
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

EXCALIBUR KEY-GENERATION

PROTOCOLS FOR DAG HIERARCHIC

DECRYPTION

GERALDINE MONSALVE SANTANDER

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JUAN REUTTER DE LA MAZA

Santiago de Chile, Enero 2019

c© 2019, GERALDINE MONSALVE SANTANDER

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

EXCALIBUR KEY-GENERATION

PROTOCOLS FOR DAG HIERARCHIC

DECRYPTION

GERALDINE MONSALVE SANTANDER

Members of the Committee:

JUAN REUTTER DE LA MAZA

DOMAGOJ VRGOC

FERNANDO KRELL

HÉCTOR JORQUERA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, Enero 2019

c© 2019, GERALDINE MONSALVE SANTANDER

Gratefully to my mother

ACKNOWLEDGEMENTS

I want to start by thanking my parents for their care, love and dedication. Specially to

Julia, for spending so many years of her life in our growth. I also want to thank Anggie,

for being my first teacher.

I would like to thank Juan Reutter for his willingness and understanding. He gave

me the freedom to explore a new area for both of us and also allowed me to work in

other valuable activities. I also want to thank Francisco Vial for bringing Cryptography to

Departamento de Ciencia de la Computación and for always being willing to help.

I want to thank Héctor Jorquera, Domagoj Vroĝ and Fernando Krell for accepting to

be part of the committee. Specially Fernando, for his dedication in my tesis.

Finally, I would also like to thank the DCC, specially the members of the ACM Student

Chapter for making my time at university happy and Miguel for his company and love.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

RESUMEN x

1. INTRODUCTION 1

1.1. Our contributions . 2

1.2. Overview of the article . 3

2. PRELIMINARIES 4

2.1. Indistinguishability . 4

2.2. Quotient ring Rq . 5

2.3. Invertible bounded Gaussian distributions in the quotient ring 6

2.4. FHE-NTRU encryption and the multikey property 6

3. SECURITY DEFINITIONS 8

3.1. The model of computation . 8

3.1.1. Interactive Turing Machines . 9

3.2. Simulation-based MPC security against semi-honest adversaries 10

4. HARDNESS ASSUMPTIONS 13

4.1. Decisional Small Polynimial Ratio Assumption 13

4.2. Small factorizations in Rq . 14

5. MPC KEY GENERATION PROTOCOLS 15

5.1. Oblivious Transfer protocol . 15

5.2. A Scalar Product protocol . 15
v

5.3. Secure MPC protocols for multiplication in Rq 17

5.4. Excalibur key generation protocols . 18

6. SECURITY ANALYSIS 25

6.1. Extracting keys after the protocol . 25

6.2. Extracting secrets during the protocols 27

6.2.1. Proof of proposition 6.2 . 31

6.2.2. Proof of proposition 6.3 . 36

6.2.3. Proof of proposition 6.4 . 37

6.2.4. Proof of proposition 6.5 . 39

7. PARAMETERS AND COMPLEXITY 41

7.1. Algorithmic Complexity . 42

8. CONCLUSIONS 44

8.1. Future work . 44

REFERENCES 46

vi

LIST OF FIGURES

5.1 Excpk: P1 learn r′1 . 21

5.2 Excpk: Pi learn ui . 21

5.3 Excpk: Each Pi learn wi . 22

5.4 Excpk: Each Pi learn zi . 22

5.5 Excsk: Each Pi learns the product of βi’s plus some noise 23

5.6 Excsk: P1 learns his secret key . 24

vii

LIST OF TABLES

viii

ABSTRACT

Public-key cryptography applications often require structuring decryption rights ac-

cording to some hierarchy. This is typically addressed with re-encryption procedures or

relying on trusted parties, in order to avoid secret-key transfers and leakages. In a novel

approach, Goubin and Vial-Prado take advantage of the Multikey FHE-NTRU encryption

scheme to propose, in 2016, Excalibur procedures that define decryption rights at key-

generation time, and preventing leakage of all secrets involved, even by the powerful-key

holder. Their algorithms work for two parties, allowing to form chains of users with in-

herited decryption rights. In this thesis we provide new protocols for generating Excalibur

keys under any DAG-like hierarchy, that extend Goubin and Vial-Prado’s previous work,

and present formal proofs of security against semi-honest adversaries. Our protocols are

compatible with the homomorphic properties of FHE-NTRU, and the base case of our

security proofs may be regarded as a more formal, simulation-based proof of said work.

Keywords: Secure Multiparty Computation, FHE-NTRU scheme.
ix

RESUMEN

Aplicaciones criptográficas de llave pública usualmente requieren estructurar privile-

gios de desencriptación acorde a alguna jerarquı́a. Para evitar filtraciones y transferencias

de las llaves secretas, usualmente esto se resuelve mediante procesos de re-rencriptación o

recurriendo a entidades confiables. En un enfoque inicial Goubin y Vial-Prado aprovechan

el esquema de encriptación multillave FHE-NTRU para proponer los protocolos Excal-

ibur. Estos protocolos definen privilegios de desencriptación al momento de la creación

de llaves, evitando filtraciones de cada uno de los secretos involucrados, incluso por parte

de quien posee la llave poderosa, i.e. los privilegios de desencriptación. Los algoritmos se

definen para escenarios con dos participantes, y se extienden para cadenas de participantes

con privilegios de desencriptación heredables. En esta tesis proponemos nuevos protoco-

los para la generación de llaves Excalibur, en un escenario de jerarquı́a DAG, extendiendo

ası́ el trabajo previo de Goubin y Vial-Prado. Además, se presentan demostraciones for-

males de seguridad en presencia de adversarios semi-honestos, donde el caso base de

nuestras demostraciones de seguridad pueden considerarse como una prueba basada en

simulación más formal del trabajo anteriormente mencionado. Finalmente, nuestros pro-

tocolos son compatibles con las propiedades homomórficas del esquema FHE-NTRU.

Palabras Claves: Computación de múltiples partes segura, esquema FHE-NTRU.
x

1. INTRODUCTION

In some public-key cryptography applications, parties own decryption rights over ci-

phertexts according to some hierarchic structure. For example, Bob is an employee of

Alice and not be available for some months. Bob configured the forwarding of all his

mails to Alice for this time, and then Alice need to decrypt Bob’s messages. If Bob simply

transfers his secret key to Alice, she may leak or sell Bob’s secret, causing a lot more

damage than leaking Bob’s plaintexts only. Overcoming this, proxy re-encryption and

hierarchical identity-based encryption schemes rely on trusted parties to generate master

secret keys or involve public re-encryption procedures.

Using a novel approach, authors in (Goubin & Vial Prado, 2016) proposed two-party

computation protocols that securely perform a key generation procedure of the celebrated

NTRU-based Multikey-FHE (López-Alt, Tromer, & Vaikuntanathan, 2012). The result is

a key pair (skA,pkA) for Alice such that skA can decrypt all of Bob’s ciphertexts, and no

information about Bob’s secret key can be deduced from this key pair, the execution of the

protocol or any public values. Moreover, Alice’s and Bob’s secrets are tied together, thus

effectively avoiding leakage by Alice (assuming she is not willing to reveal her own secret

key skA). The newly-created Excalibur key pair behaves as a regular key of the system,

even allowing multikey homomorphic operations when using sufficiently large parameters

such as the ones suggested in (López-Alt et al., 2012). In addition, these keys can be used

as inputs to generate more powerful Excalibur keys, allowing decryption inheritance for

a bounded chain of users. In addition, this whole procedure can be regarded as an au-

tomatic N -hop proxy-reencryption scheme, addressing a re-encryption paradigm in fully

homomorphic encryption scenarios, as pointed out in (Goubin & Vial Prado, 2016).

In this tesis we extend these key-generation protocols and provide multiparty compu-

tation protocols in the advised cyclotomic polynomial ring of (Stehlé & Steinfeld, 2011)

that can securely generate FHE-NTRU keys for some types of DAG-like hierarchies, in

such a way that the key of a particular node n in this hierarchy can decrypt all messages

1

encrypted for nodes below it, while not having access to secrets (other than own private

keys). In order to do this, we address the case where Bob above is replaced by a set of

participants.

As typical Multiparty Computation applications, our protocols require the composi-

tion of several routines. In all generality, this poses additional security restrictions, as a

composition of two secure protocols in a stand-alone setting is not necessarily secure. This

has been the subject of extensive research, and we highlight the Universal Composabil-

ity (UC) framework proposed by Cannetti (Canetti, 2001) in which any two UC-secure

protocols may be arbitrarily composed ensuring the inheritance of security.

In our protocols only non-concurrent composition is performed and security is proven

with simulation-based proofs, but only in the stand-alone setting. This means that when

our protocol runs in isolation (with all necessaries subroutines) it is secure, but if runs

alongside other protocols it could not be. Prove that our protocols are secure for UC

framework remains as future work.

1.1. Our contributions

This work provides new protocols that extend those from (Goubin & Vial Prado, 2016),

addressing the case where k > 2 parties jointly generate an NTRU-FHE key pair with

additional decryption rights, and preventing leakage of secret keys from the receiving

party. To this end, we propose secure multi-party computation protocols in cyclotomic

polynomial rings between parties P1, . . . , Pk that generate a key-pair for party P1 with

decryption rights over all parties involved, and such that no information about other secret-

keys can be leaked from the execution of the protocol, inputs and outputs, and public

values, even if some parties collude.

2

We provide security analysis of these protocols in the semi-honest but colluded setting,

where parties follow the protocol and sample from the correct distributions but may coop-

erate with each other to deduce secrets. The base case of our security analysis may be re-

garded as a more formal, simulation-based proof of the protocols in (Goubin & Vial Prado,

2016). Achieving security in malicious adversarial settings, where parties may deviate or

sabotage the protocol, is a challenging problem for k > 2 parties, which we leave for

future work.

In order to generate an Excalibur key pair that inherits decryption of 3 other keys with

128 bits of security in mind, parties using our protocols need to perform around 224 1-out-

of-2 Oblivious Transfer protocols and 224 multiplications in Zq[x]/(xn + 1) with secure

NTRU parameters, this can be performed in range of minutes on a regular laptop, as per

our simulations and (Asharov, Lindell, Schneider, & Zohner, 2013). We are confident that

there is much to optimize in these procedures, opening another interesting angle for future

work.

