
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

ADVANCING DECOMPOSED

CONFORMANCE CHECKING IN PROCESS

MINING

WAI LAM JONATHAN LEE

Thesis submitted to the Office of Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Advisor:

JORGE MUÑOZ GAMA

Santiago de Chile, July 2020

c© 2020, WAI LAM JONATHAN LEE

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

ADVANCING DECOMPOSED

CONFORMANCE CHECKING IN PROCESS

MINING

WAI LAM JONATHAN LEE

Members of the Committee:

JORGE MUÑOZ GAMA

DENIS PARRA

MARCOS SEPÚVEDA

MARÍA CECILIA BASTARRICA

WIL VAN DER AALST

GUSTAVO LAGOS

Thesis submitted to the Office of Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Santiago de Chile, July 2020

c© 2020, WAI LAM JONATHAN LEE

Gratefully to my parents and

brother

ACKNOWLEDGEMENTS

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES x

LIST OF TABLES xvi

ABSTRACT xvii

RESUMEN xix

Part I. Introduction 1

1. Introduction 2

1.1. Process mining . 2

1.2. Conformance checking . 5

1.2.1. Conformance quality dimensions . 5

1.3. Challenges . 7

1.4. Contributions of the thesis . 9

1.5. Research objectives . 12

1.6. Hypothesis . 13

1.7. Methodology . 13

1.8. Impact . 13

1.9. Document structure . 14

2. Preliminaries 16

2.1. Basic notations . 16

2.2. Petri nets . 17

2.3. Events, trace, event logs, and event streams 21

2.4. Process mining . 23

2.5. Process discovery . 23

2.6. Alignment-based conformance checking 24
v

2.7. Beyond fitness . 29

Part II. A divide and conquer approach to alignment 33

3. Merging condition for decomposed sub-alignments 34

3.1. Introduction . 34

3.2. Decomposed alignment . 35

3.3. Running example . 36

3.3.1. Border activities . 37

3.3.2. Alignment for subnets with border activities 39

3.3.3. Decomposed Fitness . 40

3.4. Total border agreement and exact decomposed fitness 44

3.4.1. Properties of decomposed fitness . 47

3.5. Limitations and extensions . 49

3.5.1. Hide and reduce as an alternative replay approach 50

3.6. Conclusion . 51

4. Recomposing conformance checking framework 52

4.1. Introduction . 52

4.2. Recomposing method for exact decomposed fitness 53

4.2.1. Decomposed fitness metric . 54

4.2.2. Subnet recomposition . 55

4.2.3. New border agreement problems following recomposition 56

4.2.4. Iterative conformance checking . 57

4.3. Recomposing method for interval decomposed fitness 59

4.3.1. Interval decomposed fitness conformance 60

4.3.2. Trace reject and termination conditions 63

4.4. Implementation and Evaluation . 65

4.4.1. Implementation, datasets, and evaluations 66

4.4.2. Exact fitness in noiseless scenarios 69

4.4.3. Exact fitness in noisy scenarios . 74
vi

4.4.4. Bottlenecks for the monolithic and recomposition approach 79

4.4.5. Feasibility and interval narrowing time constrained scenarios 86

4.4.6. Recomposed fitness in real-life cases 88

4.5. Related work . 95

4.6. Conclusions . 97

5. Improving merging conditions for recomposing conformance checking 99

5.1. Introduction . 99

5.2. Running example . 99

5.3. Recomposing conformance checking . 100

5.4. Recomposition step . 102

5.5. Limitations to the current recomposition strategies 103

5.6. Recomposition strategies . 105

5.6.1. Net recomposition strategies . 105

5.6.2. Log recomposition strategy . 106

5.7. Experiment setup . 107

5.8. Results . 107

5.9. Related work . 110

5.10. Conclusions . 110

Part III. Algorithm selection 112

6. Use of decomposition as a classification problem 113

6.1. Introduction . 113

6.2. Background and general problem statement 114

6.2.1. Using machine learning to learn algorithm selectors 115

6.3. Predicting the use of decomposition by classification 115

6.3.1. Description of alignment algorithms 116

6.3.2. Performance of the algorithms . 117

6.3.3. Model features . 118

6.3.4. Classifiers . 119
vii

6.4. Experimental setup . 120

6.4.1. Data description . 121

6.4.2. Classification data classes . 121

6.4.3. Evaluation . 123

6.4.4. Model selection . 124

6.5. Results . 124

6.5.1. Classification performance . 124

6.5.2. Algorithm performance . 126

6.5.3. Analysis of feature importance . 126

6.5.4. Analysis of infeasible instances . 128

6.6. Limitations . 129

6.7. Related work . 130

6.7.1. Existing approaches . 130

6.7.2. Parameter tuning and algorithm selection 130

6.8. Conclusion . 131

Part IV. Online conformance checking 132

7. A HMM-based approach to online conformance checking (HMMConf) 133

7.1. Introduction . 133

7.2. Proposed technique . 136

7.2.1. Overview . 136

7.2.2. Walk-through of an example . 137

7.2.3. HMM-based conformance checking 139

7.2.4. Conformance metrics . 142

7.2.5. Algorithm for online processing . 144

7.3. Parameter computation and estimation 146

7.4. Experimental evaluation . 150

7.4.1. Stress test . 150

7.4.2. Correlation with alternative conformance metrics 151
viii

7.5. Real-life dataset evaluation . 154

7.6. Related work . 159

7.7. Conclusion and future work . 159

Part V. Closure 161

8. Conclusions 162

8.1. Summary of contributions . 162

8.2. Challenges and future work . 163

8.3. Acknowledgement . 164

REFERENCES 165

APPENDIX 176

A. Detail on parameter estimation of HMMConf 177

A.1. Forward probability (prior to observation update) 177

A.2. Forward probability . 178

A.3. State-transition probability matrix . 178

A.4. Emission probability matrix . 181

ix

LIST OF FIGURES

1.1 Different XOR choice constructs of activities observed in event log at Table 1.1 3

1.2 Possible model of verification subprocess 6

1.3 Parallel construct with n activities . 11

2.1 Running example: The system net S1 that contains the (labeled) Petri net N1 . 17

2.2 Running example: Event logs L1 and L2 22

2.3 Alignments for event log L1 . 24

2.4 Alternative alignment for trace σ2 . 26

2.5 Alignments for event log L2 . 27

3.1 Running example: The system net S1 that contains the (labeled) Petri net N1 . 36

3.2 Running example: Event logs L1 and L2 37

3.3 Components resulting from a possible valid decomposition D1 of the system

net S1 . 38

3.4 Subalignments between the trace σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉 in event

log L1 and the valid decomposition D1 in Figure 3.3 41

3.5 Subalignments between the trace σ1 = 〈a, b, e, i, l, d, g, j, h, k, n, p, q〉 in event

log L1 and valid decomposition D1 in Figure 3.3 41

3.6 Subalignments between the trace σ2 = 〈a, c, f,m, d, g, j, k, h, n, p, q〉 in event

log L1 and valid decomposition D1 in Figure 3.3 42

3.7 Alignments for event log L1 . 42
x

3.8 Subalignments between the trace σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉 in event

log L2 and valid decomposition D1 in Figure 3.3 45

3.9 Hidden sub-net using activity subset of sub-net S6
1 from Figure 3.3 51

4.1 Overview of the exact decomposed conformance metric 53

4.2 Vector showing the number of border agreement problems at each border

activity for event log L2 . 55

4.3 Subalignments between trace σ7 = 〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉
and valid decomposition D1 in Figure 3.3 57

4.4 Valid decomposition D2 of system net S1 following the recomposition of

subnets S2
1 , S3

1 . S4
1 . S5

1 . S6
1 . S7

1 of decomposition D1 in Figure 3.3 58

4.5 Subalignments between trace σ7 = 〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉
and valid decomposition D2 in Figure 4.4 58

4.6 Alignment between trace σ7 = 〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉
and system net S1 in Figure 3.1 . 59

4.7 Overview of the interval decomposed conformance metric 60

4.8 Resulting alignments for deviation diagnosis 66

4.9 Dialog for Replay using Recomposition . 67

4.10 Initial manual decomposition of model P297 where border transitions are

colored in green . 70

4.11 Feasible computation times for synthetic logs without noise 71

4.12 Speedup factors from recomposition approach over monolithic approach for

synthetic logs without noise . 72

4.13 Speedup from recomposition approach in relation to average trace length for

synthetic logs without noise . 73
xi

4.14 Feasible computation times for synthetic logs (infeasible replays are shown

using a dashed pattern instead of a solid fill) 76

4.15 Speedup factors from recomposition approach over monolithic approach for

synthetic logs (infeasible replays are shown using a dashed pattern instead of a

solid fill) . 77

4.16 Speedup from recomposition approach in relation to average trace length for

synthethic logs . 78

4.17 Percentage of time spent in alignment computation in relation to total

computation time . 80

4.18 Total computation time in relation to number of recompositions for synthetic

logs at exact experiments under the recomposition approach 81

4.19 Total computation time in relation with to the percentage of time spent in replay

for synthetic logs at exact experiments under the recomposition approach . . 83

4.20 Percentage of time spent in replay in relation to number of recompositions for

synthetic logs at exact experiments under the recomposition approach 84

4.21 Number of remaining trace variants in relation to number of recompositions for

the experiments on datasets with “missing” noise 85

4.22 Handmade model for the BPIC2012 real-life dataset projected with the

deviation issues between the model and log 89

4.23 Conformance diagnosis on transition O ACCEPTED 91

4.24 Alignment for case 173733 with model move on transition O ACCEPTED

(highlighted in white) . 91

4.25 Discovered model for the BPIC2017 real-life dataset projected with the

deviation issues between the model and log 93
xii

4.26 Alignment for case Application 931736025 with a model move on transition

A Cancelled+complete (highlighted in white) 93

4.27 Loop construct in the discovered model of the BPIC2017 real-life dataset

projected with deviation issues . 95

5.1 System net S that models a loan application process 100

5.2 Running example: Event log L . 100

5.3 Recomposing conformance checking framework with the recomposition step

highlighted in dark blue . 101

5.4 Sub-alignments γ1 = (γ11 , γ12 , γ13 , γ14), γ2 = (γ21 , γ22 , γ23 , γ24), and

γ3 = (γ31 , γ32 , γ33 , γ34) of log L1 and net decomposition D1 with merge

conflicts highlighted in grey . 104

5.5 Bar chart showing fitness and overall time per net recomposition strategy

(including the monolithic approach). The time limit is shown as a dashed red

line and indicates infeasible replays. Best performing approaches and their

time gains from the second fastest times are specified by black arrows. 108

5.6 Comparing log strategies by showcasing the number of aligned traces (left)

and percentage of valid alignments (right) per iteration on the real-life dataset

BPIC18. 109

6.1 Workflow of alignment algorithm selection (adapted from [8]) 115

6.2 Histograms of alignment time statistics on model net1 and log net1-60-60 . . 117

6.3 Class distribution of datasets . 122

6.4 Experimental results of Rand, DT, and RF on two datasets 125

6.5 Normalized confusion matrices under random forest on two datasets 125
xiii

6.6 Algorithm performance in terms of PAR10 scores and the number of feasible

replays. The single best solver (SB) is the RECOMPOSE-SP for both datasets. . 127

6.7 Top five features of decision tree (top) and random forest (bottom) trained on

2-difference dataset . 128

7.1 Running example: Petri net model . 134

7.2 Running example: Traces . 134

7.3 Overview of the proposed approach. The online component is presented in

Section 7.2 and the offline component is presented in Section 7.3. 137

7.4 State estimation taken throughout trace σ6 in Figure 7.2. Line style indicates

the conformance explanation of the corresponding execution where a solid

line indicates complete conformance, a dotted line indicates complete lack of

conformance, a dashed line indicates moderate conformance, and a dash-dotted

line indicates a possible model execution that non-conforming observation

might be referring to. 139

7.5 Graphical representation of HMMConf . 141

7.6 General idea of the two conformance indicators based on a running process

instance: conformance, completeness (based on a similar diagram in [16]) . . 143

7.7 Metric breakdown projected onto the evaluation of trace σ6 in Figure 7.4. Same

as Figure 7.4, line style indicates various conformance explanations. 143

7.8 Performance during a stress test of ∼2 million events (see colored version

online) . 150

7.9 Bubble plots of total injection distance (with epsilon mass at initial distribution)

versus incremental alignment costs . 152

7.10 Statistics comparing prefix alignment costs and three metrics 153
xiv

7.11 Petri net model extracted from 10 most frequent trace variants 155

7.12 Distribution plot showing concentration of cases on a few trace variants . . . 155

7.13 Experiment results on case level . 156

7.14 Violin plots of the conformance per activity for non-conforming events . . . 157

7.15 Non-conforming emission probability distributions at states [p0] and [o] . . . 158

xv

LIST OF TABLES

1.1 Example of event log for bank transfer process 4

1.2 Table summarizing the contributions of this thesis 10

4.1 Characteristics of the synthetic nets . 67

4.2 MaxRecomposing configuration . 68

4.3 Replay feasibility and computation times for synthetic logs without noise . . 71

4.4 PLG2 log generation configurations for MissingTrace dataset 75

4.5 Replay feasibility and computation times for synthetic logs with MissingTrace

and Swapped noise . 76

4.6 Time-constrained conformance analysis on synthetic logs with noise of dataset

using manual initial decomposition . 87

4.7 Replay feasibility and computation times for BPIC2012 88

6.1 Extracted features . 119

6.2 Statistics on models and logs used to produce predictive model data 121

6.3 Time difference statistics with respect to the best performing algorithm per data

class . 123

7.1 Activity description of the hospital billing event log taken from [46] 135

xvi

ABSTRACT

In the recent years, process mining has been gaining traction as a tool for analyzing

and improving processes in the industry as exemplified by companies such as Disco, Celo-

nis, and Minit. Furthermore, many commercial process mining tools are extending beyond

process discovery to conformance checking that allows stakeholders to compare observed

and modeled behavior to find discrepancies between how they expect their processes to

be executed and how their processes have actually been executing. Performing confor-

mance checking in industrial settings means that techniques have to be able to address the

different data dimensions. For example, conformance checking techniques have to scale

from processes of small companies to multinational organizations that may be handling

many cases per hour. This thesis focuses on conformance checking and specifically ad-

dresses the challenges arising from the application of conformance checking in different

scenarios.

Alignment-based techniques are the state of the art for identifying and explaining dis-

crepancies between observed and modeled behavior. However, due to the explosion of

state-space with processes with parallel constructs, alignment can be computationally ex-

pensive. The first part of the thesis focuses on extending decomposition techniques to

alignment computation. The thesis shows that alignment can be computed in a decom-

posed manner and presents a novel conformance checking framework that computes align-

ment using the divide and conquer paradigm. There are now many conformance checking

techniques available for end users. However, it can be difficult to select the best algorithm

for the job since this depends on the input data and the user’s objective. The second part of

the thesis investigates machine learning techniques to help users select the best algorithm

depending on their input data. Specifically, it applies machine learning to the classification

problem of whether if decomposition techniques can improve computation time given the

input model and log. The third part of the thesis turns to online conformance checking.

xvii

Given the volume and velocity at which event data comes, organizations may not store

all the generated data for offline analysis and instead have to resort to online techniques.

Moreover, performing analysis in real time allows process stakeholders to react to confor-

mance issues before it is too late. Performing conformance checking in an online settings

has its own unique challenges. For example, the conformance checking technique has to

balance between putting emphasis on the current information and ensuring that the confor-

mance result is somewhat stable as the running case unfolds. The thesis presents a novel

online conformance checking technique based on Hidden Markov Models that focuses on

this challenge.

Keywords: process mining, BPM, conformance checking, online processing, decomposi-

tion
xviii

RESUMEN

En los últimos años, la “process mining” ha ido ganando terreno como herramienta

para analizar y mejorar los procesos en la industria, como lo ejemplifican empresas como

Disco, Celonis y Minit. Además, muchas herramientas comerciales de process mining se

están extendiendo más allá del descubrimiento de procesos a la “conformance checking”

que permite comparar el comportamiento observado y modelado para encontrar diferen-

cias entre los dos. Realizar la conformance checking en entornos industriales significa

que las técnicas deben poder abordar las diferentes dimensiones de los datos. Por ejem-

plo, las técnicas de conformance checking tienen que escalar desde procesos de pequeñas

empresas hasta organizaciones multinacionales que pueden estar manejando muchos ca-

sos por hora. Esta tesis se centra en la conformance checking y aborda especficamente los

desafóos que surgen de la aplicación de la conformance checking en diferentes escenarios.

Las técnicas basadas en alineación (alignment) son el estado del arte para identificar y

explicar las discrepancias entre el comportamiento observado y modelado. Sin embargo,

debido a la explosión del espacio de estados con procesos con construcciones paralelas,

la alignment puede ser computacionalmente costosa. La primera parte de la tesis se cen-

tra en extender las técnicas de descomposición al cálculo de alignment. La tesis mues-

tra que la alignment se puede calcular de forma descompuesta y presenta un algoritmo

de conformance checking novedoso que calcula la alignment utilizando el paradigma de

dividir y conquistar. En la actualidad, existen muchas técnicas de conformance checking

disponibles para los usuarios. Sin embargo, puede resultar difcil seleccionar el mejor algo-

ritmo para el trabajo, ya que depende de los datos de entrada y del objetivo del usuario. La

segunda parte de la tesis investiga técnicas de machine learning para ayudar a los usuarios a

seleccionar el mejor algoritmo en función de sus datos de entrada. Especı́ficamente, aplica

el machine learning al problema de clasificación de si las técnicas de descomposición

pueden mejorar el tiempo de cálculo dado el modelo y el event log. La tercera parte de la

xix

tesis se centra en la conformance checking en tiempo real. Dado el volumen y la velocidad

a la que llegan los datos de eventos, es posible que las organizaciones no almacenen todos

los datos generados para el análisis offline y, en su lugar, tengan que recurrir a técnicas

en tiempo real. Además, realizar análisis en tiempo real permite a los dueños del proceso

reaccionar y resolver los problemas en forma inmediato. Realizar la conformance check-

ing en una configuración en tiempo real tiene sus propios desafı́os únicos. Por ejemplo, la

técnica de conformance checking tiene que equilibrar el énfasis en la información actual

y garantizar que el resultado de conformance sea algo estable a medida que se desarrolla

el caso en ejecución. La tesis presenta una novedosa técnica de conformance checking en

tiempo real basada en Hidden Markov Model.

xx

Part I

Introduction

2

1. Introduction

Nowadays, large amount of information is being recorded by organizations during their

daily operations. For example, Wal-Mart is estimated to collect more than 2.5 petabytes

of data every hour from its customer transactions [27]. Other than to support their oper-

ations, business stakeholders are actively using data to drive their decision making [66].

Process mining applies data-driven approaches to analyze, improve and manage processes.

While it is not strictly limited to business processes, process mining is typically positioned

within the scope of business process management (BPM) due to much of its existing work.

By bringing a data perspective, process mining adds to the traditionally model-driven ap-

proaches in BPM.

More and more event data are made available with the increased adoption of informa-

tion systems [2]. This means that process mining techniques have to be able to handle the

analysis of large processes under various contexts. In this chapter, we present about the

challenges that existing techniques are facing and give an overview of the contributions of

this thesis towards the identified challenges. We first provide a brief introduction to pro-

cess mining and the problem of conformance checking as the main area of process mining

that this thesis focuses on.

1.1. Process mining

Information systems such as ERP (Enterprise Resource Planning) systems (SAP, Or-

acle, etc) and BPM (Business Process Management) systems (Pegasystems, Bizagi, Ap-

pian, IBM BPM, etc) support processes in different organizations. Event data from the

event logs of information systems can be ordered to describe instances of the underlying

process such that each event can be related to an activity and belongs to a particular case

of the process. In essence, these event logs can be seen as “footprints” left behind by

the execution of the process. Process mining uses these event logs as a starting point to

“discover, monitor and improve real processes” [66].

3

(a) Reflects the observed behavior
(b) Differs to the observed behavior

Figure 1.1. Different XOR choice constructs of activities observed in event
log at Table 1.1

Consider a bank transfer process in which a client makes a bank transfer from one

account (sender account) to another account (receiver account) which can be either a lo-

cal or an oversea bank. The process may begin by a bank operator initiating a new bank

transfer in the system (Start bank transfer). Then the operator would fill in the correspond-

ing forms and verify the client’s account and the receiver’s account before completing the

bank transfer. Table 1.1 shows an example of an event log, organized after extracting the

relevant information from the information system. Each row represents an event of the

log, and events can be grouped by their case ID to form instances of the process.

There are three main areas in process mining [66]. Process discovery takes an event

log as input and produces a model using different discovery algorithms. For example,

considering the event log in Table 1.1, one can see that after starting the bank transfer, the

operator can either open up an overseas bank form or open up a local bank form. This

part of the process can be visualized as an XOR choice construct as shown in Figure 1.1a.

In simple words, process discovery summarizes the relations between activities as seen in

observed data and represent these relations as a graphical construct.

In process discovery, at times, one does not want to include all of the observed be-

havior into the discovered model since that might result into a spaghetti-like model that

is impossible to understand. At other times, one might want their discovered model to

4

Case Event Timestamp Activity Employee Client

1 1 2020-01-01 09:00:00 Start bank transfer Jim Anna
1 4 2020-01-01 09:10:00 Open overseas bank form Jim Anna
1 6 2020-01-01 09:15:00 Enter oversea bank code Jim Anna
1 7 2020-01-01 09:23:00 Foreign currency conversion Jim Anna
1 9 2020-01-01 09:25:30 Update oversea bank form Jim Anna
1 10 2020-01-01 09:30:00 Start verification Tom Anna
1 12 2020-01-01 09:31:10 Enter sender account Tom Anna
1 14 2020-01-01 09:35:00 Verify sender account Tom Anna
1 15 2020-01-01 09:40:00 Enter receiver account Tom Anna
1 18 2020-01-01 09:45:00 Verify receiver account Tom Anna
1 19 2020-01-01 09:48:00 Complete verification Tom Anna
1 21 2020-01-01 09:50:00 Finish bank transfer Jim Anna
1 23 2020-01-01 09:55:00 Send bank transfer Jim Anna

2 2 2020-01-01 09:02:00 Start bank transfer Jerry William
2 3 2020-01-01 09:08:00 Open local bank form Jerry William
2 5 2020-01-01 09:13:00 Enter local bank code Jerry William
2 6 2020-01-01 09:20:00 Update local bank form Jerry William
2 8 2020-01-01 09:25:00 Start verification Jerry William
2 11 2020-01-01 09:30:20 Enter receiver account Jerry William
2 13 2020-01-01 09:34:00 Verify receiver account Jerry William
2 16 2020-01-01 09:41:00 Enter sender account Jerry William
2 17 2020-01-01 09:43:00 Verify sender account Jerry William
2 20 2020-01-01 09:49:00 Complete verification Jerry William
2 22 2020-01-01 09:53:00 Finish bank transfer Jerry William
2 24 2020-01-01 09:58:00 Send bank transfer Jerry William

3 25 2020-01-03 10:00:00 Start bank transfer Joanne Bobby
3 26 2020-01-03 10:12:00 Open overseas bank form Joanne Bobby
3 27 2020-01-03 10:15:00 Open local bank form Joanne Bobby
.

Table 1.1. Example of event log for bank transfer process

include behavior that is unobserved but foreseeable to occur in the future. With differ-

ent discovery algorithm being proposed, the need of being able to compare the observed

behavior in the event log and the modeled behavior in the discovered model came about.

Conformance checking compares an event log with an existing process model of the same

process to identify commonalities and discrepancies. For example, it is clear that the XOR

construct shown in Figure 1.1b have discrepancies with the behavior observed in the event

5

log at Table 1.1. The activity Start verification seems to be a necessary step rather than

a choice amongst the options of opening overseas and local bank forms. A conformance

checking algorithm would identify such a difference.

Lastly, information from recorded data can also be aggregated to a process model.

Enhancement enriches an existing process model using information from recorded event

logs. This thesis focuses on conformance checking.

1.2. Conformance checking

There are different reasons for performing conformance checking [17]. For example,

it can be integrated into the audit of business processes [66, 48]. In businesses, there are

often protocols set by different stakeholders, e.g., managers, government, and others. Au-

dits are carried out to verify that these internal and external regulations are complied. By

comparing the events recorded during process execution and models describing business

protocols, it is clear that conformance checking can help and support the automation of

audits [70, 69, 29]. Other than ascertaining business compliance, process stakeholders

may also want to know whether if the current protocols are meeting the requirements of

its execution in a real-life context. In this sense, conformance checking can help with pro-

cess re-design and modification of the BPM lifecycle [24]. Finally, conformance checking

is essential within process mining to compare the quality of discovery algorithms [22], to

recommend discovery algorithms [55], and even to be integrated into discovery algorithms

[21, 10].

1.2.1. Conformance quality dimensions

There are four quality dimensions for measuring conformance between an event log

and a process model [66, 48].

Fitness measures the amount of observed behavior that is modeled by the process model.

For example, the subtrace of case 3 in the partial event log at Table 1.1 (〈Start bank transfer,

6

Figure 1.2. Possible model of verification subprocess

Open overseas bank form,Open local bank form〉) is clearly not fitting with the XOR con-

struct shown in Figure 1.1a. The operator is supposed to either open up an overseas bank

form or open up a local bank form but not both.

Precision measures the amount of modeled behavior that is actually observed in the event

data. For example, lets look at the verification process which includes the activities (Start

verification, Enter receiver account, Verify receiver account, Enter sender account, Verify

sender account, Complete verification). Figure 1.2 shows a possible model of the pro-

cess. This model is clearly fitting with the event log in Table 1.1 since the sequences

(〈Start verification,Enter sender account,Verify sender account,Enter receiver account,

Verify receiver account,Complete verification〉, and 〈Start verification,Enter receiver account,

Verify receiver account,Enter sender account,Verify sender account,Complete verification〉)
are both possible in the model. However, the model is imprecise since it also allows for

unseen behavior. For example, the model allows for the sequences (〈Start verification,

Enter receiver account,Enter sender account,Verify sender account,Verify receiver account,

Complete verification〉, and 〈Start verification,Enter sender account,Enter receiver account,

7

Verify sender account,Verify receiver account,Complete verification〉) which are not ob-

served in the event log.

Generalization measures whether if the model is too strict so that only observed behavior

is permitted in the model. In general, only a small percentage of possible behavior might

be observed in reality, especially with parallel constructs. This means that it is desirable

for the model to generalized beyond the observed behavior to include behavior that is not

observed but foreseeable to occur in the future. In this case, the model in Figure 1.2 would

score better in terms of generalization than precision.

Simplicity measures whether if the model is not overly complicated. Typically this quality

dimension is in isolation of the event log.

1.3. Challenges

Conformance checking has become a topic of interest, not only academic but also

commercially, where several process mining commercial tools such as Celonis and Lana

Labs have recently incorporated preliminary conformance analysis.

Moreover, as process mining tools in the industry mature, the characteristics of in-

coming event data used for process mining can vary a lot. For example, in the past, the

workflow of a process miner might consist of writing a custom script that pulls in data of

a time period and creates a case notion so that it can be saved as in the XES format [3].

This event log file would then be used for various process mining analysis. Nowadays,

commercial process mining tools, e.g. Celonis, can perform ETL (Extract, Transform,

Load) operations directly on existing data sources, e.g., Salesforce and SAP, so that pro-

cess mining results are immediately available.

This means that there is a need to address the challenges arising from the possible

varying characteristics of input data to process mining algorithms. One popular way of

8

categorizing these challenges is by the different dimensions of data - the “four V’s of

data”: Volume, Velocity, Variety, Veracity [33].

The first “V” (Volume) refers to the incredible amount of available data. The second

“V” (Velocity) refers to the rate at which data is coming in. The third “V” (Variety) refers

to the different forms in which data is being made available. The fourth “V” (Veracity)

refers to the different degrees of trustworthiness of the data.

Examining these different data dimensions and conformance checking, we identify

four challenges: computationally expensive techniques, decomposition techniques, mul-

titudes of algorithms for the same task, and online conformance checking. This thesis

addresses all of these challenges.

Challenge 1: Computationally expensive techniques. Good conformance checking algo-

rithms goes beyond replaying a given observed log trace on the process model to verify if

it is conforming. They may focus on specific conformance quality dimensions, as exem-

plified by techniques that focus on fitness [5, 6], precision [42, 47], generalization [76].

They may also try to yield robust explanation and diagnosis on the conformance issues

[49, 4, 6] or focus on tackling specific data type and conformance issues [44, 9]. However,

a fundamental problem in conformance checking is that the number of possible process

instances as described by a process model often increases exponentially with respect to the

number of activities. This means that sophisticated techniques that look at a large amount

of modeled behavior for conformance checking tend to be computationally expensive.

Conformance checking techniques need to be scalable with respect to the increasing vol-

ume of data, both in terms of the number of observed traces and the size and complexity

of process models.

Challenge 2: Decomposition techniques. Decomposition techniques have emerged as a

promising way of tackling increasing sizes and complexities of processes. By partition-

ing the process before running conformance checking algorithms on the smaller pieces,

decomposition techniques can often achieve substantial performance gains. One family

of conformance checking algorithms that decomposition techniques have been applied on

9

are alignment-based techniques [65, 84, 85, 50, 49]. However, these techniques solves the

decisional problem of classifying whether if a given log trace is conforming or yields a

lower bound on misalignment costs. The challenge here is being able to apply the divide

and conquer paradigm to yield exact conformance results as computed by its monolithic

counterpart.

Challenge 3: Multitudes of algorithms for the same task. There can be many conformance

checking algorithms for the same task, i.e., same input and output. For example, for

alignment-based techniques, there are many techniques that focus on being really good at

specific aspects, e.g., computation time, specific data type and conformance issues [75,

44, 9, 6, 19]. If the end user is aware of their pros and cons under different circumstances,

she would be able to choose the right technique for the job. However, the end user may not

have the expert knowledge to always select the most appropriate algorithm. One solution

is to have an oracle that have been configured to help users with the decision given their

objectives. For example, users may want an algorithm that would quickly process their

data, such oracle would help them choose the best algorithm for the job.

Challenge 4: Online conformance checking. Given the volume and velocity at which

event data comes in, organizations may not store these data for offline analysis and have

to resort to online techniques. Moreover, performing analysis in real time allows process

stakeholders to react to conformance issues. However, performing conformance checking

in an online context pose challenges in various aspects, e.g., computational time and space

requirement, warm start scenarios, and uncertainty to how a case may unfold. There are

only a few existing online conformance checking works in the literature [15, 16, 78].

1.4. Contributions of the thesis

Table 1.2 summarizes the contributions of this thesis. The table includes a description

of the contribution, the chapter in which they are presented, the conformance challenges

they address, and their corresponding publications. The remainder of this section gives an

overview of the contributions.

10

Contribution Chapter Challenge Publication

Condition under which sub-alignments com-
puted under decomposition techniques can
be merged as an overall alignment with ex-
act misalignment costs

3 1, 2 [38, 37, 34, 36]

Recomposing conformance checking frame-
work that computes fitness with configurable
accuracy

4, 5 1, 2 [38, 37, 34, 36]

Application of machine learning to predict
the alignment technique that minimizes com-
putation time

6 3

Online conformance checking technique
based on Hidden Markov Model (HMM)

7 4 [35]

Table 1.2. Table summarizing the contributions of this thesis

For many conformance checking techniques, one challenge is that process models

often contains parallelism and loop constructs which make the set of possible modeled

behavior large and at times infinite. Having to compare observed behavior against such

a large set of possible modeled behavior can be computationally expensive even under

an offline scenario. To illustrate this, consider the parallel construct shown in Figure 1.3.

The number of possible traces n! increases extremely quickly with respect to n, the num-

ber of activities. Moreover, if the process model also includes slightly more complex yet

common constructs such as a non free choice construct, simpler conformance checking

techniques such as comparing the footprint matrices of the model and log would not suf-

fice.

One possible solution is apply a divide-and-conquer approach so that the model is

decomposed into fragments. Upon performing conformance checking on the fragments,

their conformance results are merged back together as an overall result. To appreciate the

effect, suppose that there are 10 activities, i.e., n = 10. The number of possible traces

equals to 10! = 3628800. However, if the model could somehow be split into two equal

fragments that can be checked separately, then we would only have to compare 5! = 120

11

Figure 1.3. Parallel construct with n activities

traces two times, i.e., 240 traces. This is a 15000× difference. Towards this, this thesis

contributes:

• Results that show the condition under which alignment results using decomposition

techniques can be merged as overall results that have exact conformance values as

would have been computed under its monolithic counterpart.

• A novel framework that computes alignment-based fitness using a divide and conquer

approach. Furthermore, the framework allows user configuration to adjust the degree

of accuracy of the conformance result.

• Extension of the proposed framework to include heuristics that encourages the merge-

able condition of decomposed conformance results.

There are many techniques that do the same conformance checking task but each spe-

cialize in certain aspects, e.g., finding specific conformance issues, and can have drasti-

cally different performance depending on the input data. This means that the end users

need expert knowledge to choose the appropriate algorithm depending on their data and

objectives. Towards this, the thesis contributes:

• Classifiers that tackle the algorithm selection problem of deciding whether to apply

decomposition techniques for a given model and log trace.

12

Organizations may have to perform conformance checking in online context due to

storage limitation, desire to intervene in the occurrence of conformance issues, and other

reasons. Online conformance checking brings along several challenges that do not exist in

offline conformance checking. Towards this, this thesis contributes:

• An online conformance checking framework that focuses on the problem of balancing

between making sense at the process level as the case reaches completion and putting

emphasis on the current information at the same time.

1.5. Research objectives

In view of the challenges, the thesis focuses on the following research objectives:

Objective 1: Existing decomposed conformance checking approaches are limited to

the decision problem of deciding whether or not an event log is perfectly fitting with

a process model. This means that the exact degree of deviation severity, i.e., cost-

based fitness, and the exact deviating alignments cannot be yielded. This objective

addresses this issue by relaxing the conditions under which results from decomposed

subcomponents can be merged back to an overall result.

Objective 2: While it has been shown that decomposition of alignment-based con-

formance checking can lead to significant performance gains, there is little work on

identifying and investigating the different circumstances under which decomposition

techniques can contribute significant performance gains. Further understanding of such

circumstances and characteristics can enable the appropriate application of different de-

composition strategies at different scenarios and drive the design of new decomposition

strategies.

Objective 3: Investigate online conformance checking techniques that address the fun-

damental challenge of explaining the conformance of a running case is in balancing

between making sense at the process level as the case reaches completion and putting

emphasis on the current information at the same time.

