u(t, x) =
ns∑
k=1

ck(t− c−1
s ‖x− xk‖)

4π‖x− xk‖

where cs is the speed of sound in the medium, and c1, . . . , cns are the audio signals of

every loudspeaker. In the frequency domain, this is represented as

û(f, x) =
ns∑
k=1

ĉk(f)
e−2πic−1

s f‖x−xk‖

4π‖x− xk‖
(2.1)

where ĉk is the Fourier transform of ck in time

ĉk(f) :=

∫
ck(t)e

−2πift dt.

To model the spatial radiation pattern of each loudspeaker, along with time-invariant ef-

fects such as reverb (Gauthier et al., 2005; Betlehem & Abhayapala, 2005), the represen-

tation (2.1) can be replaced by

û(f, x) =
ns∑
k=1

ĉk(f)Gk(f, x). (2.2)

where Gk are the corresponding Green’s functions. In addition to this array, consider a

bounded domain Ω ⊂ R3 containing no loudspeakers, i.e. xk /∈ Ω, allowing us to avoid

the singularities in (2.1) at each xk. On this domain, we could attempt to approximate as

best as possible a sound wave u0 with the array of loudspeakers.
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If we had a continuum of isotropic point sources on ∂Ω then, under suitable conditions,

the simple source formulation (Williams, 1999, Section 8.7) shows we can reproduce u0

exactly. However, when only a finite number of physical loudspeakers are available, we

must find ĉ1, . . . , ĉns such that

û0(f, x) ≈
ns∑
k=1

ĉk(f)Gk(f, x), (2.3)

in an suitable sense, for x ∈ Ω. In many cases û0 is real-analytic on its second argument

over Ω. As a consequence, when the speakers are isotropic point sources or Gk is real-

analytic on its 2nd argument, the approximation cannot be exact on any open set unless u0

was actually generated by the speaker array (Krantz & Parks, 2002, Corollary 1.2.5). This

suggests (2.3) can hold only in average.

From now on we letWS be the set of acoustic waves that can be generated by the array,

represented in the frequency domain as in (2.2). We formalize this set in Section 2.2 and

we first turn our attention to the psycho-acoustic criteria that determine a suitable sense to

interpret (2.3).

2.1.2. Psycho-acoustic preliminaries

To interpret (2.3) adequately, we consider two basic aspects of the human auditory

system: the hearing threshold and the damage/discomfort risk level threshold. The former

allows us to determine when the differences between u0 and the approximating wave are

negligible, whereas the latter ensures we do not harm listeners.

2.1.2.1. The hearing threshold

An important psycho-acoustic problem is to determine when the difference between

two audio signals v0 = v0(t) and v = v(t) is audible. A key concept to address it is the
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Figure 2.1. Threshold of audibility.

absolute threshold of hearing (Zwicker & Fastl, 2007, Section 2.1) (see Figure 2.1): when

v0 ≡ 0, a pure tone v is imperceptible if its intensity falls below it.

In complex audio signals other mechanisms come into play and the criteria for per-

ception depend on the signal v0 being approximated. It has been proposed that the human

auditory system first computes an internal representation of the audio signal v 7→ Φ(v)

to then apply an internal detector (Φ(v),Φ(v0)) 7→ D?(Φ(v),Φ(v0)). The difference is

perceptible if this value exceeds a given threshold (Jepsen, Ewert, & Dau, 2008; Disch et

al., 2018). These studies do not provide a tractable form for this representation nor for

the internal detector. A simplification yielding a tractable model is given in (Plasberg &

Kleijn, 2007). The model is simplified to a non-symmetric distortion measure

D(v, v0) =

∫
R
|L(v − v0)(t)|2 dt (2.4)

where L is a transform modelling locally time-invariant filters that may depend on v0. An-

other simplification in the literature is to consider a sum of convolved-weighted-squared
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errors (Taal, Hendriks, & Heusdens, 2012)

D(v, v0) =
∑
k

∫
R
|hk ∗ (v − v0)(t)gk(t)|2 dt (2.5)

where hk and gk represent a spectral and time weighting respectively. Together they model

the difference over the k-th auditory filter. The filters may depend themselves on v0. A

further simplification introduced in (van de Par et al., 2005) consists in taking a constant

g, i.e.,

D(v, v0) =
∑
k

∫
R
|v̂(f)− v̂0(f)|2ρk(f) df. (2.6)

This proposal works only with spectral information and thus it may not capture tempo-

ral masking effects accurately (Taal et al., 2012). The main reason to make these models

dependent on v0 is to account for the psycho-acoustic equivalence of v and v0 when the ap-

proximation error is masked by v0. This is a principle already used in audio coding (Painter

& Spanias, 2000; Bosi & Goldberg, 2012).

2.1.2.2. The damage and discomfort risk threshold

Exposure to loud sound waves may be uncomfortable. Then, unrestricted spatial sound

systems may reproduce undesirable sound scenes where some features prevail at the ex-

pense of the discomfort of some listeners. Empirical thresholds for loud discomforts levels

for sinusoidal signals over a finite set of frequencies have been defined in the literature,

e.g. in (Knobel & Sanchez, 2006; Sherlock & Formby, 2005). Naturally, these can be

expressed as ∫
R
|û(f, x)|2 ρ(f)2df, (2.7)

where ρ(f) is the multiplicative inverse of the threshold.
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2.1.3. Psycho-acoustic framework

Although there is no definitive model for the hearing threshold, the literature supports

the idea that the effects that must be taken into account depend on the sound wave u0 itself.

In this work we consider a general form for these models that includes some proposals in

the literature. Inspired by (2.4), if u is a acoustic wave on Ω, a map of the form

Bu(x) =

∫
R

∣∣∣∣∫
R
KB(t, t′, x)(u− u0)(t′, x) dt′

∣∣∣∣2 dt (2.8)

where KB is a suitable kernel, not necessarily time-invariant, quantifies the differences in

perception between u and u0 at a given x. A map of this form can account for time-variant

effects, such as temporal masking, and also for time-invariant effects, such as spectral

masking. Then, as the form in (2.4), KB models a locally time-invariant filter. Also, it can

be regarded as a factorization of a quadratic form that relates the difference of the signals

at different times, i.e., formally we have,

Bu(x) =

∫
R

(∫
R
KB(t, t′, x)(u− u0)(t′, x) dt′

)∗(∫
R
KB(t, t′′, x)(u− u0)(t′′, x) dt′′

)
dt

=

∫
R

∫
R
(u− u0)(t′, x)

(∫
R
KB(t, t′, x)∗KB(t, t′′, x) dt

)
︸ ︷︷ ︸

:=W (t′,t′′,x)

(u− u0)(t′′, x) dt′dt′′

=

∫
R

∫
R
(u− u0)(t′, x)W (t′, t′′, x)(u− u0)(t′′, x) dt′dt′′,

where W is the kernel of the quadratic form at each x.

By choosing suitable kernels we can represent the differences in perception over sev-

eral auditory filters as a collection of functionals B1, . . . , Bnb of the form (2.8). Conse-

quently, we define the threshold map as

Tu(x) := Ψ(B1u(x), . . . , Bnbu(x)) (2.9)
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where Ψ : Rnb
+ → R is a continuous convex function that is non-decreasing on each one of

its components. Without loss, we consider the difference between u and u0 is not audible

at x if Tu(x) ≤ 0. Remark that by choosing a suitable function Ψ we may incorporate

interactions between different auditory filters, e.g., when Ψ is a positive-definite quadratic

function, representing the integration of the difference of perception between different

frequency bands.

By choosing a suitable kernel KB and integrating function Ψ, a functional of the

form (2.9) reproduces the auditory metrics (2.4), (2.5) and (2.6). To reproduce (2.6) we

choose σk(t, x) as a function associated to the k-th auditory filter such that ρk(f, x) =

|σ̂k(f, x)|2 and choose the kernel KBk(t, t
′, x) = σk(t

′ − t, x). By Parseval’s identity and

the convolution theorem we have

Bku(x) =

∫
R

∣∣∣∣∫
R
σk(t

′ − t, x)(u− u0)(t′, x) dt′
∣∣∣∣2 dt

=

∫
R
|σk ∗ (u− u0)(t, x)|2 dt

=

∫
R
|(û− û0)(f, x)|2 |σ̂k(f, x)|2 df

=

∫
R
|(û− û0)(f, x)|2 ρk(f, x) df.

By considering the integrating function Ψ(z1, . . . , znb) =
∑nb

k=1 zk we conclude that

Tu(x) has the same form as (2.6) at every x ∈ Ω.