1.2. Overview of the article

We begin in section 2 by revisiting necessary concepts to construct our protocols, in-

cluding the quotient ring Rq and FHE-NTRU scheme. In sections 3 and 4, we define the

notions of security we want to achieve, and state the corresponding underlying assump-

tions. Our protocols are presented in 5, with proofs and security analysis described in

6.

3

2. PRELIMINARIES

We denote tuples of elements with bold letters. The indicator function or caracteristic

function XB : A 7→ {0, 1} indicates membership of an element x ∈ A in a subset B ⊆ A.

This function outputs 1 if the preimage is in B and 0 otherwise:

XB(x) =

 1 if x ∈ A

0 if x 6∈ A

2.1. Indistinguishability

For a probability distribution X with sample space S, e← X denote that e is sampled

from S with the distribution X , and e $←− S denote that e is sampled from S according to

the uniform distribution.

A distribution ensamble X = {X(λ, a)}λ∈N,a∈D is an infinite sequence of probability

distributions, where a distributionX(λ, a) is associated with each values of λ ∈ N and a ∈

D for some domain D. The distribution ensembles considered in this work are outputs of

computations (protocols or simulators algorithms), where a corresponds to various types

of inputs and λ is taken to be the security parameter. As usual, the complexity of our

protocols is measured in terms of the security parameter.

Let µ a negligible function. Two distribution ensembles X and Y are statistically

indistinguishables, writed as X
s
≈ Y , if for all sufficiently large λ and all a we have that

1

2

∑
b

|Pr [X(λ, a) = b]− Pr [Y (λ, a) = b]| < µ(λ)

Two distribution ensembles X and Y are computational indistinguishables, writed as

X
c
≈ Y , if for every algorithm D that is probabilistic polynomial-time in it first input, for

all sufficiently large λ and all a and all auxiliary information w ∈ {0, 1}∗ we have

|Pr [D(λ, a, w, x) = 1]− Pr [D(λ, a, w, y) = 1]| < µ(λ)

4

where x← X(k, a) and y ← Y (k, a).

2.2. Quotient ring Rq

Let q be a large prime. For an integer x ∈ Z, [x mod q] represents the modular

reduction of x into the set {−bq/2c, . . . bq/2c}, which we denote by Zq.

For a polynomial p(x) = a0+a1x+· · ·+an−1xn−1 ∈ Rq, let p = (a0, . . . , an−1) ∈ Znq
be the coefficient vector of p. We denote by ||p||∞ the infinity norm of p, defined as

||p||∞ = max
k
|ak|.

A n-th root of unity is a complex number ζ such that ζn = 1. There are exactly n

different n-th roots of unity:

e2kπi/n = cos
(2kπ

n

)
+ i sin

(2kπ

n

)
,

for 0 ≤ k < n and n a posive integer. A primitive n-th root of unity is an n-th root of

unity ζ whose order is n.

The n-th cyclotomic polynomial Φn is defined by Φn(x) =
∏

ζ∈P (n)

(x− ζ), where P (n)

denotes the set of all primitive n-th roots of unity.The 2k-th cyclotomic polynomial Φ2k is

equal to x2k−1
+ 1, for k a integer.

For n a power of two, let

Rq
def
=

Zq[x]

Φ2n(x)

be the cyclotomic ring of polynomials modulo Φ(2n) = x2
n−1

+ 1 and coefficients in

Zq. Note that the ring Rq is not a unique factorization domain as xn + 1 is generally not

irreducible in Zq.

5

2.3. Invertible bounded Gaussian distributions in the quotient ring

In the following definition, let Γr be the Gaussian distribution on Znq centered about 0

and standard-deviation r, for a real number r > 0.

Definition 2.1 (Bounded Discrete Gaussian distribution over Rq). For a real number

B such that 0 < B � q, let GB be the B-bounded discrete Gaussian distribution over Rq,

that is, the distribution that samples polynomials from Rq as follows:

(i) Sample vector x← ΓB, and restart if ||x||∞ > B.

(ii) Output the polynomial p ∈ Rq whose coefficients vector is bxe.

Let G×B be the distribution that samples from GB until the output is invertible.

2.4. FHE-NTRU encryption and the multikey property

The public key cryptosystem NTRU is the fastest known lattice-based encryption

scheme. In it, units of Rq with small coefficients are used as secret keys. In fact, for

n a power of 2 and q = 1 mod 2n, the 2n-th cyclotomic polynomial Xn + 1 splits into n

linear factors in Zq ensuring a large key-space, as in the advised modifications by Stehlé

and Steinfeld (Stehlé & Steinfeld, 2011).

The Multikey FHE scheme presented in (López-Alt et al., 2012) uses the modified

version of NTRU (Nth-truncated) encryption scheme, which we present here for the sake

of completeness.

Parameters: Let n be a power of 2, q be a large prime such that q = 1 mod 2n and

0 < B � q. Recall that Rq = Zq[x]/(xn + 1).

Key Generation: Sample a polynomial f ← GB and set sk := 2f + 1, repeat if sk is

not invertible. Sample g ← G×B and define pk := 2g · sk−1. Output the pair (pk, sk).

Encryption: Given a message m ∈ {0, 1} and public-key pk, sample s, e← GB, and

output c = m+ 2e+ s · pk mod q.
6

Decryption: Given a ciphertext c and secret-key sk, output m = c · sk mod 2.

The linearity of the decryption equation allowed authors of (López-Alt et al., 2012)

to construct the first Multikey FHE scheme, where the result of homomorphic operations

involving ciphertexts related to different entities can be jointly decrypted by these parties.

This is showed in lemma 2.1.

As noted by (Goubin & Vial Prado, 2016) and showed in corollary 2.1, this linearity

also implies that a secret key with small extra multiplicative factors (such as other secret

keys) is able to correctly decrypt.

Lemma 2.1. (Goubin & Vial Prado, 2016) Let (pk, sk) ← Keygen(1k), m ∈ {0, 1}

and let c← Enc(pk,m). Let θ ∈ Rq be M -bounded polynomial satisfying θ mod 2 = 1.

If M < (1
71

)(q
n2K2) then

Dec(sk, c) = Dec(θ · sk, c) = m.

Corollary 2.1. (The multikey property) Let (pk1, sk1) and (pk2, sk2) be valid pairs

of keys, m1,m2 ∈ {0, 1} and let c1 ← Enc(pk1,m1), c2 ← Enc(pk2,m2). Let s̃k =

sk1 · sk2 ∈ Rq. Then

Dec(s̃k, c1) = m1,Dec(s̃k, c2) = m2

provided that K is small enough.

7

3. SECURITY DEFINITIONS

A cryptographic protocol include a set of parties that need to compute jointly an algo-

rithm, guaranteeing some secure properties in the face of an adversary. A simple example

is the communication between parties, where an external adversary have access to the com-

munication network. For example, if the adversary only has access to see the messages,

the secrecy is the property that we wish to guarantee. But if the adversarial behaviour

is active, namely can modify messages in the communication network, we also need to

guarantee the integrity of messages.

These protocols involves different and complex types of trust relationships and dif-

ferent types of security properties. A first distinction is that adversarial behaviour can

be semi-honest or malicious. Semi-honest adversaries follow the protocol specification

exactely, but they may cooperate with each other to deduce information. In contrast, ma-

licious adversaries may arbitrarily deviate from the protocol specification.

Another distinction is between static and adaptive adversarial behaviour. An static

adversary controls a fixed set of corrupted parties, while an adaptive adversary choose

which parties to corrupt during the computation, based in the information obtained so far.

In this chapter, we present the model of computation and definitions of security used in

this work. We only consider static semi-honest adversaries, leaving malicious and adaptive

case for future work. Additionally, we assume honest majority, i.e. the case where the set

of honest parties is bigger than the set of corrupted parties.

3.1. The model of computation

With the goal of formalizing the notion of security in cryptographic protocols, we

present the model to represent and analyze them.

8

3.1.1. Interactive Turing Machines

An Interactive Turing Machine (ITM) is a extension of the standard deterministic

multi-tape Turing Machine, that allows communication between pairs of machines. In

(Goldreich et al., 2005) authors give a first definition of ITM in the context of interac-

tive proof systems, in (Canetti, 2001) defined a formalization of ITM accommodated to

multyparty computation protocols.

Definition 3.1. An Interactive Turing Machine (ITM) M is deterministic multi-tape

Turing Machine. The tapes in the machine are:

• A read-only identity tape.

• A read-only input tape.

• A read-only random tape.

• A read-and-write work tape.

• A pair of communication tapes: a read-only tape representing the information

comming from othe machines within the same protocol instance; and a write-

only tape holding the outgoings messages together with the addressing informa-

tion for delivery the messages.

• A read-and-write one-bit activation tape.

An Interactive Turing Machine represent the static object: the idea of algorithm, while

an Interactive Turing Machine Instance (ITI) represent the run-time object. A crypto-

graphic protocol is just defined as a single ITM and if the protocol specify different algo-

rithms for different parties, then the ITM must be to describe this algorithms.

Our model consider a set of ITIs that can communicate with each other, they can write

on the communication tape of other ITI. The execution of this system of ITIs is just a

sequence of activations of the ITIs in the system. In each activation, the only activated ITI

follow its own transition function based on its current state and contents of tapes until it

enters in a special idle state. At the end of each activation, the ITI whose tape was written
9

is the next ITI that will be activated. There is a speciall and predeterminated ITI wich is

the fist in activate in the execution, and this execution ends when the initial ITI halts.

3.2. Simulation-based MPC security against semi-honest adversaries

The idea behind the notion of security is to guarantee that performing a cryptographic

protocol is just as good as executing an idealized computational process where security

is assured. According to this, following previous attemps of formalization, e.g. (Lindell,

2017) and (Canetti, 2000), our notion of security is based on the idea of simulating func-

tionalities. This refers to compare what happens in the real world versus what happens in

and ideal world.

Let P = {P1, . . . , Pk} a fixed set of parties and λ the security parameter. A function-

ality is a (k + 1)-ary function

f : N× ({0, 1}∗)k → ({0, 1}∗)k.

We usually write f = (f1, . . . , fk), where each fi is a random k + 1-ary function that

outputs a string, i.e. fi : N× ({0, 1}∗)k → {0, 1}∗. We only are interesting in functionali-

ties that are computable in polynomial time with respect to the security parameter λ, this

means there is a deterministic turing machine with input x can output f(λ, x) in poynomial

time with respect the security parameter λ.