13

1.6. Hypothesis

This research proposes the following hypothesis: “Given a model and event log, de-

composition techniques can be applied for alignment-based conformance checking to

yield the overall conformance result.” For the online conformance checking problem, the

research proposes the following hypothesis: “Given an event stream and model, confor-

mance of the event stream with respect to the model can be computed under the required

complexity of stream processing”.

1.7. Methodology

To achieve the proposed research goals, the design science research methodology is

followed [28] where the produced artifacts are novel approaches that computes the con-

formance of a model and log in a decomposed manner. The utility and efficacy of the ar-

tifacts are demonstrated through mathematical proofs and empirical experiments on both

synthetic and real-life datasets.

1.8. Impact

The publications related to this thesis are as follows:

Journal papers

[38] Wai Lam Jonathan Lee, HMW Verbeek, Jorge Munoz-Gama, Wil MP van der Aalst,

and Marcos Sepúlveda. Recomposing conformance: Closing the circle on decomposed

alignment-based conformance checking in process mining. Information Sciences, 2018

[35] Wai Lam Jonathan Lee, Andrea Burattin, Jorge Munoz-Gama, and Marcos

Sepúveda. Orientation and conformance: A HMM-based approach to online confor-

mance checking. Information System (under review), 2019

14

Conference and poster presentations

[36] Wai Lam Jonathan Lee, Jorge Munoz-Gama, H. M. W. Verbeek, Wil M. P. van der

Aalst, and Marcos Sepúlveda. Improving Merging Conditions for Recomposing Con-

formance Checking. In Business Process Management Workshops - BPM 2018 Interna-

tional Workshops, Sydney, Australia, September 10, 2018. Revised Papers, 2018

[34] Wai Lam Jonathan Lee. Advancing Decomposed Conformance Checking in Pro-

cess Mining. In Business Process Management Doctoral Consortium, Sydney, Australia,

September 09, 2018., 2018

[37] Wai Lam Jonathan Lee, H. M. W. Verbeek, Jorge Munoz-Gama, Wil M. P. van der

Aalst, and Marcos Sepúlveda. Replay using recomposition: Alignment-based confor-

mance checking in the large. In Proceedings of the BPM Demo Track and BPM Disser-

tation Award, Barcelona, Spain, September 13, 2017., volume 1920 of CEUR Workshop

Proceedings. CEUR-WS.org, 2017

1.9. Document structure

The thesis in structured in four parts:

• Part I presents the introduction that you are currently reading. Also it introduces the

necessary preliminaries used throughout the thesis.

• Part II presents our work on extending decomposition techniques to alignment-based

conformance checking. Chapter 3 presents the merging condition that allows merged

sub-alignments to have the exact misalignment costs as an optimal alignment com-

puted under the monolithic approach. Chapter 4 make use of this property to present

an iterative framework that computes optimal alignments in a divide and conquer

manner. Chapter 5 presents further extension to the proposed framework to address

the bottleneck identified in extensive experimental studies.

15

• Part III moves to investigate the problem of selecting the best algorithm for the

conformance checking job given the input data. Specifically, the chapter applies

machine learning to identify scenarios in which decomposition techniques can com-

pute optimal alignments in less time than the monolithic approach.

• Part IV presents our work on online conformance checking where we present a Hid-

den Markov Model (HMM) based approach that tries to balance between computing

conformance results that make sense at the process level as the running case reaches

completion and putting emphasis on the current information at the same time.

• Lastly, Part V concludes the thesis, summarizing the main results and discusses

possible extensions of the presented work.

16

2. Preliminaries

In this chapter, we present the preliminaries that will be used later in the thesis. We

first recall basic concepts such as sets, multisets, functions, and projections. Then, we

present concepts commonly used in process mining such as events, trace, event logs, and

process models. We also give a general overview on process mining and an in-depth view

on alignment-based conformance checking.

2.1. Basic notations

To facilitate the definition of later concepts, we first introduce some basic notations.

Definition 2.1 (Multisets). Let X be a set, a multiset of X is a mapping M : X → N.

B(X) denotes the set of all multisets over X . Let M and M ′ be multisets over X . M

contains M ′, denoted M ≥ M ′, if and only if ∀x∈XM(x) ≥M ′(x). The union of M and

M ′ is denoted M +M ′, and is defined by ∀x∈X(M +M ′)(x) = M(x) +M ′(x). The

difference between M and M ′ is denoted M −M ′ and is defined by ∀x∈X(M −M ′)(x) =

max (M(x)−M ′(x), 0).

Note that (M −M ′) +M ′ = M only holds if M ≥ M ′. For sets X and X ′ such that

X ′ ⊆ X , we consider every set X ′ to be an element of B(X), where ∀x∈X′X ′(x) = 1 and

∀x∈X\X′X ′(x) = 0.

Definition 2.2 (Projection on sequences and multisets). Let X be a set, let X ′ ⊆ X be

a subset of X , let σ ∈ X∗ be a sequence over X , and let M ∈ B(X) be a multiset over X .

With πX′(σ) we denote the projection of σ on X ′, e.g. π{x,z}(〈x, x, y, y, y, z〉) = 〈x, x, z〉.
with πX′(M) we denote the projection of M on X ′, e.g. π{x,z}([x2, y3, z]) = [x2, z].

Definition 2.3 (Function domains and ranges). Let f ∈ X 9 X ′ be a (partial) func-

tion. With dom(f) ⊆ X we denote the set of elements from X that are mapped onto some

value in X ′ by f . With rng(f) ⊆ X ′ we denote the set of elements in X ′ that are mapped

onto by some value in X , i.e., rng(f) = {f(x) | x ∈ dom(f)}.

17

Definition 2.4 (Functions on sequences and multisets). Let f ∈ X 9 X ′ be a (partial)

function, let σ ∈ X∗ be a sequence of X , and let M ∈ B(X) be a multiset of X . With

f(σ) we denote the application of f on all elements in σ, e.g., if dom(f) = {x, z}, then

f(〈x, x, y, y, y, z〉 = 〈f(x), f(x), f(z)〉. With f(M) we denote the application of f on all

elements in M , e.g., if dom(f) = {x, z}, then f([x2, y3, z]) = [f(x)2, f(z)].

2.2. Petri nets

p1 t1

t3

t2 t5

t6

t9 t13

t14
t17

t15
t12

t7

t8

t4

b e i l

mfc

d

g

n

kh

p4 p8 p12
p16

p17

p18

p13p9p5
p2

p3
p6 p10 p14

p15p11p7

p q

p19

t18

t16

o

a

j

t10

t11

a = start bank transfer

b = open overseas bank form

c = open local bank form

d = start verification

e = enter oversea bank code

f = enter local bank code

g = enter sender account

h = enter receiver account

i = foreign currency conversion

j = verify sender account

k = verify receiver account

l = update oversea bank form

m = update local bank form

n = complete verification

o = redo bank transfer

p = finish bank transfer

q = send bank transfer

Figure 2.1. Running example: The system net S1 that contains the (la-
beled) Petri net N1

As previously mentioned, processes are depicted using process models. There are

many different process modeling languages, e.g., the Business Process Modeling and

Notation (BPMN), Event-Driven Process Chains (EPCs), Unified Modeling Language

(UML) Activity diagrams, Yet Another Workflow Language (YAWL) and others [24].

18

In this thesis, we use Petri nets to present our ideas [51], as this is the most often-used pro-

cess modeling notation in process mining. We stress that process models denoted using

Petri nets can be translated to models using other process modeling languages.

Definition 2.5 (Petri net). A Petri net is a tupleN = (P, T, F) with P the set of places,

T the set of transitions, P ∩ T = ∅ and F = (P × T) ∪ (T × P) the set of arcs, which is

sometimes referred to as the flow relation.

Places are typically visualized by circles, whereas transitions are typically visualized

by squares (or rectangles). Consider the Petri net N1 = (P1, T1, F1) in Figure 2.1. N1 has

the set of places P1 = {p1, p2, . . . , p19}, the set of transitions T1 = {t1, t2, . . . , t18} and

the set of arcs F1 = {(p1, t1), (t1, p2), . . . , (t18, p19)}.

The state of a Petri net is called a marking, and corresponds to a multiset of places.

A marking is typically visualized by putting as many so-called tokens (black dots) at a

place as the place occurs in the marking. For example, a possible marking of the net N1 is

[p2, p3
2] which is visualized by one token at place p2 and two tokens at place p3.

Definition 2.6 (Marking). LetN = (P, T, F) be a Petri net. A markingM is a multiset

of places, i.e. M ∈ B(P)

Let N = (P, T, F) be a Petri net. For a node n ∈ P ∪ T (a place or a transition),

•n = {n′ | (n′, n) ∈ F} denotes the set of input nodes and n• = {n′ | (n, n′) ∈ F}
denotes the set of output nodes.

A transition t ∈ T is enabled by a marking M if and only if each of its input places

•t contains at least one token in M , that is, if and only if M ≥ •t. An enabled transition

may fire by removing one token from each of the input places •t and producing one token

at each of the output places t • . The firing of an enabled transition t in marking M is

denoted as (N,M)[t〉(N,M ′), where M ′ = (M − •t) + t• is the resulting new marking.

19

A marking M ′ is reachable from a marking M if and only if there is a sequence

of transitions σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ such that ∀0≤i<n(N,M i)[ti+1〉(N,M i+1) with

M0 = M and Mn = M ′. For example, (N1, [p1])[σ〉(N1, [p2, p17]) with the sequence

σ = 〈t1, t4, t7, t8, t11, t12, t15〉 for the Petri net N1 in Figure 2.1.

Definition 2.7 (Labeled Petri net). A labeled Petri net N = (P, T, F, l) is a Petri net

(P, T, F) with labeling function l ∈ T 9 UA where UA is some universe of activity labels.

Let σv = 〈a1, a2, . . . , an〉 ∈ U∗A be a sequence of activities. (N,M)[σv B (N,M ′) if and

only if there is a sequence σ ∈ T ∗ such that (N,M)[σ〉(N,M ′) and l(σ) = σv.

A transition t is called invisible if and only if it is not mapped to any activity label by

the labeling function, that is, if and only if t 6∈ dom(l). Otherwise, transition t is visible

and corresponds to an observable activity a = l(t).

Consider the labeled Petri net N1 = (P1, T1, F1, l1) in Figure 2.1. It has a labeling

function l1 that maps transition t1 onto activity label a, t2 onto b, etc. Note that t10 6∈
dom(l1), hence this transition is an invisible transition.

(N1, [p1])[σv B (N1, [p19]) for the sequence σv = 〈a, c, f,m, d, g, h, j, k, n, p, q〉 since

(N1, [p1])[σ〉(N1, [p19]) with σ = 〈t1, t3, t6, t10, t14, t4, t7, t8, t11, t12, t15, t17, t18〉 and l1(σ) =

σv. Note that since t10 is not mapped to any activity label, it is not observable in σv.

In the context of process mining, the focus is mainly on processes with an initial state

and a well-defined final state. For the net N1, we are interested in complete firing se-

quences, starting from marking [p1] and ending at marking [p19]. The notion of a system

net is defined to include the initial and final marking.

Definition 2.8 (System net). A system net is a triplet S = (N, I,O) where N =

(P, T, F, l) is a labeled Petri net, I ∈ B(P) is the initial marking and O ∈ B(P) is the

final marking. US is the universe of system nets.

20

The net S1 = (N1, I1, O1) in Figure 2.1 is a system net, with an initial marking I1 =

[p1] and a final marking O1 = [p19]. This system net models a bank transfer process in

which a client makes a bank transfer from one account (sender account) to another account

(receiver account). The receiver account can be of a local bank or an overseas bank.

Consider the visible sequence σv = 〈a, b, e, i, l, d, g, h, j, k, n, p, q〉. This sequence de-

scribes the activities that are executed for a bank transfer to an overseas bank account. It

is initiated with activity a (start bank transfer) and is ended with activity q (send bank

transfer). For an overseas bank transfer, the bank employee has to open a new overseas

bank form, enter the overseas bank code, convert the transfer amount into the foreign cur-

rency and fill in the bank form with the converted amount. The bank employee also has

to verify both the sender and receiver account before making the transfer. The comple-

tion of the bank form and the account verification can be done concurrently as shown in

S1. In σv, the bank form is completed (〈 . . . , b, e, i, l, . . .〉) before the account verification

(〈 . . . , d, g, h, j, k, . . .〉).

Definition 2.9 (System net notations). Let S = (N, I,O) ∈ US be a system net with

N = (P, T, F, l).

• Tv(S) = dom(l) is the set of visible transitions in S.

• Av(S) = rng(l) is the set of corresponding observable activities in S.

• T uv (S) = {t ∈ Tv(S) | ∀t′∈Tv(S)l(t) = l(t′)⇒ t = t′} is the set of unique visible

transitions in SN (such that no other transition has the same visible label).

• Auv(S) = {l(t) | t ∈ T uv (S)} is the set of corresponding unique observable

activities in S.

For a given system net, the set of visible traces starting from marking I to marking O

is projected onto observable activities yields set φ(S).

Definition 2.10 (Traces). Let S = (N, I,O) ∈ US be a system net. φ(S) = {σv |
(N, I)[σvB(N,O)} is the set of visible traces starting in marking I and ending in marking

O. φf (S) = {σ | (N, I)[σ〉(N,O)} is the corresponding set of complete firing sequences.

21

For the system net S1 in Figure 2.1, φ(S1) = {〈a, b, e, i, l, d, g, j, h, k, n, p, q〉, 〈a, c, f,
m, d, g, j, h, k, n, p, q〉, . . . } and φf (S1) = {〈t1, t2, t5, t9, t13, t4, t7, t11, t8, t12, t15, t17, t18〉,
〈t1, t3, t6, t10, t14, t4, t7, t11, t8, t12, t15, t17, t18〉, . . . }. Due to the loop involving transition

t16 there is an infinite number of visible traces and complete firing sequences.

The union of two system nets is defined for composing and decomposing of process

models.

Definition 2.11 (Union of nets). Let S = (N, I,O) ∈ US with N = (P, T, F, l) and

S ′ = (N ′, I ′, O′) ∈ US with N ′ = (P ′, T ′, F ′, l′) be two system nets.

• l′′ ∈ (T ∪ T ′) 9 UA with dom(l′′) = dom(l) ∪ dom(l′), l′′(t) = l(t) if t ∈
dom(l), and l′′(t) = l′(t) if t ∈ dom(l′) \ dom(l) is the union of l and l′.

• N ∪N ′ = (P ∪ P ′, T ∪ T ′, F ∪ F ′, l′′) is the union of N and N ′.

• S ∪ S ′ = (N ∪N ′, I + I ′, O +O′) is the union of systems nets S and S ′.

Note that since the unioned labeling function l′′(t) = l(t) rather than l′′(t) = l′(t) if

t ∈ dom(l) and t ∈ dom(l′), the union of nets is not commutative, i.e., S ∪ S ′ 6= S ′ ∪ S.

2.3. Events, trace, event logs, and event streams

Event logs serve as the starting point for process mining. An event log is a multiset

of traces. Each trace describes a particular case, i.e., a process instance, in terms of the

activities executed.

Definition 2.12 (Trace, Event log). Let A ⊆ UA be a set of activities. A trace σ ∈ A∗

is a sequence of activities. An event log L ∈ B(A∗) is a multiset of traces.

In this simple definition of an event log, an event refers to just an activity. Often event

logs store additional information about events such as resources, timestamps or additional

data elements recorded with the event log. In this thesis, we abstract from such information

and limit conformance to solely the control flow aspect.

22

L1 = [σ1 = 〈a, b, e, i, l, d, g, j, h, k, n, p, q〉20,
σ2 = 〈a, c, f,m, d, g, j, k, h, n, p, q〉5,
σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉5]

L2 = [σ4 = 〈a, c, f,m, d, g, j, h, k, n, p, q〉20,
σ5 = 〈a, b, e, i, l, d, j, g, h, k, n, p, q〉5,
σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉5]

Figure 2.2. Running example: Event logs L1 and L2

Consider the event logs L1 and L2 in Figure 2.2. Both event logs have three distinct

traces. L1 contains 30 traces, with 20 σ1 traces, 5 σ2 traces and 5 σ3 traces. L2 contains

30 traces with 20 σ4 traces, 5 σ5 traces and 5 σ6 traces. Note that an event log is a multiset

of traces as a distinct trace (like σ1) can occur multiple times.

The projection function �X as introduced earlier also directly applies to event logs. For

example, consider the event log L1 in Figure 2.1, π{a,b,e}(L1) = [〈a, b, e〉20, 〈a〉5, 〈a, e〉5]
and π{a,b}(L1) = [〈a, b〉20, 〈a〉10]. For a log L3 = [〈〉] with an empty trace, the projection

π{a,b,e}(L3) = [〈〉] returns a log with an empty trace. These projected event logs are

referred to as sublogs and the traces in sublogs are referred to as subtraces.

While process mining is often done offline on event data of completed process ex-

ecutions, it is desirable perform online analysis on streams of incoming event data on

ongoing process executions. Similar to [16], we conceptualize event streams as streams of

observable units where each observable unit contains process information of an event.

Definition 2.13 (Observable unit). Let C ⊆ UC denote the set of case ids, and let

A ⊆ UA denote the set of activities. An observable unit o = (c, a) ∈ C × A is a pair

describing an activity a observed in context of case id c. The universe of all possible

observable units is defined as O = C × A.

The activities of observable units correspond to observations of fired transitions in the

corresponding Petri net model. Projection operators can be used to extract the case id and

23

the activity, i.e., given o = (c, a), πc(o) = c and πa(o) = a. Moreover, an event stream is

simply an infinite sequence of observable units.

Definition 2.14 (Event stream). Given the universe of observable units O = C × A,

an event stream is defined as an infinite sequence of observable units: S : N≥0 → O.

As such, an event stream can be seen as an unbounded sequence of observable units

for which the sequence order corresponds to the chronological order of the corresponding

events. Where it is clear that we are referring to an event stream of only one case, we will

directly refer to the corresponding activities rather than apply the projection operators for

each observable unit.

2.4. Process mining

In Section 2.2 and Section 2.3, we have presented various concepts on process models

and event data. In this thesis, we propose techniques that improve conformance checking

in process mining. As such, we recall two common problems in process mining, namely

process discovery and conformance checking to provide context for the rest of the thesis.

2.5. Process discovery

Process discovery involves discovering a process model from an event log with the

purpose of helping users to understand various aspects of the underlying process. There

are many process discovery algorithms [71, 41, 40, 81]. However, in most cases, the

discovered model might not encompass all the observed behavior in the event log or might

allow behavior unseen in the observed behavior. This motivates conformance checking for

identifying commonalities and discrepancies between the observed behavior in the event

log and the modeled behavior in the discovered process model.

24

2.6. Alignment-based conformance checking

The main idea of conformance checking is to compare the observed behavior of an

event log L ∈ B(A∗) with the modeled behavior of the related model, i.e. the related

system net S = (N, I,O).

Similar to process discovery, many techniques have been proposed for conformance

checking [1, 6, 18, 92, 58]. In this thesis, we mainly focus on alignment-based techniques

due to their robustness and level of detail on analysis.

a b e l d gi

a b e l d gi
t1 t2 t5 t13 t4 t7t9

k nh p q

k nh p q
t12 t15t8 t17 t18

j

t11

jγ1 =

a c f m d g�

t1 t3 t6 t14 t4 t7t10

h nk p q

t8 t15 t17 t18

j

t11

γ2 = a c f m d gτ h n p qj

a � e l d gi

a b e l d gi
t1 t2 t5 t13 t4 t7t9

k nh p q

k nh p q
t12 t15t8 t17 t18

j

t11

jγ3 =

t12

k�
�

Figure 2.3. Alignments for event log L1

Alignment-based techniques mostly focus on the fitness metric to identify discrepan-

cies between the model and event log. As hinted by the name, these techniques compute

alignments between the traces in the event log and the visible traces of the process model.

Consider the alignments of the three traces in the event log L1 in Figure 2.3. For each

alignment, the top row corresponds to the trace in the event log, the middle row cor-

responds to the visible trace in the model, whereas the bottom row corresponds to the

corresponding firing sequence in the model.

25

If an activity in the model cannot be mimicked by an activity in the log, then a � (“no

step”) appears in the top row. Similarly, if an activity in the log cannot be mimicked by an

activity in the model, then a � (“no step”) appears in the bottom row. Note that we use

the symbol τ as the surrogate activity label for invisible transitions.

For example, the fourth column of γ2 indicates that the net S1 has fired transition t10,

which is an invisible transition, and that the log trace σ2 could not mimic this firing. The

ninth column indicates that the activity k was performed in the log trace σ2, but that the

net S1 could not mimic this. These columns containing � point to deviations between

model and log.

A move is a pair (a,m) where the first element a refers to the activity in the log and

the second element m refers to the transition in the net.

Definition 2.15 (Legal moves). LetL ∈ B(A∗) be an event log and let S = (N, I,O) ∈
US be a system net with N = (P, T, F, l). AM = {(a, (a, t)) | a ∈ A ∧ t ∈ T ∧ l(t) =

a} ∪ {(�, (a, t)) | a ∈ A ∧ t ∈ T ∧ l(t) = a} ∪ {(�, (τ, t)) | t ∈ T ∧ t 6∈
dom(l)} ∪ {(a, �) | a ∈ A} is the set of legal moves. The function α ∈ AM → A ∪ {τ}
provides the activity (possibly τ) associated with a move: for all t ∈ T and a ∈ A,

α(a, (a, t)) = a, α(�, (a, t)) = a, α(�, (τ, t)) = τ , and α(a, �) = a.

An alignment is a sequence of legal moves. This means that, after removing all �
symbols, the top row corresponds to a log trace and the bottom row corresponds to a firing

sequence in the net from marking I to markingO. The middle row corresponds to a visible

trace after also removing all τ symbols.

Definition 2.16 (Alignment). Let L ∈ B(A∗) be an event log withA ⊆ UA , let σL ∈ L
be a log trace and σM ∈ φf (S) a complete firing sequence of system net S. An alignment

of σL and σM is a sequence γ ∈ A∗M such that the projection on the first element (ignoring

any �) yields σL and the projection on the last element (ignoring any �) yields σM .

26

a c f m d g�

t1 t3 t6 t14 t4t10

hk

t8

j
γ

′

2 = a c f m d �τ h�
t12

k�
� n p q

t15 t17 t18

n p q
t7 t11

g j

� �

Figure 2.4. Alternative alignment for trace σ2

Given a log trace and a model, there could be multiple or even infinitely many align-

ments. Consider trace σ2 in event log L1 in Figure 2.2. One possible alignment is γ2 at

Figure 2.3 while another could be γ′2 at Figure 2.4. It is clear that γ2 is a better alignment

as it better matches the log trace with the model trace. In general, costs can be assigned

to different types of moves so that an optimal alignment with the lowest costs can be

computed.

Definition 2.17 (Cost of alignment). The cost function δ ∈ AM → Q assigns costs to

legal moves. Moves where the log and the model agree have no costs, i.e. δ(a, (a, t)) = 0

for all a ∈ A. A move in the model also has no costs if the transition is invisible, i.e.

δ(�, (τ, t)) = 0 if t 6∈ dom(l). A move in the model has a cost of δ(�, (a, t)) > 0 if

l(t) = a and a ∈ A. Similarly, a move in the log has a cost of δ(a, �) > 0. The cost of

an alignment γ ∈ A∗M is the sum of all costs: δ(γ) =
∑

(a,m)∈γ δ(a,m).

In this paper, we assume a standard cost function δ1 that assigns unit costs: δ1(a, (a, t)) =

0, δ1(�, (τ, t)) = 0 and δ1(�, (a, t)) = δ1(a, (�, t)) = 1 for all a ∈ A. For example,

δ1(γ1) = δ1(γ4) = 0, δ1(γ2) = δ1(γ5) = δ1(γ6) = 2 and δ1(γ3) = 1.

Definition 2.18 (Optimal alignment). Let L ∈ B(A∗) be an event log with A ⊆ UA
and let S ∈ US be a system net with φ(S) 6= ∅.

• For σL ∈ L, an alignment γ between σL and a complete firing sequence of the

system net σM ∈ φf (S) is optimal if the associated misalignment costs are lower

or equal to the costs of any other possible alignment γ′.

27

• λ(σL, S) ∈ A∗ → A∗M is a deterministic mapping that assigns any log trace σL

to an optimal alignment.

a c f m d g�
a c f m d gτ
t1 t3 t6 t14 t4 t7t10

k nh p q

k nh p q
t12 t15t8 t17 t18

j

t11

jγ4 =

a b e l d ji

t1 t2 t5 t13 t4t9

h n� p q

t8 t15 t17 t18

g

t7

γ5 = a b e l d �i h n p qg

a b e l d gi

t1 t2 t5 t13 t4 t7t9

j kn � p

t12 t17

h

t8

γ6 =

t12

kj

k

t11

q

a b e l d gi k ph q
t18t11

j
t15

n�

Figure 2.5. Alignments for event log L2

Consider the system net S1 in Figure 2.1 and the event logs L1 and L2 in Figure 2.2.

The alignments γ1, γ2, and γ3 in Figure 2.3 are possible optimal alignments for the traces

in L1 and their corresponding firing sequences in the system net S1. The alignments γ4,

γ5, and γ6 in Figure 2.5 are possible optimal alignments for the traces in L2 and their

corresponding firing sequences in the same system net. The mapping function would

return one of the possible optimal alignments in a deterministic manner so that the same

one is always returned.

With an optimal alignment γ between σL and S, we can quantify fitness by comparing

its associated misalignment costs with the costs of a default alignment.

Definition 2.19 (Fitness metric). LetL ∈ B(A∗) be an event log and let S = (N, I,O) ∈
US be a system net with N = (P, T, F, l). Let lτ ∈ T → A be such that lτ (t) =

l(t) if t ∈ dom(l) and lτ (t) = τ if t 6∈ dom(l). Let σL ∈ L be a log trace. Let

28

moveM(S) = minσM∈φf (S)
∑

t∈σM δ(�, (lτ (t), t)) be the minimal costs of an align-

ment between an empty log trace and a complete firing sequence of the system net. Let

moveL(σL) =
∑

a∈σL δ(a, �) be the costs of an alignment between σL and an empty

model trace.

Given the single-trace fitness function fit, the fitness of the trace σL is computed as

follows:

fit(σL, S, δ) = 1− δ(λ(σL, S))

moveM(S) + moveL(σL)

The fitness function is also overloaded to compute the fitness of the event log L as

follows:

fit(L, S, δ) = 1−
∑

σL∈L δ(λ(σL, S))

|L| ×moveM(S) +
∑

σL∈L moveL(σL)

This is a relative fitness metric presented in many conformance related papers [5, 4,

67]. The metric normalizes the misalignment costs associated to γ by the costs of the

extreme case, a default alignment where all the steps in the log trace are aligned as log

moves and all the steps of the minimum model trace are aligned as model moves. Using

an optimal alignment γ = λ(σL, S), the fitness metric computes a value between 0 and 1.

A trace that perfectly fits the system net would yield a fitness value of 1 and a trace that

does not fit the system net at all would yield a fitness value of 0.

Consider the trace σ3 in Figure 2.2 and the net S1 in Figure 2.1. Assuming that

the optimal alignment γ3 = λ(σ3, S1) in Figure 2.3 is used, the fitness of σ3 and S1 is

fit(σ3, S1, δ1) = 1 − 1
12+12

= 23
24
≈ 0.958. The fitness of the event log L1 and S1 is

fit(L1, S1, δ1) = 1 − 0×20+2×5+1×5
12×30+13×20+12×5+12×5 = 1 − 15

740
= 145

148
≈ 0.980. Recall that the

cost function δ as a function is defined for multisets. This means that the cost function δ

is applied to a trace σ multiple times if there are multiple cases with the trace σ.

29

2.7. Beyond fitness

While fitness is often an important concern for process stakeholders, there are other

metrics that one should attend to. In fact, there are four commonly accepted quality di-

mensions for comparing a model and a log: (1) fitness, (2) precision, (3) simplicity and

(4) generalization [56].

As previously presented, a model has good fitness if it can mimic the behavior of the

event log. Yet a fitting model is not necessarily a good model. For example, Figure 2.6a

shows a “flower model” which is able to replay all the traces in the event log L1 and L2

and allows sequences that are not seen in the event log. Such a model does not contain

any knowledge of the process other than its activities and is unlikely to be of much use. A

model is precise if it does not allow “too much” behavior. A model that lacks precision is

underfitting.

In contrary, Figure 2.6b shows a model that does not allow any behaviour other than

the traces in the event log L1. While it is perfectly fitting and precise with respect to log

L1, it is also unlikely to be a good model. An event log often does not contain all the

possible runs of the process. Generalization means that a model should not be overfitting.

Lastly, the simplicity dimension refers to Occam’s Razor; a model should be as simple as

possible.

(a) Imprecise flower model
that yields perfect fitness

(b) Non-generalizing model that only allow ob-
served traces in event log L1

30

Similar to the fitness metric, different techniques have been proposed to measure pre-

cision, generalization, and simplicity. For example, the escaping arc precision metric

computes precision quickly. It first performs a log traversal over the model to compute

a prefix automaton where there is a state for each unique prefix of the event log. Then

it measures the proportion of enabled transitions that are unseen in the observed log be-

havior as “escaping arcs” [47]. Computing the escaping arc precision is fast since it only

looks at the markings reached by replaying log traces over the model instead of explor-

ing the entire state-space of the model. In the case where there are non-fitting log traces

that cannot be replayed onto the model, one can use the model projection of an optimal

alignment between the log trace and model as the corresponding replayable trace. This is

known as the one-alignment approach [47]. However, as shown in [60], there are several

limitations of the escaping arc precision metric. For example, since there can be multi-

ple optimal alignments between a log trace and model, the escaping arc precision becomes

non-deterministic which is certainly undesirable (imagine a very puzzled process analyst)!

Another precision metric is the Markovian Abstraction Precision (MAP) [7]. This

metric works by abstracting both the model and log into a so-called kth-order Markovian

abstraction (Mk-abstraction) for comparison. A Mk abstraction is a graph where each

node is a sub-trace of at most length k and each edge connects nodes with overlapping

and consecutive sub-traces. After constructing the Mk-abstractions for both the log and

model, precisio1n is computed with respect to the best matching of edges of the model

Mk-abstraction to the log Mk-abstraction. By having a configurable maximum sub-trace

length, this metric is able to tackle the problem of potentially having to check an expo-

nential number of reachable points in the model for unobserved yet permitted behavior.

Furthermore, it was shown that the metric fulfills the proposed five precision axioms [60]

for some k. However, as reported by the authors, the needed k for computing accurate

precision may be large. This can make both the construction and edge matching compu-

tationally expensive.

31

Yet another precision metric can be derived from the notion of anti-alignments [18, 76].

An anti-alignment is a model trace that most deviates from all of the observed traces in

the log. The idea here is that if a model is precise with respect to the log, then its anti-

alignments will resemble closely to the observed traces. To capture the notion of “most

deviation”, Hamming distance is used, and truncation and padding are adopted to enable

the comparison of traces with different lengths. As such, an anti-alignment is defined

with parameters (n,m) where n corresponds to the length of the anti-alignment and m

corresponds to the minimum distance between the anti-alignment and all the log traces.

Anti-alignments can be computed as SAT problems. Since the number of mismatches

between an (n,m)-anti-alignment is bounded within [1, n], it reflects how dissimilar the

model is with respect to the observed behavior. Moreover, it can be converted into a pre-

cision metric that monotonically increases with log size. The use of anti-alignments to

compute conformance metrics was further investigated in [76]. In that work, the authors

proposed that precision can be computed by computing anti-alignments at both the trace

and log level. At the trace level, the idea is that if the model is precise then the anti-

alignment of the model with respect to the log excluding a single trace would correspond

to the excluded log trace. One can see that with the overly precise model in Figure 2.6b

where if one would exclude a single trace in log L1 and compute the anti-alignment be-

tween the model and log, the excluded log trace would be the model trace that differs

most with respect to the modified log. Then the trace-based precision is computed using

the distance between the anti-alignment and the excluded log trace. At the log level, the

anti-alignment is computed against the entire log and the log-based precision is computed

by comparing the anti-alignment and the log. The paper also extends to the generalization

quality dimension that we have yet to present much about. As recalled, generalization

is about the model permitting unobserved behavior so that it has some flexibility. In the

paper, the concept of recovery distance was proposed. Recovery distance refers to the

maximum distance between any of the states reached in the anti-alignment and the states

visited by the log [76]. Then, the idea is that a generalizing model introduces new behav-

ior but not new states. This is conceptualized as a generalization metric that favors high

32

anti-alignment distance and low recovery distance. Similar to the precision metric, gener-

alization can be computed at both the trace and log level. Similar to cost-based alignment,

computing anti-alignment can be computationally expensive, specifically it was shown to

be NP-complete.

We have now presented several existing conformance metrics that measure different

conformance dimensions. We emphasize that there are many other metrics that we have

not talked about, e.g., advanced behavioral appropriateness [57], projected conformance

checking [42], negative events precision [83] and many more. However, while many

of these metrics work on small, often toy, examples, they can have difficulty scaling to

industrial-sized processes that one might find in real settings. This marks the theme of

this thesis where we explore different ways of enabling conformance checking under dif-

ferent contexts. One principal avenue of research was on decomposition techniques for

computing cost-based alignments.

Part II

A divide and conquer approach to alignment

34

3. Merging decomposed sub-alignments

3.1. Introduction

As of current, alignment-based techniques is the state of the art for measuring fitness

between a given event log and model. However, alignments are computationally expen-

sive as the algorithm has to explore a large amount of states to yield an optimal alignment

that provides a “best” explanation of the discrepancies between the observed and modeled

behavior. Decomposition techniques have emerged as a promising approach to reduce

the computational complexity. Rather than aligning the overall event log and model, de-

composition techniques first partition them into a set of sub-models and sub-logs so that

the alignment procedure is performed on these smaller sub-components [65]. If a devia-

tion is found at one of the subcomponents, then it is clear that there is a deviation in the

overall component. Otherwise, the overall process and the overall log are perfectly fit-

ting. As such, alignment problems can be decomposed and distributed over a network of

computers. Experimental results based on large-scale applications of decomposition tech-

niques have shown significant improvements in performance, especially in computation

time [50].

Following this idea, existing decomposition techniques have tackled the original prob-

lem in two different ways. One is the computation of conformance at the decomposed

subcomponents level [50, 91, 65], where instead of solving the overall problem, it fo-

cuses on identifying local conformance issues at individual subcomponents. The other

is the approximation of the overall conformance between the process and the log, such

as pseudo-alignments [88] or approximate alignments [61]. As such, it is clear that cur-

rent decomposition techniques do not address the problem of computing the exact fitness

between a given log and model.