Similarly, to obtain (2.5) we choose the kernel KBk(t, t
′, x) = hk(t

′ − t, x)gk(t, x).

Then,

Bku(x) =

∫
R

∣∣∣∣∫
R
hk(t

′ − t, x)gk(t, x)(u− u0)(t′, x) dt′
∣∣∣∣2 dt

=

∫
R
|hk ∗ (u− u0)(t, x)gk(t, x)|2 dt.
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If we consider the same integrating function Ψ(z1, . . . , znb) =
∑nb

k=1 zk we conclude that

Tu(x) has the same form as (2.5) at every x ∈ Ω.

Finally, to obtain (2.4) we first assume L can be represented by an integral kernel. We

believe this is not a restrictive assumption in practical applications. Hence,

L(u− u0)(t, x) =

∫
R
KB(t, t′, x)(u− u0)(t′, x) dt′.

Note this is precisely the form∫
R
|L(u− u0)(t, x)|2 dt =

∫
R

∣∣∣∣∫
R
KB(t, t′, x)(u− u0)(t′, x) dt′

∣∣∣∣2 dt.
With this, and considering Ψ(z) = z for nb = 1 we conclude that Tu(x) has the same

form as (2.4) at every x ∈ Ω.

Therefore, given an approximating wave u ∈ WS , we define its sweet spot as the set

where u is psycho-acoustically equivalent to u0, i.e.,

S(u) = {x ∈ Ω : Tu(x) ≤ 0}. (2.10)

Note the psycho-acoustic equivalence that defines the sweet spot is monaural. Although at

each point the audio signal is in this sense equivalent to the original, this does not account

a priori for binaural effects, e.g., whether the position of an audio source is perceived

correctly.

Analogously, to model the discomfort level threshold we consider a collection of func-

tionals Q1, . . . , Qnp of the form (2.8) with u0 ≡ 0. Note that those generalize (2.7) as they

can account for time-variant effects. To enhance flexibility, we do not assume the same

selection of auditory filters for the functionals B and Q, nor that nb = np. Hence, we

define the discomfort map P as in (2.9) for u0 ≡ 0

Pu(x) := Π(Q1u(x), . . . , Qnpu(x))
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where Π is a function with the same properties as Ψ. Then,

P := {u : ∀x ∈ Ω. Pu(x) ≤ 0} (2.11)

is the collection of sound waves below the discomfort threshold at every x. The domain

of T and P are sound waves, and thus are part of the sound scene. In contrast, their image

are part of the auditory scene. Hence, T and P link the objective and subjective aspects of

the problem.

Our goal is to find an acoustic wave u ∈ WS that maximizes the weighted area of the

sweet spot µ(S(u)) while remaining comfortable, i.e., u ∈ P . From now on, we assume

u0 is known and fixed. Particularly, all the parameters that we have introduced to define

the threshold map (2.9) may depend on u0.

2.2. Maximizing the sweet-spot

To formalize the problem of maximizing the sweet spot we make some critical as-

sumptions. We consider the space

W :=

{
u : sup

x∈Ω

∫
R
|u(t, x)|2 dt <∞

}
of sound waves that have finite energy at every x ∈ Ω. Spaces of this form are called

mixed Lp-spaces and were introduced in (Benedek & Panzone, 1961). The space W is

complete under the norm

‖u‖W := sup
x∈Ω

(∫
R
|u(t, x)|2 dt

)1/2

.

An important feature of this norm is that the energy is preserved in time and frequency,

i.e., ‖u‖W = ‖û‖W . From now on, we assume u0 ∈ W . The following proposition

summarizes the technical results that ensure that the methods we propose are well-posed.

We defer its proof to Appendix A.
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PROPOSITION 1. Suppose that

(i) The audio signals ĉk in (2.2) are all bandlimited to an interval Ic and their L2-norm

is uniformly bounded.

(ii) The functions Gk in (2.2) are continuous and bounded on Ic × Ω.

(iii) For every K ∈ {KB1 , . . . , KBnb
} ∪ {KQ1 , . . . , KQnp} there is a constant CK such

that ∫
R
|K(t, t′, x)| dt,

∫
R
|K(t, t′, x)| dt′ ≤ CK

for a.e. x ∈ Ω.

Then the following assertions are true.

(i) The map T : W → L∞(Ω) is continuous, and for almost every x ∈ Ω the map

u→ Tu(x) is convex.

(ii) The set S(u) is Borel measurable for any u ∈ W .

(iii) The set WS is compact in W .

(iv) The set P is closed in W .

We assume the hypotheses of the proposition hold throughout. This does not impose

strong constraints on the threshold map (2.9). However, this implies the sound waves in

WS are continuous in space and time.

The weighted area of the sweet spot is measured with a Borel measure µ (Cohn, 2013,

Section 1.2). The problem of maximizing the sweet spot becomes

(P0)


maximize

u∈WS

µ(S(u))

subject to u ∈ P .

In the above problem the feasible set is closed and bounded and, in fact, compact. To prove

there exists a solution, we need to characterize the regularity of the objective function.

However, this implies characterizing the behavior of the set-valued function u ⇒ S(u).
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This could be very difficult in practice. For this reason, we propose an approximation to

(P0) that can be analyzed with standard methods, and for which approximate solutions

can be found efficiently.

2.2.1. The layer-cake representation

The layer-cake representation allows us to approximate the area of S(u) in terms of

an integral over a function of u. Let ϕ be a bounded non-negative function of bounded

variation such that ϕ(t) = 0 for t < 0 and ‖ϕ‖L1 = 1. Let ϕε denote the function

ϕε(t) = (1/ε)ϕ(t/ε) for ε > 0 and define

Φε(t) =

∫ t

−∞
ϕε(s) ds.

Suppose v ∈ L∞(Ω), α > 0 and let Sα := {x : v(x) > α}. Since Ω is bounded, this

implies v ∈ L1(Ω). We claim the area µ(Sα) can approximated by

A(α)
ε (v) =

∫
Ω

Φε(v(x)− α) dµ(x).

PROPOSITION 2. For every fixed v ∈ L∞(Ω) and α ∈ R we have

lim
ε↓0

A(α)
ε (v) = µ({x ∈ Ω : v(x) > α}).

PROOF OF PROPOSITION 2. Let {εn} be monotone decreasing to zero and Vt,n :=

{x ∈ Ω : v(x) ≥ α + εnt}. For every fixed t ≥ 0 we have Vt,n ⊆ Vt,n+1. Define

V :=
⋃
n>0 Vt,n = {x ∈ Ω : v(x) > α} and hn(t) = ϕ(t)µ(Vt,n). Note the latter are

measurable as t 7→ µ(Vt,n) is monotone. Then hn(t) ↑ ϕ(t)µ(V ) as n→∞ by continuity
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from below (Cohn, 2013, Proposition 1.2.5). By Fubini’s theorem

A(α)
εn (v) =

∫
Ω

∫ v(x)−α

−∞
ϕεn(t) dtdµ(x)

=

∫
R
ϕεn(t)

∫
Ω

χ{v(x)−α≥t}(t, x) dµ(x) dt

=

∫
R
ϕεn(t)µ({x ∈ Ω : v(x) ≥ α + t}) dt

=

∫ ∞
0

ϕ(t)µ(Vt,n) dt

n→∞−−−→ µ({x ∈ Ω : v(x) > α})

where we used the monotone convergence theorem (Cohn, 2013, Theorem 2.4.1). As {εn}

is arbitrary, the claim follows. �

Therefore, writing Aε = A
(0)
ε , we have for u ∈ W and ε small that

Aε(Tu) =

∫
Ω

Φε(Tu(x)) dµ(x)

≈ µ({x ∈ Ω : Tu(x) > 0})

= µ(S(u)c)

= µ(Ω)− µ(S(u))

whence µ(S(u)) ≈ µ(Ω) − Aε(Tu). This allows us to use directly an integral functional

of a function of Tu thereby removing the need to use the set S(u) as an optimization

variable.
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2.2.2. The variational problem

We propose to solve the ε-approximated problem

(Pε)


minimize
u∈WS

Aε(Tu)

subject to u ∈ P .
(2.12)

We can characterize the regularity of the objective function for this problem.

PROPOSITION 3. The function Aε : L∞(Ω)→ R is continuous. Since WS is compact,

there exists at least one solution to (2.12).