A protocol π compute a functionality f if with input xi for each Pi, the protocol gives

to Pi the output fi(λ, x1, . . . , xk). As usual, the idea is to show that a protocol computing a

functionality f is secure if all possible information that can be computed by a collusion of

some parties can be simulated by means of the combined input and output of these parties

when executing the protocol.

Let f be a functionality, and π a protocol for computing f . The view of the i-th

party when executing π on input x = {x1, . . . , xk} and security parameter λ, denoted as

10

viewπ
i (λ, x), is a tuple

(xi, ri,m
i
1, . . . ,m

i
j),

where ri is the content of the internal random tape of the i-th party, and mi
1, . . . ,m

i
j rep-

resents the messages sent and received with other parties during the execution of π. For a

set S ⊆ P of parties, we set viewπ
S(λ, x) as the concatenation of each tuple viewπ

i (λ, x).

We also write fS as the tuple formed of each fi, for i ∈ S, and xS as the tuple formed of

each xi, i ∈ S.

The output of the i-th party when executing π on input x = {x1, . . . , xk} and security

parameter λ is denoted as outputπ(λ, x).

Definition 3.2. Let P be a set of k parties, and f = (f1, . . . , fk) a functionality. We

say that π securely computes f in the presence of semi-honest adversaries if for every set

S (P of colluded parties there is a PPT algorithm IS such that

(IS(λ, xS, fS(λ, x)), f(λ, x))
s
≈ (viewπ

S(λ, x), outputπ(λ, x))

We now give a proposition that allows us to prove security for protocols that involve

executing other protocols as non-concurrent sub-routines. Let π1, . . . , π` be protocols

computing functionalities φ1, . . . , φ`, respectively. Let ρπ1,...,π` be a protocol computing a

functionality g that makes use of π1, . . . , π` as subroutine in a non-concurrent fashion, so

that πi is called only after πi−1 returns, and additionally, ρπ1,...,π` pauses when executing

each πi. Denote by ρπ1→φ1,...,π`→φ` the protocol where instead of calling to each πi, we use

an oracle computing the functionality fi.

PROPOSITION 3.1. If every πi securely computes φi, and ρπ1→φ1,...,π`→φ` securely com-

putes g, then ρπ1,...,π` securely computes g. (Lindell, 2017)

Note that the restriction that sub-protocols are invoked non-concurrently is key for

stating this result in such a simplified way, instead of using the more complete, but more

complex framework presented in (Canetti, 2001). We do highlight that the restriction of
11

Canetti’s framework into our scenario yields security requirements equivalent to that of

Definition 3.2 (see (Canetti, 2006), §5.2).

12

4. HARDNESS ASSUMPTIONS

Security of our protocols against semi-honest adversaries is based on two well-known

assumptions: The Ring Learning With Errors problem (RLWE) and The Decisional Small

Polynomial Ratio problem (DSPR); and the difficulty of new factorization problems in

Rq that extend those from (Goubin & Vial Prado, 2016). We first describe the DSPR

assumption.

4.1. Decisional Small Polynimial Ratio Assumption

The Ring Learning With Errors problem and the Decisional Small Problem Ratio,

detailed in definitions 4.1 and 4.2, relate to the security of the underlying NTRU encryption

scheme as described in (Stehlé & Steinfeld, 2011; López-Alt et al., 2012).

Let s ∈ Rq, ψ a distribution in Rq and As,ψ the distribution obtained by sampling the

pair (a, as + e) with (a, e) ← U(Rq) × ψ. The RLWE problem shows that is difficult to

distinguish between a sampling from U(Rq ×Rq) and from As,ψ.

Definition 4.1 (Ring-LWE, from (Stehlé & Steinfeld, 2011)). The Ring Learning with

Errors Problem is as follows. Let ψ ← Υ and s ← U(Rq). Given access to an oracle O

that produces samples in Rq × Rq, distinguish whether O outputs samples from As,ψ or

from U(Rq×Rq). The distinguishing advantage should be negligible over the randomness

of the input, the randomness of the samples and the internal randomness of the algorithm.

The DSPR showed that the public-key distribution is statistically close to uniform in

the ring.

Definition 4.2 (Decisional Small Polynomial Ratio assumption, from (Stehlé & Ste-

infeld, 2011)). For some parameters q, n,B, it is computationally hard to distinguish be-

tween the following two distributions over Rq:

(i) A polynomial pk = 2g(2f + 1)−1 ∈ Rq where f, g ← GB, and

13

(ii) a uniformly random polynomial u $←− Rq.

4.2. Small factorizations in Rq

Additionally, the semi-honest security rely on the hardness of the following problems.

Let ξlB be the Gaussian Product Distribution defined as follows.

Definition 4.3 (Gaussian Product Distribution). Let ξlB be the distribution that samples

polynomials pi ← G×B for i = 1, . . . , l and outputs
∏l

i=1 pi.

Definition 4.4 (Special factors problem). Let α ← ξlB and β ← ξmB . The Special

Factors Problem is to output α, β with the knowledge of c = α · β and access to the

indicator function of {α, β}.

In other words, the task is to find the correct factorization of c. Recall that Rq is not

a unique factorizarion domain, so for any unit u ∈ Rq there is a posible factorization

c = u · (u−1c). In order to find α, β, the solver must query the indicator function to

corroborate that his solution is the correct one. In our construction, secret keys play the

role of the individual factors of c, and the indicator function consists in encrypt-decrypt

key-guessing routines. When l = m = 1, this is the small factors problem from (Goubin

& Vial Prado, 2016).

Definition 4.5 (Special GCD problem). Let α, β ← G×B and y ← ξlB. Given u = α · y

and v = α · β and access to the indicator function of {α, β, y}, output α, β and y.

Definition 4.6 (Special Factors Assumption). For some set of parameters, it is com-

putationally hard to solve the Special Factors or the Special GCD problems.

As noted in (Goubin & Vial Prado, 2016), Special GCD reduces to a version of DSPR,

and the SF problem may be expressed as a quadratic system of equations in Zq in the

underdetermined setting, which is considered secure (Thomae & Wolf, 2012). Moreover,

as in (Goubin & Vial Prado, 2016) we put it as a conjecture that the additional cyclic

structure provided by Rq does not help an attacker to solve this system.
14

5. MPC KEY GENERATION PROTOCOLS

This chapter introduce the key-generator multiparty protocols Excpk and Excsk, with

the aim of create a key pair (sk1,pk1) for participant P1, based on the set (ski,pki) of all

other participants. As we have mentioned, the pair (sk1,pk1) can decrypt any message

encrypted with the public key of any other participant and P1 cannot discover any of the

other secret keys.

For this purpose, we define first the Oblivious Transfer functionality and a Scalar Prod-

uct functionality.

5.1. Oblivious Transfer protocol

The one-out-of-n oblivious transfer protocol is a distributed two-party algorithm in

which a party P1 has n secret values and transfer one of them to P2, without know what

element has been sended.

The oblivious transfer functionality is defined as

F(n
1) -OT : (λ, (x1, . . . , xn),m) 7→ (⊥, xm),

where m is an integer between 1 and n. Let
(
n
1

)
-OT a protocol that securely computes

F(n
1) -OT.

5.2. A Scalar Product protocol

We define the scalar product funcionality as

FSPm : (~b, (~p(0), ~p(1))) 7→ (
m∑
i=1

p
(bi)
i ,⊥),

where ~b ∈ {0, 1}m is a vector of bits defined as ~b = (b0, . . . , bm), and ~p(0), ~p(1) ∈ Rm
q are

vectors of polynomials in Rq defined as ~p(0) = (p
(0)
1 , . . . , p

(0)
m) and ~p(1) = (p

(1)
1 , . . . , p

(1)
m).

15

Note that
m∑
i=1

p
(bi)
i = (p01, . . . , p

0
m) ·~bc + (p11, . . . , p

1
m) ·~b,

where~bc = (b̄1, . . . , b̄m) is the binary complement of~b.

The two-party protocol performing this functionality is presented in definition 5.1 and

outlined in the algorithm 1.

Definition 5.1. Let SPm be a two-party protocol performing FSPm for m ∈ N, as

follows. Party P1 has a sequence of m bits ordered in a binary vector ~b = (b1, . . . , bm).

For each i = 1, . . . ,m, party P2 has a pair of polynomials (p
(0)
i , p

(1)
i) of Rq. In the end,

party P1 only learns γ = p
(b1)
1 + p

(b2)
2 + · · ·+ p

(bm)
m and party P2 learns nothing.

Note that when m = 1 this is simply a
(
2
1

)
-OT (1-out-of-2 oblivious transfer). The

construction of this protocol is straightforward and based on (Li & Dai, 2005).

Algorithm 1 Scalar product protocol

Require: P1 holds ~b = (b1, . . . , bm) ∈ {0, 1}m and P2 holds 2m polynomials
((p

(0)
i , p

(1)
i) ∈ R2

q)
m
i=1. Let κ be such that it is unfeasible to compute 2κ additions

in Rq.
Ensure: P1 learns (p01, . . . , p

0
m) ·~bc + (p11, . . . , p

1
m) ·~b and P2 learns nothing.

1: procedure SPm
2: P1 samples κ vectors (~bi

$←− Zm)κi=1 such that
κ∑
i=1

~bi = ~b.

3: for i = 1 . . . κ do
4: P1 samples a bit σ and two vectors ~a0,~a1 $←− {0, 1}m. P1 sets aσ ← ~bi.
5: P1 sends the pair (~a1,~a2) to P2.
6: P2 computes

~d0 = (p01, . . . , p
0
m) · ~ac0 + (p11, . . . , p

1
m) · ~a0

~d1 = (p01, . . . , p
0
m) · ~ac1 + (p11, . . . , p

1
m) · ~a1

7: With a
(
2
1

)
-OT protocol, P1 extracts γi := ~dσ from P2.

8: P1 computes γ =
∑κ

i=1 γi = (p01, . . . , p
0
m) ·~bc + (p11, . . . , p

1
m) ·~b.

Remark: This protocol can be restated as a
(
2m

1

)
-OT protocol, as follows. For each

x ∈ {0, 1}m, party P2 computes a mapping x 7→
∑m

i=1 p
(x[i])
i where x[i] is the i-th bit of x.