This chapter presents results that show the required condition for merging optimal de-

composed pseudo-alignments into optimal valid alignments. The merged alignments are

35

then shown to have the same costs as the alignments computed under the monolithic ap-

proach. This approach creates a full circle approach for decomposed alignment (‘there and

back again’), and makes it possible to solve alignment-based conformance problems that

current techniques cannot handle. The remainder of this chapter is organized as follows:

Section 3.2 presents valid decompositions and decomposed alignment-based conformance

checking. Section 3.4 presents the condition under which merged sub-alignments have the

optimal misalignment cost and exact overall fitness.

3.2. Decomposed alignment

Alignment-based conformance checking can be time consuming. This is because the

time needed for computing conformance and optimal alignments is heavily influenced by

the size of the net and the log, as well as by the complexity of the underlying process.

One of the ways to tackle this limitation is through decomposition techniques. The align-

ment problem can be decomposed by splitting the overall net and the overall log into

subcomponents (subnets and sublogs) and then solving this set of smaller problems. Un-

der the assumption that the complexity of the alignment algorithm is significantly worse

than linear, solving multiple small alignment problems is often faster than solving one

large alignment problem. In addition, the set of decomposed alignment problems can be

distributed over a network of computer nodes to further reduce computation time.

However, existing decomposition techniques have limited applicability in computing

the overall conformance between the net and the log at the alignment level, i.e., comput-

ing conformance using optimal alignments between the net and log traces. Following the

decomposition of the overall net and the overall log, existing decomposition techniques

only guarantee that the aggregation of conformance results from subcomponents will re-

flect the exact overall conformance if there is perfect fitness between the net and the log

[65]. This has led to the focus on using decomposition to identify problematic sections of

the process.

36

p1 t1

t3

t2 t5

t6

t9 t13

t14
t17

t15
t12

t7

t8

t4

b e i l

mfc

d

g

n

kh

p4 p8 p12
p16

p17

p18

p13p9p5
p2

p3
p6 p10 p14

p15p11p7

p q

p19

t18

t16

o

a

j

t10

t11

a = start bank transfer

b = open overseas bank form

c = open local bank form

d = start verification

e = enter oversea bank code

f = enter local bank code

g = enter sender account

h = enter receiver account

i = foreign currency conversion

j = verify sender account

k = verify receiver account

l = update oversea bank form

m = update local bank form

n = complete verification

o = redo bank transfer

p = finish bank transfer

q = send bank transfer

Figure 3.1. Running example: The system net S1 that contains the (la-
beled) Petri net N1

As previously mentioned, there are many scenarios where the precise alignments or

costs are required. This motivates our work on extending the conditions under which the

conformance results from subcomponents can be aggregated to reflect the exact overall

conformance. In this section, we present the core ideas that will extend the applicability

of decomposition techniques in computing the overall fitness. These ideas will be later

used in two novel alignment-based conformance checking methods to compute an exact

or an interval overall fitness result.

3.3. Running example

We first recall the running examples of system net S1 and logs L1 and L2 from Chap-

ter 2.7.

37

L1 = [σ1 = 〈a, b, e, i, l, d, g, j, h, k, n, p, q〉20,

σ2 = 〈a, c, f,m, d, g, j, k, h, n, p, q〉5,

σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉5]

L2 = [σ4 = 〈a, c, f,m, d, g, j, h, k, n, p, q〉20,

σ5 = 〈a, b, e, i, l, d, j, g, h, k, n, p, q〉5,

σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉5]

Figure 3.2. Running example: Event logs L1 and L2

Next, we define valid decompositions of Petri nets and show how alignments computed

using valid decompositions can be used to bound the exact fitness value within an interval.

3.3.1. Border activities

In [65] the author presented the concept of valid decomposition of a Petri net. A

decomposition of a Petri net is valid if each place and invisible transition resides in just

one subnet. Moreover, if there are multiple transitions with the same label, they should

reside in the same subnet. Only unique visible transitions can be shared among different

subnets.

Definition 3.1 (Valid decomposition [65]). Let S ∈ USN be a system net with labeling

function l. D = {S1, S2, . . . , Sn} ⊆ US is a valid decomposition if and only if the

following properties are fulfilled:

• Si = (N i, I i, Oi) is a system net with N i = (P i, T i, F i, li) for all 1 ≤ i ≤ n.

• li = πT i(l) for all 1 ≤ i ≤ n.

• P i ∩ P j = ∅ for all 1 ≤ i < j ≤ n.

38

• T i ∩ T j ⊆ T uv (S) for all 1 ≤ i < j ≤ n.

• S =
⋃

1≤i≤n S
i.

D(S) is the set of all valid decompositions of S.

p1 t1

a

t3

t2

b

c

SN5
1

t16

o

t4

d
p3

t16

o

SN2
1

SN3
1

SN1
1

SN4
1

p2

t3

t2 t5

t6

t9

t10

t13

t14

b e i l

mfc

p4 p8 p12

p13p9p5

t15

t11

t12t8

t4

d

g

n

kh

p6 p10 p14

p15p11p7

SN7
1

SN8
1

t13

t14

l

m

p16

t15

n
p17

SN9
1

t17
p q

p19

t18

t16

o

p18

t17
p

t17
pt1

a

t1

a

SN6
1

j

t7

Figure 3.3. Components resulting from a possible valid decomposition D1

of the system net S1

For example, the decomposition D1 in Figure 3.3 is a valid decomposition of the sys-

tem net S1, that is, D1 ∈ D(S1). The system nets in D1 are referred to as the subnets of

S1.

Given a valid decomposition, an activity may be shared by multiple subnets. We define

these activities as the border activities of the decomposition. This overlapping property

will be used later as a common ground between subcomponents in order to obtain an

overall result from local results.

Definition 3.2 (Border activities). Let S = (N, I,O) ∈ US be a system net with

N = (P, T, F, l). Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of S. For

all 1 ≤ i ≤ n, Si = (N i, I i, Oi,) is a subnet with N i = (P i, T i, F i, li). Ab(D) = {l(t) |
∃1≤i<j≤n t ∈ T i ∩ T j} is the set of border activities of the valid decomposition D.

39

For an activity a ∈ rng(l), Sb(a,D) = {Si | Si ∈ D ∧ a ∈ Av(S
i)} is the set of

subnets that contain a as an observable activity.

Due to the properties of a valid decomposition, a border activity can only be an activity

that has a unique label, i.e., Ab(D) ⊆ Auv(S). For example, the valid decomposition D1 in

Figure 3.3 has the set of border activities of {a, b, c, d, l,m, n, o, p}.

In addition, non-unique activities will appear in precisely one subnet, i.e., for all a ∈
Av(S) \ Auv(S) it holds that |Sb(a,D)| = 1. Contrastingly, unique activities may appear

in multiple subnets, i.e., for all a ∈ Auv(S) it holds that |Sb(a,D)| ≥ 1. Border activities

are unique activities that appear in multiple subnets, i.e., for all a ∈ Ab(D) it holds that

|Sb(a,D)| > 1.

For example with the valid decomposition D1 in Figure 3.3, Sb(a,D1) = {S1
1 , S

2
1 , S

3
1}

as the border activity a is shared by the subnets S1
1 , S2

1 and S3
1 .

3.3.2. Alignment for subnets with border activities

Following a valid decomposition, it can be the case where border activities would

either have no input places or output places in the subnets which share the border activities

but do not contain the corresponding places. This means that these subnets would have an

empty initial marking and/or an empty final marking.

For example, in the valid decompositionD1 in Figure 3.3, the activity set of S8
1 consists

of the border activities n and p. For subnet S8
1 , border activity n has no input places and

border activity p has no output places. This means subnet S8
1 has an empty initial and final

marking. We note that the computation of an optimal alignment remains the same as for

system nets with non-empty initial and final markings.

For the sake of simplicity, say we are aligning the subtrace σ8
3 = πA8

1
(σ3) = 〈n, p〉

with subnet S8
1 , i.e., subtrace σ8

3 is obtained by projecting trace σ3 onto the activity set of

subnet S8
1 . At the start of the alignment procedure, we would yield an empty alignment

40

since no legal moves have been added yet. Since the initial marking equals the final

marking (both are empty), by Definition 2.10, an empty sequence is a valid complete

firing sequence. However, the empty alignment is not a valid alignment in this case since

Definition 2.16 requires the projection on the first element (ignoring any�) to yield the

log trace, i.e., σ8
3 , and the projection on the last element (ignoring any �) to yield a

complete firing sequence of the net. While the projection on the last element of an empty

alignment gives a complete firing sequence, the projection on the first element does not

yield σ8
3 . As such, we try to fire the corresponding transition of activity n from subtrace

σ8
3 . Transition t15 is always enabled in subnet S8

3 since it has no input places. Firing

transition t15 produces a token in place p17 and enables transition t17. This means that

the log and model execution of activity n corresponds to a synchronous move. Similarly,

the corresponding transition of activity p, which is the next activity in subtrace σ8
3 , can be

fired in the model as there is a token in its input place p17. This means that the log and

model execution of activity p corresponds to a synchronous move. Since transition t17 has

no output places, the marking reached by its firing is an empty multiset. This corresponds

to the final marking and is therefore a complete firing sequence. The produced alignment

corresponds to subalignment γ83 in Figure 3.4. This is a valid alignment as the projection

on the first element (ignoring any �) yields σ8
3 and the projection on the last element

(ignoring any�) yields a complete firing sequence.

We note that there are alternative decomposed replay approaches that do not involve

removing all irrelevant transitions, places, and arcs. The paper [85] presents the Hide

and Hide and Reduce decomposed replay approaches which create subnets by making

irrelevant transitions invisible. Lastly, we refer interested readers to the paper [65] for

further details on the replay of subnets created by valid decompositions.

3.3.3. Decomposed Fitness

Let us consider trace σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉 and the system net S1 in Fig-

ure 3.1. Under a decomposition, the optimal subalignments γ13 , . . . , γ
9
3 can be obtained

41

a

a
t1

γ1
3 =

�
b
t2

a

a
t1

γ2
3 =

e li

e li
t5 t13t9

�
b
t2

γ4
3 =

a

a
t1

γ3
3 =

d

d
t4

γ5
3 =

γ6
3 =

g

g
t7

kh

kh
t12t8

j

t11

j

d

d
t4

n

n
t15

p

p
t17

γ7
3 =

n p

n p
t15 t17

γ8
3 = γ9

3 =

q

q
t18

p

p
t17

l

l
t13

Figure 3.4. Subalignments between the trace σ3 =
〈a, e, i, l, d, g, j, h, k, n, p, q〉 in event log L1 and the valid decompo-
sition D1 in Figure 3.3

by first projecting σ3 onto the subnets S1
1 , . . . , S

9
1 in Figure 3.3 and later aligning each

subtrace with the corresponding subnet as shown in Figure 3.4.

a

a
t1

γ1
1 =

b

b
t2

a

a
t1

γ2
1 = γ3

1 =

a

a
t1

d

d
t4

γ4
1

e li

e li
t5 t13t9

b

b
t2

= γ5
1 =

g

g
t7

k nh

k nh
t12 t15t8

j

t11

j

d

d
t4

γ6
1 =

p

p
t17

γ7
1 =

l

l
t13

p

p
t17

γ8
1 =

n

n
t15

p q

p q
t17 t18

γ9
1 =

Figure 3.5. Subalignments between the trace σ1 =
〈a, b, e, i, l, d, g, j, h, k, n, p, q〉 in event log L1 and valid decomposi-
tion D1 in Figure 3.3

All moves in alignments γ13 , γ33 , γ63 , γ73 , γ83 and γ93 are synchronized. Alignment γ53 is

an empty alignment. Alignments γ23 and γ43 both have a model move involving transition

t2 with the label b. Similarly, optimal subalignments for the traces σ1 and σ2 are shown in

Figures 3.5 and 3.6 respectively.

A naive approach to aggregate the results per subcomponent, would be to sum up

all the misalignment costs of the subalignments under the standard cost function. For

42

a

t1

γ1
2 = a

c

t3

c

a

t1

γ2
2 = a

d

t4

d

a

t1

γ3
2 = a γ4

2 = γ5
2 =

g

t7

hk

t8

j

t11

g hj
t12

k�
�d

t4

dγ6
2 =

f m�

t6 t14t10

f mτ

c

t3

c

n

t15

n

n p

t15 t17

n p

p

t17

p

m

t14

mγ7
2 = γ8

2 =

p q

t17 t18

p qγ9
2 =

Figure 3.6. Subalignments between the trace σ2 =
〈a, c, f,m, d, g, j, k, h, n, p, q〉 in event log L1 and valid decomposi-
tion D1 in Figure 3.3

a b e l d gi

a b e l d gi
t1 t2 t5 t13 t4 t7t9

k nh p q

k nh p q
t12 t15t8 t17 t18

j

t11

jγ1 =

a c f m d g�

t1 t3 t6 t14 t4 t7t10

h nk p q

t8 t15 t17 t18

j

t11

γ2 = a c f m d gτ h n p qj

a � e l d gi

a b e l d gi
t1 t2 t5 t13 t4 t7t9

k nh p q

k nh p q
t12 t15t8 t17 t18

j

t11

jγ3 =

t12

k�
�

Figure 3.7. Alignments for event log L1

γ13 , γ
2
3 , . . . , γ

9
3 , we would get a total of 2. However the misalignment costs associated to

the optimal overall alignment γ3 is 1 as shown in Figure 3.7. The wrong result is pro-

duced because border activities appear in multiple subnets and therefore moves involving

these transitions will be counted multiple times when their associated costs are simply

aggregated. We would like the result computed using γ13 , . . . , γ
9
3 to equal the optimal cost

computed using a overall alignment such as γ3. Hence, we use the adapted cost function

presented in [65], to avoid counting moves that involve border activities multiple times.

43

Definition 3.3 (Adapted cost function [65]). Let D = {S1, S2, . . . , Sn} ∈ D(S) be a

valid decomposition of some system net S and δ ∈ AM → Q a cost function. The adapted

cost function δD ∈ AM → Q for decomposition D is defined as follows:

δD(a,m) =

δ(a,m)

|Sb(α(a,m),D)| if α(a,m) 6= τ ;

δ(a,m) otherwise.

The cost of each legal move is divided by the number of subnets in which the corre-

sponding activity may appear, for example, δD(a, �) = δ(a,�)
|Sb(a,D)| . This avoids counting

misalignment costs of the same legal move multiple times. For example, consider the

set of subalignments γ13 , . . . , γ
9
3 in Figure 3.4, |Sb(b,D1)| = |{S2

1 , S
4
1}| and |Sb(d,D1)| =

|{S3
1 , S

6
1}|. For the adapted standard cost function δD1 , δD1(�, (b, t2)) = 1

2
and δD1(d, (d, t4)) =

0. The aggregated cost of γ13 , . . . , γ
9
3 is 1, i.e. identical to the costs of the overall optimal

alignment γ3 as shown in Figure 3.7.

Having defined the adapted cost function, the fitness values associated with the optimal

subalignments per sublog and subnet can then be aggregated. This gives a decomposed

fitness metric.

Definition 3.4 (Decomposed fitness metric). Let L ∈ B(A∗) be an event log and let

S = (N, I,O) ∈ US be a system net with N = (P, T, F, l).

Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of S. For all 1 ≤ i ≤ n,

Si = (N i, I i, Oi) is a subnet with an observable activity set Aiv = Av(S
i).

For a log trace σL ∈ L, σiL = πAiv(σL) is the projection of σL on the activity set of

subnet Si.

fitD(σL, S, δ) = 1−
∑

i∈{1,...,n} δD(λ(σ
i
L, S

i))

moveM(S) + moveL(σL)

For an event log L, its decomposed fitness metric is computed as follows:

44

fitD(L, S, δ) = 1−
∑

σL∈L
∑

i∈{1,...,n} δD(λ(σ
i
L, S

i))

|L| ×moveM(S) +
∑

σL∈L moveL(σL)

In the decomposed fitness metric, the misalignment costs of each subalignment are

first aggregated using the adapted cost function. Afterwards, the total is normalized using

the same value as the undecomposed relative fitness metric so that both metric values are

normalized in the same manner. In the paper [65], it is shown that the decomposed fitness

metric provides an upper bound to the fitness computed using the full alignment between

the overall log and model.

Let us consider again the trace σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉 and the valid de-

composition D1 in Figure 3.3. Assuming that for S1
1 , . . . , S

9
1 , λ gives the subalignments

γ13 , . . . , γ
9
3 as shown in Figure 3.4. The decomposed fitness metric between the trace and

the subnets is computed as fitD1
(σ3, S1, δ1) =

23
24
≈ 0.958. This is identical to the fitness

value for the overall trace and the overall net.

Similarly, the formula can be applied to the log. Let the three subalignments shown

in Figure 3.5, Figure 3.6 and Figure 3.4 be the optimal subalignments that correspond to

the traces σ1, σ2 and σ3. The decomposed fitness value of the event log L1 and S1 is

fitD1
(L1, S1, δ1) = 1 − 0×20+2×5+(1

2
+ 1

2
)×5

12×30+13×20+12×5+12×5 = 145
148
≈ 0.980. This is again identical

to the fitness value for the overall log and the overall net. As such, the approach has

decomposed the conformance checking problem whilst providing a conformance value

for the overall log and net as output. However, this is not always the case, and cannot be

generalized for the general case but only for cases satisfying specific properties. These

properties relate to alignment moves corresponding to border activities.

3.4. Total border agreement and exact decomposed fitness

As mentioned earlier, the decomposed fitness does not always match the overall fit-

ness metric in the general case. That is because the legal moves involving a partic-

ular activity may differ from one subnet to another. Let us consider the trace σ6 =

45

a

t1

γ1
6 = a

b

t2

b

a

t1

γ2
6 = a

a

t1

γ3
6 = a

d

t4

d

b

t2

bγ4
6 =

e li

t5 t13t9

e li γ5
6 =

g

t7

j kn �

t12

h

t8

g kh
t11

j
t15

n�γ6
6 =

d

t4

d γ8
6 =

p

t17

p
t15

n

np

t17

pγ7
6 =

l

t13

l

p

t17

q

p q
t18

γ9
6 =

Figure 3.8. Subalignments between the trace σ6 =
〈a, b, e, i, l, d, g, h, n, j, k, p, q〉 in event log L2 and valid decomposi-
tion D1 in Figure 3.3

〈a, b, e, i, l, d, g, h, n, j, k, p, q〉 and the valid decomposition D1 in Figure 3.3. A set of

optimal subalignments between the trace and the subnets is shown in Figure 3.8. Accord-

ing to the system net S1 in Figure 3.1, transition t15 with label n is to be executed after

transitions t11 with label j and t12 with label k; in the trace σ6, t15 is executed before t11

and t12. This results in a log move of activity n at the fourth position and a model move

of transition t15 with label n at the seventh position of alignment γ66 .

As activities j and k are not present in the subnet S8
1 , the move in the log and the move

in the model are synchronized for transition n at alignment γ86 . Therefore, the moves

involving border activity n are not identical between subalignments γ66 and γ86 ; the moves

involving border activity n in the two subalignments are not in agreement. In this case,

the decomposed fitness metric would not result in a value that is equal to the fitness value

of the overall log and the overall net.

To compute the exact fitness value, a specific property must be satisfied: sequences of

moves involving the same border activity have to be in agreement across all subalignments.

We define that property as border agreement of subalignments and we formalize it as

follows:

Definition 3.5 (Border agreement). Let L ∈ B(A∗) be an event log and let S =

(N, I,O) ∈ US be a system net with N = (P, T, F, l).

46

Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of S. For all 1 ≤ i ≤ n,

Si = (N i, I i, Oi) is a subnet with an observable activity set Aiv = Av(S
i).

For a border activity a ∈ Ab(D), let aM = {(a, (a, t)), (�, (a, t)), (a, �)} be the set

of legal moves for activity a, where t ∈ T such that l(t) = a.

Let Si ∈ Sb(a,D) be a subnet that has the border activity a. For a log trace σL ∈ L,

σiL = πAiv(σL) is the projection of σL on the activity set of Si. γi ∈ A∗M denotes an

optimal alignment between the sublog trace σiL and some complete firing sequence of a

subnet σiM ∈ φf (Si).

The set of subalignments γ1, . . . , γn are under border agreement on a border activity

a ∈ Ab(D) if, and only if, πaM (γ
i) = πaM (γ

j), for all Si, Sj ∈ Sb(a,D).

The set of subalignments γ1, . . . , γn are under total border agreement (t.b.a.) if, and

only if, border agreement is achieved one by one on all the border activities in γ1, . . . , γn

following the order of their occurrences across γ1, . . . , γn, starting with the first occurring

border activity in subnet Si ∈ D where I i ≥ I .

Given the properties of a sequence, there is border agreement if the following three

conditions are satisfied:

(i) πaM (γ
i) has an equal number of moves as πaM (γ

j).

(ii) πaM (γ
i) has the same move types as πaM (γ

j), i.e. if πaM (γ
i) has one log move,

then πaM (γ
j) must also have one log move.

(iii) The order of moves in πaM (γ
i) and πaM (γ

j) are the same.

Note that if the subalignment γi is empty then the projection of the subalignment will

also be an empty sequence.

47

For example, there is total border agreement between the valid decomposition D1 in

Figure 3.3 and the log trace σ3 = 〈a, e, i, l, d, g, j, h, k, n, p, q〉. As shown by the corre-

sponding subalignments in Figure 3.4, all the moves corresponding to each border activity

are under border agreement.

Contrastingly, the subalignments of the trace σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉 are

not under total border agreement. The moves involving border activity n in subalignment

γ66 is a log move followed by a model move which does not “agree” with the synchronous

move in subalignment γ86 .

3.4.1. Properties of decomposed fitness

We now formalize the properties of the decomposed fitness metric with consideration

to the border agreements of subalignments, i.e., if the total border agreement is not satis-

fied, the decomposed fitness metric corresponds only with an upper bound of the overall

metric; when the total border agreement is satisfied, the decomposed fitness matches ex-

actly the overall fitness. This results will be used in Sections 4.2 and 4.3 as part of the

proposed conformance methods.

First, we note that the metric is an upper bound to the fitness metric computed using

the full alignment between the overall log and model. This has been shown as Theorem 3

in the earlier paper [65].

However, under total border agreement, we can prove that the decomposed fitness

value from the set of subalignments corresponds to the exact fitness value computed with

the overall alignment. This applies to the decomposed log fitness value as well. We extend

the properties of the decomposed fitness metric to include the capability of computing a

conformance result that corresponds to an exact overall fitness value regardless of the

conformance level.

Theorem 3.1 (Exact value for decomposed fitness metric under total border agree-

ment). Let L ∈ B(A∗) be an event log and let σL ∈ L be a log trace. Let S = (N, I,O) ∈

48

US be a system net and let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of

S. For all 1 ≤ i ≤ n, Si = (N i, I i, Oi) is a subnet with an observable activity set

Aiv = Av(S
i). σ1

L, . . . , σ
n
L are the subtraces from the projection of σL onto the activity sets

of S1, . . . , Sn such that σiL = πAiv(σL). γ
i is an optimal subalignment between σiL and

some complete firing sequence of the corresponding subnet σiM ∈ φf (Si).

Let γ1, . . . , γn be the set of subalignments and let them be under total border agree-

ment. The decomposed fitness metric computed using this set of subalignments equals the

relative fitness metric computed with the overall alignment between σL and S:

fit(σL, S, δ) = fitD(σL, S, δ)

For the log L, if for all the log traces in L, their corresponding set of subalignments is

under total border agreement,

fit(L, S, δ) = fitD(L, S, δ)

PROOF. The paper [88] presents a stitching function that merges a set of subalign-

ments into an optimal alignment if all the legal moves from the subalignments can be

stitched together without conflict and a trace pseudo-alignment otherwise. We prove by

contradiction that under total border agreement, the set γ1, . . . , γn can always be stitched

together as an optimal alignment without conflict.

Suppose that γ1, . . . , γn is a set of subalignments and are under total border agreement

but cannot be stitched together without conflict. The set of subalignments are comprised

of only legal moves and therefore it must be that there is a stitching conflict for particular

moves between the subalignments.

Let (al,m) ∈ AM be a move involved in the first conflict as γ1, . . . , γn are being

stitched together. As for a conflict we need another move, and hence another subnet,

49

we know that |Sb(α(al,m), D)| > 1. Therefore, the activity α(al,m) must be a border

activity. Under total border agreement, all subalignments for this activity are the same

across all subalignments. Therefore, there cannot be a conflict.

Furthermore, since border agreement is achieved according to the occurrence order of

the border activities across the subalignments, γ1, . . . , γn can be stitched together without

occurring any conflicts.

As a result, γ1, . . . , γn can always be merged into an optimal alignment between σ and

a complete firing sequence σM ∈ φf (S). With the merged optimal alignment γ, the sum of

misalignment costs associated with γ1, . . . , γn under the adapted cost function equals the

misalignment cost of γ. Therefore, the decomposed fitness value with γ1, . . . , γn equals

the fitness value with γ.

The decomposed log fitness metric compares the sum of the misalignment costs from

the sets of subalignments with the sum of the worst-case scenario costs for all the log

traces. Since the set of subalignments corresponding to each log trace is under total border

agreement, all sets of subalignments can be merged into optimal alignments. This means

that the sum of the misalignment costs under the adapted cost function equals the sum of

optimal misalignment costs associated with all the log traces. The decomposed log fitness

value equals the log fitness value. �

As previously shown, the event log L1 has the exact same value under both the decom-

posed fitness metric and the undecomposed fitness metric at about 0.980.

3.5. Limitations and extensions

While valid decompositions indeed yield sub-models and sub-logs whose activity sets

is a subset of the overall activity set and that the overall model behavior is captured within

the decomposed model behavior, the decomposed sub-models can actually allow more

50

behavior than before. This means that the A∗ algorithm might have to explore a large

number of irrelevant states to compute the optimal sub-alignment.

Consider sub-net S6
1 from Figure 3.3. Within the context of the overall process model

S, transition t4 should be executed once in a complete model firing sequence unless the

loop transition t16 is also executed during the firing sequence, in which case transition t4

should be executed once for every firing of transition t16. As such, projecting on activities

d and o, the set of possible model traces should match with d(od)∗ where we use the

regular expression symbol ∗ to indicate that there can be zero or more od sub-sequences.

However, if we consider the set of possible sub-traces permitted by sub-net S6
1 , transition

t16 can always be fired because as a border activity, it does not have a input place to restrict

its behavior.

3.5.1. Hide and reduce as an alternative replay approach

Instead of doing an edge partition to get a valid decomposition, in practice, the hide and

reduce decomposed replay approach is used [84]. First, the hiding abstraction is applied

to the net model given a subset of activities so that transitions that do not have an activity

label in the given activity subset are made invisible. Figure 3.9 shows net S after the hiding

abstraction given sub-net S6
1’s activity set {d, g, j, h, k, n}. After the hiding abstraction,

one can elect to reduce the abstracted net using well-known Petri net reduction rules [51]

so that redundant invisible transitions are reduced away.

Examining the hidden sub-net in Figure 3.9 shows that transition t4 is no longer always

enabled and instead can only be fired once per complete firing sequence from the initial

marking [p1] to the final marking [p19] unless the loop transition t16 is fired as well. As

such, in practice, we make use of this hide and reduce approach to perform decomposed

alignment.

51

Figure 3.9. Hidden sub-net using activity subset of sub-net S6
1 from Figure 3.3

3.6. Conclusion

This chapter presented the total border agreement condition as a sufficient condition

so that merging sub-alignments gives an overall alignment that has the same misalignment

costs as an optimal alignment computed under the monolithic approach. Furthermore,

this chapter includes a discussion on how decomposed replay is done in practice to avoid

creation of extra behavior by border activities that are always enabled. Next, we make use

of the total border agreement property to design a conformance checking algorithm that

computes alignments using the divide and conquer paradigm.

52

4. Recomposing conformance checking framework

4.1. Introduction

In the previous chapter, we presented the total border agreement as a sufficient condi-

tion for merging a set of decomposed sub-alignments to yield an overall alignment that has

optimal misalignment costs. In this chapter we present an iterative approach that computes

optimal alignments and thereby fitness in a divide and conquer manner. In a nutshell, this

approach checks for the total border agreement condition for decomposed sub-alignments

and resolves those which do not meet the condition using a coarser valid decomposi-

tion in the following iteration. This approach creates a full circle approach for decom-

posed alignment (‘there and back again’), and makes it possible to solve alignment-based

conformance problems that current techniques cannot handle. Importantly, our approach

can balance quality and computation time. For example, in the experimental section, we

demonstrate our approach on a real-life dataset (BPIC2012) for which the existing state-

of-the-art monolithic conformance checking approach is not feasible while our proposed

approach can compute an almost perfect approximation of the overall conformance in

reasonable time, obtaining information about the specific problems of the model.

The methodology of this work can be seen as being under the paradigm of Design Sci-

ence and it appropriately follows the seven accepted guidelines as presented in [28]. The

resulting artifact of this work is a novel conformance checking approach that computes

the overall fitness of a process and a log in a divide-and-conquer manner (Guideline 1).

The motivating general problem relating to the rapid data growth and the limitations of

the existing techniques have been aptly presented above (Guideline 2 and 6). The utility

and efficacy of the artifact is demonstrated through mathematical proofs and empirical ex-

periments (Guideline 3 and 5). The artifact and new insights drawn from it are produced

as the contributions (Guideline 4). Lastly, we have taken care to present the ideas with a

balanced level of detail so that the described artifact can be implemented (Guideline 7).

In this chapter, as the main contributions:

53

Figure 4.1. Overview of the exact decomposed conformance metric

• We present a novel decomposed conformance checking method – recomposing con-

formance – to compute the overall fitness between a process and a log (Section 4.2).

• Sometimes, exactness is not the top priority. We also modify the exact recomposing

conformance method to compute an interval as an approximation of the overall fitness

between a process and a log (Section 4.3).

• The two methods are implemented as one configurable conformance checking ap-

proach. The performance gains from the proposed methods are demonstrated through

extensive experimental results using both synthetic and real-life datasets (Section 4.4).

4.2. Recomposing method for exact decomposed fitness

As previously mentioned, the main contribution of this work is to make decomposition

techniques more applicable in computing the overall conformance between a net and log.

54

We now use the border properties formalized in the last section in a novel method to

compute the overall conformance between a net and a log: recomposing conformance.

Similar to many existing decomposition techniques, the net is decomposed into sub-

nets by activities and the log is projected onto the subnets to create sublogs. For each

pair of subnet and sublog, alignments are created for the subnet and each subtrace in the

sublog. Each of the sublogs can be analyzed in parallel, and together with the reduced

size and complexity of the net, the approach obtains a significant performance gain in

time [50, 91, 82, 87, 20]. Following the per subcomponent computation, the results are

aggregated if there was agreement on the border. Otherwise, some disagreeing subnets are

“recomposed” to get a more coarse-grained decomposition of the net, in which the dis-

agreeing subnets have become a single subnet. As a result, they cannot disagree anymore.

Traces whose conformance results disagreed on the border previously are recomputed un-

der the new decomposition. This iterative process is repeated until completion. Figure 4.1

shows an overview of the summarized method. In this work, we apply this approach to

decompose the relative fitness metric.

4.2.1. Decomposed fitness metric

As illustrated in Figure 4.1, the first step of the approach is to decompose the system

net. This enables the performance gain in the conformance checking process. The de-

composition of the system net has to fulfill the properties of a valid decomposition, first

defined in [65].

Following the initial decomposition, the log is projected onto the subnets of the de-

composition to get the sublogs for alignment.

The alignment of subnets and sublogs and the computation of the decomposed fitness

metric are marked as step two and three of the algorithm in Figure 4.1. Decomposed

fitness values of subalignments computed under total border agreement are recorded. Af-

terwards, their associated traces are taken out of the process and are marked as completed.

55

As for the remaining traces, we resolve their border agreement problems by selectively

“recomposing” subnets by their matching border activities on which they disagree.

4.2.2. Subnet recomposition

As illustrated in step five in Figure 4.1, the existing set of subnets are recomposed as a

new set of subnets. Recomposing subnets by their matching border activities resolves any

border agreement problems associated with the recomposed border activities as it ceases

to be shared between multiple subnets. “Recomposition” can be done on single or multiple

border activities and different selection criteria can be used to select the border activities.

For example, recomposing the subnets by multiple border activities is likely to resolve

more border agreement problems than if the subnets were to be recomposed on only one

border activity. However, there would be less performance gain under the multiple border

activities selection approach as the resulting subnets would be larger and more complex.

t1 t2 t3 t13 t14 t15t4 t17t16

0 0 0 0 0 50 00

Figure 4.2. Vector showing the number of border agreement problems at
each border activity for event log L2

For the sake of simplicity, we consider selecting the single activity that has the highest

number of border agreement problems. This selection criterion resolves the most prob-

lematic border activity at each recomposition. Following the valid decomposition in Fig-

ure 3.3, for event log L2, there is a border agreement issue with trace σ6 = 〈a, b, e, i, l, d, g,
h, n, j, k, p, q〉 on activity n. At the recomposition, activity n is identified and selected

since it is the activity with the highest number of border agreement issues as shown in

Figure 4.2. Retrieval of all the subnets that have the selected border activity is done by the

shared function defined in Definition 3.2. These subnets are then merged, after which the

set of recomposed subnets is a new valid decomposition of the system net.

56

Theorem 4.1 (Recomposition results in valid decomposition). Let S = (N, I,O) ∈
US be a system net with N = (P, T, F, l). Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid

decomposition of S.

Let a ∈ Ab(D) be a border activity that is shared between |Sb(a,D)| subnets in

D. Recomposing S1, S2, . . . , Sn on border activity a joins all the subnets in Sb(a,D)

on the activity a. Following the recomposition, which leads to a new decomposition D′,

|Sb(a,D′)| = 1 and a 6∈ Ab(D′) i.e., a ceases to be a border activity.

Let A′ ⊆ Ab(D) be a subset of the border activities of D. Let D′ be the recomposition

of D on A′, i.e., decomposition D′ is recomposed on all activities a ∈ A′.

D′ ∈ US i.e., D′ is a valid decomposition of S.