PROOF OF PROPOSITION 3. Let δ > 0 and v0, v ∈ L∞(Ω) be such that ‖v−v0‖L∞ <

δ/2. Then |v(x)− v0(x)| < δ/2 for x on a set of full measure. Since ϕ(t) is bounded for

−‖v0‖L∞ − δ/2 ≤ t ≤ ‖v0‖L∞ + δ/2 we have

|Φε(v(x))− Φε(v0(x))| ≤
∫ v0(x)+δ/2

v0(x)−δ/2
ϕ(t) dt ≤ cv0,ϕδ

where cv0,ϕ > 0 depends only on ϕ and v0. Thus, |Aε(v2)−Aε(v1)| ≤ cv0,ϕµ(Ω)δ whence

Aε is continuous. The existence of solutions follows from the compactness of WS ∩ P .

�

Unfortunately, we cannot assert that the solution to (2.12) is unique and, in fact, several

solutions may exist as two distinct sound waves may be the best psycho-acoustic approx-

imation to u0 on Ω. Consider the case u0 ≡ 0: any sound wave u ∈ WS of sufficiently

small magnitude falls below the pain and hearing thresholds, and is thus optimal for (2.12).

In addition, although the feasible set is convex, the objective function is not. Therefore, in

principle, there may not be efficient algorithms to solve (2.12), and several local minima

may exist.
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2.3. DC Formulation

To introduce a suitable algorithm to solve (2.12) we first rewrite it as

(P ′ε)


minimize

u∈WS ,v∈L∞(Ω)
Aε(v)

subject to Tu ≤ v, u ∈ P .
(2.13)

We interpret the auxiliary variable v as an overestimate of the threshold map over Ω. The

proof of the following proposition shows that for all practical purposes we can assume

Tu = v.

PROPOSITION 4. The following assertions are true.

(i) The set {(u, v) : Tu ≤ v} is closed and convex.

(ii) If u? is an optimal solution to (Pε) then (u?, Tu?) is an optimal solution to (P ′ε). In

particular, (P ′ε) has a solution.

(iii) If (Tu?, v?) is an optimal solution to (P ′ε) then (u?, Tu?) is also an optimal solution,

and u? is an optimal solution to (P ′ε).

(iv) The problems (Pε) and (P ′ε) are equivalent.

PROOF OF PROPOSITION 4. We omit details for brevity. (i) Convexity follows from

(i) in Proposition 1. Similarly, the set is closed by the continuity of T . (ii)-(iv) Let u be

an optimal solution to (Pε). By choosing v = Tu it is clear the optimal solution to (P ′ε) is

less or equal than that of (Pε). Let (u′, v′) be an optimal solution to (P ′ε). We claim that we

can choose v′ so that v′ = Tu′. First, remark that v1 ≤ v2 implies that Aε(v1) ≤ Ae(v2).

Therefore, we can define v′′ ∈ L∞(Ω) as v′′(x) = min{v′(x), Tu′(x)} = Tu′(x) whence

Aε(v
′′) ≤ Aε(v

′). Since (u′, v′) is optimal, Aε(v′′) = Aε(v
′) and, without loss, we can

assume v′ = Tu′. Consequently, the optimal value of (P ′ε) is greater or equal to that of

(Pε). Hence the problems are equivalent and, by Proposition 3, they both have at least one

solution. �
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From now on, we denote both (2.12) and (2.13) as (Pε) and we omit the subscript

ε when possible. Note that in (2.13) the objective is the difference of convex functions.

Since ϕ is of bounded variation we can consider its Jordan decomposition (Royden &

Fitzpatrick, 2010, Chapter 6, Jordan’s Theorem) ϕ = ϕ+ − ϕ− where ϕ+, ϕ− : R → R

are non-decreasing functions. Define

Φ+(t) =

∫ t

−∞
ϕ+(s)ds, Φ−(t) =

∫ t

−∞
ϕ−(s)ds

By construction, Φ = Φ+ − Φ−. Hence, we can decompose A as A = A+ − A− where

A+(v) :=

∫
Ω

Φ+(v(x)) dµ(x), A−(v) :=

∫
Ω

Φ−(v(x)) dµ(x).

PROPOSITION 5. The functions A+, A− : L∞(Ω)→ R are convex and continuous.

PROOF OF PROPOSITION 5. By construction, both Φ+ and Φ− have a derivative al-

most everywhere that is non-decreasing, hence monotone (Bauschke & Combettes, 2011,

Proposition 17.10). Therefore Φ+ and Φ− are convex. With this, and the linearity and

monotonicity of the integral, A+ and A− are convex. Moreover, they are continuous as the

proof of Proposition 3 holds mutatis mutandis. �

Hence, the formulation (2.13) is a Difference-of-Convex (DC) program (Tao & An,

1997; Horst & Thoai, 1999). For this type of problems, there are efficient algorithms that

attempt to find a solution.

2.3.1. SWEET algorithm

The Convex-Concave Procedure (CCCP) (Lipp & Boyd, 2016) is an efficient method,

which can be thought as a primal version of the DCA algorithm (Tao & An, 1997), to

find a solution to (2.13). Although it can be shown that if it converges, then its limit is

a stationary point (Tao & An, 1997, Theorem 3), our results in Section 2.5 suggest that

in practice we are able to find local minima for (2.13). The CCCP is an iterative method
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Algorithm 1: SWEET
input: A decreasing sequence {εk} of positive numbers with ε0 � 1, Nε, Nu ∈ N

and v0 ∈ L∞(Ω)
set : N = NεNu

for i = 0, . . . , Nε − 1 do
for j = 0, . . . , Nu − 1 do

k = iNu + j
(uk+1, vk+1) solution to (Pεi,vk)

end
end
return uN

that uses an affine majorant for the concave part, e.g., using subgradients, to then majorize

the objective function in (2.13) with a convex function. The resulting convex problem can

then be solved efficiently.

Since A− is continuous and convex, it has a subdifferential ∂A−(v0) ⊂ L∞(Ω)′ at

every v0 ∈ L∞(Ω) (Barbu & Precupanu, 2012, Proposition 2.36). If g ∈ ∂A−(v0) then

A−(v) ≥ A−(v0) + g(v − v0)

for any v ∈ L∞(Ω). The functional g is called a subgradient. Therefore, we can use the

convex majorizer

A(v) = A+(v) + A−(v) ≤ A+(v)− A−(v0)− g(v − v0).

Although it may be difficult to characterize the subdifferential of a convex function on a

Banach space, in our case we can always find at least a subgradient at any v0.

PROPOSITION 6. Let v0 ∈ L∞(Ω). Then

gv0(v) =

∫
Ω

ϕ−(v0(x))v(x) dµ(x) (2.14)

is a subgradient for A− at v0.
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PROOF OF PROPOSITION 6. Let v ∈ L∞(Ω), t, t0 ∈ R. By the monotonicity of ϕ−

we have

Φ−(t0) + ϕ−(t0)(t− t0) =

∫ t0

−∞
ϕ−(s)ds+

∫ t

t0

ϕ−(t0)ds

≤
∫ t

−∞
ϕ−(s)ds

= Φ−(t).

Since t ∈ R is arbitrary, ϕ−(t0) is a subgradient of Φ− at t0. Moreover, since t0 ∈ R is

arbitrary, we have that

(Φ− ◦ v0) + (ϕ− ◦ v) · (v − v0) ≤ (Φ− ◦ v).

Whence, by the monotonicity of the integral, integrating over Ω yields

A−(v) ≥ A−(v0) +

∫
Ω

ϕ−(v0(x))(v(x)− v0(x)) dµ(x).

Since v ∈ L∞(Ω) is arbitrary, gv0 is a subgradient of A− at v0. �

The CCCP solves at each iteration the convex problem

(Pε,v0)


minimize

u∈WS ,v∈L∞(Ω)
A+(v)− A−(v0)− gv0(v − v0)

subject to Tu ≤ v, u ∈ P .

PROPOSITION 7. There exists at least one solution to (2.3.1).