16

Then, party P1 extracts the polynomial corresponding to x′ = ~b with a
(
2m

1

)
-OT protocol.

We point out that this is highly inefficient, because P2 needs to compute O(2m) additions

in Rq.

5.3. Secure MPC protocols for multiplication in Rq

The building blocks of our key-generating scheme are two protocols, that we name

k-Multiplication Protocol and k-Shared Multiplication Protocol. Both of these protocols

share the goal of performing a multiparty multiplication of elements in Rq, but differ in

the final output learned by the participants.

2-Multiplication Protocol. This two-party protocol is defined in (Goubin & Vial Prado,

2016), and the goal is compute the product of two elements in Rq. The participant P1 be-

gins with x1 as input, and P2 with the pari x2, r2. At the end, P1 learns x1 · x2 + r2, but P2

learn nothing.

The detail of the protocol is present in Algorithm 2. The participant P1 generate

randomly m additive parts x1i of x1, anagously P2 generate m additive parts r2i of r2.

For each polynomial x1i they compute x1i · x2 + r2i, and at the end P1 can compute∑
x1i · x2 + r2 = x1 · x2 + r2.

k-Multiplication Protocol (k-MP). We use this protocol to multiply k elements in our

ring. Every participant P` begins with a secret element x` given as input, as well as a

uniformly random polynomial r`. Upon finishing, participant P1 learns
k∏̀
=1

x`+
k∑̀
=2

r`, and

the rest of the participants learn nothing.

Algorithm 3 contains the detail of this protocol, and Algorithm 2 provides the base

case with two parties. The idea is similar to 2-MP protocol. First, participant P1 generate

the additive parts x1i of x1, and each other P` generates additive parts r`i of r`, in addition

to the random values sb`i. For each x1i, participants P \ {P1} use (k-1)-MP to perform a

secure multiplication of all xell, and this multiplication is carefully masked with additive

17

Algorithm 2 Two-party Rq multiplication 2-MP

Require: Player P1 holds x1 ∈ Rq and P2 holds a pair (x2, r2) ⊂ R2
q . Let m ∈ N be such

that it is unfeasible to compute 2m additions in Rq.
Ensure: Player P1 learns x1 · x2 + r2.

1: procedure k-MP

2: Player P1 generates m polynomials (x1i
$←− Rq)

m
i=1, such that

m∑
i=1

x1i = x1.

3: Player P2 samples m polynomials (r2i
$←− Rq)

m
i=1 such that

m∑
i=1

r2i = r2.

4: for i = 1, . . . ,m do
5: Player P1 generates a random bit b $←− {0, 1}, polynomials (v0, v1)

$←− R2
q

and sets vb = x1i.
6: Player P1 sends (v0, v1) to P2.
7: Player P2 computes (e0, e1) = (v0 · x2 + r2i, v1 · x2 + r2i).
8: With a

(
2
1

)
-OT protocol, player P1 extracts eb from P2.

9: Let ê1, . . . , êm be the polynomials extracted by P1 in each of the m steps. Player

P1 computes
m∑
i=1

êi = x1 · x2 + r2.

uniform noise for participant P1. In the end, P1 performs SPm with each other participant

with the goal of cancelling this noise, and obtain the product of x` plus the sum of the

random values r`.

k-Shared Multiplication Protocol(k-sMP). In this protocol every participant starts with

a pair of additive shares (xi, yi) of elements x, y ∈ Rq, and in the end learns an additive

share πi of the product π = x ·y, i.e. ,
∑
πi = (

∑
xi) · (

∑
yi). The details of this protocol

are shown in Algorithm 4. Players perform k(k − 1) pair-wise multiplications of shares

using 2-MP (steps 3-5). The random noise added by 2-MP serves us to mask the value of

the correct shares, and it is then cancelled out when adding up all polynomials (step 6).

5.4. Excalibur key generation protocols

In our key-generating protocols, players Pi ∈ {P2, . . . , Pk} start with their secret keys

βi, and all players sample a random polynomial si from GB. These polynomials act as

additive shares of P1’s secret, called α (thus P1 does not know α either). Upon finishing,

18

Algorithm 3 Multiparty multiplication of k elements in Rq

Require: A number of players k ≥ 3. Player P1 holds x1 ∈ Rq and each other player
P` holds a pair (x`, r`) ⊂ R2

q . Let m ∈ N be such that it is unfeasible to compute 2m

additions in Rq.

Ensure: Player P1 learns
k∏̀
=1

x` +
k∑̀
=2

r`.

1: procedure k-MP

2: Player P1 generates m polynomials (x1i
$←− Rq)

m
i=1, such that

m∑
i=1

x1i = x1.

3: Each player P` in P\{P1} samples (r`i
$←− Rq)

m
i=1 such that

m∑
i=1

r`i = r`,

and 2m polynomials (r̂b`i
$←− Rq)

m
i=1 for b = 0, 1. Let sb`i = r`i + r̂b`i.

4: for i = 1, . . . ,m do
5: Player P1 generates a random bit b $←− {0, 1}, and polynomials (v0, v1)

$←− R2
q

such that vb = x1i.
6: Player P1 sends (v0, v1) to P2.
7: for j = 0, 1 do
8: Players P2, . . . , Pk perform [k-1]-MP(vj · x2, (x3, sj3i), . . . , (xk, s

j
ki)).

P2 learns vj ·
k∏̀
=2

x` +
k∑̀
=3

sj`i.

9: Player P2 adds sj2i to this output, obtaining ej = vj ·
k∏̀
=2

x` +
k∑̀
=2

sj`i

10: With a
(
2
1

)
-OT protocol, player P1 extracts eb from P2.

Note that eb = x1i ·
k∏̀
=2

x` +
k∑̀
=2

sb`i.

11: Let êi be the polynomials extracted in each of these m steps, and bi the random

bits. P1 computes θ :=
m∑
i=1

êi =
k∏̀
=1

x` +
k∑̀
=2

r` +
k∑̀
=2

(m∑
i=1

r̂bi`i

)
.

12: for ` = 2, . . . , k do
13: P1 extracts ŝ` =

m∑
i=1

r̂bi`i from P` with SP (b, (r0` , r1`)),

where b = (b1, . . . , bm) and rj` = (r̂j`1, . . . , r̂
j
`m).

14: Finally, P1 computes θ −
k∑̀
=2

ŝ` =
k∏̀
=1

x` +
k∑̀
=2

r`.

participant P1 learns the secret key sk1 = α
k∏
i=2

βi, as well as its public key pk1. On the

other hand, all other participants only learn pk1. As advised in (Goubin & Vial Prado,

2016), parties generate the public key first, and P1 commits to it.

19

Algorithm 4 Multiparty shared multiplication of k elements in Rq

Require: Each participant Pi holds a pair (xi, yi) of elements from Rq.

Ensure: Each Pi ∈ P learns an element πi, such that
k∑
j=1

πj = (
k∑
j=1

xj) · (
k∑
j=i

yj).

1: procedure k-sMP

2: Each Pi samples Ri = {rij
R←− Rq | j = [1, k] ∧ i 6= j}.

3: for i = 1, . . . , k do
4: for j = 1, . . . , k, j 6= i do
5: Pi, Pj perform 2-MP(xi, (yj, rji)). Thus Pi learns uij = xi · yj + rji

6: Each participant Pi computes πi = xiyi +
k∑

j=1,j 6=i
uij −

∑
r∈Ri

r.

Algorithm 5 Excalibur Public Key Generation
Require: Participant P1 holds an element s1 ← GB and each other participant holds

βi = ski and si ← GB. Let α = 2(
k∑
i=1

si) + 1.

Ensure: A public key pk1 = 2g(α
k∏
i=2

βi)
−1 for P1.

1: procedure Excpk

2: Each Pi ∈ P samples gi ← GB, ri $←− Rq and tij $←− Rq, for j = 1, ..., k.

Let r =
k∑
i=1

ri and g =
k∑
i=1

gi.

3: All participants perform (k)-MP(r1, (β2, t21), . . . , (βk, tk1)). Thus,

P1 learns r′1 = r1 ·
k∏
i=2

βi +
k∑
i=2

ti1.

4: for i = 2, . . . , k do
5: Pi and the rest of participants in P \ {P1, Pi} perform (k-1)-MP. Pi gives

riβi as input, and each other player Pj ∈ P \ {P1, Pi} gives (βj, tji).

Pi learns ui = ri ·
k∏
j=2

βk +
k∑

j=2,j 6=i
tji and computes r′i = ui −

k∑
j=1,j 6=i

tij.

6: With gi, ri and si, r′i, all players perform Shared k-MP twice to obtain shares

of w = g · r and z = α · r′ = α
k∏
i=2

βi · r.

Each participant reveal their shares to P2, thus P2 learns z, w.
7: P2 checks: if z is not invertible in Rq, restart the protocol.

8: P2 computes 2w(zβ2)
−1 = 2g(α

k∏
j=2

βj)
−1 and publishes it as pk1.

20

Public key generation(Excpk). Protocol Excpk is used to generate the public key for par-

ticipant P1. Every participant Pi apart from P1 holds a key pair (ski,pki) = (βi, 2hiβ
−1
i).

Player P2 plays a special role computing some products. Upon finishing, a public key pk1

is broadcast to everyone. This public key is a polynomial of the form 2g(α
k∏
i=2

βi)
−1, for

additively shared elements α = 2(
k∑
i=1

si) + 1 and g =
k∑
i=1

gi.

The protocol is shown as Algorithm 5. It begins with the k participants sampling a

gaussian share gi, and random elements ri, tij used to additively mask polynomials, as in

protocol 4. Each participant Pi learn r′i, such that, r′i =
∏k

i=2 βi · ri with r′ =
k∑
i=1

r′i and

r =
k∑
i=1

ri. This is shown in lines 3-5 and figures 5.1, 5.2.

Figure 5.1. Excpk: P1 learn r′1 Figure 5.2. Excpk: Pi learn ui

Participants perform Shared k-MP to obtain shares of w = g · r and z = α · r′, i.e.

each participant Pi obtain wi and zi such that w =
∑
wi and z =

∑
zi. This is shown in

line 6 and figures 5.3,5.4.