PROOF. Recomposing S1, S2, . . . , Sn on a particular border activity a ∈ A′ joins the

set of subnets Sb(a,D) on activity a into one single subnet S+ =
⋃
Sb(a,D). S+ has

the same set of edges as Sb(a,D) has. Therefore, D′ = (D \ Sb(a,D)) ∪ {S+} is a

partitioning of the edges in S. Given that there was no creation of a new transition or a

new place in the recomposition to S+, it follows trivially that D′ is a valid decomposition.

The recomposition on any remaining border activities a′ ∈ A′ \ {a} can be done in the

same manner, and hence also yields a valid decomposition. �

4.2.3. New border agreement problems following recomposition

While recomposition can solve existing border agreement problems at merged border

activities, new border agreement problems may arise at locations where there were no

issues previously. Here we showcase such a case using the running example net S1 in

Figure 3.1 to explain the underlying intuition. This example is slightly more involved than

the previous log examples in that it involves the loop construct of the net.

Consider trace σ7 = 〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉. Replaying trace

σ7 on decomposition D1 in Figure 3.3 would produce the set of subalignments as shown

57

a

a
t1

γ1
7 =

ba

a
t1

γ2
7 =

b

g

g
t7

k �h

k nh
t12 t15t8

j

t11

j

d

d
t4

γ6
7 =

g

g
t7

k nh

k nh
t12 t15t8

j

t11

j

d

d
t4

b
t2

� γ3
7 =

a

a
t1

d

d
t4

d

� γ4
7

e �i

e li
t5 t13t9

b

b
t2

=

e li

e li
t5 t13t9

b

b
t2

γ5
7 =

p

p
t17

γ8
7 =

n

n
t15

p q

p q
t17 t18

γ9
7 =

p

p
t17

γ7
7 =

l

l
t13

Figure 4.3. Subalignments between trace σ7 =
〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉 and valid decompo-
sition D1 in Figure 3.3

in Figure 4.3. There are border agreement problems with border activities b, d, l, and n.

This is caused by the fact that S2
1 , S3

1 , S7
1 , and S8

1 are not aware that most of the subsequent

activities of the branches associated to border activity b and d have been executed in trace

σ7. This indicates that border activities b, d, l, and n should not be marked as log moves.

This shows that the information asymmetry or disparity between subnets on conformance

is the cause of the border agreement problems. To resolve the border agreement problems,

the subnets S2
1 , S3

1 . S4
1 . S5

1 . S6
1 . S7

1 . and S8
1 are recomposed so that activity b, d, l, and

n are no longer border activities. This produces the valid decomposition D2 as shown in

Figure 4.4. Replaying trace σ7 on decomposition D2 would produce the set of subalign-

ments as shown in Figure 4.5. There are border agreement problems with border activities

p. Similar to the previous iteration, this is caused by the fact that subnet S13
1 is not aware

of the need for a model move on border activity p. One further recomposition on border

activity p is required until the set of subalignments can be merged as the overall alignment

as shown in Figure 4.6.

4.2.4. Iterative conformance checking

As such, at each iteration, a new valid decomposition is created from the recomposed

subnets. Then, traces which had border agreement problems in the previous iteration are

58

SN10
1

p1 t1

a

t3

t2

b

c

t16

o

t4

d
p3

t16

o

p2

t1

a

t1

a

t5 t9 t13
e i l

p4 p8 p12

p16

t17
p

t6 t10 t14
mf

p13p9p5

t15

t11

t12t8

g

n

kh

p6 p10 p14

p15p11p7

j

t7
p17

p

t17

t17
p q

p19

t18

t16

o

p18

SN13
1

SN12
1

SN11
1

Figure 4.4. Valid decomposition D2 of system net S1 following the re-
composition of subnets S2

1 , S3
1 . S4

1 . S5
1 . S6

1 . S7
1 of decomposition D1 in

Figure 3.3

a

a
t1

γ10
7 = γ12

7 =

g

g
t7

kh

k nh
t12 t15t8

j

t11

j

d

d
t4

a

a
t1

a

a
t1

γ11
7 =

e �i

e li
t5 t13t9

b

b
t2

g

g
t7

k nh

k nh
t12 t15t8

j

t11

j

d

d
t4

�
o
t16

p

p
t17

p
t17

� �

p q

p q
t17 t18

γ13
7 =

e li

e li
t5 t13t9

b

b
t2

p

p
t17

�
o
t16

p
t17

�

Figure 4.5. Subalignments between trace σ7 =
〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉 and valid decompo-
sition D2 in Figure 4.4

projected onto the new valid decomposition to be rechecked. Recomposition and con-

formance checking can be repeated until the decomposed fitness metric of all traces are

computed under total border agreement.

59

g

g
t7

kh

k nh
t12 t15t8

j

t11

j

d

d
t4

�
o
t16

p
t17

� �e �i

e li
t5 t13t9

b

b
t2

a

a
t1

e li

e li
t5 t13t9

b

b
t2

γ7 =

g

g
t7

k nh

k nh
t12 t15t8

j

t11

j

d

d
t4

p

p
t17

q

q
t18

Figure 4.6. Alignment between trace σ7 =
〈a, b, e, i, d, g, j, h, k, b, e, i, l, d, g, j, h, k, n, p, q〉 and system net S1 in
Figure 3.1

At completion, the set of alignments and the decomposed fitness value of the log are

returned as output. This fitness value corresponds to the exact fitness value of the overall

log and overall net.

While it can be crucial to have an exact fitness value of the overall log and net, in some

scenarios an interval value may suffice. This is addressed in the next section.

4.3. Recomposing method for interval decomposed fitness

In some conformance checking scenarios, it may be sufficient to have an interval fit-

ness value of the overall log and the overall net. For example, in the selection of candidates

of genetic algorithms for the creation of a new generation of models, an interval value of

each candidate model might already be sufficient to decide whether or not it should be

kept. In addition, not requiring an exact fitness value can increase performance gain as

there can potentially be less iterations of the recomposition and checking steps. More-

over, we note that while recomposition guarantees that any border agreement problems

at the merged border activities will be gone in the next conformance checking iteration,

new border agreement problems may arise at other border activities which had no prob-

lems previously. Lastly, it is possible that there are a few traces whose decomposed fitness

value cannot be computed under total border agreement for many iterations or unless the

overall trace and the overall net are used. As shown in Figure 4.7, the exact decomposed

conformance algorithm is modified to compute an interval decomposed fitness value.

60

Figure 4.7. Overview of the interval decomposed conformance metric

4.3.1. Interval decomposed fitness conformance

As previously mentioned, the decomposed fitness metric has been shown to be an

upper bound to the fitness metric of the overall log and the overall net. Using this property,

an interval can be computed such that the fitness value of the overall log and the overall

net is within the interval.

Definition 4.1 (Decomposed fitness interval). Let L ∈ B(A∗) be an event log and let

S = (N, I,O) ∈ US be a system net with N = (P, T, F, l). Let σL ∈ L be a log trace.

Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of S.

fit intD (σL, S, δ) = [fit lowD (σL, S, δ), fitD(σL, S, δ)]

61

fit lowD (σL, S, δ) defines the lower bound of the decomposed fitness interval such that

it equals the decomposed fitness metric if the optimal subalignments γ1, . . . , γn (where

γi = λ(σiL, S
i)) are under total border agreement (t.b.a.):

costD(σL, S, δ) =

∑

i∈{1,...,n} δD(λ(σ
i
L, S

i)) if under t.b.a.;

moveM(S) + moveL(σL) otherwise.

fit lowD (σL, S, δ) = 1− costD(σL, S, δ)

moveM(S) + moveL(σL)

The decomposed fitness interval of the event log L is computed as follows:

fit intD (L, S, δ) = [fit lowD (L, S, δ), fitD(L, S, δ)],

fit lowD (L, S, δ) = 1−
∑

σL∈L costD(σL, S, δ)

|L| ×moveM(S) +
∑

σL∈L moveL(σL)

Consider the subalignments for the trace σ6 = 〈a, b, e, i, l, d, g, h, n, j, k, p, q〉 in Fig-

ure 3.8. Due to the border agreement problem with activity n, the decomposed fitness

interval for the trace is fit intD1
(σ6, S1, δ1) ≈ [0, 0.962]. The decomposed fitness interval

for event log L2 is computed as fit intD1
(L2, S1, δ1) ≈ [0.815, 0.979]. We note that for

both the trace σ6 and the log L2, their fitness values are within the respective intervals:

fit(σ6, S1, δ1) = 0.923 ∈ [0, 0.962] and fit(L2, S1, δ1) = 0.973 ∈ [0.815, 0.979].

Theorem 4.2 (Overall fitness is within interval fitness). Let L ∈ B(A∗) be an event

log and let S = (N, I,O) ∈ US be a system net with N = (P, T, F, l).

Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of S. For all 1 ≤ i ≤ n,

Si = (N i, I i, Oi) is a subnet with an observable activity set Aiv = Av(S
i).

For a log trace σL ∈ L, σiL = πAi(σL) is the projection of σL on the activity set of

subnet Si.

62

fit(σL, S, δ) ∈ fit intD (σL, S, δ)

For log L,

fit(L, S, δ) ∈ fit intD (L, S, δ)

PROOF. We prove the theorem by cases.

For S1, . . . , Sn, let γ1, . . . , γn be the optimal subalignments where γi = λ(σiL, S
i) is

the optimal subalignment of σiL and Si. There are two cases.

Case 1: γ1, . . . , γn are under total border agreement

fit intD (σL, S, δ) = [fitD(σL, S, δ), fitD(σL, S, δ)]. By Theorem 3.1, the fitness of the

overall trace and net equals the decomposed fitness metric. Hence the overall fitness value

is within the interval.

Case 2: γ1, . . . , γn are not under total border agreement

fit intD (σL, S, δ) = [0, fitD(σL, S, δ)]. The overall fitness is within the interval since the

decomposed fitness metric computes an upper bound of the fitness value for the overall

trace and net.

For the decomposed log fitness interval, the upper bound of the interval is the de-

composed log fitness which has been shown to be an upper bound to the exact overall

log fitness. The lower bound of the interval uses the total misalignment costs of the sub-

alignments under the adapted cost function if there is total border agreement. Otherwise,

it defaults to the worst-case scenario cost. In Theorem 3.1, it was proven that the exact

misalignment cost is obtained if the set of subalignments is under total border agreement.

This means that the sum of misalignment cost is an upper bound to the overall misalign-

ment costs and therefore the lower bound of the decomposed log fitness interval is a lower

63

bound to the exact overall log fitness value. Hence, the exact overall log fitness is within

the decomposed log fitness interval. �

As previously shown, the fitness value for the log L2, fit(L2, S1, δ1) ≈ 0.973 is within

its decomposed fitness interval fit intD1
(L2, S1, δ1) ≈ [0.815, 0.979]. To compute the interval

decomposed metric, traces are exempted from the computation of an exact decomposed

fitness value through trace reject and termination conditions.

4.3.2. Trace reject and termination conditions

As previously mentioned, it is possible that there are a few problematic traces which

cannot be checked within a short time. As such, trace reject and termination conditions

can be used to configure the balance between result quality and computation time.

Let L ∈ B(A∗) be an event log and let S = (N, I,O) ∈ US be a system net with

N = (P, T, F, l). Let D = {S1, S2, . . . , Sn} ∈ D(S) be a valid decomposition of S. For

all 1 ≤ i ≤ n, Si = (N i, I i, Oi) is a subnet with an observable activity set Aiv = Av(S
i).

For a log trace σL ∈ L, σiL = πAi(σL) is the projection of σL on the activity set of

subnet Si. For 1 ≤ i ≤ n, γi is a subalignment between subnet Si and subtrace σiL.

γ1, . . . , γn is the set of subalignments corresponding to σL.

Following the computation of the decomposed fitness metric in step three of Figure 4.7,

the traces in log L are partitioned over C, R, and B, i.e., L = C + R + B. Traces

that are computed under total border agreement are added to the accepted traces multiset

C ∈ B(A∗). Due to the number of border agreement issues or alignment time, traces that

are not computed under total border agreement may be added to the rejected traces multiset

R ∈ B(A∗). Otherwise, traces are added to the to-be-aligned multiset B ∈ B(A∗).Let the

recomposition algorithm be at its kth iteration.

For trace σL, if its corresponding set of subalignments γ1, . . . , γn is not under total

border agreement, the trace is added to multiset R if,

64

• the number of border agreement issues of subalignments γ1, . . . , γn is greater than the

given threshold x ∈ N, i.e., |{a ∈ Ab(D) | ∃1≤i<j≤n π{a}(γi) 6= π{a}(γ
j)}| > x.

• The time spent on aligning a subtrace σiL with a subnet Si is higher than the given

threshold y ∈ Q, e.g. a threshold of y = 1 millisecond per subalignment.

A rejected trace σ′L ∈ {σL ∈ L | R(σL) > 0} is not checked in future iterations.

The criteria for the trace reject conditions can be adjusted to reflect the trade-off be-

tween result quality and computation time. A decomposed fitness interval is computed

if ∃σL∈LR(σL) > 0, i.e., at least one trace is rejected.

At the end of each iteration, termination conditions are examined to decide whether

to proceed to the next iteration of the algorithm. If termination conditions are met, the

decomposed fitness interval fit intD (L, S, δ) is returned. These termination conditions are

defined on the log level. The termination conditions are as follows:

• All log traces have been either aligned under total border agreement or have been re-

jected, i.e., C +R = L.

• Surpassing the overall time threshold z ∈ Q for conformance checking, e.g., if more

than z = 1 minute is needed in the conformance checking process.

• Having aligned a target percentage of traces 0 ≤ v ≤ 1 in the log under total border

agreement, i.e.,
∑
σL∈L

C(σL)∑
σL∈L

L(σL)
≥ v. For example, if more than v = 0.9 = 90% of the

traces in the event log have been aligned under total border agreement.

• The overall fitness interval value 0 ≤ w ≤ 1 is narrow enough, i.e., fitD(L, S, δ) −
fit lowS (D,L, δ) ≤ w. For example, if the interval range is less than w = 0.1.

• The maximum number of iterations m ∈ N is reached, i.e., k ≥ m. For example, if

k = 100 iterations have been done.

As illustrated in Figure 4.7, if the termination conditions are met in step four, the algo-

rithm terminates and returns a decomposed fitness interval value fit intD (L, S, δ) and the

alignments of traces whose decomposed fitness value had been computed under total bor-

der agreement.

65

4.4. Implementation and Evaluation

We have implemented the proposed conformance checking framework, and evaluated

it on both artificial and real-life datasets. Our evaluations demonstrate the following main

contributions:

(i) Recomposing conformance checking enables replays of model-log pairs that were pre-

viously not feasible under the monolithic approach. This increases the applicability of

alignment-based conformance checking.

(ii) Logs associated to large models can take a tremendous amount of time to replay under

the current monolithic approach. For these logs, the proposed recomposition strat-

egy can lead to significant performance gains, speeding up the conformance checking

process. The significant performance gains are present both in noiseless and noisy

scenarios.

(iii) Recomposing conformance checking allows configurable approximations of confor-

mance through interval fitness values. The computation time of interval fitness values

is often shorter than the needed time for exact fitness values under both the monolithic

and recomposition approach. This means that end users can get an idea of the confor-

mance level within shorter times, or whenever there is a hard time constraint.

The section is structured as follows: First, we discuss the implementation details, the

characteristics of the datasets used in the experiments, and the general conditions applied

on the experimentation. Second, the exact fitness computation and the resulting speed-

ups and improvement in the feasability are evaluated in detail, in both noiseless and noisy

scenarios. Third, we illustrate the improvement in the feasibility of the alignment-based

approach for different time-constrained scenarios using the recomposition strategy, and

the effect of the time limits in the interval narrowing. Finally, the applicability of the

approach for real-life scenarios is shown.

66

4.4.1. Implementation, datasets, and evaluations

The presented recomposing conformance checking framework has been implemented

as the Replay with Recomposition plugin in the DecomposedReplayer package of ProM6.9[86].

ProM is an extensible framework that supports a wide variety of Process Mining tech-

niques in the form of plug-ins. It is platform independent as it is implemented in Java,

and can be downloaded free of charge.1 Figure 4.9 shows a dialog box of the plugin at

which the user can configure different values for the parameters introduced in the previous

section, and Figure 4.8 shows the conformance analysis overview for one of the datasets

tested. The implementation allows for the setting of all the parameters defined previously,

and to manually select an initial decomposition for the approach (including the maximal

decomposition if desired).

Figure 4.8. Resulting alignments for deviation diagnosis

1http://www.promtools.org/

http://www.promtools.org/

67

Figure 4.9. Dialog for Replay using Recomposition

Name Source |A| |AND| |XOR| |Loop| |Initial decomposition|
P241 synth 117 13 12 3 12
P246 synth 137 16 12 2 15
P272 synth 201 21 24 4 32
P275 synth 101 13 9 1 13
P284 synth 170 19 18 1 26
P285 synth 140 13 19 1 25
P291 synth 170 19 21 2 25
P297 synth 125 7 18 2 15
P307 synth 193 15 18 2 22
P313 synth 185 9 18 1 14
P347 synth 212 15 23 3 20
P381 synth 111 15 15 3 12
P383 synth 150 29 20 1 16
P430 synth 160 14 19 6 25
P436 synth 230 12 38 9 30

Table 4.1. Characteristics of the synthetic nets

The experiments were conducted including a wide-range of different datasets to repre-

sent the variability of possible scenarios. The datasets used include both synthetically gen-

erated datasets (represented as PX), and two real-life datasets (represented as BPIC201X).

68

The process models of the synthetic datasets were randomly generated using the PLG2

tool [14], and they include large processes containing combinations of all the most com-

mon workflow patterns, such as XOR, AND, loops, or invisible transitions. The model

characteristics are shown in Table 4.1. Logs were generated from the models using simu-

lation, and different operations were applied to emulate different plausible noise scenarios:

no noise, noise by removing events and noise by swapping. This is explained in detail in

Section 4.4.3. The names of the datasets refer to their time of creation and have no rela-

tion to any property of the processes such as the number of activities or arcs. Each log

has 1000 cases. Following the Open Data Science principles, the datasets are open and

publicly available [39]. The experimental evaluation also include two real-life datasets –

based on the real cases BPIC2012 [72] and BPIC2017 [73] – to illustrate the applicability

and benefits of the proposed approach for real cases. Details on the dataset are presented

in Section 4.4.6, and the models and logs used are also publicly available.

The evaluations were performed on a desktop with two processors Intel E5-2470, 8

Cores, 2.3 Ghz, 32 GB RAM, running Linux 2.6.32 and using a 64-bit version of Java 7

where 6GB of RAM was allocated to the Java VM. Note that the approach can be dis-

tributed over a network of computers, but for the reported experiments, we only used

one computing node. Although decomposed parts could be analyzed in parallel on a dis-

tributed system, this has not been implemented yet. Each experiment was conducted 3

times.

Parameters MaxRecomposing

GlobalDurationThreshold 3600 seconds
LocalDurationThreshold 80 seconds
RelativeIntervalThreshold 100%
AbsoluteIntervalThreshold 0
MaxConflictThreshold 100
AlignmentPercentageThreshold 100%
MaxIterationThreshold 200

Table 4.2. MaxRecomposing configuration

69

In the evaluations, we experimented with different configurations adjusting the termi-

nation thresholds. The configuration with all the parameter values adjusted to the maxi-

mum will be identified as the MaxRecomposing configuration as shown in Table 4.2. For

the sake of generality, this is the configuration shown in the results unless it is stated oth-

erwise. Moreover, a Hide and Reduce projection strategy was used from the three net

projection strategies proposed in [84]. Net projection is used to decompose the overall net

into subnets.

As previously explained, the recomposition approach is instantiated with an initial

decomposition. Different strategies can be used to decompose a model into subcompo-

nents, e.g., maximal decomposition [65], SESE-based decomposition [50], passage-based

decomposition [64], or cluster-based decomposition [89]. For the sake of simplicity, the

experiments use a manual decomposition where the decompositions are manually decided

through visual inspection of the model. As shown in Figure 4.10, the partitions follow

closely to a SESE-based decomposition [50]. As such, the initial decomposition is done

without previous knowledge of the locations where there are conformance issues. This is

the default decomposition method unless stated otherwise. The number of subnets at the

initial decomposition of each model is shown in Table 4.1.

4.4.2. Exact fitness in noiseless scenarios

We first experimented with the simplest scenario where the model and log are perfectly

fitting. In this section we present conformance checking results for logs without noise

(“no-noise” logs). The goals of this section are:

• To compare the feasibility of the recomposition approach with the existing mono-

lithic approach.

• To compare and analyze computation times of replays under both approaches.

The synthetic process models and “no-noise” logs generated by the PLG2 tool are used

in the experiments. “No-noise” logs are perfectly fitting with the corresponding models.

70

Figure 4.10. Initial manual decomposition of model P297 where border
transitions are colored in green

This means that all the behaviour observed in the log can be matched to the behaviour

modeled by the model so that the log can be replayed perfectly on the model and the

fitness value equals to 1. We note that this is the least computationally intensive of all

possible scenarios since the alignment algorithm can always match a log trace with a

corresponding model trace as an alignment of solely synchronous moves. This means that

the iterative process of the recomposition approach does not occur for the replays of these

model-log pairs because moves associated with border transitions are always synchronous

moves and in agreement.

There are 15 model-log pairs and for each dataset we conduct two experiments using

the recomposition approach and the monolithic approach respectively. For each experi-

ment, a 1 hour time limit is set such that replays which are still running after the time limit

are stopped and deemed infeasible. Other than the replay feasibility, fitness, time, average

speedup, and median speedup, we also report the number of activities (|A|) in the models,

71

Dataset Monolithic Recomposition

Name Source Noise |A| |σ| |L| |{σ ∈ L}| Feasible Fitness Time (s) Feasible Fitness Time (s) Speedup ˜Speedup

P241-L36 synth no 117 95 1000 1000 3 1 398 3 1 21 18.6 14.6
P246-L9 synth no 137 77 1000 1000 3 1 250 3 1 23 11.1 8.8
P272-L30 synth no 201 101 1000 1000 3 1 645 3 1 26 24.4 19.3
P275-L0 synth no 101 77 1000 967 3 1 167 3 1 23 7.2 6.0
P284-L33 synth no 170 102 1000 570 3 1 891 3 1 30 29.6 24.3
P285-L12 synth no 140 46 1000 967 3 1 103 3 1 22 4.6 5.1
P291-L21 synth no 170 90 1000 1000 3 1 904 3 1 26 35.1 41.5
P297-L6 synth no 125 59 1000 1000 3 1 236 3 1 22 10.6 12.3
P307-L27 synth no 193 22 1000 572 3 1 57 3 1 23 2.5 2.7
P313-L24 synth no 185 20 1000 480 3 1 68 3 1 23 3.0 3.4
P347-L39 synth no 212 60 1000 1000 3 1 280 3 1 26 10.6 12.1
P381-L3 synth no 111 73 1000 978 3 1 95 3 1 26 3.7 5.2
P383-L15 synth no 150 108 1000 631 3 1 193 3 1 23 8.3 9.3
P430-L18 synth no 160 104 1000 1000 3 1 291 3 1 24 12.1 13.7
P436-L45 synth no 230 35 1000 621 3 1 109 3 1 24 4.5 4.9

Table 4.3. Replay feasibility and computation times for synthetic logs
without noise

the number of log traces (|L|), the number of trace variants (|{σ ∈ L}|), and the average

trace lengths (σ) of the logs.

1

10

100

1000

Ti
m

e
 (

s)

Monolithic Recomposition

1

10

100

1000

TI
M

E
(S

)

DATASETS

Comparison of computation times - no noise
Monolithic Recomposition

Figure 4.11. Feasible computation times for synthetic logs without noise

The results are presented in Table 4.3. We first note that the results from feasible re-

plays are, as expected, all equal to 1, i.e., both approaches reported the conformance of the

datasets correctly. Replay is feasible for all datasets under both approaches. Figure 4.11

72

compares the computation times of the monolithic replays with the computation times of

the recomposing replays on a logarithmic scale. The figure shows that there is a clear per-

formance gain in time across all datasets under the recomposition approach. Furthermore,

the total computation times under the recomposition approach have much lower variability

than the monolithic approach. Computation times range from 21s to 30s under the recom-

position approach while they range from 57s to 904s under the monolithic approach. The

stability in computation time under the recomposition approach allows its users to be more

certain about the required execution time.

00

02

04

06

08

10

12

14

Sp
e

e
d

 u
p

Datasets

18.6

11.1

24.4

7.2

29.6

4.6

35.1

10.6

2.5
3.0

10.6

3.7

8.3

12.1

4.5

1.0

10.0

100.0

SP
EE

D
U

P
 F

A
C

TO
R

DATASETS

Recomposition speedup factors - no noise

Figure 4.12. Speedup factors from recomposition approach over mono-
lithic approach for synthetic logs without noise

The speedup factor per dataset is presented in Figure 4.12 where we see that it ranges

from 2.5× to 35.1×. A 2.0× speedup factor means that the recomposition approach is

twice as fast as the monolithic approach and a 10.0× speedup factor means that the re-

composition approach is ten times faster.

Furthermore, speedup factors with respect to the average trace length of the log are

shown in Figure 4.13. We can observe that datasets with longer average trace lengths

generally have greater speedup factors. While there are differences between the average

73

18.6

11.1

24.4

7.2

29.6

4.6

35.1

10.6

2.5
3.0

10.6

3.7

8.3

12.1

4.5

01

10

100

0 20 40 60 80 100 120

SP
EE

D
U

P
 F

A
C

TO
R

AVGERAGE TRACE LENGTH

Comparison of average trace lengths
and speedup factors - no noise

Figure 4.13. Speedup from recomposition approach in relation to average
trace length for synthetic logs without noise

speedups and the median speedups, they do not significantly affect the presented conclu-

sions.

In terms of feasibility, both the monolithic and recomposition approach have the same

performance as they were able to complete all replays. However, the results show a sig-

nificant improvement in computation time using the recomposition approach. As shown

in [50], the speedup results from the decomposition of the alignment problem itself and

the trace groupings formed by the decomposition. Smaller components usually take sig-

nificantly less time to replay than large components such that replaying several subcom-

ponents of a decomposition is faster than replaying the original component. Furthermore,

distinct traces can share identical subsections. Trace groupings from decomposition can

be these subsections such that the previously distinct traces become trace groupings where

some are identical. Since alignments are not recomputed for the same trace, the number

of alignment operations can be reduced.

74

In real-life cases, it is likely that the observed and modeled behaviour are not perfectly

fitting. Therefore, further experiments are conducted using logs with noise, i.e., the log is

not perfectly fitting with the model.

4.4.3. Exact fitness in noisy scenarios

In this section, we present conformance checking results for logs with noise. This

means that there are discrepancies between the modeled and observed behaviour such that

the fitness value is less than 1. Similar to the previous section, the goals of this section are:

• To compare the feasibility of the proposed recomposition approach with the existing

monolithic approach.

• To compare and analyze computation times of replays under both approaches.

For the sake of comparison, the processes and models are the same as the previous

section, but noise is included in the logs at their generation. To test the performance of

the two approaches in detecting different types of deviations, we experimented with two

noise types by including them into two separate logs. This means that each model is

associated with two “noisy” logs. Each noise type mimics a specific scenario where there

is a mismatch between modeled and observed behaviour. Alignments between log traces

and net are computed on synchronous product nets which combine the two; different noise

characteristics in the log produce different log traces which can have different impacts on

the performance of alignment computation. The characteristics of the noise types and the

process of generating these “noisy” logs can be summarized as follows:

• MissingTrace noise is where a trace has a probability of missing a part of its head, tail

and/or episode. The noise is included into the log by log generation using the PLG2

tool. The specific configuration used for the log generation is shown in Table 4.4 (we

refer to [14] for a detailed explanation of each parameter).

• Swapped noise is where two events in a trace can be inverted. This noise type mimics

the scenario where the process has a specific location where deviation always occurs.

75

We generate a log with Swapped noise by swapping two activities at a specific location

in the model before generating a noiseless log using the modified model. The point

of deviation is randomly chosen but it is ensured that cases always pass through this

location.

Parameters MissingTrace

Number of traces 1000
Integer data object error probability 0%
Integer data object error delta 0
String data object error probability 0%
Change activity name probability 0%
Trace missing head probability 0.1%
Head max size 2
Trace missing tail probability 0.1%
Tail max size 2
Trace missing episode probability 0.1%
Episode max size 2
Perturbed event order probability 0%
Doubled event probability 0%
Alien event probability 0%

Table 4.4. PLG2 log generation configurations for MissingTrace dataset

There are 30 model-log pairs and for each dataset we conduct two experiments using

the recomposition approach and the monolithic approach. At each experiment, a 1 hour

time limit is set such that replays which are still running after the time limit are stopped and

deemed infeasible. Other than the replay feasibility, fitness, time, average speedup, median

speedup, and the number of recompositions, we also report the number of transitions in

the models, the number of unique log traces, and the average trace lengths of the logs.

Table 4.5 presents the results. On the whole, monolithic replay was not feasible for 1

model-log pair (P284-L48) due to the 1 hour time limit. At the time column, the infeasible

replay is marked with “> 3600”.

Figure 4.14 compares the computation times of monolithic replays and recomposing

replays for logs with MissingTrace noise and Swapped noise. Computation times are

76

Dataset Monolithic Recomposition

Name Source Noise |A| |σ| |L| |{σ ∈ L}| Feasible Fitness Time (s) Feasible Fitness Time (s) Recompose Speedup ˜Speedup

P241-L37 synth miss 117 94 1000 1000 3 0.999 395 3 0.999 34 5 11.5 9.8
P241-L50 synth swap 117 95 1000 1000 3 0.989 374 3 0.989 26 1 14.4 11.7
P246-L10 synth miss 137 77 1000 1000 3 0.998 265 3 0.998 31 2 8.6 6.9
P246-L49 synth swap 137 77 1000 1000 3 0.987 257 3 0.987 28 1 9.1 7.6
P272-L31 synth miss 201 101 1000 1000 3 0.999 685 3 0.999 81 15 8.4 8.5
P272-L62 synth swap 201 101 1000 1000 3 0.989 626 3 0.989 40 1 15.6 13.8
P275-L1 synth miss 101 73 1000 984 3 0.998 168 3 0.998 36 9 4.6 3.9
P275-L52 synth swap 101 74 1000 965 3 0.984 1052 3 0.984 39 1 26.6 21.6
P284-L34 synth miss 170 106 1000 708 3 0.998 1147 3 0.998 61 10 18.7 23.1
P284-L48 synth swap 170 106 1000 589 3 > 3600 3 0.997 42 1 > 85.5 > 85.9
P285-L13 synth miss 140 46 1000 978 3 0.997 112 3 0.997 32 6 3.5 3.9
P285-L56 synth swap 140 48 1000 973 3 0.947 202 3 0.947 29 0 7.0 8.0
P291-L22 synth miss 170 90 1000 1000 3 0.999 935 3 0.999 46 6 20.3 21.5
P291-L51 synth swap 170 91 1000 1000 3 0.989 913 3 0.989 35 1 25.9 30.1
P297-L7 synth miss 125 59 1000 1000 3 0.998 228 3 0.998 31 4 7.5 7.7
P297-L55 synth swap 125 60 1000 1000 3 0.982 241 3 0.982 30 1 8.0 9.2
P307-L28 synth miss 193 22 1000 660 3 0.994 65 3 0.994 52 11 1.3 1.4
P307-L53 synth swap 193 23 1000 581 3 0.996 66 3 0.996 27 0 2.4 2.3
P313-L25 synth miss 185 20 1000 534 3 0.993 71 3 0.993 29 1 2.4 2.6
P313-L59 synth swap 185 20 1000 465 3 0.986 67 3 0.986 28 0 2.4 2.5
P347-L40 synth miss 212 60 1000 1000 3 0.998 298 3 0.998 54 9 5.5 6.2
P347-L58 synth swap 212 59 1000 1000 3 0.996 292 3 0.996 40 1 7.3 8.5
P381-L4 synth miss 111 73 1000 983 3 0.998 112 3 0.998 28 1 3.9 4.6
P381-L63 synth swap 111 74 1000 973 3 0.985 90 3 0.985 28 1 3.2 3.4
P383-L16 synth miss 150 106 1000 737 3 0.999 224 3 0.999 31 2 7.1 8.4
P383-L61 synth swap 150 111 1000 632 3 0.979 795 3 0.979 43 1 18.7 19.8
P430-L19 synth miss 160 104 1000 1000 3 0.999 293 3 0.999 46 10 6.4 7.2
P430-L57 synth swap 160 104 1000 1000 3 0.997 306 3 0.997 30 0 10.0 11.2
P436-L46 synth miss 230 35 1000 735 3 0.996 120 3 0.996 68 12 1.8 2.0
P436-L54 synth swap 230 35 1000 633 3 0.982 107 3 0.982 35 1 3.0 3.3

Table 4.5. Replay feasibility and computation times for synthetic logs with
MissingTrace and Swapped noise

1

10

100

1000

10000

Ti
m

e
 (

s)

Monolithic

Recomposition

1

10

100

1000

10000

TI
M

E
(S

)

DATASETS

Comparison of computation times -
MissingTrace noise

Monolithic Recomposition

(a) MissingTrace noise

1

10

100

1000

10000

Ti
m

e
 (

s)

Monolithic

Recomposition

1

10

100

1000

10000

TI
M

E
(S

)

DATASETS

Comparison of computation times -
Swapped noise

Monolithic Recomposition

(b) Swapped noise

Figure 4.14. Feasible computation times for synthetic logs (infeasible re-
plays are shown using a dashed pattern instead of a solid fill)

shown on a logarithmic scale in both figures. There are clear performance gains from

adopting the recomposition approach.

77

00

05

10

15

20

25

Sp
e

e
d

 u
p

Datasets

11.5

8.6 8.4

4.6

18.7

3.5

20.3

7.5

1.3

2.4

5.5

3.9

7.1
6.4

1.8

1.0

10.0

100.0

SP
EE

D
U

P
 F

A
C

TO
R

DATASETS

Recomposition speed factors -
MissingTrace noise

(a) MissingTrace noise
01

02

03

04

05

06

07

08

09

10

Sp
e

e
d

 u
p

14.4

9.1

15.6

26.6

>85.5

7.0

25.9

8.0

2.4 2.4

7.3

3.2

18.7

10.0

3.0

1.0

10.0

100.0

SP
EE

D
U

P
 F

A
C

TO
R

DATASETS

Recomposition speedup factors - Swapped noise

(b) Swapped noise

Figure 4.15. Speedup factors from recomposition approach over mono-
lithic approach for synthetic logs (infeasible replays are shown using a
dashed pattern instead of a solid fill)

Figure 4.15 shows the speedup factors for logs with MissingTrace noise and the speedups

for logs with Swapped noise. As previously explained, a 2.0× speedup means that the re-

composition approach is twice as fast as the monolithic approach and a 10.0× speedup

means that it is 10× faster. We observe that speedups from the recomposition approach

range from 1.3× to at least 85.5×. For the particular model-log pair P275-L52, com-

putation time was reduced by a factor 26.6 from 17.5 minutes (1052 seconds) under the

monolithic approach to 39 seconds under the recomposition approach.