PROOF OF PROPOSITION 7. We first construct a candidate for an unconstrained min-

imizer of the objective. Let ṽ0 : Ω → R be any representative of the equivalence class v0

and, for x ∈ Ω, define fx(t) = Φ+(t) − ϕ−(ṽ0(x))t. Then define the multivalued map

F : Ω ⇒ R as

F (x) := arg min{fx(t) : t ∈ R}.
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Note that fx is convex; similarly to the proof of Proposition 6, we have that gx(t) :=

ϕ+(t) − ϕ−(ṽ0(x)) ∈ ∂fx(t). Let Ωb = {x ∈ Ω : gx(−‖v0‖L∞(Ω)) < 0}. Since (ϕ+ −

ϕ−)|[0,∞) ≥ 0 and ϕ+ is non decreasing, for t ≥ ‖v0‖L∞(Ω) and x a.e. in Ω we have

that gx(t) ≥ 0. Similarly, since (ϕ+ − ϕ−)|(−∞,0] ≡ 0 and ϕ+ is non decreasing, for

t ≤ −‖v0‖L∞(Ω) and x a.e. in Ω we have that gx(t) ≤ 0. Thus, considering that fx is

continuous and convex, F takes non-empty closed convex values and

(i) F (x) ⊆ [−‖v0‖L∞(Ω), ‖v0‖L∞(Ω)] for x a.e. in Ωb,

(ii) −‖v0‖L∞(Ω) ∈ F (x) for x ∈ Ωc
b.

Therefore, F admits a measurable selection ṽ?? (Aubin & Frankowska, 1990, Theorem 8.2.2

and Theorem 8.1.13). Because of (i), |ṽ??(x)| ≤ |ṽ0(x)| for x ∈ Ωb. Let ṽ? be such that

ṽ?|Ωb = ṽ??|Ωb and ṽ?|Ωcb = −‖v0‖L∞(Ω). Because of (ii), and considering that Ωb is a mea-

surable set, ṽ? is still a measurable selection for F . If we let v? denote its equivalence

class, we deduce that ‖v?‖L∞ ≤ ‖v0‖L∞ whence v? ∈ L∞(Ω). By construction, for every

v ∈ L∞(Ω),

Φ+(v?(x))− ϕ−(ṽ0(x))v?(x) ≤ Φ+(v(x))− ϕ−(ṽ0(x))v(x)

for x a.e. in Ω. Therefore, by the monotonicity of the integral,

A+(v)− gv0(v) ≥ A+(v?)− gv0(v?).

Thus, v? is an unconstrained minimizer of the objective. However, it might not exist u ∈

WS such that (u, v?) is feasible. But we can define a a minimizing sequence {(uk, vk)},

and then let wk = max{v?, Tuk} and Ωk := {x ∈ Ω : Tuk(x) = wk(x)}. Since vk

is feasible, v?(x) ≤ Tuk(x) ≤ vk(x) a.e over Ωk. Moreover, since fx is convex, it is

non-decreasing over the set [ṽ?(x),∞). Therefore we have

Φ+(vk(x))− ϕ−(v0(x))vk(x) ≥ Φ+(Tuk(x))− ϕ−(v0(x))Tuk(x)

= Φ+(wk(x))− ϕ−(v0(x))wk(x).
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for x a.e. in Ωk. Analogoloustly, since Ωc
k ⊆ {x ∈ Ω : wk = v?},

Φ+(vk(x))− ϕ−(v0(x))vk(x) = Φ+(wk(x))− ϕ−(v0(x))wk(x).

for x a.e. in Ωc
k. Then, by the monotonicity of the integral,

A+(vk)− gv0(vk) ≥ A+(wk)− gv0(wk).

Since WS is compact, there exist a convergent subsequence {uk(`)} ⊂ {uk} such that

lim`→∞ uk(l) =: u∞ ∈ WS . Since the sequence is minimizing

p? = lim inf
k→∞

(A+(vk)− gv0(vk)) ≥ lim inf
k→∞

(A+(wk)− gv0(wk)) ≥ p?

where p? ∈ R is the optimal value. Hence, {(uk, wk)} is also minimizing. Since T is

continuous, we have lim`→∞wk(`) = max{v?, Tu∞}. Hence, (u∞,max{v?, Tu∞}) is a

minimizer. �

By solving a sequence of problems of the form (Pε,vk+1
), where (uk+1, vk+1) is an

optimal solution to (Pε,vk), we can attempt to find a solution to (Pε).

Assuming the CCCP converges to a local minimizer to (Pε), we can then solve a

sequence of problems of the form (Pεk) for a decreasing sequence {εk} to approximate a

solution to (P0). In this case, we initialize the CCCP to solve (Pεk+1
) with the solution

found for (Pεk). We call this the SWEET algorithm and is shown in Algorithm 1.

Finally, remark we could apply the decomposition A◦T = A+ ◦T −A− ◦T in (2.12).

Although the term A− ◦ T is convex when φ+ ≥ 0, majorizing −A− ◦ T would be more

involved than the approach we have taken here.

2.3.2. SWEET-ReLU algorithm

When ϕ is a step function, the function Φ is the difference of two Rectified Linear Units

(ReLUs). The resulting instance of Algorithm 1 is simple and interpretable. Let ε > 0
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and ϕ = ε−1χ[0,ε]. Choosing ϕ+ = ε−1χ[0,∞) and ϕ− = ε−1χ[ε,∞), the decomposition

Φ = Φ+ − Φ− becomes

Φ(x) =
1

ε
(x+ − (x− ε)+)

whence Φ+ and Φ− are ReLUs. Moreover, the subgradient (2.14) becomes

gv0(v) =
1

ε

∫
{x: v0(x)>ε}

v(x) dµ(x).

Let Ωε,v0 := {x : v0(x) ≤ ε}. Since A−(v0) and gv0(v0) in (Pε,v0) the terms are constant,

it suffices to compute

A+(v)− gv0(v) =
1

ε

∫
Ω

v(x)+ dµ(x)− 1

ε

∫
Ωcε,v0

v(x) dµ(x)

=
1

ε

∫
Ωε,v0

v(x)+ dµ(x) +
1

ε

∫
Ωcε,v0

(−v(x))+ dµ(x)

where we used the fact that t+ − t = (−t)+. The second term is non-negative, and it is

positive only when v takes negative values. The restriction Tu ≤ v in (Pε,v0) allows us

to choose v arbitrarily large over Ωc
ε,v0

, decreasing the objective value, and allowing us to

neglect the second integral. Therefore, only the first term contributes to the objective in

(Pε,v0). Hence, for this choice of ϕ, ϕ+ and ϕ− we obtain

(Pε,v0)


minimize

u∈WS ,v∈L∞(Ω)

∫
Ωε,v0

v(x)+ dµ(x)

subject to u ∈ P

Tu ≤ v, 0 ≤ v|Ωcε,v0 .

(2.15)

Because of the monotonicity of the positive-part function we can eliminate the auxiliary

variable v to obtain the problem

(PReLU
Ωε,v0

)


minimize
u∈WS

∫
Ωε,v0

(Tu(x))+ dµ(x)

subject to u ∈ P .
(2.16)
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Note it depends on v0 only through the set Ωε,v0 . With this in mind, notice that at each

iteration of Algorithm 1 we need an optimal solution (uk+1, vk+1) to (Pε,vk). However,

solving (2.16) only yields an optimal solution uk+1. Fortunately, from a given solution

uk+1 to (2.16) we can choose vk+1 such that (uk+1, vk+1) is an optimal solution to (2.15)

as follows: let vk+1|Ωε,vk = Tuk+1|Ωε,vk and vk+1|Ωcε,vk = max{ε, Tuk+1|Ωcε,vk}. Using this

choice, note that

Ωε,vk+1
= {x : vk+1(x) ≤ ε}

= {x ∈ Ωε,vk : Tuk+1(x) ≤ ε}

= Ωε,vk ∩ {x ∈ Ω : Tuk+1(x) ≤ ε}.

We call this simplification the SWEET-ReLU algorithm. It is shown in Algorithm 2.

Due to compactness, the iterates {uk} have at least one accumulation point, which must

be a stationary point for (2.12) (Tao & An, 1997, Theorem 3). SWEET-ReLU can be

interpreted as a greedy algorithm that improves at each step the approximation over the set

Ωk while neglecting the approximation outside Ωk. Intuitively, a point in Ω is neglected by

the algorithm as soon as it determines that it cannot belong to the sweet spot. Furthermore,

the sequence of sets generated by the algorithm are precisely an approximation for the

sweet spot as, in fact, S(uN) ≈ ΩN . Additionally, initializing the algorithm with ε0

sufficiently large we have Ω1 = Ω, making the choice of u0 irrelevant [here u0 stands for

the first element of the sequence of solutions, not for the desired sound wave]. Finally, the

choice of {εi} can be adaptive. For instance, εi can be selected as the p-th percentile of

TuiNu−1.