21

Figure 5.3. Excpk: Each Pi
learn wi

Figure 5.4. Excpk: Each Pi
learn zi

Once the joint secret
k∏
i=2

βi is shared, P2 has the task of inverting it in the ring, multi-

plying by α−1, g and broadcasting. To avoid P2 extracting or using these secrets, they are

separated into multiplicative factors that do not leak secrets (or, more precisely, such that

extracting secrets from them needs to solve SF or Special GCD problems).

Secret key generation(Excsk). Protocol Excsk is used to generate the secret key sk1 for

participant P1, given secret keys β2, . . . , βk of the other participants. This protocol needs

the same additive share of α of the Excpk protocol (hence the need of semi-honest players).

Upon finishing, P1 receives the secret key sk1 = α
k∏
i=2

βi.

The protocol is shown as Algorithm 6, with each participant Pi sampling random el-

ements rij . Each participant learns ui = 2si
k∏
j=2

βj +
k∑

j=2,j 6=i
rji from a k-1-MP and then

computing Ri. This is shown in lines 3,4 and figure 5.5.

22

Algorithm 6 Excalibur Secret Key Generation

Require: Let α = 2(
k∑
i=1

si) + 1 be the same additive share as in protocol 5: Participant P1

holds s1 ∈ Rq and each other participant holds a pair (βi, si) ∈ R2
q .

Ensure: A secret-key sk1 = α
k∏
i=2

βi for P1.

1: procedure Excsk

2: Each participant Pi in P \ {P1} samples (rij
R←− Rq)

k
j=2,j 6=i. Let ri =

k∑
j=2,j 6=i

rij .

3: for i = 2, . . . , k do
4: Pi and the rest of players from P \ {P1, Pi} perform (k-1)-MP,

with Pi holding 2siβi and each other P` holding (β`, r`i).

Pi learns ui = 2si
k∏
j=2

βj +
k∑

j=2,j 6=i
rji and computes

Ri = ui −
k∑

j=2,j 6=i
rij .

5: All participants perform k-MP(2s1 + 1, (β2, R2), . . . , (βk, Rk)), and P1 obtains

sk1 := ((2s1 + 1)
k∏
i=1

βi) +
k∑
i=2

(
2si

k∏
j=2

βj
)

= α
k∏
i=2

βi ∈ Rq

Figure 5.5. Excsk: Each Pi learns the product of βi’s plus some noise

23

Finally, P1 learns his secret key from a k-1-MP using the values Ri computed before.

This is shown in line 5 and figure 5.6.

Figure 5.6. Excsk: P1 learns his secret key

24

6. SECURITY ANALYSIS

In this section we inspect the security of the proposed scheme against semi-honest ad-

versaries. Throughout this section, parties {P1, . . . , Pk} participate in the protocol, player

P1 receives the powerful key at the end, and P2 has the special role of inverting a polyno-

mial in protocol Excpk.

6.1. Extracting keys after the protocol

Recall that P1 is provided an Excalibur key pair of the form

(sk1,pk1) = (α ·
k∏
i=2

ski, 2g · sk−11) ∈ Rq ×Rq,

and assume that some set of colluded parties S try and deduce secrets. Note that extracting

α is a successful attack, as sk1/α can be sold as a valid NTRU key decrypting messages

intended to all parties excepting party P1. Also, extracting a product of secret keys is also

an attack even if individual keys are unknown, because of the inherited decryption rights.

Without loss of generality, we assume that the attacker intends to extract an individual

secret key, since keys can be grouped together in the view and equations are equivalent, but

with different size parameters. For instance, an attacker extracting sk2·sk3 can reformulate

the instance defining sk′ = sk2 · sk3, p
′ = p2 · p3 and extract sk′ from a wider Gaussian

distribution.

PROPOSITION 6.1. Let S ({P1, . . . , Pk} be a set of colluded parties. The problem

of extracting α, g, r, r′ or any secret key skj of a party Pj /∈ S from public values, views

of the protocol and secret keys of parties in S reduces to instances of G×B -GCD or Special

Factors problems. The same holds for the problem of extracting a product of secret keys

of honest parties.

The ring elements available to the uncolluded adversary are given by the output secret

key, and public keys. Let pi = pk−1 ∈ Rq for i ∈ {1, . . . , k}. Note that pi = gi · ski for
25

some gi ∈ Rq. The task of the adversary that receives sk1 is to extract any element of the

set {α, sk2, . . . , skk} from the view

sk1 = α ·
∏k

i=2 ski,

p1 = g1 · α ·
∏k

i=2 ski,

p2 = g2 · sk1,
...

pk = gk · skk.

CLAIM 6.1. Extracting α from sk1 is an instance of the special factors problem.

PROOF. Let β =
∏k

i=2 ski. The task is to extract α from α · β. �

CLAIM 6.2. Extracting ski for i ∈ {2, . . . , k} from sk1 is an instance of the special

factors problem.

PROOF. Let γ = α ·
∏k

j=2,j 6=i skj . The task is to extract ski from ski · γ. �

CLAIM 6.3. Extracting ski for i ∈ {2, . . . , k} from the whole view is an instance of

G×B -GCD problem, for some bound B.

PROOF. Write sk1 = δ · ski for some δ ∈ Rq and consider pi = gi · ski. There

are no other equations involving ski or gi, therefore solving for ski is exactly solving

G×B -GCD. �

CLAIM 6.4. Extracting secret keys from the whole view and information from collusion

with other parties are G×B -GCD or special factors problems.

PROOF. If the attacker learns ski for i ∈ {2, . . . , k} by collusion, then defining sk′∗ =

sk∗/ski, p′1 = p1/pi reduces to an equivalent instance of the problem of extracting another

secret key. In other words, the view is now
26

ski

sk′∗ = α ·
∏k

j=2,j 6=i skj, (∗)

p∗ = g′∗ · α ·
∏k

j=2,j 6=i skj,

p2 = g1 · sk1,
...

pk = gk · skk,

and the only equations involving another secret-key skl for l 6= i are (∗) and pl =

gl · skl, defining an instance of G×B -GCD. The same holds for a larger set of colluded

parties. �

CLAIM 6.5. Extracting α, g, r or any βi from z, w and all public values is an instance

of the special factors problem.

PROOF. The task is to extract α, g, r from w = g ·r and z = α ·r′ with z′ = r
∏k

i=2 βi.

�

6.2. Extracting secrets during the protocols

We address here the security of all our algorithms against semi-honest adversaries,

during and after the execution. We define the corresponding functionalities to the algo-

rithms presented in the previous chapter: k-MP, k-sMP,Excpk,Excsk; and then present the

proofs of security of this algorithms.

k-Multiplication Protocol: k-MP. Let Fk-MP the functionality that computes, on input

the pairs (xi, ri), the product of xi plus the sum of ri.

Fk-MP : (λ, x1, (x2, r2), . . . , (xk, rk))→
((k∏

i=1

xi +
k∑
i=2

ri
)
,⊥,⊥, . . . ,⊥

)
Note that Pi has xi and each other Pi has (xi, ri) as input. Only P1 receive an output.

PROPOSITION 6.2. The protocol k-MP securely computes Fk.

27

k-Shared Multiplication Protocol: k-sMP. Let Fk-sMP the functionality that computes,

on input the pairs (xi, yi), shares πi of the product between the sum of xi and the sum of

yi.

Fk-sMP : (λ, (x1, y2), (x2, y2), . . . , (xk, yk))→ (π1, π2, . . . , πk)

where
k∑
i=1

πi =
(k∑
i=1

xi
)
·
(k∑
i=1

yi
)
.

PROPOSITION 6.3. The protocol k-sMP securely computes Fk-sMP.

Excalibur Keygen Public Key: Excpk. Let FExcpk a functionality that computes, on

input the secret keys βi, a public key pk1 = 2g(α
∏k

j=2 βj)
−1 for P1, where g is a sum of

k random elements of G and α is the sum of the secret keys (times two plus one).

FExcpk(λ,⊥ , β2, . . . , βk)→ (pk1,pk1, · · · ,pk1)

PROPOSITION 6.4. The protocol Excpk securely computes FExcpk .

Excalibur Keygen Secret Key: Excsk. Let FExcsk a functionality that computes, on input

(βi, si), a secret key sk1 = α
∏2

i=1 βi for player P1, where α is compute from si and is the

same of the previous protocol.

FExcsk(λ, s1, (β2, s2), . . . , (βk, sk))→ (α
k∏
j=2

βj,⊥ , · · · ,⊥)

PROPOSITION 6.5. The protocol Excsk securely computes FExcsk .

The proof of this result relies heavily on Proposition 3.1, as we need to show first that

k-MP securely computesFk-MP, then use this result to show that k-sMP securely computes

Fk-sMP, and so forth. The proof of k-MP is also interesting because we need to perform

an induction on k. In (Goubin & Vial Prado, 2016) authors discussed intuitive proofs of

the base case of the above proposition, namely k = 2. This motivates us to present a

simulation-based proof of the following proposition.
28

PROPOSITION 6.6 (Simulation-based proof of (Goubin & Vial Prado, 2016), §7.1).

The protocol 2-MP securely computes F2-MP.

PROOF. We first point out that the views of the protocol are semantically secure, that

is, they do not leak any secrets from the protocol if our SF assumption holds. This is

straightforward to see and is detailed in the proof of (Goubin & Vial Prado, 2016), §7.1.

As in section 3.2 let x = {x1, (x2, r2)} and S (P be a set of corrupted parties. Note

that, as k = 2, we have S ∈ {∅, {P1}, {P2}}. Now, according to definition 3.2, for every

possible set S we construct a PPT algorithm IS such that

(IS(λ, xS,F2-MP
S (λ, x)),F2-MP(x))

s
≈ (view2-MP

S (λ, x), output2-MP(λ, x)).

Case 1: S = {P1}. The view of corrupt P1 in 2-MP protocol is:

view2-MP
S (λ, x) =

 x1, x11, x12, . . . , x1m,

(b1, v
1
0, v

1
1, ê1), · · · , (bm, vm0 , vm1 , êm).

Recall that x1 is P1’s input. The values x1i are random polynomials such that they add

up to x1. The random bits bi and the random polynomials vij are such that vibi is equal to x1i.

Finally, êi is the output of the oblivious transfer functionality and
∑m

i=1 êi = x1 · x2 + r2.