Speedup factors in relation to the average trace length of logs with MissingTrace noise

and Swapped noise are shown in Figure 4.16. We can observe that in general logs with

longer average trace lengths have greater speedup factors.

In terms of feasibility, the recomposition approach outperforms the monolithic ap-

proach in replaying logs with MissingTrace or Swapped noise as the monolithic approach

was infeasible for 1 model-log pair while the recomposition approach was feasible for all

datasets. More importantly, for these model-log pairs, the recomposition approach was

able to compute their exact fitness values in very little time (less than 2 minutes).

78

11.5

8.6 8.4

4.6

18.7

3.5

20.3

7.5

1.3

2.4

5.5

3.9

7.1
6.4

1.8

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

0 20 40 60 80 100 120

Sp
e

e
d

 u
p

Avgerage Trace Length

11.5

8.6 8.4

4.6

18.7

3.5

20.3

7.5

1.3

2.4

5.5

3.9

7.1
6.4

1.8

1.0

10.0

100.0

0 20 40 60 80 100 120

SP
EE

D
U

P
 F

A
C

TO
R

AVERAGE TRACE LENGTH

Comparison of average trace lengths and speedup
factors - MissingTrace noise

(a) MissingTrace noise

Datasets

14.4

9.1

15.6

26.6

85.5

7.0

25.9

8.0

2.42.4

7.3

3.2

18.7

10.0

3.0
00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990

0 20 40 60 80 100 120

Sp
e

e
d

 u
p

14.4

9.1

15.6

26.6

>85.5

7.0

25.9

8.0

2.42.4

7.3

3.2

18.7

10.0

3.0

1.0

10.0

100.0

0 20 40 60 80 100 120

SP
EE

D
U

P
 F

A
C

TO
R

AVERAGE TRACE LENGTH

Comparison of average trace lengths and speedup
factors - Swapped noise

(b) Swapped noise

Figure 4.16. Speedup from recomposition approach in relation to average
trace length for synthethic logs

The positive relationship between average trace lengths and speedups reflects the ad-

vantage of the recomposition approach. Logs with long average trace lengths tend to

be associated with models that are more complex and therefore more challenging when

computing alignments. As previously explained, the decomposition of a complex compo-

nent into several decomposed subcomponents reduces replay time significantly. However,

current techniques only guarantee that conformance results from decomposed subcompo-

nents can be aggregated to an overall result if the model and log are perfectly fitting. By

formalizing border activities and border agreement, we relax the strict requirement for

perfect fitness and allow the aggregation of results from decomposed subcomponents even

when there are mismatches between the model and log. This means that the recomposition

approach gets the performance gains from decomposition and the resulting exact fitness

result would correspond to the fitness value that one would get using the monolithic ap-

proach. The increasing speedups as average trace length increases demonstrate the said

performance gains from decomposition despite the presence of noise in the log. This is

further supported by observing the minimal effect that the average trace length has on the

computation time of the recomposing replays. Analyzing the number of recompositions,

79

we note that the larger and more complex datasets require more recompositions. For ex-

ample, P272-L31 required 15 recompositions while P241-L37 required 5 recompositions.

Also, the noise type has a significant influence on the number of recompositions regard-

less of the model characteristics. Experiments on dataset with missing noise never require

more than one recomposition while experiments on dataset with missing noise can require

a maximum of 15 recompositions. These two points are further examined and explained in

Section 4.4.4. While there are differences between the average speedups and the median

speedups, they do not significantly affect the presented conclusions.

In conclusion, these experiments empirically show the potential performance gains of

the recomposition approach. As the results illustrate, this new approach not only increases

replay feasibility, but also results in significant performance gains for datasets that are

feasible under both recomposition and monolithic approaches.

4.4.4. Bottlenecks for the monolithic and recomposition approach

One principal motivation of investigating decomposition techniques for alignment-

based conformance checking is to improve the alignment computation time for large and

complex processes. It has been previously shown that by decomposing the conformance

problem into parts, this bottleneck can be alleviated significantly [50]. This section eval-

uates the bottlenecks of both approaches by analyzing the computation times of all the

previous experiments. The computation time refers to the time required for fitness compu-

tation and corresponds to the reported times in Table 4.3 and Table 4.5. Specifically, there

are three main goals in this section:

• Understand the bottleneck of the monolithic approach by analyzing the percentage of

total computation time spent in alignment computation.

• Understand the bottleneck of the recomposition approach by analyzing the percentage

of total computation time spent in alignment computation and additional details, e.g.,

the number of recompositions.

• Compare the bottleneck analysis of both approaches.

80

The fitness computation between a particular log trace and net requires several other

steps such as building a synchronous product net, and constructing the alignments [4].

However, since the majority of the computation time is in the computation of the align-

ment via the replay of the synchronous product net, previous works often do not always

distinguish between the different sources of the total computation time.

Figure 4.17. Percentage of time spent in alignment computation in relation
to total computation time

Figure 4.17 compares the total computation time with the percentage of time spent in

replay for all the conducted experiments. It shows the minimum replay percentage as 81%

for P313-L59 and the maximum replay percentage of feasible monolithic replays as 99%

for P284-L34. The shape of the scatter plot illustrates that the percentage of time spent

in replay quickly approximates to 100% as total computation time grows. This confirms

that the bottleneck for the monolithic approach is at the replay. Also, this bottleneck exists

regardless of the noise type in the data. Next, a similar analysis is conducted for the

recomposition approach with several extensions to consider the additional components in

the framework.

81

Figure 4.18. Total computation time in relation to number of recomposi-
tions for synthetic logs at exact experiments under the recomposition ap-
proach

As illustrated by the overview of the recomposition approach in Figure 4.1, if there is

no total border agreement between two subalignments, the recomposition approach under-

takes a recomposition to merge the corresponding subcomponents before recomputing the

alignment in the next iteration. Figure 4.18 compares the number of recompositions with

the total computation time for the “exact experiments” under the recomposition approach.

In spite of the variances in total computation time at particular recomposition values, it is

quite clear that the total computation time increases with the number of recompositions.

It is also evident that results of different noise types show different characteristics. We

first note that none of the “no-noise” experiments required any recompositions. This is

because the subalignments only have synchronous moves so that total border agreement

is guaranteed. Contrastingly, this is not the case for the experiments on noisy datasets.

For the “swapped” experiments, a subset of the experiments is able to compute the exact

fitness value without any recompositions and the rest required exactly one recomposition.

82

The maximum of one recomposition can be attributed to the fact that only one pair of ac-

tivities is swapped to create noise during the data generation. This means that if the net is

decomposed on the swapped activities then border agreement issue is bound to occur. This

is because the subcomponents which have only one of the activities would not be able to

detect the activity swap. Since the nets are not maximally decomposed in the experiments,

all subcomponents are comprised of more than two unique visible transitions. In the worst

case, decomposition would occur on one of the two swapped activities. This means that

border agreement issues are immediately resolved when the subcomponents are merged

on the decomposed activity. The variances in total computation times for particular re-

composition values can be attributed to the underlying data complexity. For example,

Figure 4.18 shows that there is a notable variance for the experiments which underwent

one recomposition. The minimum time is from P241-L50 and the maximum time is from

P383-L61. Referring to Table 4.1, we find that P241 has one of the smallest and simplest

structure with 117 activities, 13 ANDs, and 12 XORs. In contrast, P383 has one of the

largest and most complex structure with 150 activities, 29 ANDs, and 20 XORs. For the

“missing” experiments, the number of recompositions ranges from 1 to 15. Furthermore,

they particularly illustrate the direct positive correlation between the two factors.

While it is clear that the total computation time should increase with the number of re-

compositions, we would like to know whether the proportion of total time spent in replay

remains the same as the number of recompositions increases. Figure 4.19 compares the

total computation time with the percentage of time spent in replay at the exact experiments

under the recomposition approach. Firstly, the figure suggests that the percentage of time

spent in replay decreases as total computation time increases. This is a surprising result

as it contrasts the previous analysis on the monolithic approach where the percentage of

time spent in replay increases with total computation time. Furthermore, the percentage

of time spent in replay never exceeds 60% under the recomposition approach whereas

the percentage of time spent in replay never falls below 80% under the monolithic ap-

proach. This suggests that under the recomposition approach, as computation complexity

increases, replay becomes less of a contributing factor to computation time.

83

Figure 4.19. Total computation time in relation with to the percentage of
time spent in replay for synthetic logs at exact experiments under the re-
composition approach

One possible culprit would be the recomposition component of the framework which

can be associated to the number of recompositions. Figure 4.20 shows the percentage

of time spent in replay in relation to the number of recompositions. Indeed, the figure

resembles Figure 4.19 to show that replay has less of an impact on performance as com-

plexity increases. Recall that Figure 4.18 suggested that the number of recompositions

and total computation time are positively correlated. Similar to before, there can be vari-

ances in the percentage of time spent in replay at particular recomposition values. This

can be explained by the number of subnets for each dataset. For example, for experi-

ments that underwent one recomposition, the maximum time percentage is of P275-L52

and the minimum time percentage is of P272-L62. The P275 net has 13 subnets in its

initial decomposition and P272 has 32 subnets in its initial decomposition. Having more

subnets means more overhead before and after the alignment computation. However, this

can likely be alleviated with the use of more computer nodes.

84

Figure 4.20. Percentage of time spent in replay in relation to number of
recompositions for synthetic logs at exact experiments under the recompo-
sition approach

Continuing with this line of reasoning, the low percentage of time spent in replay also

prompts investigation into the number of remaining problematic traces that are taken to

the next iteration by a recomposition. Figure 4.21 shows the number of remaining trace

variants in relation to the number of recompositions for the experiments on the datasets

with “missing” noise. We only focus on these experiments because the other experiments

were able to align all traces in less than two recompositions. The figure illustrates that

for all the experiments, less than 100 trace variants remains to be aligned after the first

recomposition. This explains the previous findings which suggested that the percentage of

time spent in replay decreases with the number of recompositions. Moreover, it implies

that the bottleneck to computing the exact fitness value under the recomposition approach

is in having the appropriate recomposition that will permit total border agreement for the

remaining traces.

85

Figure 4.21. Number of remaining trace variants in relation to number of
recompositions for the experiments on datasets with “missing” noise

Overall, the analysis on the different aspects of performance leads to several insights.

First, we confirm that the bottleneck for the monolithic approach is at the alignment com-

putation. Next, we find that the recomposition approach is able to partially shift the re-

sponsibility to the recomposition component. By decomposing the overall component,

replay is only performed on small subcomponents even for large and complex processes.

This prevents state space explosions during the alignment computation and keeps replay

time in check for each subcomponent. It also means that the necessary number of recom-

positions have a large impact on performance. Moreover, we find that a small number

of log traces may require several recompositions before yielding a set of subalignments

that fulfills total border agreement. This means that the bottleneck to computing the ex-

act fitness value is in finding the appropriate recomposition that will permit total border

agreement. Since the experiments have been performed on only one computer node, dis-

tributing the computation across more nodes is likely to lead to further performance gains.

The possibility of shifting the bottleneck from replay to recomposition motivates future

86

work to investigate decomposition and recomposition strategies as well as different de-

composed replay approaches. However, we once again emphasize that this shift is partial

because the capacity to decompose a system net into small subnets is restricted by whether

if the net structure can be decomposed.

4.4.5. Feasibility and interval narrowing time constrained scenarios

One important contribution of the recomposition approach is to enable configurable

approximations of the overall conformance between the model and log. This means that

it would not be necessary to align all the traces in the log with the model. As previously

mentioned, fitness approximations by fitness interval values can further reduce compu-

tation times and alleviate replay feasibility problems with specific log traces or sections

of the model. As time is often the principal concern for alignment-based conformance

checking, this section focuses on the effects of time as a hard constraint on the monolithic

and recomposition approaches. There are two main goals in this section:

• To show how to compare the feasibility of the recomposition approach using the mono-

lithic approach. We identify cases where the recomposition approach can provide either

an exact or an interval fitness value while monolithic replay is infeasible.

• To analyze the effects on time upon the narrowing.

For the sake of comparison, the experiments are conducted using the same synthetic

models and generated logs from the experiments of the previous section. As explained,

each model has two associated “noisy” logs; the no-noise logs are excluded from these

experiments. For each model-log pair, we conduct three experiments, each constrained by

a different time limit on the overall alignment time. This is done by varying the value of

the GlobalDurationThreshold parameter. Experiments are conducted with the GlobalDu-

rationThreshold values of 1, 5 and 10 minutes.

For the results, in the case of the monolithic approach, an exact fitness value is pro-

vided if replay is feasible and it is marked with a cross otherwise. For the recomposition

87

approach, since it defaults to approximation if an exact value cannot be computed, either

an exact fitness value or a fitness interval is given.

Dataset Time constraint on overall alignment time (min)
1’ 5’ 10’

Name |A| |σ| |L| |{σ ∈ L}| Monolithic Recomposition Monolithic Recomposition Monolithic Recomposition

P241-L37 117 94 1000 1000 7 0.999 7 0.999 0.999 0.999
P241-L50 117 95 1000 1000 7 0.989 7 0.989 0.989 0.989
P246-L10 137 77 1000 1000 7 0.998 0.998 0.998 0.998 0.998
P246-L49 137 77 1000 1000 7 0.987 0.987 0.987 0.987 0.987
P272-L31 201 101 1000 1000 7 0.972-0.999 7 0.999 7 0.999
P272-L62 201 101 1000 1000 7 0.989 7 0.989 7 0.989
P275-L1 101 73 1000 984 7 0.998 0.998 0.998 0.998 0.998
P275-L52 101 74 1000 965 7 0.984 7 0.984 7 0.984
P284-L34 170 106 1000 708 7 0.990-0.998 7 0.998 7 0.998
P284-L48 170 106 1000 589 7 0.997 7 0.997 7 0.997
P285-L13 140 46 1000 978 7 0.997 0.997 0.997 0.997 0.997
P285-L56 140 48 1000 973 7 0.947 0.947 0.947 0.947 0.947
P291-L22 170 90 1000 1000 7 0.999 7 0.999 7 0.999
P291-L51 170 91 1000 1000 7 0.989 7 0.989 7 0.989
P297-L7 125 59 1000 1000 7 0.998 0.998 0.998 0.998 0.998
P297-L55 125 60 1000 1000 7 0.982 0.982 0.982 0.982 0.982
P307-L28 193 22 1000 660 7 0.994 0.994 0.994 0.994 0.994
P307-L53 193 23 1000 581 7 0.996 0.996 0.996 0.996 0.996
P313-L25 185 20 1000 534 7 0.993 0.993 0.993 0.993 0.993
P313-L59 185 20 1000 465 7 0.986 0.986 0.986 0.986 0.986
P347-L40 212 60 1000 1000 7 0.998 0.998 0.998 0.998 0.998
P347-L58 212 59 1000 1000 7 0.996 0.996 0.996 0.996 0.996
P381-L4 111 73 1000 983 7 0.998 0.998 0.998 0.998 0.998
P381-L63 111 74 1000 973 7 0.985 0.985 0.985 0.985 0.985
P383-L16 150 106 1000 737 7 0.999 0.999 0.999 0.999 0.999
P383-L61 150 111 1000 632 7 0.979 7 0.979 7 0.979
P430-L19 160 104 1000 1000 7 0.999 0.999 0.999 0.999 0.999
P430-L57 160 104 1000 1000 7 0.997 7 0.997 0.997 0.997
P436-L46 230 35 1000 735 7 0.983-0.996 0.996 0.996 0.995 0.996
P436-L54 230 35 1000 633 7 0.982 0.982 0.982 0.982 0.982

Table 4.6. Time-constrained conformance analysis on synthetic logs with
noise of dataset using manual initial decomposition

Table 4.6 shows the results of the experiments. For the experiments with a 1 minute

time constraint, monolithic replay is not feasible for any dataset. The recomposition ap-

proach can compute an exact fitness value for 27 model-log pairs and fitness interval val-

ues for the remaining 3 model-log pairs. For the fitness interval results, the interval range

varies from 0.008 (P284-L34) to 0.027 (P272-L31). For the experiments with a 5 minute

time constraint, monolithic replay is feasible for 19 model-log pairs. The recomposition

approach can compute an exact fitness value for all 30 model-log pairs. For the exper-

iments with a 10 minute time constraint, monolithic replay is feasible for 22 model-log

88

pairs. The recomposition approach can compute an exact fitness value for all 30 model-log

pairs. Previous experiments (cf. Section 4.4.3) have shown that the replay of 1 model-log

pair cannot be finished within one hour under the monolithic approach.

In terms of feasibility, the results show that the recomposition approach can give an

exact fitness value for more model-log pairs than the monolithic approach under all three

time constraints. For the shortest 1 minute constraint, the recomposition approach can

give an exact fitness value for almost all of the datasets while monolithic replay was not

feasible for any dataset. Other than feasibility, the fitness interval results computed by

the recomposition approach show that the exact fitness values (as shown in Table 4.5) are

always within the interval.

In conclusion, the recomposition approach outperforms the monolithic approach in

feasibility when there is a constraint on alignment time. More importantly, the recompo-

sition approach can always give a fitness result to reflect the conformance level between

the model and log whereas the monolithic approach can only give a result if replay can be

fully completed.

Having compared the performance of the recomposition approach with the existing

monolithic approach for different process characteristics and noise scenario, we show that

the recomposition approach can be applied to real-life datasets.

4.4.6. Recomposed fitness in real-life cases

Dataset Monolithic Recomposition

Name |A| |σ| |L| |{σ ∈ L}| |AND| |XOR| |Loop| Feasible Fitness Time (s) Feasible Fitness Time (s) Steps Speedup ˜Speedup

BPIC2012 36 20 13087 4366 4 19 7 7 > 3600 3 0.647-0.648 1761 11 > 2.0 > 2.0
BPIC2017 40 24 31509 7478 1 13 3 3 0.992 71 3 0.992 78 9 (1.1) (1.1)

Table 4.7. Replay feasibility and computation times for BPIC2012

In this section we apply the monolithic approach and the recomposition approach on

two real-life datasets. This is to demonstrate that the recomposition approach can be

applied to real-life datasets and to compare the performances of both approaches. Notice

89

Figure 4.22. Handmade model for the BPIC2012 real-life dataset projected
with the deviation issues between the model and log

that the final goal of any conformance approach is to gain insight on the conformance

problems. Therefore, we perform a simple analysis using the conformance results from

replay to showcase the applicability of alignment-based conformance checking for the

analysis of deviations.

We used the BPIC2012 real-life dataset [72] adopted in 2012 for the BPI (Busines

Process Intelligence) Challenge. This dataset is taken from a Dutch Financial Institute

and contains 13,087 cases and 36 event classes. Apart from some anonymization, the log

contains all data as it came from the financial institute.

The process represented in the event log is an application process for a personal loan

or overdraft within a global financing organization. The event log is a merger of three

intertwined sub processes such that the first letter of each task can be used to identify the

subprocess that the task originated from.

90

Since no explicit process model is provided with the dataset, a model is constructed

with consideration to the task semantics and the three sub processes as illustrated in Fig-

ure 4.22 (please ignore the color bars at the bottom of transitions and the color of transi-

tions and places for now).

For the experiments, a 1 hour time limit is set such that replays which are still running

after the time limit are stopped and deemed infeasible. The recomposition approach is

initiated with a maximal decomposition of the model and log. A maximal decomposition

is a valid decomposition where the subcomponents are as small as possible. We report the

time and fitness of replay under both approaches.

As shown in Table 4.7, we find that the monolithic approach is not feasible for BPIC2012

under the 1 hour time limit. In contrast, the recomposition approach was able to provide

a fitness interval value with a range of less than 0.001 under 30 minutes (1800 seconds).

The results also show that an interval value was given rather than an exact value because

1 trace was rejected during the replay process given the exclusion parameters defined (cf.

Section 4.3). The fitness interval of [0.647−0.648] indicates there are considerable devia-

tions between the modeled behavior and observed behavior. Further analysis can be done

by visualizing the conformance results.

Conformance results can be visualized through alignments as shown in Figure 4.8 or

by projecting the deviation issues onto the corresponding places and transitions as shown

in Figure 4.22. Transitions are augmented with two additional information. Firstly, the

color of the visible transitions indicates the execution frequency of a particular transition

in the log. A lighter color means that the transition is rarely executed and a darker color

means that the transition is often executed. The color at the bottom of transitions indicates

the distribution between synchronous moves (light green) and model moves (dark pink).

A color bar with a high green portion means that there is little conformance issue with the

corresponding transition and a low green portion means there is severe conformance issue

with the transition. Transitions without color bars do not have any conformance issues.

91

Log moves are shown by marking the places where log moves occurred. The occurrence

frequency is indicated by the size of the places.

Figure 4.23. Conformance diagnosis on transition O ACCEPTED

Figure 4.24. Alignment for case 173733 with model move on transition
O ACCEPTED (highlighted in white)

We first observe that out of the three subprocesses, subprocess A which relates to

the application itself has minimal conformance issues. Since the application is submit-

ted through the webpage, it makes sense that the observed behavior can be easily and

accurately described by a corresponding model. Contrastingly, both subprocess O which

relates to the offer of the application and subprocess W which relates to the work items

belonging to the application have major conformance issues. For simplicity, we only

focus on subprocess O. There are log moves relating to all parts of the subprocess and

there is a high frequency of model moves relating to the transitions: O SELECTED,

O SENT, O CREATED and O ACCEPTED. For example, figure 4.23 shows the ratio be-

tween synchronous moves (at 2243 cases) and model moves (at 10039 cases) for transition

O ACCEPTED. This means that 10039 cases did not execute transition O ACCEPTED

even though they were supposed to according to the model. This can be confirmed

92

by inspecting the alignments of particular cases in the alignment visualization. Fig-

ure 4.24 shows the alignment for case 173733 which indicates a model move for transition

O ACCEPTED. As such, there is a discrepancy between the reality and the model sug-

gested by the task semantics regarding to how an offer is processed. The identification of

this conformance issue may prompt further investigations with related stakeholders such

as the employees who handled the deviating cases.

In the previous example, replay is not feasible under the monolithic approach. Here,

we further showcase an example using a real-life dataset where replay is feasible under

both approaches.

We used the BPIC2017 real-life dataset [73] adopted in 2017 for the BPI (Business

Process Intelligence) Challenge. This dataset is taken from the same Dutch Financial

Institute and contains 31,509 cases and 66 event classes. The data contains all the appli-

cations filed through the online system in 2016 and their subsequent events until the 1st

of February 2017, 15:11. Note that the data is provided provided by the same company of

the BPIC2012 dataset but has underwent several changes and improvements to the system.

One important difference is that now the system can support multiple offers for a single

application.

In spite of the changes, the process is still a merger of three intertwined subprocesses

such that the first letter of each task can be used to identify the subprocess that the task

originated from. To ensure the replay feasibility of both approaches, the event log is

filtered to keep only events with a schedule, start, and complete lifecycle attribute value.

The filtered log has 40 event classes.

Since no explicit process model is provided with the dataset, a model is discovered

using the inductive miner as illustrated in Figure 4.25 (please ignore the color bars at the

bottom of transitions and the color of transitions and places for now).

93

Figure 4.25. Discovered model for the BPIC2017 real-life dataset pro-
jected with the deviation issues between the model and log

Figure 4.26. Alignment for case Application 931736025 with a model
move on transition A Cancelled+complete (highlighted in white)

The setup for the experiments is the same as the previous real-life dataset example with

the same initial decomposition strategy for the recomposition approach and time limit for

both approaches.

As shown in Table 4.7, replay was feasible under both approaches. Both approaches

finished computing the model fitness in less than 1.5 minutes with the monolithic approach

being 7 seconds faster on average so that there is an average (and median) speedup of 1.1

under the monolithic approach. This shows that even for simpler models, the recomposi-

tion approach is only slightly slower despite the additional recomposition procedures.

Both approaches yielded a fitness value of 0.992 which shows that the discovered

model can describe nearly all the observed behavior in the log. Other than having the

same fitness value, the computed alignments under both approaches are composed of the

same alignment moves. This means that both approaches lead to the same enriched model

in Figure 4.25 when the alignments are projected onto the model. Furthermore, examining

94

most of the individual trace alignments finds that the alignment for the same case to be the

same under both approaches. For example, Figure 4.26 shows the alignment for case Ap-

plication 931736025. The alignment computed under both approaches indicates a model

move on activity A Cancelled+complete. As previously mentioned, given a cost function,

there can be multiple optimal alignments for a particular log trace. Further investigations

into the circumstances under which the monolithic and recomposition approaches compute

different optimal alignments can be interesting, especially if there are reasons to prefer a

particular one.

Lastly, this example demonstrates the need to consider the other quality dimensions

for the evaluation of model quality. While the high fitness suggests that this is a “good”

model, a closer look at the model by a user would conclude otherwise. For example, there

are multiple loop constructs so that each loop construct approximates a flower model that

can generate any sequences involving the transitions in the loop. Figure 4.27 illustrates

one of these loop constructs. The construct initiates with an XOR split of 12 branches.

Then, at the output place where all the branches terminate, there is an invisible transition

that loops back to the previous XOR split. This means that if a case reaches a marking that

includes the place of the XOR split, the model would then be able to replay any sequences

that involve one or more of the branches. As such, this part of the model gives little

information on the control flow of the observed behavior.

In conclusion, the results clearly demonstrate that the applicability of the recomposi-

tion approach make alignment-based conformance checking feasible for real-life datasets.

In addition, for the example where replay is feasible under both approaches, an analysis

of the computed alignments confirm that not only fitness values match but also alignments

show the same behavioral analysis results. Lastly, the utility of the conformance results is

shown through a simple analysis.

95

Figure 4.27. Loop construct in the discovered model of the BPIC2017 real-
life dataset projected with deviation issues

4.5. Related work

Several approaches have been proposed to decompose conformance checking in the

literature [89, 65, 91, 50]. Their experimental results showed an immense reduction in

computation time over the existing monolithic approach. However, conformance results

96

from most of these approaches only remain at the level of sub-logs and sub-nets, the con-

formance between the overall process model and event log is not computed. For example, a

recent paper [91] proposed a workflow decomposition technique that decomposes a work-

flow net into a set of smaller workflow nets by places after which conformance checking

is performed on the sub-nets by alignment. This treats sub-components independently

and does not compute alignment at a global level. An exception is the implementation of

an earlier proposed generic approach to decompose process discovery and conformance

checking [89]. In the implementation, conformance checking is again performed by align-

ing sub-logs and sub-nets but an extra step is taken afterwards to merge the sub-alignments

into an overall pseudo alignment. The pseudo alignment gives a lower bound for the mis-

match costs between the overall process model and log. This guarantee can provide an

idea about the overall conformance. In relation to these works, the proposed recompo-

sition approach advances existing decomposition solutions by extending decomposition

techniques to compute an exact or interval value that reflects the overall conformance be-

tween a process model and log.

Other than decomposing conformance checking, other ideas have also been proposed.

In [61], approximate alignments are proposed to view sections of step-moves in an align-

ment under a coarser granularity as multisets. This abstract view of alignment reduces the

complexity of the alignment problem so that computation time is reduced. Another way to

reduce the complexity of the problem is through reduction of the model and log. In [62],

the notion of indication is used to reduce process models. The occurrence of an indicator

transition requires the presence of a specified set of transitions (its indicated set) due to

their causal relations. As such, these indication relations between transitions can be used

to reduce models and logs. By using a reduced model and log, a macro-alignment can be

computed in significantly shorter time. The missing alignment details are later expanded

using an efficient alignment algorithm from bio-informatics. Other than abstracting align-

ment details to alleviate complexity, new interpretations of the alignment concept have

97

also been proposed such as anti-alignments [18]. Compared to these alternatives, the re-

composition approach presented in this chapter preserves the alignment concept and does

not need to abstract away details to achieve performance gain.

Another related work is conformance checking of proclets [25]. Proclets can be used

to define so-called artifact centric processes, i.e., processes that are not monolithic but

are composed of smaller interacting processes (called proclets). In [25], it is shown that

conformance checking can be done per proclet by projecting the event log onto a single

proclet while considering interface transitions in the surrounding proclets.

4.6. Conclusions

This chapter presents the recomposing conformance checking framework that com-

putes optimal alignments in a divide and conquer manner. This provides a way of com-

puting alignments for large and complex models where monolithic approaches are not

suitable. The approach iteratively solves decomposed alignment problems and merges on

border activities to resolve border conflicts.

To enable the aggregation of results from subcomponents, we make use of the total

border agreement condition presented in Chapter 3. In addition, we adapted the existing

relative fitness metric as the decomposed fitness metric to compute an exact or interval

value to reflect the fitness between a model and log.

The conformance checking approach has been implemented in ProM [37]. Extensive

experimental results from synthetic and real-life datasets demonstrate the potential perfor-

mance gains of the recomposition approach over the existing state of the art monolithic

approach. The use of decomposition increased replay feasibility and reduced computation

time for datasets feasible under both approaches. The speedup from adopting the recom-

position approach has shown to be attainable under different noise scenarios and increases

with the average trace lengths of the event logs.

98

In the experiments, we found that the initial decomposition for instantiating recom-

posing replay can have an impact on its performance. For the sake of simplicity, manual

decompositions were used in the experiments on the synthetic datasets. We concede that

using a manual decomposition is a possible weakness of the approach, but believe that we

can generate such decompositions in an automated way by using SESE techniques. Also,

analyzing the performance of the recomposition approach, we found that the bottleneck

of the proposed approach is in not being able to reach the required total border agreement

condition for some traces so that these traces can take many iterations to align. In the next

chapter, we present our investigation into different heuristics that aim to encourage the

border condition so that this bottleneck can be alleviated.

99

5. Improving merging conditions for recomposing conformance checking

5.1. Introduction

As discussed in the previous chapter, our experimental results found that for the pro-

posed recomposing conformance checking framework, the bottleneck is in that some log

traces require many iterations to reach the needed merging condition. In this chapter, we

present various heuristics that can be applied at the recomposition step. We also present

experimental results on both synthetic and real life data that show significant performance

gains in terms of computation time when the proposed heuristics are applied.

The rest of the chapter is organized as follows: Section 5.2 presents a running example

used in the chapter. Section 5.3 presents the recomposition approach as the focus. Sec-

tion 5.4 defines and structures the recomposition step and Section 5.5 sheds light on the

limitations of the existing recomposition strategies. Section 5.6 presents four recomposi-

tion strategies that can be used in the recomposition step. Section 5.7 details the exper-

imental setup for the evaluation of the proposed strategies, and Section 5.8 analyzes the

experimental results. Section 5.9 presents the related work. Finally, Section 5.10 presents

some conclusions.

5.2. Running example

Figure 5.1 presents a system net S that models a loan application process for property

purchase (ignore the grey boxes in the background for now). [i] is the initial marking

and [o] is the final marking. For example, an instance of the process might initiate with

the receipt of a loan application a, then the applicant’s credit history would be checked

b, his/her loan risk assessed c, and the value of the property appraised d. The results

are then consolidated for the assessment of the applicant’s eligibility f . Afterwards, if the

application is successful, an acceptance pack is then prepared g and sent h to the applicant.

At some point in the future, the repayment is verified i and the application is then archived

100

Figure 5.1. System net S that models a loan application process

L = [

σ1︷ ︸︸ ︷
〈a, b, c, d, f, g, h, i, k〉 5,

σ2︷ ︸︸ ︷
〈a, c, b, d, f, g, i, h, k〉 10,

σ3︷ ︸︸ ︷
〈a, c, b, d, f, g, j, k〉 5]

Figure 5.2. Running example: Event log L

k as the process is terminated. The sequence of occurred events can be represented as the

activity sequence 〈a, b, c, d, f, g, h, i, k〉. In real-life, the process executions are recorded

as event data and can be expressed as an event log.

Figure 5.2 presents an event log L corresponding to the system net in Figure 5.1. Log

L has 20 cases in total with 5 cases following trace σ1, 10 cases following trace σ2, and 5

cases following trace σ3. In cost-based alignment conformance checking, a trace is aligned

with the corresponding system net to produce an alignment.

Figure 5.1 presents a valid decomposition D of net S where sub-nets are marked by

the grey boxes. For example, sub-net S1 consists of the transitions t1, t2, t3, t4, t5, and t6.

Border activities can be identified as the activities of the transitions that are shared between

two sub-nets. They are t4, t5, t6, t8, t11, and t12. Under the recomposition approach

framework, overall alignments can be computed in a decomposed manner.

5.3. Recomposing conformance checking

Figure 5.3 presents an overview of the recomposing conformance checking framework

[38, 37] which consists of the following five steps:

101

Figure 5.3. Recomposing conformance checking framework with the re-
composition step highlighted in dark blue

(i) The net and log are decomposed using a decomposition strategy, e.g., maximal de-

composition [65].

(ii) Alignment-based conformance checking is performed per sub-net and sub-log to

produce a set of sub-alignments for each log trace.

(iii) Since sub-components overlap on border activities, the set of sub-alignments for

each log trace also overlap on moves involving border activities. In [38], it was

shown that if the sub-alignments synchronize on these moves, then they can be

merged as an overall optimal alignment using the merging algorithm presented in

[88]. This condition was formalized as the total border agreement condition. Log

traces that do not meet the requirement are either rejected or left for the next itera-

tion. As such, only border activities can cause merge conflicts.

(iv) User-configured termination conditions are checked at the end of each iteration. If

the framework is terminated before computing the overall optimal alignments for all

log traces, then an approximate overall result is given. The results of the framework

consist of a fitness value and a set of alignments corresponding to the log traces. In

the case of an approximate result, the fitness value would be an interval bounding

the exact fitness value and the set of alignments would have pseudo alignments.

(v) If there are remaining log traces to be aligned and the termination conditions are not

reached, then a recomposition step is taken to produce a new net decomposition and

102

a corresponding set of sub-logs. The next iteration of the framework then starts from

Step (2).

While experimental results have shown significant performance gains from the recom-

position approach over its monolithic counterpart, large scale experimentation has shown

that recomposition is a potential bottleneck. In particular, the strategies used at the recom-

position step can have a significant impact. The following section takes a more detailed

look at the recomposition step and discusses the limitations of the current recomposition

strategies.