2.4. Implementation

We provide an implementation of SWEET-ReLU for approximating a sound wave gen-

erated by a (pseudo) sinusoidal isotropic point source emitting at frequencies f ?1 , . . . , f
?
nf

.
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Algorithm 2: SWEET-ReLU
input: A decreasing sequence {εi} of positive numbers with ε0 � 1, Nε, Nu ∈ N,

u0 ∈ W and Ω0 = Ω
set : N = NεNu

for i = 0, . . . , Nε − 1 do
for j = 0, . . . , Nu − 1 do

k = iNu + j
Ωk+1 = Ωk ∩ {x ∈ Ω : Tuk(x) ≤ εi}
uk+1 solution to (PReLU

Ωk+1
)

end
end
return uN

The loudspeakers are modeled as equivalent (pseudo) sinusoidal point sources, i.e. we use

ĉk(f) =

nf∑
`=1

ak,` e
−(f−f?` )2/2σ2

in (2.1) for coefficients ak,` ∈ C and a fixed spectral localization parameter σ � 1. Since

the signals are almost stationary, temporal masking is almost non-existent. This allows us

to define the threshold map T using van de Par’s spectral psycho-acoustic model (van de

Par et al., 2005). In this case, the filters in (2.8) are time-invariant. Thus, for van de Par’s

model we have

Bju(x) =

∫
|(û− û0)(f, x)|2ρBj(f, x) df

for

ρBj(f, x) =
wBj(f)

CA +
∫
|û0(f, x)|2wBj(f)df

.

The constant CA > 0 limits the perception of very weak signals in silence. The weight

wBj is defined as wBj := |ηγj|2 where

log10 η(f) = Cη,0 − Cη,1f−0.8 − Cη,2(f − 3.3× 103)2 + Cη,3f
4
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with Cη,0 = 4.69, Cη,1 = 18.2× 101.4, Cη,2 = 32.5× 10−7 and Cη,3 = 5× 10−16 models

the outer and middle ear as proposed by Terhardt (Terhardt, 1979), and

γj(f) =

(
1 +

(
945π(f − fj)
48ERB(fj)

)2
)−2

models the filtering property of the basilar membrane in the inner ear at the center fre-

quency fj , where the Equivalent Rectangular Bandwidth (ERB) of the auditory filter

centered at fj is ERB(fj) = 24.7(1 + 4.37 × 10−3fj)
−1 as suggested by Glasberg and

Moore (Glasberg & Moore, 1990). The center frequencies fj are uniformly spaced on the

ERB-rate scale ERBS(f) = 21.4 log(1 + 4.37 × 10−3f). For nb center frequencies fj

we obtain nb maps Bj that are combined with the integrating function Ψ(b1, . . . , bnb) =

−1 + CΨb1 + . . .+ CΨbnb for a suitable constant CΨ > 0. The threshold map becomes

Tu(x) = −1 + CΨ

nb∑
j=1

∫
|û(f, x)− û0(f, x)|2wBj(f)df

CA +
∫
|û0(f, x)|2wBj(f)df

≈ −1 + C ′Ψ

nf∑
`=1

nb∑
j=1

|û(f ?` , x)− û0(f ?` , x)|2wBj(f ?` )

CA + wBj(f
?
` )|û0(f ?` , x)|2

where C ′Ψ = 21/4π1/2σCΨ and we used the approximation for (pseudo) sinusoidal signals∫
ϕ(f)|û0(f, x)|2 df ≈ 21/4π1/2σ

nf∑
`=1

ϕ(f ?` )|û0(f ?` , x)|2

when σ � 1. The constants C ′Ψ and CA are defined as suggested in (van de Par et al.,

2005). This considers the absolute threshold of hearing and the just-noticeable difference

in level for sinusoidal signals, which gives, C ′Ψ ≈ 1.555 and CA ≈ 4.481 when consider-

ing nb = 100 as the number of center frequencies, and f1 = 20, fnb = 103 as the first and

last center frequency.

To model the pain threshold we consider the experiments in (Knobel & Sanchez, 2006)

about the discomfort caused by sinusoidal signals. We interpolated the data in this study

using cubic splines with natural boundary (Quarteroni, Sacco, & Saleri, 2010, Section 8.6)
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Figure 2.2. Interpolation of the loud discomfort levels for sinusoidal sig-
nals given in (Knobel & Sanchez, 2006) by cubic splines.

to obtain a function ηP , as shown in Fig. 2.2. For the auditory filter associated to the j-th

frequency we define

ρQj(f, x) = |wQj(f)/ηP (f)|2

To our knowledge, there is no standard reference for the spectral integration that deter-

mines the levels of discomfort or pain. For simplicity, we consider, as in the van de Par

model, a summing integrating function, but now with the center frequencies of the discom-

fort auditory filters equal to the sound frequencies f ?1 , . . . , f
?
nb

. Then, Π(q1, . . . , qnf ) =

−1 +CΠq1 + . . .+CΠqnf . This is actually a conservative choice of Π as this controls the

sum of the contributions of every frequency, instead of each one separately. Consequently,

we obtain

Pu(x) = −1 + CΠ

nf∑
`=1

∫
|û(f, x)|2ρQ`(f, x)df

≈ −1 + C ′Π

nf∑
`=1

|û(f ?` , x)|2ρQ`(f ?` , x)
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where the same approximation holds by the same arguments as before. Naturally, C ′Π = 1.

To solve (PReLU
Ωε,v0

) we discretize the integrals over Ω. The following proposition en-

sures that this approximation to the integral converges to the desired one under mild as-

sumptions. We defer its proof to Appendix B.

PROPOSITION 8. Suppose that that the statements (i) and (ii) in Proposition 1 hold,

and that every K ∈ {KB1 , . . . , KBnb
} satisfies

fK(t, t′) := sup
z∈Ω
|K(t, t′, z)| ∈ L2(R2).

Then, for u ∈ WS , Tu ∈ C(Ω). Furthermore, if Ω is compact, Tu is uniformly continuous

over Ω.

Specifically, we discretize Ω using nd disjoint squares or cubes of side (|Ω|/nd)1/d for

d ∈ {2, 3}. To avoid spatial aliasing, we need at least 2 points per spatial wavelength

λf = cs/f for each frequency f of the source. This implies (|Ω|/nd)1/d < λf/2 whence

nd > (2/λ)d|Ω|. To ensure the method performs well, we typically consider a denser

discretization with at least 5 points per spatial wavelength.

2.5. Experiments

We perform two types of numerical experiments. First, we compare the performance

of our method with the state-of-the-art methods WFS, NFC-HOA and L2-PMM in terms

of the size of the sweet spot they produce. Second, we explore other applications of our

method related to sound field reconstruction. The setup for the numerical experiments

consists of an equispaced arrangement of 20 loudspeakers lying on a circle of radius 2.5

m and at π/4 ≈ 0.785 m from each other. The region of interest Ω is a concentric circle

of radius 2.4975 m (Fig. 2.4). The speed of sound is cs = 343 m/s.
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The SWEET-ReLU algorithm and the L2-PMM method were implemented in Python

3.8 using the CVXPY package (Diamond & Boyd, 2016; Agrawal, Verschueren, Dia-

mond, & Boyd, 2018) and MOSEK (ApS, 2019). The simulations of 2.5D NFC-HOA and

2.5D WFS were done with the SFS Toolbox (Wierstorf & Spors, 2012). To compare the

results of these methods, we compare the size of the sweet spot as a fraction of the area |Ω|

of Ω. To compare the values of the threshold map Tu for u we use log(1 + Tu). Hence,

the sweet spot is the region where log(1 + Tu) ≤ 0. Finally, we compare the Intensity

Direction Error (IDE), defined as

IDEu(x) =
1

π
arccos

(
~Iu(x)

| ~Iu(x)|
·
~Iu0(x)

| ~Iu0(x)|

)
,

where ~I is the time averaged acoustic intensity. For sinusoidal signals of frequency f ? it

is given by (Williams, 1999, Section 2.3)

~Iu(x) =
1

2
Re(u(f ?, x)~v(f ?, x)∗)

where ~v is the velocity vector field of u.

2.5.1. Comparison with state-of-the-art methods

To compare our method with state-of-the-art methods, we perform two types of nu-

merical experiments. The first type consists of a sequence of instances where the source

moves progressively away from the center of the loudspeaker array, starting at 0 m and

ending at 15 m. Following the model in Section 2.4, the source is isotropic, and (pseudo)

sinusoidal with f ?1 = 343 Hz. Hence, its wavelength is 1 m. When the source is inside

Ω, its intensity selected so that the wave has an amplitude of 60 dB at 1 m of the source.