Algorithm 7 Simulator for 2-MP corresponding to S = {P1}
Require: λ, x1, x1 · x2 + r2

1: procedure IP1

2: Sample m random polynomials (x̃1i
$←− Rq)

m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . .m do
4: Sample b̃i $←− {0, 1} and (ṽi0, ṽ

i
1)

$←− R2
q . Set ṽb̃i = xIi.

5: Sample m random polynomials (ẽi
$←− Rq)

m
i=1, such that

∑m
i=1 ẽi = x1 · x2 + r2.

6: Return x1 together with all the values generated.

We define IS , a simulator of the view of P1, in algorithm 7. Its output is

IS(λ, x) =
{
x1, x̃11, x̃12, . . . , x̃1m, (b̃1, ṽ

1
0, ṽ

1
1, ẽ1), · · · , (b̃m, ṽm0 , ṽm1 , ẽm).

29

Recall that F2-MP(x) and output2-MP(λ, x) are both equal to x1 ·x2 + r2. Therefore, we

only need to verify that IS(λ, xS,F2
S(λ, x))

s
≈ view2-MP

S (λ, x).

First, both views share x1. The polynomials x11, x12, . . . , x1m are uniformly generated

by P1 in 2-MP. On the other hand, x̃11, x̃12, . . . , x̃1m are uniformly generated by IS . Also,

we have that
∑m

i=1 x1i =
∑m

i=1 x̃1i = x1, yielding that these sets of polynomials are

indistinguishable.

In the same fashion, each bi is a random bit and (vi0, v
i
1) are random polynomials in Rq

chosen by P1. On the other hand, b̃i is a random bit and (ṽi0, ṽ
i
0) are random polynomials

in Rq generated by IS .

Finally ẽi is chosen at random, while êi equals x1i ·x2 + r2i. Note that this last value is

indistinguishable from uniform because of the additive uniformly random polynomial r2i

selected by the honest player P2. We conclude that view2-MP
S (λ, x) and IS(λ, xS, y1) are

indistinguishable when S = {P1}.

Case 2: S = {P2}. The view of P2 in 2-MP protocol is

view2-MP
S (λ, x) =

{
x2, r2, r21, r22, . . . , r2m, (v

1
0, v

1
1, e

1
0, e

1
1), · · · , (vm0 , vm1 , em0 , em1) }

Algorithm 8 Simulator for 2-MP corresponding to S = {P2}
Require: λ, (x2, r2).

1: procedure IP2

2: Generate m random polynomials (r̃2i
$←− Rq)

m
i=1 such that

∑m
i=1 r̃2i = r2.

3: for i = 1 . . .m do
4: Generate random polynomials (ṽi0, ṽ

i
1)

$←− R2
q and compute

(ẽi0, ẽ
i
1) = (ṽi0 · x2 + r2i, ṽ

i
1 · x2 + r2i).

5: Return (x2, r2) together with all the values generated.

We define IS in algorithm 8. Note that F2-MP
P2

(λ, x1, (x2, r2)) is empty. The output of

IS is:

I{P2}(λ, xP2) =
{
x2, r2, r̃21, r̃22, . . . , r̃2m, (ṽ

1
0, ṽ

1
1, ẽ

1
0, ẽ

1
1), · · · , (ṽm0 , ṽm1 , ẽm0 , ẽm1) }

30

Analogously as before, is it clear that IS(λ, xS)
s
≈ view2-MP

S (λ, x). �

6.2.1. Proof of proposition 6.2

From now on we say that k-MP uses a functionality FSPm for the scalar product as in

algorithm SPm.

We proceed with an inductive argument. First, we assume that for all k′ such that 2 ≤

k′ < k, k’-MP securely computesFk′ . The inductive step is to show that k-MP(k-1)-MP→Fk−1,SPm→FSPm

securely computes Fk-MP.

We begin by describing the views of parties P1 (the key receiver), P2, and P` for ` > 2.

viewk-MP
P1

(x, λ) =

x1,

x11, x12, . . . , x1m,

(b1, v
1
0, v

1
1, ê1), . . . , (bm, v

m
0 , v

m
1 , êm),

θ, ŝ1, . . . , ŝk

The elements x1i, bi, vij and êi are as in the proof of proposition 6.6. On the other hand,

the polynomial θ is the sum of êi and ŝ` the sum of some random values rj`i of player P`.

viewk-MP
P2

(x, λ) =

x2, r2,

r21, r22, . . . , r2m,

(r̂021, . . . , r̂
0
2m), (r̂121, . . . , r̂

1
2m),

(v10, v
1
1, e

1
0, e

1
1), · · · , (vm0 , vm1 , em0 , em1)

In P2’s view, the polynomials r2i, r̂
j
2i are uniformly random values in Rq.

31

viewk-MP
P`

(x, λ) =

x`, r`,

r`1, r`2, . . . , r`m

(r̂0`1, . . . , r̂
0
`m), (r̂1`1, . . . , r̂

1
`m)

Note that the view of P` is a subset of the view of P2. The tuple (x`, r`) is the party’s

input, while r`i and r̂j`i are uniformly random polynomials.

For the construction of the algorithm IS , we consider the following four cases:

(i) Case P1, P2 ∈ S

Algorithm 9 Simulator I1S for k-MP

Require: λ, xS , Fk-MP
S (x).

1: procedure I1S
2: Generate m polynomials (x̃1i

$←− Rq)
m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . .m do
4: Sample b̃i $←− {0, 1} and (ṽi0, ṽ

i
1)

$←− R2
q . Set ṽibi = x̃1i.

5: Generate m polynomials (r̃2i
$←− Rq)

m
i=1, such that

∑m
i=1 r̃2i = r2.

6: Generate 2 ·m polynomials (r̃02i, r̃
1
2i

$←− R2
q)
m
i=1 and compute s̃2 =

∑m
i=1 r̃

b̃i
2i.

7: Compute (ṽi0 · x2, ṽi1 · x2)mi=1.
8: for each P` ∈ S ∧ i = ` > 2 do
9: Generate m polynomials (r̃`i

$←− Rq)
m
i=1, such that r` =

∑m
i=1 r̃`i.

10: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$←− R2
q)
m
i=1 and compute s̃` =

∑m
i=1 r̃

b̃i
`i .

11: Generate 2 ·m polynomials (ẽi0, ẽ
i
1

$←− Rq)
m
i=1 and compute θ̃ =

∑m
i=1 ẽ

i
bi

.
12: For each P` 6∈ S, generate s̃` $←− Rq, such that θ̃ −

∑k
`=2 s̃` = Fk-MP

P1
(x).

13: Return xS together with all the values generated.

32

Rearranging values (and, for the sake of presentation, repeating some of them)

we have that the following output of I1S:

I1S(x, λ) =

x1,

x̃11, x̃12, . . . , x̃1m,

(b̃1, ṽ
1
0, ṽ

1
1, ẽ

1
1), · · · , (b̃m, ṽm0 , ṽ11, ẽmm),

θ̃, s̃1, . . . , s̃k

x2, r2,

r̃21, r̃22, . . . , r̃2m,

(r̃021, . . . , r̃
0
2m), (r̃121, . . . , r̃

1
2m),

(ṽ10, ṽ
1
1, ẽ

1
0, ẽ

1
1), · · · , (ṽm0 , ṽm1 , ẽm0 , ẽm1),

for P` ∈ S\{P1, P2} :

x`, r`, r̃`1, . . . , r̃`m,

(r̃0`1, . . . , r̃
0
`m), (r̃1`1, . . . , r̃

1
`m)

First of all, inputs are the same for the ideal functionalities and the views of

the protocol. Elements x̃1i are randomly generated in I1S , just like x1i in the

protocol, and are therefore indistinguishable. The same happens with b̃i, ṽi0, ṽi1,

r̃`i, r̃0`i and r̃1`i.

The element ẽii is a random element in Rq, and again it is indistinguishable from

êii = vibi
∏k

`=2 x` +
∑k

`=2 s
bi
`i . Finally, θ̃ −

∑k
`=2 s̃` equals Fk-MP

P1
(x), just as in

protocol k-MP.

We conclude that IS(λ, xS,FkS(x))
s
≈ viewk-MP

S (x, λ), when {P1, P2} ⊆ S.

The remaining three cases are shown just as above; we only write the output of

the algorithms for completeness.

(ii) Case P1 6∈ S, P2 ∈ S

33

Algorithm 10 Simulator I2S for k-MP

Require: λ, xS , FkS(x).
1: procedure I2S
2: Generate m polynomials (r̃2i

$←− Rq)
m
i=1, such that

∑m
i=1 r̃2i = r2.

3: Generate 2m polynomials (r̃02i, r̃
1
2i

$←− R2
q)
m
i=1.

4: Generate polynomials (ṽi0, ṽ
i
1

$←− R2
q)
m
i=1.

5: for each P` ∈ S ∧ ` > 2 do
6: Generate m polynomials (r̃`i

$←− Rq)
m
i=1, such that r` =

∑m
i=1 r̃`i.

7: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$←− R2
q)
m
i=1.

8: if P \ {P1} = S then
9: Compute ẽij = ṽij

∏k
`=2 x`+

∑k
`=2 r̃`i+

∑k
`=2 r̃

j
`i, for j = 0, 1 and i = 1, . . . ,m.

10: else
11: Generate 2m random polynomials (ẽi0, ẽ

i
0

$←− Rq)
m
i=1.

12: Return xS , FkS(x) together with all the values generated.

Rearranging the output of I2S we have:

I2S(x, λ) =

x2, r2,

r̃21, r̃22, . . . , r̃2m,

(r̃021, . . . , r̃
0
2m), (r̃121, . . . , r̃

1
2m),

(ṽ10, ṽ
1
1, ẽ

1
0, ẽ

1
1), · · · , (ṽm0 , ṽm1 , ẽm0 , ẽm1)

for P` ∈ S\{P1, P2} :

x`, r`, r̃`1, . . . , r̃`m,

(r̃0`1, . . . , r̃
0
`m), (r̃1`1, . . . , r̃

1
`m)

(iii) Case P1 ∈ S, P2 6∈ S

34

Algorithm 11 Simulator I3S for k-MP

Require: λ, xS , FkS(x).
1: procedure I3S
2: Generate m polynomials (x̃1i

$←− Rq)
m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . .m do
4: Sample b̃i $←− {0, 1} and (ṽi0, ṽ

i
1)

$←− R2
q . Set ṽibi = x̃1i.