5.4. Recomposition step

The recomposition step refers to Step 5 of the framework overview presented in Fig-

ure 5.3 and is highlighted in dark blue. We formalize the step in two parts: the production

of a new net decomposition and a corresponding set of sub-logs.

Definition 5.1 (Recomposition step). Let D ∈ D(S) be a valid decomposition of

system net S and let L = B(A∗) be an event log. For 1 ≤ i ≤ n, where n = |D|, let

Mi = (Ai∪{�})× (Ti∪{�}) be the possible alignment moves for a sub-component so

that ΓD = [(γi1 , . . . , γin) ∈ M∗
1 × . . .×M∗

n | ∃σi∈L∀j∈{1,...,n}π1(γij)�Aj= σi�Aj] contains

the latest sub-alignments for all log traces.

Given the valid decomposition, and the latest sub-alignments, RS : D(S) × B(M∗
1 ×

. . .×M∗
n)→ D(S) creates a new valid decompositionD′ ∈ D(S) wherem = |D′| < |D|.

Then, given the new and current net decompositions, the event log, and the latest sub-

alignments, RL : D(S)×D(S)×B(A∗)×B(M∗
1 × . . .×M∗

n) 9 B(A′1∗)× . . .×B(A′m∗)
creates a set of sub-logs to align in the following iteration of the recomposition approach1.

1Note that this is a partial function because some tuples of sub-logs will not have a corresponding element
in the domain. For example, valid decomposition requires sub-traces to overlap on border activities, a tuple
of sub-logs that have sub-traces with events involving certain border activities in one sub-trace but none in
another would be unreachable from the domain, e.g., ([〈a, b, c〉], [〈f〉], [〈f, g, h, i〉], [〈i, k, 〉])

103

Overall, the recomposition step R creates a new net decomposition and a corresponding

set of sub-logs,R : D(S)×B(A∗)×B(M∗
1×. . .×M∗

n) 9 D(S)×B(A′1∗)×. . .×B(A′m∗).

The current recomposition strategy involves recomposing on the most frequent con-

flicting activities (MFC) and constructing sub-logs that contains to-be-aligned traces which

carry conflicting activities that have been recomposed upon (IC).

Most frequent conflict (MFC) recomposes the current net decomposition on the ac-

tivity set Ar = {a ∈ Ab(D) | a ∈ arg maxa′∈Ab(D)

∑
γi∈Supp(ΓD)C(γi)(a

′)} where

ΓD ∈ B(M∗
1 × . . .×M∗

n) are the latest sub-alignments and C : M∗
1 × . . .×M∗

n → B(A)
is a function that gives the multiset of conflicting activities of sub-alignments. Hence, Ar

contains the border activities with the most conflicts.

Inclusion by conflict (IC) then creates a log Lr = [σi ∈ L | ∃a∈Ab(D) C(γi)(a) >

0 ∧ a ∈ Ar] where γi ∈ ΓD are the sub-alignments of trace σi ∈ L and net decomposition

D ∈ D(S). As such, log Lr includes to-be-aligned log traces which have conflicts on at

least one of the border activities that have been recomposed upon. Later, log Lr is then

projected onto the new net decomposition to create the corresponding sub-logs.

5.5. Limitations to the current recomposition strategies

To explain the limitations, we refer to the set of optimal sub-alignments in Figure 5.4

from aligning net decomposition D in Figure 5.1 and log L in Figure 5.2. We first note

that for the conflicting activities which are highlighted in grey:
∑
γ∈ΓD C(γ)(c) = 2,∑

γ∈ΓD C(γ)(i) = 1, and
∑
γ∈ΓD C(γ)(j) = 1, where ΓD = {γ1,γ2,γ3}. With activity

c being the most frequent conflicting activity, MFC recomposes the current net decompo-

sition on Ar = {c} and IC creates the corresponding sub-logs containing Lr = {σ2, σ3}
since both traces have activity c as a conflicting activity. The new net decomposition will

contain three sub-nets rather than four where sub-net S1 and sub-net S2 are recomposed

upon activity c as a single sub-net. The corresponding sub-log set is created by projecting

log Lr onto the new net decomposition.

104

Figure 5.4. Sub-alignments γ1 = (γ11 , γ12 , γ13 , γ14), γ2 =
(γ21 , γ22 , γ23 , γ24), and γ3 = (γ31 , γ32 , γ33 , γ34) of log L1 and net
decomposition D1 with merge conflicts highlighted in grey

While one merge conflict is resolved by recomposing on activity c, the merge conflicts

at activity i and j will remain in the following iteration. In fact, under the current recom-

position strategy, trace σ2 and σ3 have to be aligned three times each to reach the required

merging condition to yield overall alignments. This shows the limitation of MFC in only

partially resolving merge conflicts on the trace level and IC in leniently including to-be-

aligned log traces whose subsequent sub-alignments are unlikely to reach the necessary

merging condition.

As such, the key to improving the existing recomposition strategies is in lifting conflict

resolution from the individual activity level to the trace level so that the net recomposition

strategy resolves merge conflicts of traces rather than activities and the log recomposition

strategy selects log traces whose merge conflicts are likely to be fully resolved with the

latest net recomposition. In the following section, three net recomposition strategies and

one log recomposition strategy are presented. These strategies improve on the existing

ones by looking at merge conflict sets, identifying co-occurring conflicting activities, and

minimizing the average size of the resulting recomposed sub-nets. The later experimen-

tal results show that the strategies lead to significant performance improvements in both

synthetic and real-life datasets.

105

5.6. Recomposition strategies

In this section, three net recomposition strategies and one log recomposition strategy

are presented.

5.6.1. Net recomposition strategies

As previously shown, resolving individual conflicting activities may only partially re-

solve the merge conflicts of traces. This key observation motivates the following net re-

composition strategies which target conflicts at the trace level.

Top k most frequent conflict set (MFCS-k) constructs a multiset of conflict sets Acs =

[Supp(C(γ)) ⊆ Ab(D) | γ ∈ ΓD ∧ |C(γ)| > 0]. Then the top k most frequent conflict

set Acs,k ⊆ {acs ⊆ Ab(D)|Acs(acs) > 0} is selected. If |Acs| < k, then all conflict sets

are taken. Afterwards, the recomposing activity set Ar = ∪(Acs,k) ⊆ Ab(D) is created.

We note that in the case where two conflict sets have the same occurrence frequency, a

random one is chosen. This secondary criterion avoids bias, and gives better performances

empirically than any other straightforward criteria.

Merge conflict graph (MCG) recomposes on conflicting activities that co-occur on the

trace level by constructing a weighted undirected graphG = (V,E) whereE = {{a1, a2} |
∃γ∈ΓD a1 ∈ C(γ) ∧ a2 ∈ C(γ) ∧ a1 6= a2} with a weight function w : E → N+

such that w((a1, a2)) = |{γ ∈ ΓD | C(γ)(a1) > 0 ∧ C(γ)(a2) > 0}| and V =

{a ∈ Ab(D) | ∃(a1,a2)∈E a = a1 ∨ a = a2}. Then, with a threshold t ∈ [0, 1], edges

are filtered so that Ef = {e ∈ E | w(e) ≥ t × wmax} where wmax is the maximum

edge weight in E. The corresponding vertex set and filtered graph can be created as

Vf = {a ∈ Ab(D) | ∃(a1,a2)∈Efa = a1 ∨ a = a2} and Gf = (Vf , Ef). Finally, the current

net decomposition is recomposed on activity set Ar = Vf .

106

Balanced. This recomposition strategy extends the MFCS-k strategy but also tries to

minimize the average size of the sub-nets resulting from the recomposition. For a border

activity a ∈ Ab(D), |(a,D)| = | ∪Si∈Sb(a,D) Av(Si)| approximates the size of the recom-

posed sub-net on activity a. The average size of the recomposed sub-nets for a particular

conflict set can then be approximated by |(Ac, D)| =
∑
a∈Ac |(a,D)|
|Ac| . The score of the con-

flict set can be computed as a weighted combination β(Ac, D) = w0 × m(Ac)
maxA′c∈Acs

m(A′c)
+

w1× (1− |(Ac,D)|
maxA′c∈Acs

|(A′c,D)|) where higher scores are assigned to frequent conflict sets that

do not recompose to create large sub-nets. The activities of the conflict sets with the high-

est score, Ar = {a ∈ Ac | Ac ∈ arg max A′c∈Acsβ(A
′
c, D)}, are then recomposed upon to

create a net decomposition.

5.6.2. Log recomposition strategy

Similar to the net recomposition strategies, the existing IC strategy can be too lenient

in including log traces which have conflicting activities that are unlikely to be resolved in

the following decomposed replay iteration.

Strict include by conflict (SIC) increases the requirement for a to-be-aligned log trace to

be selected for the next iteration. This addresses the limitation of IC which can include log

traces whose merge conflicts are only partially covered by the net recomposition. Given

the recomposed activity setAr, SIC includes log traces as Lr = [σi ∈ L | ∀a∈C(γi) a ∈ Ar]
with merge conflict if the corresponding conflict set is a subset of set Ar. However, this

log strategy only works in conjunction with the net strategies that are based on conflict

sets, i.e., MFCS-k and Balanced, so that at least one to-be-aligned log trace is included.

107

5.7. Experiment setup

Both synthetic and real-life datasets are used to evaluate the proposed recomposition

strategies. Dataset generation is performed using the PTandLogGenerator [30] and infor-

mation from the empirical study [32]; it is reproducible as a RapidProM workflow [68].

The BPIC 2018 dataset is used [74] as the real-life dataset. Moreover, two baseline net

recomposition strategies are used: All recomposes on all conflicting activities, and Ran-

dom recomposes on a random number of conflicting activities. Similarly, a baseline log

recomposition All which includes all to-be-aligned log traces is used. For the sake of

space, the full experimental setup and datasets are available at the GitHub repository2 so

that the experimental results can be reproduced.

5.8. Results

The results shed light on two key insights: First, the selection of the recomposition

approach may lead to very different performances. Second, good performance requires

both selecting appropriate conflicting activities and well-grouped to-be-aligned log traces.

Figure 5.5 presents the experimental results for both synthetic and real-life datasets.

For each of the synthetic models, there are three event logs of different noise profiles

described as netX-noise probability-dispersion over trace where X ∈ {1, 2, 3}. For the

sake of readability, we only show the results of three out of five synthetic datasets, but the

results are consistent across all five synthetic datasets). Readers interested in more details

are referred to the GitHub link for a detailed explanation on noise generation and the rest

of the experimental results. For the MFCS-k and Balanced strategies, only configurations

using the SIC log strategy are shown; results showed that the SIC log strategy provides

a better performance. For the others where SIC is not applicable, only configurations

using the IC log strategy are shown as results indicated better performances. Overall, the

2See https://github.com/wailamjonathanlee/Characterizing-recomposing-replay

https://github.com/wailamjonathanlee/Characterizing-recomposing-replay

108

Figure 5.5. Bar chart showing fitness and overall time per net recomposi-
tion strategy (including the monolithic approach). The time limit is shown
as a dashed red line and indicates infeasible replays. Best performing ap-
proaches and their time gains from the second fastest times are specified by
black arrows.

results show that for both the monolithic and recomposition approach, it is more difficult

to compute alignment results for less fitting datasets.

Different approaches give different performances. Comparing the monolithic and re-

composition approach, it is clear that the recomposition approach provides a better perfor-

mance than the monolithic counterpart under at least one recomposition strategy config-

uration. Furthermore, performance can vary significantly across different recomposition

approaches. For example, the existing MFC strategy is the worst performing strategy

where it is not able to give exact results for the real-life dataset and both the netX-10-

60 and netX-60-10 noise scenarios of the synthetic datasets. The MFCS-k and Balanced

strategies are shown to be the best performing strategies. While for high fitness scenarios,

i.e., netX-10-10, MFCS-k give better performances with a high k = 10. This is because

when there is little noise, it becomes simply a “race” to aligning traces with similar merge

conflicts. Conversely, for low fitness scenarios, because merge conflicts are potentially

much more difficult to resolve, the Balanced strategy avoids quickly creating large sub-

components that take longer to replay. In these cases, the time differences between the

109

Figure 5.6. Comparing log strategies by showcasing the number of aligned
traces (left) and percentage of valid alignments (right) per iteration on the
real-life dataset BPIC18.

different feasible strategies can go up to three minutes. For all the experiments, the pro-

posed recomposition strategies outperform the baseline strategies. Lastly, for the real-life

dataset BPIC18, only the MFCS-1, Balanced, and MCG recomposition strategies are able

to compute exact alignment results and the Balanced strategy outperforms MFCS-1 by

more than three minutes.

Both net and log recomposition strategies matter. Figure 5.6 presents the number of

aligned traces and percentage of valid alignments per iterations under All, IC, and SIC log

strategies with net strategy fixed as Balanced on BPIC18. We first note that only the SIC

log strategy resulted with exact alignment results. While all strategies start with aligning

all traces in the first iteration, there are significant differences in the number of aligned

traces across iterations. Similar to the All strategy, the existing IC strategy includes a

high number of traces to align throughout all iterations; the number of aligned traces only

tapered off in the later iterations as half of the traces have resulted as valid alignments. This

confirms the hypothesis that the existing IC strategy can be too lenient with the inclusion

of traces to align. Furthermore, up until iteration 13, none of the aligned traces reaches

the necessary merging condition to result as a valid alignment; this means that both the

All and IC strategies are “wasting” resources aligning many traces. Conversely, the SIC

strategy keeps the number of traces to align per iteration comparatively lower. Moreover,

110

at the peak of the number of traces to align at iteration 21, almost 80% of the ∼300
aligned traces resulted as valid alignments. These are likely to explain why only the SIC

log strategy is able to compute an exact result.

5.9. Related work

Performance problems related to alignment-based conformance checking form a well-

known problem. A large number of conformance checking techniques have been proposed

to tackle this issue. Approximate alignments have been proposed to reduce the problem

complexity by abstracting sequential information from segments of log traces [61]. The

notion of indication relations has been used to reduce the model and log prior to con-

formance checking [62]. Several approaches have been proposed along the research line

of decomposition techniques. This include different decomposition strategies, e.g., maxi-

mal [65], and SESE-based [50]. Moreover, different decomposed replay approaches such

as the hide-and-reduce replay [85] and the recomposition approach [38] have also been

investigated.

Other than the alignment-based approach, there are also other conformance checking

approaches. This includes the classical token replay [58], behavioral profile approaches

[92] and more recently approaches based on event structures [26].

5.10. Conclusions

This chapter investigated the recomposition aspect of the recomposing conformance

checking approach which can become a bottleneck to the overall performance. By defining

the recomposition problem, we identify limitations of the current recomposition strategy

in not fully resolving merge conflicts on the trace level and also being too lenient in the

inclusion of log traces for the subsequent decomposed replay iteration. Based on the obser-

vations, three net recomposition strategies and one log recomposition strategy have been

presented. The strategies were then evaluated on both synthetic and real-life datasets with

111

two baseline approaches. The results show that different recomposition strategies can sig-

nificantly impact the overall performance in computing alignments. Moreover, they show

that the presented approaches provide a better performance than baseline approaches, and

both the existing recomposition and monolithic approaches. While simpler strategies tend

to provide a better performance for synthetic datasets, a more sophisticated strategy can

perform better for a real-life dataset. However, the results show that both the selection

of activities to recompose on and log traces to include are important to achieve superior

performances.

The results have shown that the recomposition strategy has a significant impact on

performance. For the current and presented approaches, new net decompositions are cre-

ated by recomposing the initial decomposition on selected activities. Entirely different

net decompositions can be created using the merge conflict information from the previous

iteration; however, our preliminary results showed that this may be difficult. Moreover,

the advantage of merging on border activities rather than creating entirely different net

decompositions is that the former guarantees in a number of finite steps, the framework

will end up at the monolithic case which guarantees the merging condition.

Part III

Algorithm selection

113

6. Use of decomposition as a classification problem

6.1. Introduction

There can be many conformance checking algorithms for the same task. For example,

for alignment-based techniques, there are many techniques that focus on being great at

specific aspects, e.g., computation time [75], specific data type [44] and conformance

issues [9, 6]. This means that the end user needs to be aware of their advantages and

disadvantages to choose the appropriate technique for their data and objective. However,

the end user may not have the expert knowledge to always select the most appropriate

algorithm. One solution is to have an oracle that have been configured to help users with

the decision given their objectives. This chapter presents our work in applying machine

learning techniques to learn a classifier that would predict the best alignment algorithm in

terms of whether to use decomposition or not to minimize computation time.

We tackle the algorithm selection problem by encoding it as a classification task. By

applying well known classifiers, the trained predictive model can select the algorithm that

is most likely to achieve best performance among the set of available algorithms. As a

first instance, we tackle the problem of deciding when to apply decomposition-based al-

gorithms to compute exact optimal alignments using A∗ techniques so that computation

time is minimized. The chapter presents the analysis of the trained models and identi-

fies features that can have a significant impact on the performance of different algorithms.

While this chapter tackles a specific problem in the space of alignment computation, it is

easy to see that the proposed framework can have an impact on other scopes, i.e., tackle

more general alignment algorithm selection problems, as well as in the considered al-

gorithms to include other alignment-based algorithms such as planner-based approaches

[19], and approaches based on different theories [1, 53].

The rest of the chapter is structured as follows: Section 6.2 presents the background

and the general problem statement. Then Section 6.3 presents the specific problem of

predicting when to apply decomposition-based algorithms as a classification problem to

114

be the focus of this chapter. Next, in Section 6.4, the experimental setup is presented.

The results and analysis are then presented in Section 6.5. Section 6.6 presents the limi-

tations. Finally, the chapter ends with the related work and conclusion in Section 6.7 and

Section 6.8 respectively.

6.2. Background and general problem statement

The core idea of alignment-based techniques is to explain each executed event in terms

of model activities so that the alignment is a sequence of event-activity pairs where each

event is mapped to a step in the model [4, 17].

Definition 6.1 (The alignment problem). Let A ⊆ UA be a set of observable process

activities and AM = A∪{τ} is the set of model activities where τ /∈ A denotes unobserv-

able model activity. Then, given

• a trace of executed events σ ∈ A∗,
• a process model that contains the modeled behavior M ⊆ AM

∗, and

• a cost function c : ((A ∪ {�})× (AM ∪ {�}))→ Q for alignment moves,

the alignment problem is to use an algorithm O ∈ O to compute a valid alignment

O(σ,M) = γ ∈ (((A∪{�})× (AM ∪{�}))\{(�, �)})∗ such that the projection on

the first element (ignoring any �) yields σ and the projection on the second element (ig-

noring any �) yields σM ∈M . Moreover, alignment γ has minimal total cost, computed

as
∑

(a,aM)∈γ c(a, aM), amongst all valid alignments.

However, in the current literature, there are many available alignment algorithms that

can resolve the alignment problem [4, 19, 9, 75, 6, 44, 38]. Given the potentially time

consuming nature of the problem, a natural solution is to select the algorithm that gives

optimal performance for the trace and model at hand.

Definition 6.2 (Per-instance alignment algorithm selection problem [8]). Given a per-

formance measurem : ((A∗×P(AM ∗))×O)→ R, the per-instance alignment algorithm

115

Performance Data:
((A∗ × P(AM

∗)) × O) → R

Feature Data: f :
(A∗ × P(AM

∗)) → Rd

Train:
s : Rd → O

Select O = s(f(σ,M))
and apply O to σ,M

Compute Features
f(σ,M) ∈ Rd

Model trace pair
σ,M

Offline Online

Figure 6.1. Workflow of alignment algorithm selection (adapted from [8])

selection problem is to find a mapping s : (A∗ × P(AM ∗)) → O that optimizes the per-

formance measure m(σ,M, s(σ,M)) by using the selected algorithm s(σ,M).

One way to tackle the problem is to learn such mapping through data generated from

real execution of the alignment problem under different algorithms.

6.2.1. Using machine learning to learn algorithm selectors

Figure 6.1 presents the workflow taken by this chapter. The workflow is separated

into an offline and online phase. At the offline phase, performance data is generated by

running different alignment algorithms O ∈ O on model trace pairs σ,M . For each model

trace pair, a d-dimensional feature vector can be generated using the function f . Using

the performance and feature data, different machine learning techniques can be applied to

learn the alignment algorithm mapping as a predictive model s. At the online phase, the

predictive model is given the feature vector of a model trace pair and it should choose the

best performing alignment algorithm to be applied.

6.3. Predicting the use of decomposition by classification

As previously introduced, this chapter focuses on the problem of deciding when to ap-

ply decomposition-based algorithms to compute exact optimal alignments using A∗ based

116

techniques so that computation time is minimized. This is achieved by applying the work-

flow presented in Figure 6.1 on a portfolio of four relevant alignment algorithms and using

classifiers as the algorithm mapping.

6.3.1. Description of alignment algorithms

Classic A∗ algorithm (CLASSIC). As presented in the seminal work [4], an optimal align-

ment between a log trace and petri net model is computed as a cost minimal complete firing

sequence of their synchronous net product. This corresponds to a shortest path problem in

the reachability graph of the net product and can be computed using the A∗ algorithm. In

the classic approach, the marking equation is used as an admissible and consistent heuris-

tic to approximate the remaining “distance” from a marking to the final marking. Further

details can be found in the conformance checking book [17].

Classic A∗ algorithm with splitpoint heuristics (CLASSIC-SP). This approach substi-

tutes the marking equation with an extended marking equation [75]. It addresses a major

limitation of the marking equation in having spurious markings as possible solutions by

explicitly requiring valid markings (encoded as constraints) at pre-determined splitpoints.

However, a limitation of the extended marking equation is the increased complexity from

the additional constraints.

Recomposing conformance checking framework (RECOMPOSE). Decomposition tech-

niques break down a large and complex alignment problem into smaller sub-problems so

that they can be solved simultaneously to obtain performance gains. In an iterative manner,

the recomposing conformance checking framework decomposes the alignment computa-

tion between a log trace and model before merging the sub-alignment results [38]. For the

decomposed alignment problems, the CLASSIC algorithm is used.

Recomposing conformance checking framework with splitpoint heuristics (RECOMPOSE-

SP). Since CLASSIC is used to solved decomposed alignment problems, the extended

marking equation heuristics can also be applied.

117

6.3.2. Performance of the algorithms

There is potential in deciding the alignment algorithm on a model trace pair basis if

there does not exist a single algorithm which dominates over all other algorithms for all

model trace pairs. We show this by the experimental results of a synthetic dataset which

includes the log net1-60-60 with 1000 traces and model net1 and have been presented in

[36]. Alignment computation were performed using CLASSIC-SP and RECOMPOSE-SP 1.

Overall, accounting only valid alignments, CLASSIC-SP took 7726.23 seconds (s) to yield

988 valid alignments and RECOMPOSE-SP took 7753.64s to yield 993 valid alignments.

This means that CLASSIC-SP resulted in 22 invalid alignments that were terminated due

to exceeding a time limit of 300s per trace. This contrasts the 7 invalid alignments under

RECOMPOSE-SP that were also terminated for the same reason.

(a) Alignment times and line graph of the cu-
mulative percentage of total time per time bin of
valid alignments

(b) Alignments with top 10% absolute time
differences (computed as CLASSIC-SP -
RECOMPOSE-SP) and line graph of the cumula-
tive time difference

Figure 6.2. Histograms of alignment time statistics on model net1 and log
net1-60-60

However, focusing on the valid alignments computed by both algorithms, CLASSIC-

SP took lesser time for 554 alignments in comparison to RECOMPOSE-SP. This suggests

1Experiments were performed single threadly on Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz with 16GB
of allocated memory.

118

that CLASSIC-SP is faster than RECOMPOSE-SP in the general case. Yet, analyzing align-

ments with large absolute time differences gives a different picture. Figure 6.2b shows

that for the 99 alignments with a top 10% performance difference, RECOMPOSE-SP out-

performed CLASSIC-SP. Moreover, it illustrates that if RECOMPOSE-SP were used for

these 99 alignments during the computation under CLASSIC-SP,∼1200s would have been

saved. This puts forth a strong case for being able to select the appropriate alignment

algorithm depending on a given trace and model.

Given the feature and performance data captured from alignment computations under

the four algorithms, a classification task is defined so that the trained classifier would select

the algorithm that minimizes computation time.

Definition 6.3 (Best performance classification). Let (F1, O1), (F2, O2), . . . , (Fn, On)

be data such that Fi = (F 1
i , F

2
i , . . . , F

d
i) ∈ F ⊆ Rd is a d-dimensional feature vector

extracted from modelMi and trace σi. Oi ∈ O is the algorithm that resolves the alignment

problem in the least amount of wall-clock time, i.e., O = argminO′∈Om(σi,Mi, O
′). The

best performance classification problem is to learn a function h : F → O.

Typically, a loss function L is used to evaluate the quality of a classifier, e.g., the

empirical error rate Ln(h) = 1
n

∑n
i=1 I(h(Fi) 6= Oi). Referring to Definition 6.2, clearly a

classifier that resolves the best performance classification problem will be a good estimator

of the mapping that optimizes the performance measure of wall-clock time for the per-

instance alignment algorithm selection problem.

6.3.3. Model features

As shown in Table 6.1, there are three categories of features which are extracted from

the log trace, the model, and the synchronous net product between the trace net and model.

To ensure that the predictive models can practically perform predictions prior to alignment,

the features are relatively simple and can all be extracted in O(|V | + |E|) where |V | and

119

|E| are the sizes of the vertex and edge set of the synchronous net product. There are 67

features in total.

Table 6.1. Extracted features

Name Category Description

trace length trace Trace length
n activity trace No. of activities
activity repeat mean trace Repetition per activity - mean
activity repeat std trace Repetition per activity - std
n transition model/snp No. of transitions
n place model/snp No. of places
n arc model/snp No. of arcs
n inv transition model/snp No. of invisible tran.
n dup transition model/snp No. of duplicated tran.
n uniq transition model/snp No. of unique tran.
inv tran in degree mean model/snp In deg. of invisible tran. (mean)
inv tran in degree std model/snp In deg. of invisible tran. (std)
inv tran out degree mean model/snp Out deg. of invisible tran. (mean)
inv tran out degree std model/snp Out deg. of invisible tran. (std)
uniq tran in degree mean model/snp In deg. of unique tran. (mean)
uniq tran in degree std model/snp In deg. of unique tran. (std)
uniq tran out degree mean model/snp Out deg. of unique tran. (mean)
uniq tran out degree std model/snp Out deg. of unique tran. (std)
dup tran in degree mean model/snp In deg. of dupl. tran. (mean)
dup tran in degree std model/snp In deg. of dupl. tran. (std)
dup tran out degree mean model/snp Out deg. of dupl. tran. (mean)
dup tran out degree std model/snp Out deg. of dupl. tran. (std)
place in deg mean model/snp In deg. of places (mean)
place in deg std model/snp In deg. of places (std)
place out deg mean model/snp Out deg. of places (mean)
place out deg std model/snp Out deg. of places (std)
n and split model/snp No. of AND splits
n xor split model/snp No. of XOR splits
n biconnected component model/snp No. of biconnected components
n subnet model No. of subnets
subnet n tran mean model No. of tran. in subnets (mean)
subnet n tran std model No. of tran. in subnets (std)
subnet n inv tran mean model No. of inv. tran. in subnets (mean)
subnet n inv tran std model No. of inv. tran. in subnets (std)
subnet n dup tran mean model No. of dup. tran. in subnets (mean)
subnet n dup tran std model No. of dup. tran. in subnets (std)
subnet n uniq tran mean model No. of uniq. tran. in subnets (mean)
subnet n uniq tran std model No. of uniq. tran. in subnets (std)
subnet n place mean model No. of place in subnets (mean)
subnet n place std model No. of place in subnets (std)
subnet n arc mean model No. of arc in subnets (mean)
subnet n arc std model No. of arc in subnets (std)

6.3.4. Classifiers

Decision tree and random forests are used as classifiers for the advantage of yielding

more interpretable results.

Decision tree (DT) [12] Decision trees recursively partitions a dataset via decision rules

120

at internal nodes so that each leaf node contains data points of the same target variable.

However, two main limitations of this classifier with consideration to the dataset are that

decision trees are prone to overfitting and can create biased trees if the dataset is unbal-

anced. The overfitting limitation is addressed by limiting the tree depth and setting the

minimum number of samples required at a leaf node. Moreover, the dataset is balanced by

adjusting the class weights of the samples so that their weights are inversely proportional

to class frequencies.

Random forest (RF) [11] This is an ensemble method that fits a number of decision tree

classifiers on sub-samples of the dataset and uses the average to improve the predictive

accuracy and to avoid overfitting.

6.4. Experimental setup

The alignment experiments were performed single threadly on Intel(R) Xeon(R) CPU

E5-2470 0 @ 2.30GHz with 16GB of allocated memory. 300 seconds was set as the

timeout threshold for each trace. For the sake of space, further detail on the experimental

setup, algorithm parameter configurations, and instructions on replication can be found at

the GitHub repository 2. Given that there are many parameter configurations for the four

alignment algorithms, we relied on the findings reported by the related papers [36, 75]

and large scale parameter optimization experiments [79, 80]. Some of the more important

parameter configurations include the use of LP for heuristic computations and the use

of second-order queueing criterion for the priority queue of the A∗ search [80]. For the

algorithms CLASSIC-SP and RECOMPOSE-SP, due to a lack of guideline on parameter

configurations, we determined the respective configurations following the example code

[75] and small scale experiments. For the decomposition-based algorithms, two different

initial decompositions were used for most of the model trace pairs.

2See https://github.com/jwllee/predicting-alignment-algorithm-performance-using-machine-learning/
tree/v0.1

https://github.com/jwllee/predicting-alignment-algorithm-performance-using-machine-learning/tree/v0.1
https://github.com/jwllee/predicting-alignment-algorithm-performance-using-machine-learning/tree/v0.1

121

Table 6.2. Statistics on models and logs used to produce predictive model data

n transition n place n arc trace length

mean 216.3 180.7 478.3 72.5
std 43.5 29.2 85.6 37.6
min 127.0 120.0 306.0 1.0
25% 188.0 163.0 424.0 49.0
50% 239.0 180.5 502.0 62.0
75% 253.0 207.0 546.0 86.0
max 264.0 245.0 580.0 419.0

6.4.1. Data description

Two published synthetic datasets were used to generate the necessary performance data

for the predictive tasks [36, 39]. After verifying, cleaning and formatting the generated

data, the final dataset records performance data for over 800,000 alignment computations

on∼140,000 model trace pairs that have been generated from 20 models. As shown in Ta-

ble 6.2, the dataset tends towards larger models and logs for which the divide-and-conquer

alignment approaches RECOMPOSE and RECOMPOSE-SP can leverage decompositions to

improve performance. In terms of the trace lengths, there is a wide range where the mini-

mum trace length is of 1 event and the maximum trace length is of 419 events.

6.4.2. Classification data classes

To establish the classes for the BEST-ALGO classification task, the wall-clock time

(total time including setup) is used to identify the best performing algorithm for a given

model trace pair with a prerequisite of the alignment being valid and cost minimal. Fig-

ure 6.3 shows the data class distribution of the dataset as the black bars. They show that

for ∼70% of the model trace pairs, the CLASSIC computes in lesser time than the other

three. We also considered that some traces might be duplicated across different event

logs generated from the same model and created another dataset where duplicates were

removed. Two model trace pairs are considered the same if they have the same extracted

features and the same alignment costs (alignment length is not considered since there can

122

Figure 6.3. Class distribution of datasets

be multiple distinct cost minimal alignments). This resulted in a removal of 59,630 model

trace pairs. The gray bars shows the class distribution of the duplicate-free dataset and

that there are little differences with the original dataset in terms of class distribution.

Yet, not all data classes are equally important. By classifying the data points, the

information on the time differences between algorithms is lost. Table 6.3 presents the time

differences between algorithms after separation by data classes. Each row records the

time differences statistics with respect to a particular data class on alignments that were

valid across all four algorithms. Analyzing the time statistics, it is clear that some data

classes and data class pairs are more interesting than others. For example, the mean time

differences are very low for the instances where CLASSIC is the best performing algorithm.

In contrary, for the instances where RECOMPOSE-SP is the best performing algorithm, the

time differences are much larger and is at∼16s with respect to CLASSIC and RECOMPOSE.

As Section 6.5 will further present, we found that the classifiers did not achieve a bal-

anced performance across all data classes even after accounting for the class imbalance

during training. One of the possible reasons is that there are instances where all four al-

gorithms have similar performances. This means that while there is still an algorithm that

finishes in the shortest time, including the data for these instances can actually add unde-

sirable noise. To tackle this problem, a third dataset is created by only including instances

123

Table 6.3. Time difference statistics with respect to the best performing
algorithm per data class

Data class Count Total Time including setup (s)

CLASSIC CLASSIC-SP RECOMPOSE RECOMPOSE-SP
mean std se infeasible mean std se infeasible mean std se infeasible mean std se infeasible

CLASSIC 174858 - - - - 0.29 5.03 0.01 24 0.04 0.51 0.00 0 0.31 5.12 0.01 0
CLASSIC-SP 39118 9.67 19.03 0.10 22 - - - - 8.25 16.76 0.08 0 0.75 5.35 0.03 0
RECOMPOSE 13979 0.84 8.60 0.07 32 2.87 15.46 0.13 16 - - - - 3.36 18.18 0.15 0
RECOMPOSE-SP 17523 16.34 22.84 0.17 20 1.33 5.13 0.04 12 15.81 22.98 0.17 0 - - - -

where there is at least a kx time difference between a pair of algorithms. Setting k = 2 left

the original and duplicate free datasets with 86,469 and 74,582 instances respectively. As

shown in Figure 6.3, the filtering also improved the class imbalance problem where now

∼50% of the instances belong to the CLASSIC class.

Lastly, across all data classes there is at least one algorithm which was unable to yield

valid alignments for some traces. It would be interesting to investigate the reasons for

these infeasible replays.

6.4.3. Evaluation

The classifiers are evaluated in two different ways:

• the classification performance in terms of precision, recall and F1-score

• the penalized average runtime with a penalty factor of 10, i.e., a timeout counts as

10 times the timeout (PAR10) [8]

The performance of each classifier is then compared to a stratified random classifier (Rand),

the virtual best solver (VB), and the single best solver (SB). The stratified random classi-

fier selects the algorithm according to the training set’s class distribution. The virtual best

solver assumes that we have a perfect classifier that can always choose the best algorithm

for a model trace pair. The single best solver is the algorithm in the portfolio with the best

overall performance in terms of PAR10. To ensure consistent evaluation, cross validation

with the same 5 folds partition is used for all the experiments.