When the source is outside Ω we adjust the intensity so that the amplitude at the point

where the segment joining the center of the arrangement and the source intersects the ar-

rangement is 60 dB. This mitigates the effect of attenuation as the source moves away
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from the arrangement. A uniform discretization of 901 points was used for Ω at a distance

of at most 0.145 m, achieving more than 6 points per wavelength.

The second type considers the same source at a distance of 5 m from the center of the

array emitting a (pseudo) sinusouidal wave at different frequencies ranging from 50 Hz to

2000 Hz. To mitigate the issues due to non-convexity, we initialize SWEET-ReLU with

the optimal solution obtained for the previous frequency value. A uniform discretization

of 20848 points was used for Ω at a distance of at most 0.03 m, achieving more than 5

points per wavelength in the worst case. For both types of experiments we have chosen εi

adaptively with percentile p = 90. The results are shown in Fig. 2.3. We see our method

generates a larger sweet spot than that generated by every other method over the entire

range of source locations and frequencies (Fig. 2.3a and Fig. 2.3b). When the source is

at 2.5 m, lying over the arrangement, the sweet spot equals Ω, as expected (Fig. 2.3a).

Furthermore, our method successfully attains the lowest average threshold value in most

of the instances. Although the performance degrades at very low frequencies compared to

other methods, it remains below the audible threshold (Fig. 2.3c and and Fig. 2.3d). This

shows that on average the SWEET-ReLU algorithm does not produce large values of the

threshold map outside the sweet spot.

Table 2.1. Sweet spots as a fraction of Ω in Near field (NF) and Focus
Source (FS) instances.

SWEET NFC-HOA WFS L2-PMM
NF 64% 32% 35% 0.7%
FS 48% 5% 0.02% 0.5%

To perform a finer analysis, we consider two additional instances: the near-field in-

stance, where the source outside the arrangement at 5 m of its center, and the focus-source

instance, where the source is inside the arrangement at 0.82 m of its center (Fig. 2.4). For

these experiments we have chosen εi adaptively with percentile p = 99. The sweet spots

generated by each method for each instance are shown in Fig. 2.6, 2.8, and their size is
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3. Comparison with state-of-the-art methods. Columns: (i) Vari-
ation of the distance between the source and the center of the arrangement,
(ii) Variation of the frequency of the source. Rows: (i) Sweet spot as a
fraction of Ω, (ii) Average value for log(1 + Tu), (iii) Average IDE.
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(a) (b) (c)

Figure 2.4. Experimental setup. (a) Near field setup. (b) Focus source
setup. (c) Multiple zone setup.

shown in Table 2.1. For the near field instance, the sweet spot generated by our method is

almost twice as large as that of the other methods. The sweet spot generated by NFC-HOA

(Fig. 2.6f) is centered, whereas that generated by WFS (Fig. 2.6f) is localized farther away

from the source. This is consistent with the analysis in (Daniel et al., 2003). In contrast,

the sweet spot generated by our method (Fig. 2.6e) behaves like that generated by WFS,

Figure 2.5. u0 for near field setup.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.6. Near field instance. Rows: (i) u, (ii) log(1 + Tu), (iii) IDE.
Columns: (i) SWEET-ReLU, (ii) NFC-HOA, (iii) WFS, (iv) L2-PMM.

but almost encompasses the one generated by NFC-HOA. In all cases the aliasing artifacts

appear roughly near the boundary of the sweet spot. This suggests that the principle be-

hind sound field reconstruction, i.e., to avoid physically noticeable artifacts, does ensure a

good monaural auditory scene. Our method exhibits less aliasing artifacts than the others.

This may explain the low average IDE values and small psycho-acoustic errors in Fig. 2.3.
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For the focus-source instance we strengthen the intensity of the source so that the wave

has an amplitude of 72 dB at 1 m of the source. The sweet spot generated by our method

(Fig. 2.8e) is almost 10 times larger than those generated by other methods. The sweet

spot generated by NFC-HOA (Fig. 2.8f) is contained in a circle with a radius equal to the

distance of the source to the center of the room. This is also consistent with (Daniel et al.,

2003). The sweet spot generated by WFS (Fig. 2.8g) is almost empty as the resulting u has

large amplitude. This suggest that focus source formulation for WFS needs an amplitude

factor normalization. In contrast, the sweet spot generated by our method almost com-

prises the half of Ω that faces the source. Furthermore, the artifacts are noticeable only

behind the source. This shows the advantages of the greedy strategy of the SWEET-ReLU

algorithm: during its first iterations it is capable to detect the direction of u0 over Ω to

then prioritize the part of Ω where a good fit to u0 can be obtained. This is a possible

explanation for the almost empty sweet spot generated by L2-PMM both in the near field

(Fig. 2.6h) and the focus source (Fig. 2.8h) instances. This, together with the proximity

of the speakers, completely degrades its performance: the method attempts to minimize

the L2-error where it is largest, i.e., near the speakers. As a consequence, the resulting

u is small over Ω. Finally, our method is efficient in the usage of the loudspeakers: the

acoustic wave u resulting from WFS is uncomfortably loud around the source and near

Figure 2.7. u0 for focus source setup.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.8. Focus source instance. Rows: (i) u, (ii) log(1 + Tu), (iii) IDE,
(iv) Sound level (dB). Columns: (i) SWEET-ReLU, (ii) NFC-HOA, (iii)
WFS, (iv) L2-PMM.
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the active loudspeakers in the array, whereas that obtained with NFC-HOA u0 is uncom-

fortably loud in a large region outside a circumference concentric to Ω. Our method, in

contrast, produces a negligible discomfort region by construction.

2.5.2. Applications

2.5.2.1. The effect of multiple frequencies

We now study the effect of a source generating a superposition of (pseudo) sinusoidal

waves at nf = 4 frequencies f ?1 = 400 Hz, f ?2 = 300 Hz, f ?3 = 200 Hz, and f ?4 = 100

Hz. Our goal is to study non-linear effects and their consequences on the sweet spot

found for each frequency separately, and that found by solving the problem for a multi-

frequency source. A uniform discretization of 9660 points was used for Ω. Contiguous

points are at a distance of 0.04 m, achieving more than 19 points per wavelength in the

worst case. The results are shown in the Fig. 2.10. Observe the sweet spots generated over

Ω cover 54.3% of Ω for 400 Hz, 73.3% for 300 Hz, 85.5% for 200 Hz and 91% for 100

Hz. The sweet spot for the multi-frequency source covered 52% of Ω. In our standard

setup it is easier to generate larger sweet spots at low frequencies, and these decrease as

the frequency of the source increases. Furthermore, the sweet spots seem to be roughly

nested as the frequency increases. Interestingly, the sweet spot generated for the multi-

frequency source is comparable to that obtained at the highest frequency. This suggests

Figure 2.9. The effect of multiple frequencies: log(1 + Tu) multi frequencies.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.10. The effect of multiple frequencies. Rows: (i) u0, (ii) u multi
frequencies, (iii) u single frequencies, (iv) log(1 + Tu) single frequencies.
Columns: (i) 100 Hz, (ii) 200 Hz, (iii) 300 Hz, (iv) 400 Hz.
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that, in general, the sweet spot generated by our method for a multi-frequency source will

be dominated by the frequency that is harder to approximate. This also yields insight into

the setups for which a large sweet spot may be generated for a multi-frequency source.

2.5.2.2. Multiple zone control

The problem of creating a sound scene in a zone while keeping another silent has been

extensively studied in the spatial sound literature, e.g. (Poletti, 2008; Wu & Abhayapala,

2010). Here we show our methods provide a solution to this problem. We consider the in-

stance shown in Fig. 2.4c where u0 is equal to 0 over the silent zone as shown in Fig. 2.11.

In the silent zone we fix a psycho-acoustic tolerance of 20 dB above the absolute threshold

of hearing, whereas in the zone for the sound scene, i.e., the sound zone, we keep the van

de Par model as before. Since the silence zone is 24 times smaller than the sound zone,

we balance the problem by choosing a non-uniform measure µ that takes the value 24 over

the silent zone and 1 over the sound zone. A uniform discretization of 3274 points was

used for the sound zone and 332 for the silence zone. Contiguous points are at a maximum

distance of 0.075 m, achieving more than 13 points per wavelength. The results are shown

in Figs. 2.12. Our method generates a sweet spot covering 32% of the sound zone, and

97.5% of the silent zone. Also, Fig. 2.12c shows that the direction of the source is cor-

rectly reproduced inside the sweet spot in the sound zone. Inside the silent zone the IDE

Figure 2.11. u0 for multiple zone setup.
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(a) (b) (c)

(d) (e) (f)

Figure 2.12. Multiple zone control. Rows: (i) SWEET, (ii) L2- PMM.
Columns: (i) u, (ii) log(1 + Tu), (iii) IDE.

is not incorrect but undefined. This indicates that the localization properties of the audi-

tory scene may be correctly reproduced as well. In contrast, weighted L2-PMM performs

poorly in this global multi-zone instance for the same reasons explained in Section 2.5.1

(Figs. 2.12d-f). It generates a sweet spot covering 1.7% of the sound zone and 27% of

the silent zone. This shows our method is flexible and can be used for global multi-zone

instances.