5: for each P` ∈ S ∧ ` > 2 do
6: Generate m polynomials (r̃`i

$←− Rq)
m
i=1, such that r` =

∑m
i=1 r̃`i.

7: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$←− R2
q)
m
i=1 and compute s̃` =

∑m
i=1 r̃

b̃i
`i .

8: Generate 2 ·m polynomials (ẽi0, ẽ
i
1

$←− Rq)
m
i=1 and compute θ̃ =

∑m
i=1 ẽ

i
bi

.
9: For each P` 6∈ S, generate s̃` $←− Rq, such that θ̃ −

∑k
`=2 s̃` = FkP1

(x).
10: Return xS together with the values generated.

Now, the output of I3S is of the form:

I3S(x, λ) =

x1,

x̃11, x̃12, . . . , x̃1m,

(b̃1, ṽ
1
0, ṽ

1
1, ẽ

1
1), · · · , (b̃m, ṽm0 , ṽ11, ẽmm),

θ̃, s̃1, . . . , s̃k

for P` ∈ S\{P1, P2} :

x`, r`, r̃`1, . . . , r̃`m,

(r̃0`1, . . . , r̃
0
`m), (r̃1`1, . . . , r̃

1
`m)

(iv) Case P1 6∈ S and P2 6∈ S

Algorithm 12 Simulator I4S for k-MP

Require: λ, xS , FkS(x).
1: procedure I4S
2: for each P` ∈ S do
3: Generate m polynomials (r̃`i

$←− Rq)
m
i=1, such that r` =

∑m
i=1 r̃`i.

4: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$←− R2
q)
m
i=1.

5: Return xS together with all the values generated.

35

The output of I4S is of the form:

I4S(x, λ) = {x`, r`, r̃`1, . . . , r̃`m, r̃0`1, . . . , r̃0`m, r̃1`1, . . . , r̃1`m|P` ∈ S \ {P1, P2}}

As before, we conclude that IS(λ, xS,FkS(x))
s
≈ viewk-MP

S (x, λ) for all S (P , which

was to be shown. In conclusion, the protocol k-MP securely computes Fk-MP. �

6.2.2. Proof of proposition 6.3

We prove that k-sMP2-MP→F2-MP

securely computes Fk-sMP. Since we have already

shown that k-MP securely computes Fk-MP, then by Proposition 1 we have that k-sMP

securely computes Fk-sMP.

Begin by noting that k-sMP is a symmetrical protocol, therefore views of all parties

are similar:

viewk-sMP2-MP→F2-MP

Pi
(x, λ) =

xi, yi,

(ri1, ri2, . . . , ri,i−1), (ri,i+1, . . . , rik),

(ui1, ui2, . . . , ui,i−1), (ui,i+1, . . . , uik),

The pair (xi, yi) is the input of P1 and rij are sampled uniformly random fromRq. The

value uij is the output of the function F2(xi, (yj, rji)) for Pi.

We define a PPT algorithm IS in algorithm 13.

Note that the output of the protocol is identical to the output of the functionality. Then

we just need to show that

IS
(
λ, xS,Fk-sMP

S
2-MP→F2-MP

(x, λ)
) s
≈ viewk-sMP

S

2-MP→F2-MP

(x, λ)

Let us recall that the view S of the protocol is the concatenation of the individual views

of Pi ∈ S and that the inputs xS = {(xi, yi)|Pi ∈ S} of algorithm IS are identical to the

inputs of these views. Hence, elements rij are obtained uniformly from Rq in both the

algorithm and the protocol, and are therefore indistinguishable.

36

Algorithm 13 Simulator IS for k-sMP

Require: λ, xS , Fk-sMP
S (x).

1: procedure IS
2: for Pi ∈ S do
3: Samples R̃i = {r̃ij $←− Rq|j ∈ [1, k] ∧ i 6= j}
4: for Pi ∈ S do
5: for Pj ∈ P \ {P1} do
6: if Pj ∈ S then
7: Set ũij = xi · xj + r̃ji
8: else
9: Samples ũij $←− Rq

10: Return xS together with the values generated.

Now, elements uij = xi · xj + rji are indistinguishable from a uniformly random

polynomial in Rq, unless we have information about xj or rji. Therefore, for each Pi, if

Pj is not in S, the uniform ũij in this algorithm is indistinguishable from the one generated

by the protocol. If Pj belongs to S then in both cases it is computed from xi ·xj + rji, and

thus for any S these values are also indistinguishable.

We conclude that IS is indistinguishable from the view of S in k-sMP, thus k-sMP

securely computes Fk-sMP. �

6.2.3. Proof of proposition 6.4

We prove that the protocol Excpk, that uses functionalities Fk-MP and Fk-sMP, securely

computes FExcpk .

The views of different parties are very similar to each other and are shown bellow:

• View of P1

viewExcpk

P1
(x, λ) =

 s1, g1, r1, t11, . . . , t1k

r′1, z1, w1

Recall that s1 is P1’s input, and g1, r1, (t11, . . . , t1k) are uniformly generated

polynomials. The value r′1 is the output of Fk-MP, which computes r1
∏k

i=2 βi

37

plus some random values. The pair z1, w1 are the outputs of Fk-sMP shared

functionality to compute z = α · r′ and w = g · r, respectively.

• View of Pi, with i 6= 1, 2

viewExcpk

Pi
(x, λ) =

βi, si, gi, ri, ti1, . . . , tik

ui, r
′
i,

zi, wi

This view has many elements that are analogous of the ones in the view of P1,

hence we only mention new ring elements. The pair (βi, si) is Pi’input. The

value ui is the output of Fk-1-MP functionality to compute ri
∏k

j=2 βj plus some

random elements and r′i is an additive random masking for ui.

• View of P2

viewExcpk

P2
(x, λ) =

β2, s2, g2, r2, t21, . . . , t2k

u2, r
′
2,

z1, . . . , zk, z, w1, . . . , wk, w

This view is similar to the last views. The pairs (zi, wi) are sent by Pi to P2.

Finally, z is the sum of zi elements and w the sum of wi elements.

We define IS for Excpk in the simulator algorithm 14. The output of IS is

explained as follows:

– If P1 ∈ S, then

{s̃1, g̃1, r̃1, t̃11, . . . , t̃1k, ũ2, r̃′2, z̃1, w̃1, } ∈ I
Excpk

S (x, λ)

– If P2 ∈ S, then

{β̃2, s̃2, g̃2, r̃2, t̃21, . . . , t̃2kũ2, r̃′2, z̃1, . . . , z̃k, z, w̃1, . . . , w̃k, w} ∈ I
Excpk

S (x, λ)

– If Pi ∈ S and Pi 6= P1, P2, then

{β̃i, s̃i, g̃i, r̃i, t̃i1, . . . , t̃ik, ũi, r̃′i, z̃i, w̃i} ∈ I
Excpk

S (x, λ)

38

Algorithm 14 Simulator for Excpk

Require: λ, xS , FExcpk

S (x)
1: procedure IS
2: for Pi ∈ S do
3: Sample g̃i $←− GB, r̃i $←− Rq and (t̃ij

$←− Rq)
k
j=1.

4: Sample w̃i, z̃i $←− R2
q .

5: if Pi = P1 then
6: Sample r̃i $←− Rq.
7: else
8: Sample ũi $←− Rq.
9: Compute r̃′i = ũi −

∑k
j=1,j 6=i tij .

10: if P2 ∈ S then
11: For each Pi 6∈ S sample z̃i, w̃i $←− R2

q .
12: Compute z̃ =

∑k
i=1 z̃i. If z̃ is not invertible, restart the algorithm.

13: Compute w̃ =
∑k

i=1 w̃i, such that 2w̃ = pk1 · z̃ · β2.
14: Return xS together with all the values generated.

Since S is a strict subset of P , the elements in the view of S in Excpk protocol

are independent of each other or are masked additively with uniformly random

elements, making them indistinguishable from uniform.

With the same ideas of the previous proofs, we can show that IS(λ, xS,FExcsk
S (x))

is indistinguishable from viewExcsk
S (x, λ) for every S. �

6.2.4. Proof of proposition 6.5

Analogously as before, we prove that Excsk protocol, that uses Fk-MP functionality,

securely computes FExcsk .

This protocol is symmetrical except for the output, because only P1 learns sk1. The

rest of the elements in all views are similar and are explained below:

viewExcsk
Pi

(x, λ) =

βi, si,

(ri1, ri2, . . . , ri,i−1), (ri,i+1, . . . , rik),

ui, Ri

39

The pair (βi, si) is Pi’s input and rij are uniformly random polynomials. The value ui

is the output of Fk-1-MP functionality to compute 2si
∏k

j=2 βj plus some uniform elements

and Ri is an additive masking of ui by Pi.

We define IS for Excsk in the simulator algorithm 15. The output of IS is:

IExcsk
S (λ, xS,FExcsk

S (x)) = {βi, si, r̃i1, (r̃i2, . . . , r̃i,i−1), (r̃i,i+1, . . . , r̃ik), ũi, R̃i}Pi∈S

Algorithm 15 Simulator for Excsk

Require: λ, xS , FExcsk
S (x).

1: procedure IS
2: for Pi ∈ S do

3: Sample {r̃ij $←− Rq | j = [1, k] ∧ i 6= j} and ũi $←− Rq.

4: Compute R̃i = ũi −
∑k

j=2,j 6=1 r̃ij .

5: Return xS together with all the values generated.

The values r̃ij are uniformly sampled, as in the protocol. As in previous proofs, ũi is

random and indistinguishable from ui = 2si
∏k

j=2 βj +
∑k

j=1,j 6=i rji, because rji elements

are uniformly sampled by at least one honest party. Therefore, R̃i is indistinguishable

from Ri. Given this, we conclude that

IS(λ, xS,FExcsk
S (x))

s
≈ viewExcsk

S (x, λ). �

40

7. PARAMETERS AND COMPLEXITY

The parameters n, q, B control the security of the underlying FHE-NTRU encryption

scheme, and the hardness of our new problems in Rq: Decisional Small Polynomial Ratio

assumption and Special Factors assumption. We consider them fixed and according to the

suggested values in (Stehlé & Steinfeld, 2011; Goubin & Vial Prado, 2016; López-Alt et

al., 2012) for at least λ = 128 bits of security.