124

6.4.4. Model selection

For the decision tree classifier, model selection is performed using an exhaustive grid-

search with cross validation of 5 folds to estimate the optimal split criterion (Gini impurity

or entropy), tree depth (3 - 14) and minimum required samples for leaves (10 - 100, with

steps of 10). For the random forest classifier, given that the bagging procedure finds the

best set of decision trees, we tested a range of parameter values for the optimal number

of estimators (10 - 1000, with steps of 10) and kept the default settings for the remaining

parameters from the sklearn package [13]. For both classifiers, all 67 features presented

in Table 6.1 are used.

6.5. Results

In this section, we present the experimental results and analysis. Overall, there were

no major differences between the results from the original and duplicate-free dataset, and

their 2x difference versions, therefore only the results on the original and 2x difference

dataset are presented.

6.5.1. Classification performance

Table 6.4 presents the experimental results on the original dataset. Both decision and

random forest achieved better precision than the baseline. However, decision tree has

lower weighted average recall and F1-score than the baseline. This is due to the class

imbalance where simply predicting CLASSIC frequently and neglecting the other classes

can give better overall performance. In contrary, the decision tree classifier clearly tried to

achieve good performances across all classes. Comparing decision tree and random forest,

the more complex random forest outperformed decision tree by a large margin. Inspect-

ing each class, we find that while random forest was able to achieve >0.50 precision for

all classes, it has trouble recalling all the instances of each class. Figure 6.5a shows the

normalized confusion matrix of the test set results on the original dataset under random

125

forest. It shows the recall problem for the CLASSIC-SP and RECOMPOSE-SP classes where

the classifier erroneously classified CLASSIC-SP and RECOMPOSE-SP instances as CLAS-

SIC. Through further inspection, the problem of instances having similar performances

was identified and addressed using the kx difference filter.

Data class Precision Recall F1-score Support

Rand DT RF Rand DT RF Rand DT RF

CLASSIC 0.71 0.87 0.82 0.71 0.25 0.95 0.71 0.39 0.88 174858
CLASSIC-SP 0.16 0.21 0.64 0.16 0.52 0.32 0.16 0.30 0.43 39118
RECOMPOSE 0.06 0.50 0.59 0.06 0.68 0.65 0.06 0.58 0.62 13979
RECOMPOSE-SP 0.07 0.13 0.58 0.07 0.60 0.28 0.07 0.22 0.38 17523

Weighted avg. 0.54 0.69 0.76 0.54 0.34 0.79 0.54 0.37 0.76 245478

(a) Original dataset

Data class Precision Recall F1-score Support

Rand DT RF Rand DT RF Rand DT RF

CLASSIC 0.23 0.37 0.70 0.23 0.73 0.58 0.23 0.49 0.63 19789
CLASSIC-SP 0.44 0.65 0.66 0.44 0.28 0.81 0.44 0.39 0.73 38034
RECOMPOSE 0.14 0.65 0.71 0.13 0.64 0.66 0.13 0.65 0.69 11592
RECOMPOSE-SP 0.20 0.42 0.57 0.20 0.48 0.43 0.20 0.45 0.49 17054

Weighted avg. 0.31 0.54 0.66 0.31 0.47 0.66 0.31 0.46 0.65 86469

(b) 2x difference dataset

Figure 6.4. Experimental results of Rand, DT, and RF on two datasets

Table 6.4b presents the experimental results on the 2x difference dataset. This time

both decision and random forest achieved better or equal performances with respect to the

baseline across all weighted average metrics. With the exception of the recall and F1-score

for the CLASSIC-SP class, the decision tree classifier achieved better performance across

all metrics and classes.

(a) Original dataset (b) 2x difference dataset

Figure 6.5. Normalized confusion matrices under random forest on two datasets

126

Different to the unfiltered dataset results, the performance differences between deci-

sion tree and random forest are much smaller. In fact, the weighted average performance

of the random forest classifier went down more than 0.1 for all three metrics. However,

inspecting the normalized confusion matrix shown in Figure 6.5b show that the recall

problem with the CLASSIC class has been largely resolved. Yet, the classifier still erro-

neously classified a large number of RECOMPOSE-SP instances as CLASSIC-SP. A likely

explanation is that, similar to before, these erroneously classified instances yield similar

performances under CLASSIC-SP and RECOMPOSE-SP but different performances under

CLASSIC and RECOMPOSE. However, clearly the random forest is able to distinguish

between model trace pairs that should/shouldn’t use the splitpoint heuristics and decom-

position. In the following, we present the discriminating features that the classifiers used

to achieve the reported performances.

6.5.2. Algorithm performance

Table 6.6a presents the average PAR10 scores in seconds per solver. None of the clas-

sifiers was able to beat the single best (SB) solver which was the RECOMPOSE-SP algo-

rithm for both datasets. For the original dataset, both classifiers had lower average PAR10

scores than the random classifier, with the decision tree classifier being the closest to the

SB solver (0.3s difference). For the 2x difference dataset, the random forest classifier was

able to achieve comparable performance to the SB solver and is almost twice as fast as the

random and decision tree classifiers. The decision tree classifier achieved worse perfor-

mance than the SB solver. Table 6.6b presents the number of feasible replays per solver.

The results are similar to the average PAR10 scores.

6.5.3. Analysis of feature importance

Analyzing the feature importance learned by the classifiers can provide insights into

the discriminating factors that decide the best algorithm selection. Feature importance is

127

(a) Average PAR10 scores (s)

Original 2x difference

VB 1.04 2.24
SB 1.57 3.57
Rand 3.89 6.67
DT 1.87 6.34
RF 2.22 3.83

(b) Number of feasible replays

Original 2x difference

VB 245,478 86,469
SB 245,478 86,469
Rand 245,424 86,437
DT 245,476 86,437
RF 245,470 86,462

Figure 6.6. Algorithm performance in terms of PAR10 scores and the num-
ber of feasible replays. The single best solver (SB) is the RECOMPOSE-
SP for both datasets.

computed as the expected fraction of samples that a feature influences in their final predic-

tion decision, i.e., a feature that is used as a decision node near the top of the tree will have

greater feature importance relative to one that is used lower down. Figure 6.7 presents

the top five important features of the trained decision tree and random forest for the 2x

difference dataset. While they are different for both classifiers, two and four out of the five

features are related to the number ingoing and outgoing arcs of places. The ingoing and

outgoing arc statistics of places indicate the amount of choices, e.g., a place with two out-

going arcs is an XOR split to two choices. This suggests that the amount of XOR decision

points is a major deciding factor. At first glance, this is a surprising result because a large

amount of parallelism will greatly increase the search space for a cost minimal alignment

and it should be much easier to identify a large amount of parallelism through the ingoing

and outgoing arc statistics of transitions rather than places. However, the expanded search

space from parallelism generally does not harm the performance of A∗ approaches since

the actual solution vector can typically be concluded directly from the solutions to the LP

problems. In contrary, choices would lead to additional LP computations in the search

space.

128

Figure 6.7. Top five features of decision tree (top) and random forest (bot-
tom) trained on 2-difference dataset

6.5.4. Analysis of infeasible instances

Lastly, model trace pairs whose alignment were infeasible under one or more algo-

rithms are analyzed. In the original dataset, CLASSIC and CLASSIC-SP had 74 and 52 in-

feasible instances under a 300s threshold respectively while RECOMPOSE and RECOMPOSE-

SP had none.

Using the observation presented in [75] and the noise generation information of the

datasets, we were able to verify for multiple instances that there was a recurrent problem

of swapped events leading to CLASSIC performing badly. Furthermore, for these instances,

both CLASSIC-SP and RECOMPOSE-SP were able to compute the alignments quickly due

to the enforcing of valid markings as a constraint in the linear program (LP) [75]. At

times, RECOMPOSE was also able to achieve similar performance. A likely reason is that

the decomposition was able to capture the swap deviation within a relatively small sub-

component.

129

For CLASSIC-SP, the timeout was clearly due to the number of LPs that had to be

solved.3 This stems from expanding markings with no solution vector so that an incre-

mentally larger LP has to be solved to yield an underestimate cost from the marking to the

final marking [75]. For the 52 infeasible replays, the mean number of restarts was 46 with

a minimum and maximum of 28 and 81. This contrasts feasible replays of non-perfectly

fitting traces under CLASSIC-SP which has a mean of 11 and a minimum and maximum of

3 and 66.

6.6. Limitations

There are a number of limitations with the presented results. With respect to the pro-

posed prediction problem, this chapter addressed a rather limited aspect in the alignment

algorithm selection problem space. Moreover, the experimentation is limited by the char-

acteristics of the model and log dataset used to generate the feature and performance data.

There is also a practical constraint with respect to the available computational resources

so that the dataset does not have valid alignments for traces that require more than 300

seconds to align.

With respect to the proposed predictive task, one limitation is in the use of total com-

putation time as the sole performance indicator. While minimizing computation time is

the main goal, it is not a consistent measure for training predictive models. A better choice

would be more consistent measures such as the number of visited states. However, due

to the potentially long time that heuristic computation may take, selecting a good perfor-

mance indicator other than time is not easy. It might be interesting to use predictive models

that give multi-outputs so that a vector containing all these measures is predicted. Another

limitation is in terms of the selected features. Potentially more informative features could

have been included, especially with respect to log traces. Moreover, while ensuring that

feature computation is fast allows the predictive model to be practically useful at run-

time, another approach is to allow the inclusion of more informative features that are more

3LPs are solved rather than ILPs due to parameter configuration

130

costly to compute but take into account their costs by including that into the learning of

the predictive models [31].

Furthermore, while the filtering by kx time difference resulted in better results, a minor

limitation is that the filtering does not enforce the kx difference to be between the best

performing algorithm and another algorithm. Another possible solution could be creating

new classes for model trace pairs that yield similar performances under different subsets

of algorithms.

6.7. Related work

6.7.1. Existing approaches

There is a large number of different approaches that compute cost minimal alignments.

Many are approaches which tackle the equivalent shortest path graph problem using A∗

based algorithms [4, 19, 75]. Non A∗ based approaches have also been proposed. It has

been shown that symbolic algorithms can be used to compute alignments after a prepro-

cessing step of the model [9]. Event structure based approaches have also been proposed

[6]. For acyclic process models, the alignment problem can be encoded as a Constraint

Satisfaction Problem (CSP) [44]. Decomposition approaches have also been shown to

achieve performance gains over their monolithic counterpart [38].

6.7.2. Parameter tuning and algorithm selection

Many process mining algorithms can require in-depth knowledge to apply. Moreover,

it can be difficult to set the optimal parameter configuration. Empirical studies have been

performed to describe the effects and trends of different parameter configurations of the

classic A∗ algorithm for different populations of process models [80]. The results have

shown that there exist parameter configurations that have a significant positive impact on

performance. A similar problem exists on the algorithm level for process discovery where

it can be difficult to decide the appropriate discovery algorithm for a particular event log. A

131

recommender system that uses portfolio-based algorithm selection strategies was proposed

to tackle the problem [55]. Another framework make use of reference models to select the

process mining algorithm that would mine models that are likely to have high similarity

to the provided models [90].

6.8. Conclusion

The time consuming nature of alignment computation has led to the proposal of several

alignment algorithms that can have dramatically different performance under different

scenarios. This means that it can be difficult to identify the algorithm that will terminate

in minimal time.

This chapter laid out the general problem of algorithm selection for conformance

checking and focused on a more specific problem of deciding when to apply decomposition-

based algorithms to compute exact optimal alignments using A∗ based techniques so that

computation time is minimized. This is achieved by encoding the algorithm selection

problem as a classification task of selecting the best performing algorithm per model trace

pair basis. The proposed approach has been empirically validated using decision tree and

random forest classifiers and with data generated from a large number of alignment com-

putations using publicly available datasets.

Part IV

Online conformance checking

133

7. A HMM-based approach to online conformance checking (HMMConf)

7.1. Introduction

In this chapter we turn to the challenge of conformance checking under an online con-

text. Given the volume and velocity at which event data comes in, organizations may not

store these data for offline analysis and have to resort to online techniques. Moreover, per-

forming analysis in real time allows process stakeholders to react to conformance issues.

Most existing conformance checking techniques require the trace of events to corre-

spond to a completed case. This means that these techniques target offline scenarios and do

not typically cater for online contexts where it is desirable to raise alerts as soon as a sig-

nificant deviation is observed for cases that have not reached completion. Moreover, due

to the continuous increase in recorded data, it can be infeasible for organizations to store

data for offline processing. For example, Wal-Mart is estimated to collect more than 2.5

petabytes of data every hour from its customer transactions [27]. As such, in recent years,

a new set of algorithms [78, 15, 16] has been proposed for online scenarios in which we

assume to have an event stream as input so that each item relates to an observed event for

a case. Here, we propose a novel online approach which performs conformance checking

on an event stream with constraints on memory and time.

There are several works on online conformance checking [78, 15, 16], but there still

exists areas for improvement. For example, prefix alignments [78] and a similar approach

based on enriching a transition system using alignment concepts [15] have difficulties han-

dling warm start scenarios. Another approach [16] that performs conformance checking

on behavioral patterns can lose information due to its abstraction.

One fundamental challenge of explaining the conformance of a running case is in

balancing between making sense at the process level as the case reaches completion and

putting emphasis on the current information at the same time. This can be illustrated

through a running example. Figure 7.1 and Figure 7.2 show a process model and some

134

i p0

p7

p8

p9

p10

p1 p2 p3

p4 p5

p6 o

new

t0

change
diagn

t1

inv0

t15

fin

t2

set
status

t16

join-
pat

t17

inv0

t18

release

t3

reopen

t4

code
error

t5

code
ok

t6

code
nok

t7

delete

t8

inv0

t9

billed

t10

reject

t11

inv1

t12

storno

t13

inv2

t14

Figure 7.1. Running example: Petri net model

σ0 = 〈NEW, FIN, SET STATUS, RELEASE, CODE OK, BILLED〉,
σ1 = 〈NEW, FIN, SET STATUS, RELEASE, CODE OK, BILLED, STORNO, REJECT, BILLED〉,
σ2 = 〈NEW, CHANGE DIAGN, FIN, SET STATUS, RELEASE, CODE NOK, CODE OK, BILLED〉,
σ3 = 〈NEW, FIN, SET STATUS, RELEASE, CODE NOK, REOPEN〉,
σ4 = 〈NEW, CHANGE DIAGN, FIN, RELEASE, CODE OK,MANUAL, RELEASE, CODE OK, REOPEN, DELETE〉,
σ5 = 〈RELEASE, CODE OK, BILLED〉,
σ6 = 〈NEW, FIN, RELEASE, CODE OK, BILLED〉,
σ7 = 〈NEW, FIN, JOIN-PAT, SET STATUS, JOIN-PAT, RELEASE, CODE OK, BILLED〉

Figure 7.2. Running example: Traces

potential traces of the billing process of a hospital. This example is based on a real-life

dataset [45] and a description of each activity in the process is presented in Table 7.1.

As shown by the process model, ideally, each instance of the process corresponds to the

billing process of a particular patient. As shown by trace σ0 in Figure 7.2, after undergoing

different medical services, these services are collected in a billing package and the package

is released so that the patient can be billed. However, different scenarios can potentially

occur during the process. For example, an invoice has to be sent to the insurance company

of the patient and the invoice can potentially be rejected (REJECT) as shown by trace σ1.

Given the trace of a complete case, alignment-based techniques [75, 4, 6] excels at giving

a globally optimal conformance solution. For example, for trace σ5, cost-based alignment

would show that it is missing the activities leading up to the RELEASE activity. However,

as the case unfolds in an online scenario, alignment techniques can be slow to realise

135

Table 7.1. Activity description of the hospital billing event log taken from [46]

Activity Description

NEW A new billing package is created.
FIN The billing package is closed, i.e., it may not be changed anymore.
RELEASE The billing package is released to be sent to the insurance company.
CODE OK A declaration code was successfully obtained.
BILLED The billing package has been billed, i.e., the invoice is sent out.
CHANGE DIAGN The diagnosis that the billing package is based on was changed.
DELETE The billing package was deleted.
REOPEN The billing package was reopened, i.e., additional medical services may be added or existing services removed.
CODE NOK The declaration code was obtained with an error message.
STORNO The billing package was canceled.
REJECT The invoice sent to the insurance company was rejected.
SET STATUS The status (i.e., new, closed, etc.) was manually changed.
EMPTY The billing package is declared empty.
MANUAL The billing package was manually changed from a non-standard system.
JOIN-PAT The billing package was joined together since they refer to the same patient.
CODE ERROR The declaration code could not be obtained.
CHANGE END The projected end date of the billing package was changed.

such eventual explanation since they are always seeking a globally optimal explanation.

Moreover, there is no flexibility in allowing warm start scenarios such as trace σ5. At the

other end of the spectrum, focusing only on the current information given by an incoming

event of a case can be insufficient in providing a conformance explanation coherent at

the process level. For example, trace σ7 presents conformance issues with activities FIN,

JOIN-PAT, and SET STATUS. However, if we only check directly following behavioral

patterns as new events of the case come in, the conformance issue would not be detected

since new events always form a modeled directly following behavioral pattern with the

previous event. As such, it is desirable to have an online framework that yields balanced

conformance explanations.

In this chapter, we present such framework based on Hidden Markov Models (HMM).

As new events come in for running cases, the model alternates between localizing the

running case within the reference model using the observed event and computing confor-

mance from such estimated position. Different to the assumption of the standard HMM,

both the previous state and observation can influence the next state due to non-conformance.

This is modeled by conditioning state transition and observation probabilities by both the

previous state and observation. Furthermore, rather than deciding beforehand the effects

136

of non-conformance, an Expectation-Maximization (EM) algorithm is applied to compute

the parameters from past data.

The rest of the chapter is structured as follows: Section 7.2 presents the proposed

technique. Section 7.3 details the parameter computation and estimation of the proposed

technique. Section 7.4 presents the experimental evaluation of the proposed technique.

Section 7.5 illustrates the application of the proposed technique on a real-life dataset.

Section 7.6 presents the related work. Finally, Section 7.7 presents the conclusion.

7.2. Proposed technique

The proposed technique is based on representing the conformance checking scenario

using a modified Hidden Markov Model (HMM). Given a process model and a stream

of events, the approach represents process instances by a probabilistic estimation of their

locations (state) within the process model and performs two tasks per event: orientation

and conformance. This online procedure is supported by an offline component that is

performed over past data as illustrated by the diagram in Figure 7.3. In this section, we

present the online procedure which is initiated by an observable unit from the event stream,

denoted by the grayed box, and then passed onto the two tasks of orientation and confor-

mance, denoted by the subsequent three boxes.

Given the natural connection between Petri nets and HMMs, we use markings as pos-

sible states of a process instance. However, note that we can take further approximations

by partitioning the set of possible markings into a smaller set of classes.

7.2.1. Overview

Algorithm 1 presents an overview of the online procedure. When a new observable

unit comes in from the event stream (line 2), it first goes through the orientation phase.

In this phase, either the previous state estimation or an initial state estimation of the case

is retrieved depending on whether if the corresponding case has been previously observed

137

Traverse reachability graph

Model
S

Accumulate
conforming behavior

Past data
L ∈ B(A∗)

Build conformance matrices

Estimate conforming
distribution parameters

Estimate non-conforming
distribution parameters

Compute current
forward probability αc(t)

Retrieve
αc(t − 1) or π

Event
(c, a) ∈ C × A at time t

Compute
conformance indicators

Offline Online

Figure 7.3. Overview of the proposed approach. The online component
is presented in Section 7.2 and the offline component is presented in Sec-
tion 7.3.

(line 3). Then, state estimation is performed, taking into account the new information

given by the new observable unit (line 4). Afterwards, it moves onto the conformance

phase where various conformance indicators are computed (line 5). Lines 2 – 5 correspond

to the four boxes in the previous flow diagram in Figure 7.3.

Algorithm 1: Overview of online conformance computation
Input: S: stream of observable units

1 forever do
2 (c, a)← observe(S) ; // New caseid-activity pair from the stream

// Phase 1: Orientation

3 statec ← get either previous or initial state estimation(c);
4 statec ← update state estimation(statec, a);

// Phase 2: Compute online conformance values

5 compute conformance indicators(statec, a);

7.2.2. Walk-through of an example

Here we walk through a case corresponding to trace σ6 in Figure 7.2 to give some

intuition. At the start of the case, one could assume that the case would be at the initial

marking ([i]) so that its initial state estimation is a one-hot vector ~1[i] with n components

where n corresponds to the number of possible locations. Then, suppose we observe

the first event (NEW). Clearly, this is described by the model and corresponds to firing

138

transition t0. This yields a perfect conformance value. Similarly, the next event (FIN) puts

the case at the state estimation of ~1[p0] (marking [p0] eventually enables activity FIN by

firing invisible transitions) with perfect conformance value.

Suppose we observe the next event (RELEASE). Clearly, this is not conforming to the

modeled behavior. To yield a plausible explanation for the non-conforming behavior, we

perform two tasks to estimate the current state. First, given the previous event (FIN) and the

assumption that it was perfectly conforming, the case must be currently at marking [p8, p9].

Second, checking the possible observations at marking [p8, p9] would tell us that RELEASE

does not correspond to an enabled transition. Incorporating both the state transition and

the current event, we would estimate that the current state to be at~1[p8,p9] and that the event

is completely non-conforming to the model. However, since the current observation is not

described by the modeled behavior, we can no longer rely on the model to estimate the

next state following the event (RELEASE).

Suppose we observe the next event (CODE OK). Similar to the previous event, we first

estimate its current state given its previous event (RELEASE) and conformance. Since the

previous conformance shows to be completely non-conforming to the modeled behavior,

we cannot use the model as the basis for the state estimation. Instead, we assume to

have a categorical distribution that estimates the next state given the previous event and

state. This distribution is learnt from past data using a procedure that is presented later

in the chapter. Suppose that in the past, there are similar cases which later turned out to

have skipped the execution of activity JOIN-PAT. This would encourage us to estimate the

current state to be at marking [p2]. Second, we incorporate the current event (CODE OK) in

our estimation. Since the transition corresponding to activity CODE OK is in fact enabled

at marking [p2], observing CODE OK reinforces our estimation of the current state to be

at marking [p2]. In contrary, if the observed event corresponds to activity RELEASE, then

we might reallocate some probability mass from marking [p2] to marking [p1] rather than

reinforcing our estimation on marking [p2]. In this case, reinforcing our state estimation

139

1 2 3 4 5 6 7
new fin join-pat

release

release code ok billed

Figure 7.4. State estimation taken throughout trace σ6 in Figure 7.2. Line
style indicates the conformance explanation of the corresponding execution
where a solid line indicates complete conformance, a dotted line indicates
complete lack of conformance, a dashed line indicates moderate confor-
mance, and a dash-dotted line indicates a possible model execution that
non-conforming observation might be referring to.

on marking [p2] yields a high conformance on the current event (CODE OK). In fact, the

following event BILLED will further confirm our estimation.

Figure 7.4 illustrates the state estimations taken throughout the case. The line style

of the arrows indicates the conformance explanation of the corresponding execution. For

example, since we assume that the initial state is ~1[i], the first event (NEW) and the second

event (FIN) is completely conforming with the modeled behavior. In contrary, the third

event (RELEASE) is completely non-conforming since it skipped over the activity JOIN-

PAT. As previously explained, the event RELEASE brings the state estimation to allocate a

high probability on marking [p2] where the transition corresponding to activity CODE OK

is enabled. This leads to a value in between complete conformance and non-conformance.

The last event has a high conformance value since the corresponding transition is enabled

at the previous state estimation.

7.2.3. HMM-based conformance checking

As previously explained, the current event and an estimation of the case’s current state

are required to compute the conformance of the current observation. We define a confor-

mance function as a mapping from a tuple of the current state estimation and observation

to a value between 0 and 1.

140

Definition 7.1 (Conformance function). Let Z denote the set of possible states. conf :

R|Z| ×A→ [0, 1] is a function that maps a state estimation and an activity execution to a

value between 0 and 1 so that a value near 0 indicates complete non-conformance and a

value near 1 indicates complete conformance.

For the model in Figure 7.1, conf(~1[i], NEW) = 11 yields complete conformance on the

one-hot vector with 1 at the initial marking since transition t0 is enabled.

As recalled, we perform a state estimation each time we observe a new event. More-

over, under perfect conformance, the current state is dependent solely on the previous state.

We extend this assumption to the scenario of non-perfect conformance to meet the com-

putational constraints of online processing. This means that the chain of state estimations

corresponds to a Markov chain. However, under the scenario of non-perfect conformance,

one cannot directly observe a case’s state (hence the need for state estimations). Instead,

the case’s state is hidden or so-called latent so that we have to infer it from the observed

events. The discrete progression of cases and the dependence between states of different

time steps yields a modified HMM.

Definition 7.2 (HMM for conformance checking (HMMConf)). Let Z be a set of la-

tent states and let X be a set of observations. Let Wxk ∈ R|Z|×|Z| be a state-transition

probability matrix given observation xk ∈ X , V ∈ R|Z|×|X| be an emission probability

matrix under conforming conditions and let W d
xk

and V d be their counterparts under non-

conforming conditions. Let conf : R|Z| × A → [0, 1] be a conformance function and let

π ∈ R|Z| be the initial state distribution.

(Wx1 , . . . ,Wx|X| ,W
d
x1
, . . . ,W d

x|X|
, V, V d, conf, π) is a modified hidden Markov model

with states dependent on previous observations [43] so that:

P (xt |zt, . . . , z1, xt−1, . . . , x1) = P (xt |zt), 1 ≤ t ≤ T (7.1)

1~1[i] is a one-hot vector with n components where n = 7 is the number of states in the reachability graph of
the Petri net in Figure 7.1. [i] is a multiset that denotes the state with 1 in ~1[i]; all other states has 0.

141

Latent Z1 Z2 Z3 Zt

X1 X2 X3 XtObserved

. . .

. . .

Figure 7.5. Graphical representation of HMMConf

P (zt |zt−1, . . . , z1, xt−1, . . . , x1) = P (zt |zt−1, xt−1), 2 ≤ t ≤ T (7.2)

Figure 7.5 presents a graphical representation of HMMConf. In terms of dependencies

between random variables, the difference between HMMConf and a standard HMM is the

extra dependency between the current state Zt and the previous observation Xt−1. As

previously explained, the latent states are the possible markings in the Petri net model and

the observations are the activities. We now present the state-transition probability (Eq. 7.2)

and the observation probability (Eq. 7.1).

Definition 7.3 (Conformance dependent state-transition probability). Let Wxk be the

state-transition probability matrix given observation xk ∈ X , W d
xk

be the probability

matrix for the deviating behavior, and ~̂zt−1 be an estimation of time t− 1.

wi,j(k) = P (Zt = j |Zt−1 = i,Xt−1 = xk)

≈ conf(~̂zt−1, xk)Wxk,i,j + [1− conf(~̂zt−1, xk)]W d
xk,i,j

This is an approximation of the latent state conditional probability because Wxk is a

substochastic matrix; the final marking of a Petri net corresponds to an absorbing state that

does not transition to other states once it is reached. To simplify the notations, we assume

that the latent state and observation sets are ordered so that members can be referenced

by their indices. Also, z1:t ≡ z1, z2, . . . , zt−1, zt. Component i of the estimation of the

previous state ~̂zt−1 is computed as P (Zt−1 = i | X1:t−1 = x1:t−1) =
αi(t−1)∑
k αk(t−1)

where

αi(t) = P (X1:t−1 = x1:t−1, Zt−1 = i) is the forward probability.

142

Definition 7.4 (Conformance dependent observation probability). Let V be the obser-

vation probability matrix, V d be the probability matrix for the deviating behavior, xk ∈ X
be an observation, and ~̂zt be an estimation of the previous state.

vj(k) = P (Xt = xk |Zt = j)

≈ conf(~̂zt, xk)Vj,k + [1− conf(~̂zt, xk)]V d
j,k

Similar to the state-transition probability, an absorbing state does not emit any obser-

vation so that typically not all the rows of V sum to 1. Component i of the estimation of

the current state ~̂zt is computed as P (Zt = j |X1:t−1 = x1:t−1) =
∑
i wi,j(xt−1)αi(t−1)∑

k αk(t−1)
.

As previously mentioned, in online conformance checking, most cases might not have

reached completion. This means that monitoring their conformance does not give a full

picture. Similar to previous work [16], we include the concept of completeness to indicate

whether if the entire trace has been observed since the beginning.

7.2.4. Conformance metrics

Figure 7.6 graphically illustrate the two distinct aspects of conformance that our pro-

posed technique measures. Conformance is between the current observation and the state

estimation of the corresponding case. Completeness indicates whether if we are observing

the complete trace by looking at previous observable units and the total injected distance

[16]. Injected distance refers to the number of states that are skipped so that a running case

can be brought from its last observed state to its updated state throughout its execution.

This means that completeness is inversely correlated with the total amount of injected

distance. For example, trace σ0 in Figure 7.2 would have both perfect conformance and

completeness since it corresponds to a complete model trace in the model in Figure 7.1.

In contrary, trace σ5 would yield a high conformance value but a low completeness since

it corresponds to a partial model trace that is missing the prefix of at least two activities

(NEW and FIN).

143

Process instance (c, a) · · ·

Latest observable unit

Based on the current observation and state estimation so far

Conformance

Based on previous observable
units and injected distance

Completeness

Previous observable units Future observable units
(not yet observed)

Figure 7.6. General idea of the two conformance indicators based on a
running process instance: conformance, completeness (based on a similar
diagram in [16])

L̂1 L̂2 L̂3 L̂4 L̂5

new fin

release

code ok billed

completeness

injected portion

conformance

Figure 7.7. Metric breakdown projected onto the evaluation of trace σ6 in
Figure 7.4. Same as Figure 7.4, line style indicates various conformance
explanations.

We refer to trace σ6 of the running example in Figure 7.2 to provide some more in-

tuition. Figure 7.7 enriches Figure 7.4 with a breakdown of the different conformance

metrics. We can see that each state node is denoted by Ẑi and corresponds to the state

estimation at each time step. As before, suppose that we assume that all cases should start

at the initial marking, the state estimation Ẑ1 = ~1[i] would concentrate all the probability

mass on marking [i]. Similarly, Ẑ2 = ~1[p0] and Ẑ3 = ~1[p8,p9]. Due to the non-conforming

event (RELEASE) and the following event (CODE OK), the state estimation Ẑ4 concentrates

all the probability mass on marking [p2]. Inspecting the reachability graph of the model

would tell us that the markings [p8, p9] and [p2] are not adjacent and are separated by an-

other node. This “injected distance” indicates that the observed sequence of events does

144

not correspond to a complete model trace. Moreover, for this particular state representa-

tion of markings, an event should not bring the corresponding case’s state to a non-adjacent

state, the total injected distance can be normalized and inverted as the completeness met-

ric.

7.2.5. Algorithm for online processing

The procedure for online conformance computation is presented in Algorithm 2. The

algorithm requires a stream of observable units (cf. Definition 2.13), the HMM-based

model (cf. Definition 7.2), and a state distance matrix as input.

The algorithm has an infinite loop to process a stream of observations (lines 1 and 2).

The whole procedure can be split into three phases: 1) updating the state estimation of a

case upon a new event, 2) computing conformance, and 3) entry removals if the number

of tracked cases is reaching maximum capacity.

For the first phase (lines 3 – 10), we update the discrete time step of the case, i.e., the

case length, the forward probability, and the state estimation. Forward probability is com-

puted with respect to each latent state. If the new event is the first observed event of the

case, then the forward probability just corresponds to updating the initial distribution us-

ing the observation probability. Otherwise, we also need to account for the state-transition

probability from each state of the previous forward probability. The update state estima-

tion then corresponds to the normalized forward probability. For the second phase (lines

11 – 18), we compute three conformance metrics. The conformance of the observed event

with respect to its estimated state is computed in line 11. Then, we use the modes of es-

timated previous and current state (which are categorical distributions) to update the total

injected distance (line 12 – 17). We assume that in a conforming scenario, the two states

should have a distance of 1 so that the observed event corresponds to the firing of a transi-

tion that progresses the previous marking to an adjacent marking in the reachability graph.

To convert the total injected distance into a completeness metric, we assume that the sum

of the total injected distance and the case length corresponds to the number of latent states

145

Algorithm 2: Online conformance computation
Input: S: stream of observable units

M = (Wx1 , . . . ,Wx|X| ,W
d
x1 , . . . ,W

d
x|X| , V, V

d, conf, π): HMMConf

D ∈ R|Z|×|Z|: state distance matrix
1 forever do

// New caseid-activity pair from the stream

2 (c, a)← observe(S) ;
// Phase 1: update forward probability P (Zt = i,X1:t = x1:t)

3 time(c)← time(c) + 1 ; // time(c) = 0 if a is the first event

4 for j ∈ Z do
5 if time(c) = 0 then
6 αcj(time(c))← πjvj(a) ; // c denotes the caseid

7 else
// atime(c)−1 is the activity observed at time(c)− 1

8 αcj(time(c))←
∑
i∈Z vj(a)wi,j(atime(c)−1)α

c
i (time(c)− 1);

9 for i ∈ Z do
// P (Zt = i |X1:t = x1:t) =

P (Zt=i,X1:t=x1:t)∑
k∈Z P (Zt=k,X1:t=x1:t)

10 state(c, i)← αc
i (time(c))∑

k∈Z αc
k
(time(c)) ;

// Phase 2: compute online conformance values

11 conformance(c)← conf(state(c), a) ;
// Modes are used to compute injected distance

12 if time(c) = 1 then
13 ẑtime(c)−1 ← argmaxi∈Z πi ;

14 else
15 ẑtime(c)−1 ← argmaxi∈Z α

c
i (time(c)− 1) ;

16 ẑtime(c) ← argmaxi∈Z α
c
i (time(c)) ;

// inj(c) = 0 if a is the case’s first event

17 inj(c)← inj(c) + max{0, Dẑtime(c)−1,ẑtime(c) − 1} ;

18 completeness(c)← time(c)
inj(c)+time(c) ;

// Phase 3: cleanup

19 if size of α and state is close to max capacity then
20 Remove entries of oldest cases ;

traveled across in the most likely latent state sequence so that completeness corresponds

to the proportion of latent states that can be mapped to observations (line 18). The third

phase of the algorithm (lines 19 – 20) removes the oldest entries due to the finite amount

of memory to cater possibly an infinite number of cases.