2.6. Discussion

Our results show the SWEET-ReLU algorithm yields state-of-the-art results in stan-

dard numerical experiments. We believe the performance in these experiments is repre-

sentative of what we would observe when using more complex pyscho-acoustic models

for the hearing threshold and the loud discomfort level. A key component of our method
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is the threshold map T . Although its form is quite flexible, it does not account for spa-

tialization and other binaural effects. Extending the form of T to account for these effects

is the subject of future research. However, as it is shown in (Rumsey, Zieliński, Kassier,

& Bech, 2005), the overall quality of a spatial sound system can be explained to 70% by

coloration or timbral fidelity, which can be characterized by monoaural effects, and 30%

by spatial fidelity, which needs to be characterized by binaural effects. Furthermore, our

experiments show that in some settings our method achieves a lower intensity direction

error, which is a proxy for the localization error, than state-of-the-art methods. Hence, it

correctly simulates the spatial properties of the auditory scene, even though we are not

explicitly enforcing it.

Although we have presented numerical results modeling the loudspeakers and the vir-

tual sources as isotropic pseudo-sinusoudal monopoles, we believe our method can be

readily implemented in real settings with non-trivial sound sources. For instance, rever-

beration, different radiation patterns for the loudspeakers, and other time-invariant effects

can be incorporated by modifying the Green’s functions Gk. For the representation of

the sound scene, due to the fine discretization of the region of interest required, it may

be also convenient to use an object based approach (Spors et al., 2013). In this case, the

target sound wave u0 is not measured with microphones, but instead is simulated when

the location of the sources and their audio signals are known. Our method may be com-

putationally expensive, as we need to solve a sequence of convex problems, precluding

its use in real-time applications. Nevertheless, our multi-frequency experiments show the

sweet spots nest as the frequency of a sinusoidal source increases. This suggests that

an heuristic could be developed to improve the performance for multi-frequency sources.

Furthermore, over a fixed instance, i.e. fixed room and loudspeaker arrangement, we may

be able to approximate the map u0 7→ u from several simulated instances of pairs (u0, u).

Once approximated, the computational cost becomes negligible.
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Finally, although we have not fully developed a theory for the convergence of SWEET-

ReLU, our experiments show that it converges in practice. Further analysis will be the

subject of future work.

2.7. Conclusion

In this work, we considered the sweet spot as the region where the a sound scene

is psycho-acoustically close to a desired auditory scene. Furthermore, we developed a

method that generates a sound scene that maximizes this sweet spot while guaranteeing

no discomfort over a spatial region of interest. In this method, the sweet spot and the dis-

comfort tolerance can be modeled within a flexible monaural psycho-acoustic framework.

We provided a theoretical analysis of the method, and an efficient algorithm, the SWEET-

ReLU algorithm, for its numerical implementation. Over isotropic pseudo-sinusoidal

monopole instances our method successfully generates a larger sweet spot than the most

common state-of-the-art sound field reconstruction methods. We believe our method is

a step towards a new paradigm for spatial sound reconstruction, bridging a gap between

methods based on psycho-acoustic principles, and sound field reconstruction methods.
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Edler, B. (2018). Improved psychoacoustic model for efficient perceptual audio codecs.

In Audio engineering society convention 145.

Evans, L. C. (2010). Partial Differential Equations (2nd ed.). American Mathematical

Society.

Fazi, F. M., & Nelson, P. A. (2007a). The ill-conditioning problem in sound field recon-

struction. In Audio engineering society convention 123.

Fazi, F. M., & Nelson, P. A. (2007b). A theoretical study of sound field reconstruction

techniques. In 19th international congress on acoustics.

Fazi, F. M., & Nelson, P. A. (2012). Nonuniqueness of the solution of the sound field

reproduction problem with boundary pressure control. Acta Acustica united with Acustica,

98(1), 1-14.

Fazi, F. M., Nelson, P. A., Christensen, J. E., & Seo, J. (2008). Surround system based

on three-dimensional sound field reconstruction. In Audio engineering society convention

125.

Fazi, F. M., Nelson, P. A., & Potthast, R. (2009). Analogies and differences between three

methods for sound field reproduction. Relation, 10, 3.

Feng, Q., Yang, F., & Yang, J. (2018). Time-domain sound field reproduction using the

group lasso. The Journal of the Acoustical Society of America, 143, EL55-EL60.

Firtha, G. (2019). A generalized wave field synthesis framework with application for

moving virtual sources (Unpublished doctoral dissertation). Budapest University of Tech-

nology and Economics.

DocuSign Envelope ID: 38CFC6CA-781E-4C73-911C-83D4715CD6F5



62

Firtha, G., Fiala, P., Schultz, F., & Spors, S. (2017). Improved referencing schemes for

2.5 d wave field synthesis driving functions. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 25(5), 1117–1127.

Firtha, G., Fiala, P., Schultz, F., & Spors, S. (2018). On the general relation of wave

field synthesis and spectral division method for linear arrays. IEEE/ACM Transactions on

Audio, Speech and Language Processing, 26, 2393-2403.

Franck, A., Wang, W., & Fazi, F. M. (2017). Sparse 1-optimal multiloudspeaker panning

and its relation to vector base amplitude panning. IEEE/ACM Transactions on Audio,

Speech and Language Processing, 25.

Gauthier, P.-A., Berry, A., & Woszczyk, W. (2005). Sound-field reproduction in-room

using optimal control techniques: Simulations in the frequency domain. The Journal of

the Acoustical Society of America, 117, 662-678.

Gauthier, P.-A., Lecomte, P., & Berry, A. (2017). Source sparsity control of sound field

reproduction using the elastic-net and the lasso minimizers. The Journal of the Acoustical

Society of America, 141, 2315-2326.

Gerzon, M. A. (1973). Periphony: With-height sound reproduction. AES: Journal of the

Audio Engineering Society, 21(1), 2–10.

Glasberg, B. R., & Moore, B. C. (1990). Derivation of auditory filter shapes from notched-

noise data. Hearing research, 47(1-2), 103–138.

Hacihabiboglu, H., De Sena, E., Cvetkovic, Z., Johnston, J., & Smith III, J. O. (2017).

Perceptual spatial audio recording, simulation, and rendering: An overview of spatial-

audio techniques based on psychoacoustics. IEEE Signal Processing Magazine, 34(3),

36–54.

Horst, R., & Thoai, N. V. (1999). DC Programming: Overview. Journal of Optimization

Theory and Applications, 103(1), 1–43. doi: 10.1023/A:1021765131316

DocuSign Envelope ID: 38CFC6CA-781E-4C73-911C-83D4715CD6F5

https://doi.org/10.1023/A:1021765131316


63

Jepsen, M. L., Ewert, S. D., & Dau, T. (2008). A computational model of human auditory

signal processing and perception. The Journal of the Acoustical Society of America, 124,

422-438.

Jia, M., Zhang, J., Wu, Y., & Wang, J. (2018). Sound field reproduction via the alternating

direction method of multipliers based lasso plus regularized least-square. IEEE Access, 6,

54550-54563.

Johnston, J. D., & Lam, Y. H. V. (2000). Perceptual soundfield reconstruction. In Audio

engineering society convention 109.

Kirkeby, O., & Nelson, P. A. (1993). Reproduction of plane wave sound fields. The

Journal of the Acoustical Society of America, 94(5), 2992–3000.

Kirkeby, O., Nelson, P. A., Orduna-Bustamante, F., & Hamada, H. (1996). Local sound

field reproduction using digital signal processing. The Journal of the Acoustical Society

of America, 100(3), 1584–1593.

Kirsch, A., & Hettlich, F. (2016). Mathematical theory of time-harmonic maxwell’s

equations. Springer.