The computational complexity of our key-generation protocol amounts to O((2λ)k−1)

instances of
(
2
1

)
-OT and O((2λ)k−1) multiplications in Rq. As a heuristic estimation, in

order to securely generate an Excalibur key pair between 4 participants and with 128 bits

of security (this is, create a key pair that inherits decryption of three parties), there is the

need to perform approximatively 224 OT’s and 224 products in Rq, which is feasible for

secure n, q. With FFT or Karatsuba methods, polynomial multiplication can be carried

out in time Õ(n, q), and oblivious transfers can be efficiently performed using techniques

as OT extensions. For instance, (Asharov et al., 2013) reports computation of 700,000(
2
1

)
-OT per second over Wi-Fi, and (Ishai, Kilian, Nissim, & Petrank, 2003) reduces an

OT to three cryptographic hash computations. In a regular, commercially available laptop,

224 products in Rq with n = 512 and log2(q) ≈ 256 took us around fifteen minutes (in

C++ with the bignum library GMP (https://gmplib.org/).

Although there are relatively simple efficiency improvements to our protocols, on fu-

ture work we will focus on attaining security against malicious adversaries before address-

ing efficiency concerns. We point out that, while our protocols may not be efficient enough

for practical applications with a large number of parties, once key-generation procedures

are finished, the resulting keys behave as regular NTRU keys without extra complexity

other than coefficient size (which does not dramatically affect the efficiency of the NTRU

scheme, and is analized in (Stehlé & Steinfeld, 2011)).

41

7.1. Algorithmic Complexity

In this section we develop expressions for the computational complexity of our key

generation protocols. Let n, q, B be secure NTRU parameters, m be such that it is un-

feasible to compute 2m additions in Rq, and k parties are involved in the key generation

procedure.

As we show below, an Excalibur key pair (sk,pk) can be generated inO((2m)k) prod-

ucts in Rq and O((2m)k−1) basic
(
2
1

)
-OT protocols. While this is certainly prohibitive for

a large amount of parties and reasonable security, with fast polynomial multiplication and

OT-extension techniques it is possible to generate a key pair with k = 4 and m = 128

in some minutes. Let us also mention that this key acts as other keys of the system, that

is, after key generation is completed, no extra complexity is to be expected for encryp-

tion, decryption or homomorphic procedures (other than coefficient size, whose impact in

complexity is analyzed in (López-Alt et al., 2012)).

Definition 7.1. Let θ (resp. π) be the computational cost of performing a
(
2
1

)
-OT

protocol (resp. performing a multiplication in Rq).

PROPOSITION 7.1. The computational cost of performing k-MP is approximatively

(2m)k−1π + (2m)k−1θ. The computational cost of performing k-sMP is approximatively

mk(k − 1)(2π + θ).

PROOF. First, note that the computational cost of performing SPm (with κ = m) is

mθ (see algorithm 1 and note that the scalar product is not expressed in terms of full Rq

products), and the cost of performing 2-MP is (2π + θ)m. Let uk be the computational

cost of performing k-MP. Given the description of the protocol in algorithm 3, we have

the following recurrence: uk = 2muk−1 + kmθ,

u2 = (2π + θ)m.

42

To see this, note that parties first perform 2m instances of (k-1)-MP, then m
(
2
1

)
-OT

extractions, and finally (k − 1) scalar products SPm. The solution to this equation for

k ≥ 3 is given by

uk = (2m)k−2u2 +mθ
k∑
i=3

i(2m)k−i,

and therefore the cost of k-MP is approximately (2m)k−1 products in Rq and (2m)k−1(
2
1

)
-OT protocols.

Let now vk be the computational cost of performing k-sMP. Parties perform k(k − 1)

instances of 2-MP (algorithm 4), therefore we have

vk = mk(k − 1)(2π + θ).

�

PROPOSITION 7.2. The cost of performing both Excpk and Excsk between k parties is

O(uk), that is, O((2m)k−1) products in Rq and O((2m)k−1)
(
2
1

)
-OT protocols.

PROOF. In Excpk (algorithm 5), parties perform one k-MP and (k − 1) instances of

(k-1)-MP. Also, in Excsk (algorithm 6) parties perform (k − 1) instances of (k-1)-MP

and one final k-MP. The leading term of computational cost in both cases is therefore

O((2m)k−1) products and ((2m)k−1) oblivious transfers. �

Remark: With m = 128 bits of security against brute force additions in Rq, four

parties need to compute around 224 products in Rq and 224 1-out-of-2 oblivious transfer

protocols.

43

8. CONCLUSIONS

Our work extends the original Excalibur key-generating protocols for an arbitrary hi-

erarchy of keys, and presents formal simulation-based proofs for the security of these

protocols.

While we have defined our protocols with respect to a participant P1 that aims to obtain

a key that decrypts messages of participants P2, . . . , Pk, we can immediately extend these

for any DAG-like hierarchy, as follows. Starting from the leaves, which already have their

key pairs, first generate the keys of their parents. For a parent with k children, these keys

are of the form α
∏
βi, with α = 2(

∑
si) + 1 a sum of k elements sampled from GB, and

each βi the secret key of one of the leaves. In turn, these keys are used to generate the

keys for nodes at higher levels, and so forth. Note that keys generated in this fashion are

of the form α
∏
γj , where α is as above and γ is itself a product of secret keys of lower

levels (which are either leaves or keys of the same form). Thus, secret keys for members

of higher hierarchies are again products of elements distributing according to a gaussian

distribution, so all of our security proofs can be extended for more complex hierarchies;

we only need to update our hardness assumptions so that they hold with wider gaussian

distributions, that is, bounded by 2kB + 1 instead of B, where k is the outdegree of the

hierarchy.

8.1. Future work

As we said early, we proove that our protocols are secure if they run in isolation, but if

run alongside other protocols they could not be. It remains to prove that our protocols are

secure for Universal Composition framework.

Another potential future contribution is improve efficiency to out protocols. And fi-

nally, it remains to see the problem of key-generation in the presence of malicious or adap-

tive adversaries. In particular, we note that this case is not immediate form our results, as

Definition 3.2 and Proposition 3.1 must be tightened when considering the malicious case,

44

because tampering with intermediate values may affect the input of other protocols, even

if they involve honest players only.

45

REFERENCES

Asharov, G., Lindell, Y., Schneider, T., & Zohner, M. (2013, 11). More efficient oblivious

transfer and extensions for faster secure computation.

Canetti, R. (2000). Security and composition of multiparty cryptographic protocols. Jour-

nal of CRYPTOLOGY , 13(1), 143–202.

Canetti, R. (2001). Universally composable security: A new paradigm for cryptographic

protocols. In Foundations of computer science, 2001. proceedings. 42nd ieee symposium

on (pp. 136–145).

Canetti, R. (2006, September). Security and composition of cryptographic protocols: A

tutorial (part i). SIGACT News, 37(3), 67–92. Retrieved from http://doi.acm.org/

10.1145/1165555.1165570 doi: 10.1145/1165555.1165570

Goldreich, O., et al. (2005). Foundations of cryptography–a primer. Foundations and

Trends R© in Theoretical Computer Science, 1(1), 1–116.

Goubin, L., & Vial Prado, F. J. (2016). Blending fhe-ntru keys – the excalibur property.

In Progress in cryptology – indocrypt 2016. Springer International Publishing.

Ishai, Y., Kilian, J., Nissim, K., & Petrank, E. (2003, 06). Extending oblivious transfers

efficiently.

Li, S.-D., & Dai, Y.-Q. (2005, Mar 01). Secure two-party computational geome-

try. Journal of Computer Science and Technology, 20(2), 258–263. Retrieved from

https://doi.org/10.1007/s11390-005-0258-z doi: 10.1007/s11390-005-

0258-z

Lindell, Y. (2017). How to simulate it–a tutorial on the simulation proof technique. In

46

http://doi.acm.org/10.1145/1165555.1165570
http://doi.acm.org/10.1145/1165555.1165570
http://dx.doi.org/10.1145/1165555.1165570
https://doi.org/10.1007/s11390-005-0258-z
http://dx.doi.org/10.1007/s11390-005-0258-z
http://dx.doi.org/10.1007/s11390-005-0258-z

Tutorials on the foundations of cryptography (pp. 277–346). Springer.

López-Alt, A., Tromer, E., & Vaikuntanathan, V. (2012). On-the-fly multiparty compu-

tation on the cloud via multikey fully homomorphic encryption. In Proceedings of the

forty-fourth annual acm symposium on theory of computing (pp. 1219–1234). New York,

NY, USA: ACM.

Stehlé, D., & Steinfeld, R. (2011). Making ntru as secure as worst-case problems over

ideal lattices. In Eurocrypt.

Thomae, E., & Wolf, C. (2012). Solving underdetermined systems of multivariate qua-

dratic equations revisited. In M. Fischlin, J. Buchmann, & M. Manulis (Eds.), Public key

cryptography – pkc 2012 (pp. 156–171). Berlin, Heidelberg: Springer Berlin Heidelberg.

47

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Our contributions
	1.2. Overview of the article

	2. PRELIMINARIES
	2.1. Indistinguishability
	2.2. Quotient ring Rq
	2.3. Invertible bounded Gaussian distributions in the quotient ring
	2.4. FHE-NTRU encryption and the multikey property

	3. SECURITY DEFINITIONS
	3.1. The model of computation
	3.1.1. Interactive Turing Machines

	3.2. Simulation-based MPC security against semi-honest adversaries

	4. HARDNESS ASSUMPTIONS
	4.1. Decisional Small Polynimial Ratio Assumption
	4.2. Small factorizations in Rq

	5. MPC KEY GENERATION PROTOCOLS
	5.1. Oblivious Transfer protocol
	5.2. A Scalar Product protocol
	5.3. Secure MPC protocols for multiplication in Rq
	5.4. Excalibur key generation protocols

	6. SECURITY ANALYSIS
	6.1. Extracting keys after the protocol
	6.2. Extracting secrets during the protocols
	6.2.1. Proof of proposition 6.2
	6.2.2. Proof of proposition 6.3
	6.2.3. Proof of proposition 6.4
	6.2.4. Proof of proposition 6.5

	7. PARAMETERS AND COMPLEXITY
	7.1. Algorithmic Complexity

	8. CONCLUSIONS
	8.1. Future work

	REFERENCES