Knobel, K. A. B., & Sanchez, T. G. (2006). Nı́vel de desconforto para sensação de inten-

sidade em indivı́duos com audição normal. Pró-Fono Revista de Atualização Cientı́fica,
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A. PROOF OF PROPOSITION 1

We prove some auxiliary results. First, we claim the map

KBu(t, x) =

∫
KB(t, t′, x)u(t′, x) dt′,

where KB satisfies the hypotheses, is continuous from W into W . To prove this, fix

x ∈ Ω and apply Young’s inequality for integral operators (Sogge, 2017, Theorem 0.3.1)

to obtain∫
|KBu(t, x)|2 dt =

∫ ∣∣∣∣∫ KB(t, t′, x)u(t′, x) dt′
∣∣∣∣2 dt ≤ C2

B

∫
|u(t, x)|2 dt,

from where it follows that ‖KBu‖W ≤ CB‖u‖W and, in particular, KBu ∈ W . Second, a

functional B of the form (2.8) is bounded. This is clear from the fact that

|Bu(x)| =
∫
|KB(u− u0)(t, x)|2 dt ≤ C2

B‖u− u0‖2
W .

Third, for any θ ∈ [0, 1] it is apparent that

B(θu1 + (1− θ)u2)(x) ≤ θB(u1)(x) + (1− θ)B(u2)(x).

whence for almost every x the map u 7→ Bu(x) is convex. Fourth, Bu is a measurable

function by Fubini’s theorem (Cohn, 2013, Theorem 5.2.2). Fifth, B is continuous on u.

To prove this, let v = |KBu2|+ |KBu1|+ 2|KBu0| and w = KBu2 −KBu1 and note that

|Bu2(x)−Bu1(x)|2 ≤
∫
|v(t, x)|2 dt

∫
|w(t, x)|2 dt

where we used the identity |a2 − b2| = |a+ b||a− b|, the Cauchy-Schwarz inequality and

the triangle inequality. The first term is bounded, as∫
|v(t, x)|2 dt ≤ 3‖KBu1‖2

W + 3‖KBu2‖2
W + 6‖KBu0‖2

W

≤ 3C2
B(‖u1‖2

W + ‖u2‖2
W + 2‖u0‖2

W ),
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where we used the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2). For the second, we have∫
|w(t, x)|2 dt ≤ ‖KB(u1 − u2)‖2

W ≤ C2
B‖u1 − u2‖2

W .

It follows that u1 → u2 in W implies Bu1 → Bu2 in L∞(Ω) whence B : W → L∞(Ω) is

continuous.

Proof of (i): We prove the result for nb = 2 for simplicity. Since Ψ in (2.9) is continuous

and each Bk : W → L∞(Ω) is continuous by our auxiliary results, T : W → L∞(Ω)

is continuous. Similarly, since Ψ is convex and non-decreasing on every component, for

every θ ∈ [0, 1] we have

T (θu1 + (1− θ)u2)(x) ≤ Ψ(θv1,1(x) + (1− θ)v1,2(x), θv2,1(x) + (1− θ)v2,2(x))

≤ θTu1(x) + (1− θ)Tu2(x)

where vk,j = Bkuj , proving the convexity of u→ Tu(x) for almost every x. Analogously,

P is continuous and u→ Pu(x) is convex for almost every x.

Proof of (ii): Note that Ψ is measurable, because it is continuous, and so isBku. Therefore,

T in (2.9) is measurable, and the set S(u) is measurable for any u ∈ W .

Proof of (iii): We show that WS is a family functions Ω 7→ L2(Ω) that is bounded,

equicontinuous, and defined on a separable metric space, whence, by Arzelà-Ascoli’s the-

orem (Rudin, 1986, Theorem 11.28), is compact with respect to the uniform norm, which

coincides with the W -norm. Let γmax be the uniform bound on ‖ck‖L2 . Consider the map

Ω → L2(Ω) given by x → ux where ux denotes the function t 7→ u(t, x). Since each Gk

is bounded on Ic × Ω then∫
|u(t, x)|2 dt ≤ ns

ns∑
k=1

∫
Ic

|ĉk(f)|2|Gk(f, x)|2 df

≤ ns

ns∑
k=1

sup
(f,x)∈Ic×Ω̄

|Gk(f, x)|2‖ck‖2
L2
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whence x 7→ ux is uniformly bounded. To prove equicontinuity, fix ε > 0. Since each Gk

is continuous on the compact set Ic × Ω̄, we can find δ > 0 such that for any |x− y| < δ

and f ∈ Ic we have |Gk(f, x)−Gk(f, y)| < ε/n2
sγ

2
max. Then∫

|u(t, x)− u(t, y)|2 dt ≤ ns

ns∑
k=1

∫
Ic

|ĉk(f)|2|Gk(f, y)−Gk(f, x)|2 df

< nsγ
2
max

(
ns

ε

n2
sγ

2
max

)
= ε

showing not only that x 7→ ux is continuous, but equicontinuous. We conclude WS is

compact in W .

Proof of (iv): We omit details for brevity. The map P : W → L∞(Ω) is continuous by

the same arguments we used in the proof of (i). Then, since non-strict inequalities are

preserved under limits, P is closed.

B. PROOF OF PROPOSITION 8

Define the auxiliary variables

at =

∣∣∣∣∫
R
KB(t, t′, x)(u(t, t′, x)− u0(t, t′, x))dt′

∣∣∣∣
bt =

∣∣∣∣∫
R
KB(t, t′, y)(u(t, t′, y)− u0(t, t′, y))dt′

∣∣∣∣ .
Then,

|Bu(x)−Bu(y)|2 ≤
(∫

(at + bt)
2dt

)(∫
(at − bt)2dt

)
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where we used the identity |a2 − b2| = |a+ b||a− b| and the Cauchy-Schwarz inequality.

For the first term, because of Cauchy Schwarz and Young’s inequalities we have∫
(at + bt)

2dt =

∫
a2
tdt+

∫
b2
tdt+ 2

∫
atbtdt∫

a2
tdt+

∫
b2
tdt+ 2

(∫
a2
tdt

) 1
2
(∫

b2
tdt

) 1
2

≤ C2
B‖u− u0‖2

W + C2
B‖u− u0‖2

W + 2C2
B‖u− u0‖2

W

= (2CB‖u− u0‖W )2

For the second term we have∫
(at − bt)2dt ≤

∫ ∣∣∣∣∫ |KB(t, t′, x)(u− u0)(x, t′)−KB(t, t′, y)(u− u0)(y, t′)|dt′
∣∣∣∣2 dt

≤
∫ ∣∣∣∣∫ |KB(t, t′, x)((u− u0)(x, t′)− (u− u0)(y, t′))|dt′

∣∣∣∣2 dt
+

∫
|(KB(t, t′, x)−KB(t, t′, y))(u− u0)(y, t′)|dt′|2 dt

≤
∫ ∣∣∣∣∫ |KB(t, t′, x)((u− u0)(x, t′)− (u− u0)(y, t′))|dt′

∣∣∣∣2 dt︸ ︷︷ ︸
(∗)

+

∫ ∣∣∣∣∫ |(KB(t, t′, x)−KB(t, t′, y))(u− u0)(y, t′)|dt′
∣∣∣∣2 dt︸ ︷︷ ︸

(∗∗)

,

where we used the the triangle inequality, identity ab − cd = a(b − d) + d(a − c), and

Minkowski’s inequality. Now, because of Young’s inequality,

(∗) ≤ 2C2
B

∫
|(u− u0)(x, t′)− (u− u0)(y, t′)|2dt.
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Since u− u0 ∈ W , as shown in the proof of Proposition 1, the latter converges to 0 in the

limit x→ y uniformly in the choice of u. Also, because of Cauchy-Schwarz inequality,

(∗∗) ≤
∫ (∫

|KB(t, t′, x)−KB(t, t′, y)|2dt′
)(∫

|(u− u0)(y, t′)|2dt′
)
dt

≤ ‖u− u0‖2
W

(∫ ∫
|KB(t, t′, x)−KB(t, t′, y)|2dt′dt

) 1
2

.

Now, note that

|KB(t, t′, x)−KB(t, t′, y)|2 ≤ |KB(t, t′, x)|2 + 2|KB(t, t′, x)KB(t, t′, y)|+ |KB(t, t′, y)|2

≤ 4 sup
z∈Ω
|KB(t, t′, z)|2.

which means, by hypothesis, that the last integrand is dominated. Therefore, by Lebesgue’s

dominated convergence theorem we have that (∗∗) converges to 0 in the limit x → y. It

follows that Bu ∈ C(Ω). Since Ψ is continuous we have that Tu ∈ C(Ω).
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