Suitability for online settings. The computational complexity of the infinite loop is linear

with respect to the stream size given the reference model as input. In phase 1, both the

forward probability and state estimation corresponds to matrix operations of vectors and

146

matrices that have a fixed size given the reference model. This means they can be com-

puted in constant time for each event. Similarly, all computations in phase 2 can be done

in constant time given the reference model. Phase 3 can also be done in constant time us-

ing data structures like LinkedHashMaps. The space required by the algorithm is bounded

by the maximum number of tracked cases. For each case, a vector of estimated state and

several metric values are stored. Since processing an event takes a constant amount of

time and space, the algorithm is suitable for online processing. Next, we turn to the task

of computing and estimating the model parameters of the proposed technique.

7.3. Parameter computation and estimation

In the previous section, we presented the proposed technique and explained how online

conformance checking can be performed. This section presents the parameter computation

and estimation that are done offline on past data.

As previously presented, Figure 7.3 illustrates the dichotomy of the entire procedure

where grayed boxes corresponds to data sources, dash lined boxes corresponds to parame-

ter estimations, and solid lined boxes corresponds to other computations. In the following,

we present the various details of the offline component, starting with the parameter estima-

tion aspect. We note that this is for the presented instantiation of the proposed technique

where we use Petri net markings to represent a case’s state in the process. The confor-

mance matrix that is used for the conformance function (cf. Definition 7.1) is computed

by traversing the Petri net model.

Computation of conformance matrix. By traversing the reachability graph G = (V,E),

we compute a matrix (cij) ∈ R|V |×|A| so that cm,a = 1 iff it is possible to observe ac-

tivity a because either the corresponding transition is enabled at marking m or if there

is a sequence of enabled invisible transitions whose firings would lead to a marking m′

that enables the corresponding transition. Formally, ∀mi∈V ∀t∈{t′∈T |l(t′)∈A}cmi,l(t) = 1 iff

∃j>i〈mi, . . . ,mj〉 s.t. (mj−1,mj) = t ∧ ∀i≤q<j−1 l(mq,mq+1) = τ .

147

Computation of distance matrix. Similar to the computation of the conformance matrix,

we traverse the reachability graph G = (V,E) to compute a distance matrix (dij) ∈
R|V |×|V | so that dij corresponds to the shortest path distance between nodes vi and vj in G.

Moreover, since invisible transitions are not observable in the event log, edges e ∈ E that

corresponds to invisible transitions have weight 0. Lastly, there can exist node pairs that

do not have a directed path from one to the other. For these node pairs, we compute the

shortest undirected path. Removing the edge direction from G yields a connected graph

since all markings are reachable from the initial marking.

Parameters of conforming probability distributions. In the case where a case is per-

fectly fitting with respect to the Petri net model, the corresponding marking sequence is

not hidden, i.e., the parameters can be directly estimated rather than in an iterative manner

using the EM algorithm. Standard replay techniques can be used to yield compute the

marking sequence. The remaining issue is therefore on the firing of invisible transitions

which cannot be mapped to an observed event. For this, we assume that all firings of

invisible transitions from the last recorded marking is related to the current observation;

this gives a consistent interpretation even in the case of requiring the firing of invisible

transitions at the initial marking.

As such, both the state-transition and emission probability distributions are categorical

distributions that describes the probability of transitioning to different next states given the

current state and the probability of observing a particular activity given the current state

respectively. The parameters can then be estimated by normalizing the respective counts

from the replay of the cases in the training sets.

However, it is possible that not all of the modeled behavior has been observed in the

training set. We take a Bayesian approach to incorporate the knowledge of all possible

modeled behavior captured from the Petri net model into the distributions. Given that

both distributions are categorical distributions, modeled behavior can be added as pseudo

counts by using a Dirichlet prior [52]. To accumulate the pseudo counts, we traverse

the reachability graph in the same manner as for the conformance matrix. For simplicity

148

and computation speed, rather than using the full posterior distribution of the parameters,

the expected values are used as point estimates of the parameters. This corresponds to

normalizing the parameters of the Dirichlet posterior.

Parameters of non-conforming probability distributions. Following the parameter es-

timation of the conforming probability distributions, we now turn to the more difficult task

of estimating the parameters of the non-conforming state-transition and emission proba-

bility distributions. This corresponds to finding parameters that maximize the likelihood

of the observations given the parameters:

W d
x1
, . . . ,W d

x|X|
, V d = argmaxW d

x1
,...,W d

x|X|
,V dP (x1:T ;W

d
x1
, . . . ,W d

x|X|
, V d)

This is difficult to directly optimize because both the parameters and the corresponding la-

tent states of the observations are free parameters with dependence. Therefore, rather than

direct optimization, the EM algorithm [23] is used. The EM algorithm alternates between

estimating the latent states (Expectation step) and the matrix parameters (Maximization

step) until the convergence threshold is met.

At the Expectation step, we fix the current parameter estimates and together with the

observations, we compute the conditional probability of each observation being at the dif-

ferent latent states as Q(z1:T) = P (z1:T | x1:T ;Wx1 , . . . ,Wx|X| , V,W
d
x1
, . . . ,W d

x|X|
, V d).

Then, at the Maximization step, we find new parameter estimates that maximize the con-

ditional expected log likelihood of both the observations and their latent states. Similar

to a conventional HMM, we can set up and derive closed form updates for the parameter

149

estimates as follows:

logP (x1:T) =
∑
z1:T

logP (x1:T , z1:T)

≥
∑
z1:T

Q(z1:T) log

[
P (x1:T , z1:T)

Q(z1:T)

]

=
∑
z1:T

Q(z1:T)

[
log πz1 +

T∑
t=2

logwzt−1,zt(xt−1)︸ ︷︷ ︸
1

+
T∑
t=1

log vzt(xt)︸ ︷︷ ︸
2

]
(7.3)

We can separately estimate the two variables of interest by focusing on the labeled parts

of Equation 7.3:

(i) State-transition probability matrix of deviating behavior W d
a

(ii) Observation probability matrix of deviating behavior V d

W d
a,i,j =

∑T
t=2 αi(t− 1)wi,j(zt−1)vj(xt)βj(t) 1{xt−1 = a ∧ conf(~zt−1, xt−1) < 1}∑|Z|

j=1

∑T
t=2 αi(t− 1)wi,j(zt−1)vi(xt)βj(t) 1{xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

V d
j,a =

∑T
t=1 1{xt = a ∧ conf(~zt, xt) < 1}αj(t)βj(t)∑T

t=1 1{conf(~zt, xt) < 1}αj(t)βj(t)

βj(t) = P (Xt+1:T = xt+1:T | Zt = j,Xt = xt) is the backward probability for state

j at time t and is computed as βj(t) =
∑

k∈Z vk(xt+1)wj,k(xt)βk(xt+1) with base case

βj(T − 1) =
∑

k∈Z vk(xT)wj,k(xT−1).

Next, we present the experimental evaluation of the proposed technique where we

performed a stress test and correlation test on existing dataset for comparability with state

of the art techniques.

150

Figure 7.8. Performance during a stress test of ∼2 million events (see col-
ored version online)

7.4. Experimental evaluation

For the sake of space and scope, we focus the evaluation on the conformance checking

results of the proposed model rather than its predictive capability. The proposed approach

is implemented in Python and can be found in the GitHub repository2, along with further

detail for reproduction. The experimental results are open and publicly available 3.

7.4.1. Stress test

Similar to [16], we performed a stress test of our approach using the dataset from the

mentioned work so that the results are comparable. However, preprocessing was necessary

to filter out noisy events with randomly generated activity names. After filtering, the event

stream has 1,985,744 events4. The test was performed on a standard machine, equipped

with Python 3.6, an Intel Core i7-4700MQ 2.40GHz CPU and 12GB of RAM. We allowed

the model to track 10,000 cases at most.

Figure 7.8 presents the results. Space is measured as the object size of the model. We

can see that space is directly correlated with the number of cases after adding on a fixed

space for the parameters. Both the number of cases and total space used reach a peak

2https://github.com/jwllee/HMMConf/tree/Computing2019
3DOI will be requested after the acceptance of the manuscript. Meanwhile, they can be accessed at https:
//drive.google.com/open?id=1w_Lt6aPmbwHFgP6BPpy3Mel0_AGhGDK7
4Models and streams available in https://doi.org/10.5281/zenodo.1194057

https://github.com/jwllee/HMMConf/tree/Computing2019
https://drive.google.com/open?id=1w_Lt6aPmbwHFgP6BPpy3Mel0_AGhGDK7
https://drive.google.com/open?id=1w_Lt6aPmbwHFgP6BPpy3Mel0_AGhGDK7
https://doi.org/10.5281/zenodo.1194057

151

and remain stable at around 125k events when all 9,778 cases are tracked. Since the state

transition probability is not involved for the first event of a case, the average processing

time is particularly low for the first 125k events. Then, time eventually stabilizes at ∼0.49

ms after 1M events. This test demonstrates that the model can sustain a high load of

events. As expected, the results suggest that both processing time and memory usage are

non-increasing with respect to the number of events after reaching stability. However, it is

significantly slower than the average processing time of below 0.009 ms/event reported in

[16].

7.4.2. Correlation with alternative conformance metrics

In this section, the proposed technique is compared with an alternative cost-based pre-

fix alignment technique described in [78]. As the cost-based metric computed by align-

ment is a more informative and well-established technique, correlation between the two

techniques would suggest that the proposed technique also reflects conformance as under-

stood in the literature.

Similar to before, we make use of the dataset generated for the correlation test in [16].

Given that the prefix alignment results were not available in the open source dataset, we

implemented prefix alignments using the Alignment package5 in ProM6 [86]. The align-

ments are then computed using the standard cost function [4]. For each Petri net model,

a 5-fold cross validation is performed on all the traces so that the mean measurement is

taken for each event. Moreover, for the EM parameter estimation, we set the convergence

condition as a tolerance threshold of 5 in log probability difference or a maximum of 10

iterations. Since we know that the traces can be non-conforming, an epsilon of ∼ 1e-5

(0.001%) is added to all states of the initial distribution.

We compare the two techniques under the context of all results and only non-conforming

results as determined by alignment costs. Overall, we find that total injected distance is

5https://svn.win.tue.nl/trac/prom/browser/Packages/Alignment

https://svn.win.tue.nl/trac/prom/browser/Packages/Alignment

152

(a) All results (b) Non-conforming results

Figure 7.9. Bubble plots of total injection distance (with epsilon mass at
initial distribution) versus incremental alignment costs

conceptually more similar to alignment costs. Figure 7.9 presents bubble plots where to-

tal injected distances are binned so that the y-axis values are of the intervals’ mid value.

Moreover, Figure 7.10a presents the Spearman’s rank correlation coefficient (ρ-value) be-

tween costs and the proposed metrics. Given that conformance computed by our approach

is between the estimated state and one event, we use the mean conformance for compar-

ison. This means that for a case of length k, the mean conformance is computed from k

values.

As shown in Figure 7.9a, the dataset is predominantly conforming. In fact, as we

will later show in the confusion matrix analysis, according to the prefix alignment tech-

nique, only ∼ 20% of the case prefixes are non-conforming. Referring to Figure 7.10a,

there is a ρ-value of 0.697 between total injected distance and cost. The moderate positive

correlation between the two is expected since higher costs imply that a larger number of

consecutive latent states are likely to be not adjacent in the reachability graph. In addition,

the correlations between costs and mean conformance (-0.470) and completeness (-0.712)

are also within expectations. For the non-conforming results, visually, Figure 7.9b sug-

gests that higher costs correlates with larger total injected distance and this is supported by

153

(a) Spearman correlation

Spearman correlation coefficienta

All Non-conforming

Mean conformance -0.470 0.252
Total injected distance 0.697 0.665
Completeness -0.712 -0.519

aAll results are statistically significant with two-sided p-value
<0.001

(b) Confusion matrix

Non-conforming conforma

cost > 0 450794 17763
cost = 0 333356 2093647

aconformance >0.99 and total injection
distance is 0

Figure 7.10. Statistics comparing prefix alignment costs and three metrics

a ρ-value of 0.665. We observe a similar result with the moderate negative correlation be-

tween costs and completeness (-0.519). There is a low positive correlation between mean

conformance and costs (0.252). This is surprising as one would expect conformance to

be negatively correlated with costs. However, it is likely that the two metrics are simply

measuring different conformance qualities. The proposed approach’s conformance metric

measures whether if the observed event is conforming with respect to the local position

of the case while costs takes a global perspective in measuring the cost of aligning the

observed trace in an optimal manner. In comparison to the previous work on a behavioral

pattern based approach [16] which yielded a ρ-value of -0.954 for the whole dataset and a

ρ-value of -0.295 for non-conforming results, the results suggest that our approach yields

conformance results that are closer to those provided by prefix alignments than the be-

havioral pattern based approach under non-conforming scenarios. One of the reasons for

the lower correlation when considering the whole dateset is due to the differences at the

lower cost region. This is likely to be due to the fact that our approach handles warm start

scenarios by quickly orienting the case at the corresponding location in the model rather

than classifying events as log moves.

An important scenario in conformance checking is the classification of whether a case

is conforming or not. For this, alignment can be treated as the ground truth. Figure 7.10b

shows the confusion matrix of our approach’s performance. A case is deemed to be con-

forming if the conformance of the current event >0.99 (to account for float imprecision)

and has a total injected distance of 0. We find that our approach has a high precision of

154

0.992 and recall is at 0.863. This gives a F1-score of 0.923 and is much better than 0.838,

the F1-score of a stratified dummy classifier.

In conclusion, we find that our approach yields results that correlate with prefix align-

ments. In particular, the total injected distance metric has a moderate correlation with

alignment costs under both conforming and non-conforming scenarios. Moreover, dif-

ferences between the two techniques can be adequately explained by the differences in

treatment of both conforming and non-conforming scenarios, as well as the limitations of

our approach.

7.5. Real-life dataset evaluation

We also perform an evaluation on a real-life dataset - hospital billing event log [45].

One focus is to illustrate its applicability in the current real life context where often times

there is no available normative process model corresponding to the event data.

Preprocessing and model construction. Given that the event log spans over four years

from 2012 to 2016, during which it can be shown that the process went through concept

drifts, we filtered the event log to only contain cases that started at 01-01-2013 and after.

Moreover, since our focus is on tracking the conformance of cases over the course of their

executions, it is easier to highlight this aspect by looking at cases that have more than just

a few events. We perform our final filter to only include cases that have 10 or more events.

The final event log contains 2992 cases and 630 trace variants. As previously mentioned,

it can be difficult to find a normative process model in the current real life context. One

possible solution is to construct a process model from the observed data as a proxy of the

underlying process. Here we assume that the underlying process is composed of the most

frequent trace variants. Figure 7.12 shows that most of the cases belong to only a few

trace variants. In fact, there are only 10 trace variants with more than 50 cases and in total

there are 1717 cases associated with these 10 trace variants, i.e., they make up for more

than 50% of the event log. We then created a handmade model that permits the 10 trace

155

variants as shown in Figure 7.11. Overall, there are two main parts to the process: the

billing goes through an approval process to yield a code before getting billed.

i p0 p1 p2 p3

p4 p5

p6 o

new

t0

change
diagn

t1

fin

t2

release

t3

reopen

t4

code
error

t5

code
ok

t6

code
nok

t7

delete

t8

inv0

t9

billed

t10

reject

t11

inv1

t12

storno

t13

inv2

t14

Figure 7.11. Petri net model extracted from 10 most frequent trace variants

Experiment setup. We used a k-fold cross validation approach to evaluate the model

where k = 5 and stratified sampling is used over the variant category of the cases so that

the training set has a similar distribution as the overall dataset. For the training of the

proposed model, a maximum of 10 iterations is set for the EM algorithm.

One interesting challenge is that the process model only has 12 visible transitions and

does not include all 17 possible activities since some of the activities are not included in

Figure 7.12. Distribution plot showing concentration of cases on a few
trace variants

156

any of the 10 trace variants. We assumed that in real life we are able to know the set of

possible observable activities beforehand so that these unmodeled activities can be incor-

porated into the observation variable set of the probability distributions and conformance

matrix. Note that an even weaker assumption of not knowing the set of possible activities

can be taken by adding a wild card activity into the observation variable set so that all

unmapped activities are mapped to this wild card activity.

Result analysis. Overall, we find that the data have high conformance. This is expected

since the model captures > 50% of the observed behavior on a trace level. Inspecting the

results on an activity level identifies specific conformance problems.

(a) Distribution plot of average conformance per
case

Fold no. Conformance Total injected distance Completeness
mean std mean std mean std

1 0.930 0.233 0.172 0.528 0.985 0.045
2 0.947 0.205 0.119 0.420 0.990 0.035
3 0.951 0.198 0.108 0.389 0.991 0.033
4 0.834 0.330 0.475 1.153 0.966 0.075
5 0.944 0.211 0.145 0.480 0.988 0.040

All 0.901 0.269 0.267 0.817 0.980 0.057

(b) Test set statistics of conformance metrics

Figure 7.13. Experiment results on case level

Table 7.13b presents the mean and standard deviations of the test set conformance

results. We can see that with the exception of the fourth test fold to some extent, all of

the results are quite similar. This is expected since a stratified sampling approach was

taken to create the cross validation data partition. The results show that generally the data

is conforming and the injected distance is quite low. However, the standard deviation is

somewhat high. Figure 7.13a shows the distribution plot of the average conformance per

case. It shows two pronounced peaks: one at 1.0 and the other at 0.9. In fact, 1534 cases

157

resulted with an avg. conformance of large or equal to 0.99 and 1173 cases resulted with

an avg. conformance within the interval of [0.80, 0.99).

Figure 7.14. Violin plots of the conformance per activity for non-
conforming events

Next, we analyze the results from the activity perspective. Figure 7.14 shows a vio-

lin plot of events which have a conformance value lower than 0.99, i.e., non-conforming

events. It shows that the conformance values are distributed with multiple modes. This

is actually due to the nature of the conformance issues in the data. For most of the non-

conforming cases, the problem is in having “extra” activity executions that are not mod-

eled. This means that either an activity is observed while the case is at the “wrong”

location within the process or that a series of previous non-conforming observations had

caused uncertainty in the state estimation but most of the probability mass is at the “cor-

rect” location for the current observation. Analyzing the specific shapes of the plots can

even point out the particular conformance problem. For example, looking at the plot

shapes of the activities CODE OK and CODE NOK shows that for the non-conforming ob-

servations, observations of CODE OK generally have high conformance and observations

of CODE NOK generally have low conformance. Inspecting the cases in the event log

shows that there are 77 cases where there is a string of one or more events with CODE

158

NOK that ends with CODE OK before moving onto a different part of the process. In con-

trary, there is only 1 case where an event of CODE OK is followed by CODE NOK and even

in this case, the event corresponding to CODE NOK ultimately ends with CODE OK.

One possible explanation is that there can be problems in obtaining a valid declaration

code but that trying multiple times can ultimately lead to a successful declaration code.

(a) State [p0] (b) State [o]

Figure 7.15. Non-conforming emission probability distributions at states
[p0] and [o]

Finally, we discuss about the unmodeled activities. Specifically, we look at the ac-

tivity JOIN-PAT which joins multiple billings of the same patient. Since there are only

57 cases with this activity, one can inspect the event data to find that the activity mostly

occur right after the billing package is closed or at the end of the case. Inspecting the non-

conforming emission probability distribution suggests the same observation. Figure 7.15a

and Figure 7.15b shows the emission probability distributions at the states [p0] and [o]

respectively. The probability values are presented as negative log probability so that ac-

tivities with lower values are more probable. For both states, we see that the activity

JOIN-PAT have relatively low values. In fact, JOIN-PAT is the most probable observation

at state [o]. The coincidence between the observation from the event log and the emission

159

probability distributions suggest that the proposed technique was able to learn correctly

from the training data.

7.6. Related work

There are many offline conformance checking techniques, e.g., alignment-based tech-

niques [4, 63, 75, 54, 1, 6, 63, 77, 61], behavioral profile techniques [92], token replay

based techniques [58, 82], and HMM techniques [59]. This work differs from [59] in

that the state-space of the model is used as the latent variable set and both the previous

state and observation are used to estimate the next state. In addition, the EM algorithm is

used to estimate the state-transition and observation probabilities under non-conforming

scenarios. For online conformance checking, we discuss three recent works. Prefix align-

ments are presented in [78] to provide alignment explanations for possibly ongoing cases.

However, alignment computations can take a long time and also the technique cannot han-

dle warm start scenarios. Another approach is to pre-compute possible deviations on top

of the model behavior [15]. There is some similarity between the proposed approach and

[15] in that we try to keep track of the state of a running case. But rather than deciding how

non-conformance should be handled beforehand, the EM algorithm is used to estimate the

necessary parameters. Lastly, [16] transforms an event stream into a stream of behav-

ioral patterns and checks whether if the observed patterns are conforming. This approach

takes a strong abstraction to trade for run time efficiency. It also proposed a breakdown

of conformance in an online context into three aspects: conformance, completeness, and

confidence. This idea was brought into our approach as: conformance and total injected

distance.

7.7. Conclusion and future work

This chapter presents an approach to perform conformance checking on a stream of

events against a reference model. The approach alternates between updating the state esti-

mation of a running case and computing its conformance with respect to the updated state.

160

To model the behavior of a process under both conforming and non-conforming scenarios,

the approach modifies a conventional HMM so that both the state estimation and observa-

tions are used to estimate the next state. Similar to a recent work [16], to measure different

aspects of conformance, the approach includes three different metrics: conformance, total

injected distance, and completeness. The proposed approach is implemented as a Python

package and has been verified through a stress test, a comparison with prefix alignments,

and a real-life dataset. As future work we plan to address the identified limitations as well

as to further develop the approach. This includes investigating ways to abstract from us-

ing markings as latent states for efficiency and other constructs to model behavior in the

presence of non-conformance, e.g., decomposition techniques [65].

Part V

Closure

162

8. Conclusions

In this section, we present a summary of the contributions of this thesis, challenges

and directions for future work.

8.1. Summary of contributions

The main theme of this thesis is on conformance checking. In the introduction, we

identified four challenges arising from different data dimensions: (1) conformance check-

ing algorithms can be computationally expensive due to the large possibly infinite state-

space of process models, (2) decomposition techniques is a promising solution to reduce

computational complexity since it can break down a large conformance checking problem

into smaller ones, but existing decomposition techniques tackle the decisional problem of

whether if a log trace is conforming or give best effort results that are a lower bound of

the exact result, (3) given the difficulty of conformance checking, there can be many algo-

rithms that do the same task but with different characteristics and advantages at different

scenarios, this makes it difficult for the end user to choose between them without having

expert knowledge of the algorithms, and given the volume and velocity at which event

data comes in, organizations may not store data for offline analysis and have to resort to

online techniques, online conformance checking brings in challenges that are not present

in offline scenarios. In this thesis, we have presented results that address the identified

challenges:

• Decomposition techniques. Chapter 3 presents the total border agreement condi-

tion as a sufficient condition to merge optimal sub-alignments so that the merged

alignment has the same misalignment costs as an optimal alignment computed un-

der the monolithic approach. The condition requires that alignment moves related to

border activities are synchronized across all sub-alignments. Chapter 4 makes use

of this merging condition to propose a divide and conquer framework for comput-

ing alignments. The proposed framework iteratively performs decomposed replay

163

to check for the merging condition and recomposes on problematic border activities

to resolve border conflicts in the following iteration. Moreover, the framework al-

lows the user to configure the level of accuracy in the conformance results so that

they can choose the balance between result accuracy and computation time. Ex-

perimental results show that there can be some traces that can take many iterations

to reach the needed merging condition. This forms a bottleneck for the proposed

recomposing conformance checking framework. Chapter 5 addresses this problem

by investigating different recomposition heuristics that can encourage the merging

condition.

• Algorithm selection. Chapter 6 applies machine learning to create an oracle that

can help user use the best algorithm depending on their data. Specifically, the chap-

ter investigates the problem of choosing when to use decomposition techniques for

computing alignments depending on the input data.

• Online conformance checking. Chapter 7 turns to the challenge of performing con-

formance checking in an online setting. Here the focus is on the challenge of having

to balance between making sense at the process level as the case reaches comple-

tion and putting emphasis on the current information at the same time. The chapter

proposes a Hidden Markov Model (HMM) based framework that alternates between

estimating the current position of the running case in the scope of the process and

computing the conformance between the observed and modeled behavior using the

estimated case position.

8.2. Challenges and future work

In this section we list some of the possible future research lines:

• Outside of alignments. A large part of this thesis has been focused on improving

the computational performance of alignment techniques by using decomposition.

However, as of current, alignments is no longer the only conformance result that are

computationally intensive. For example, good metrics for the precision dimension

164

inevitably have to explore a large number of reachable model states to compare the

modeled behavior with the observed behavior. Decomposition techniques can be

applied to partition the process for such exploration.

• Algorithm selection. Often times proposed techniques are focused on specific is-

sues, e.g., the recomposing framework is focused on large and complex processes.

This means that the end user needs to have the expertise to decide the appropriate

technique for the conformance checking task at hand. It would be desirable to have

an oracle that can abstract this for general tasks such as alignment computation. In

Chapter 6, we applied machine learning to abstract the decision between the mono-

lithic or decomposed approach for alignment computation to achieve best computa-

tional performance. Finding a good oracle is difficult since the number of possible

problem configurations is often infinite. Furthermore, in the research space, tech-

niques are often improved. This makes it difficult to have an oracle that is consistent

with the current state of the art.

• Model repair. Computing conformance is only the first part of the process. After

finding out the conformance issues, actions need to be taken to address and resolve

the identified issues. However, the challenge is in finding the appropriate balance be-

tween all the different conformance dimensions while maintaining certain desirable

properties of the repaired model such as soundness.

• Online conformance checking. Part of the challenge in online conformance check-

ing is the extra computation complexity requirement imposed by stream processing.

This means that often one has to resort to approximations. Moreover, the uncertainty

of how a case will unfold means that results of an online conformance checking tech-

nique can be unstable.

8.3. Acknowledgement

This work is supported by CONICYT-PCHA / Doctorado Nacional / 2017-21170612.

165

REFERENCES

[1] H. Van Der Aa, H. Leopold, and H. Reijers. Efficient process conformance checking

on the basis of uncertain event-to-activity mappings. IEEE Transactions on Knowl-

edge and Data Engineering, pages 1–1, 2019.

[2] Ahmed Abbasi, Suprateek Sarker, and Roger H. L. Chiang. Big Data Research in

Information Systems: Toward an Inclusive Research Agenda. J. AIS, 17(2), 2016.

[3] Giovanni Acampora, Autilia Vitiello, Bruno N. Di Stefano, Wil M. P. van der Aalst,

Christian W. Günther, and Eric Verbeek. IEEE 1849: The XES standard: The sec-

ond IEEE standard sponsored by IEEE computational intelligence society [society

briefs]. IEEE Comp. Int. Mag., 12(2):4–8, 2017.

[4] Arya Adriansyah. Aligning Observed and Modeled Behavior. PhD thesis, Technische

Universiteit Eindhoven, 2014.

[5] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Confor-

mance Checking Using Cost-Based Fitness Analysis. In Proceedings of the 15th

IEEE International Enterprise Distributed Object Computing Conference, EDOC

2011, Helsinki, Finland, August 29 - September 2, 2011, pages 55–64, 2011.

[6] Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and Luciano Garcı́a-

Bañuelos. Diagnosing behavioral differences between business process models: An

approach based on event structures. Inf. Syst., 56:304–325, 2016.

[7] Adriano Augusto, Abel Armas-Cervantes, Raffaele Conforti, Marlon Dumas, Mar-

cello La Rosa, and Daniel Reißner. Abstract-and-compare: A family of scalable pre-

cision measures for automated process discovery. In Mathias Weske, Marco Montali,

Ingo Weber, and Jan vom Brocke, editors, Business Process Management - 16th In-

ternational Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018,

Proceedings, volume 11080 of Lecture Notes in Computer Science, pages 158–175.

Springer, 2018.

166

[8] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Thomas Lindauer, Yuri Mal-

itsky, Alexandre Fréchette, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown,

Kevin Tierney, and Joaquin Vanschoren. Aslib: A benchmark library for algorithm

selection. Artif. Intell., 237:41–58, 2016.

[9] Vincent Bloemen, Sebastiaan J. van Zelst, Wil M. P. van der Aalst, Boudewijn F. van

Dongen, and Jaco van de Pol. Maximizing synchronization for aligning observed and

modelled behaviour. In Business Process Management - 16th International Confer-

ence, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings, pages

233–249, 2018.

[10] Carmen Bratosin, Natalia Sidorova, and Wil M. P. van der Aalst. Distributed genetic

process mining. In Proceedings of the IEEE Congress on Evolutionary Computation,

CEC 2010, Barcelona, Spain, 18-23 July 2010, pages 1–8. IEEE, 2010.

[11] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[12] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification

and Regression Trees. Wadsworth Statistics, 1984.

[13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,

Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grob-

ler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux.

API design for machine learning software: experiences from the scikit-learn project.

In ECML PKDD Workshop: Languages for Data Mining and Machine Learning,

pages 108–122, 2013.

[14] Andrea Burattin. PLG2: Multiperspective Processes Randomization and Simulation

for Online and Offline Settings. CoRR, abs/1506.08415, 2015.

[15] Andrea Burattin and Josep Carmona. A framework for online conformance checking.

In Business Process Management Workshops - BPM 2017 International Workshops,

Barcelona, Spain, pages 165–177, 2017.

[16] Andrea Burattin, Sebastiaan J. van Zelst, Abel Armas-Cervantes, Boudewijn F. van

Dongen, and Josep Carmona. Online conformance checking using behavioural pat-

terns. In Business Process Management - 16th International Conference, BPM 2018,

167

Sydney, NSW, Australia, Proceedings, pages 250–267, 2018.

[17] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich.

Conformance Checking - Relating Processes and Models. Springer, 2018.

[18] Thomas Chatain and Josep Carmona. Anti-alignments in Conformance Checking

- The Dark Side of Process Models. In Application and Theory of Petri Nets and

Concurrency - 37th International Conference, PETRI NETS 2016, Toruń, Poland,

June 19-24, 2016. Proceedings, pages 240–258, 2016.

[19] Massimiliano de Leoni and Andrea Marrella. Aligning real process executions and

prescriptive process models through automated planning. Expert Syst. Appl., 82:162–

183, 2017.

[20] Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der

Aalst. Decomposing Alignment-Based Conformance Checking of Data-Aware Pro-

cess Models. In Robert Meersman, Hervé Panetto, Tharam S. Dillon, Michele Mis-

sikoff, Lin Liu, Oscar Pastor, Alfredo Cuzzocrea, and Timos K. Sellis, editors, On the

Move to Meaningful Internet Systems: OTM 2014 Conferences - Confederated Inter-

national Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31,

2014, Proceedings, volume 8841 of Lecture Notes in Computer Science, pages 3–20.

Springer, 2014.

[21] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. Genetic

process mining: an experimental evaluation. Data Min. Knowl. Discov., 14(2):245–

304, 2007.

[22] Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. A multi-

dimensional quality assessment of state-of-the-art process discovery algorithms us-

ing real-life event logs. Inf. Syst., 37(7):654–676, 2012.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society: Series B

(Methodological), 39(1):1–22, 1977.

[24] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamen-

tals of Business Process Management, Second Edition. Springer, 2018.

168

[25] Dirk Fahland, Massimiliano de Leoni, Boudewijn F. van Dongen, and Wil M. P.

van der Aalst. Conformance Checking of Interacting Processes with Overlapping

Instances. In Stefanie Rinderle-Ma, Farouk Toumani, and Karsten Wolf, editors,

Business Process Management - 9th International Conference, BPM 2011, Clermont-

Ferrand, France, August 30 - September 2, 2011. Proceedings, volume 6896 of Lec-

ture Notes in Computer Science, pages 345–361. Springer, 2011.

[26] Luciano Garcı́a-Bañuelos, Nick van Beest, Marlon Dumas, Marcello La Rosa, and

Willem Mertens. Complete and interpretable conformance checking of business pro-

cesses. IEEE Trans. Software Eng., 44(3):262–290, 2018.

[27] D. Gaurav, J. K. P. Singh Yadav, R. K. Kaliyar, and A. Goyal. An outline on big data

and big data analytics. In 2018 International Conference on Advances in Computing,

Communication Control and Networking (ICACCCN), pages 74–79, Oct 2018.

[28] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science

in information systems research. MIS Quarterly, 28(1):75–105, 2004.

[29] Mieke Julie Jans, Michael G. Alles, and Miklos A. Vasarhelyi. The case for process

mining in auditing: Sources of value added and areas of application. International

Journal of Accounting Information Systems, 14(1):1–20, 2013.

[30] Toon Jouck and Benoı̂t Depaire. Ptandloggenerator: A generator for artificial event

data. In BPM (Demos), volume 1789 of CEUR Workshop Proceedings, pages 23–27.

CEUR-WS.org, 2016.

[31] Lars Kotthoff, Ian P. Gent, and Ian Miguel. An evaluation of machine learning in

algorithm selection for search problems. AI Commun., 25(3):257–270, 2012.

[32] Matthias Kunze, Alexander Luebbe, Matthias Weidlich, and Mathias Weske. To-

wards Understanding Process Modeling – the Case of the BPM Academic Initiative.

In International Workshop on Business Process Modeling Notation, pages 44–58.

Springer, 2011.

[33] Douglas Laney. 3D data management: Controlling data volume, velocity, and variety.

Technical report, META Group, February 2001.

169

[34] Wai Lam Jonathan Lee. Advancing Decomposed Conformance Checking in Process

Mining. In Business Process Management Doctoral Consortium, Sydney, Australia,

September 09, 2018., 2018.

[35] Wai Lam Jonathan Lee, Andrea Burattin, Jorge Munoz-Gama, and Marcos Sepúveda.

Orientation and conformance: A HMM-based approach to online conformance

checking. Information System (under review), 2019.

[36] Wai Lam Jonathan Lee, Jorge Munoz-Gama, H. M. W. Verbeek, Wil M. P. van der

Aalst, and Marcos Sepúlveda. Improving Merging Conditions for Recomposing Con-

formance Checking. In Business Process Management Workshops - BPM 2018 Inter-

national Workshops, Sydney, Australia, September 10, 2018. Revised Papers, 2018.

[37] Wai Lam Jonathan Lee, H. M. W. Verbeek, Jorge Munoz-Gama, Wil M. P. van der

Aalst, and Marcos Sepúlveda. Replay using recomposition: Alignment-based con-

formance checking in the large. In Proceedings of the BPM Demo Track and BPM

Dissertation Award, Barcelona, Spain, September 13, 2017., volume 1920 of CEUR

Workshop Proceedings. CEUR-WS.org, 2017.

[38] Wai Lam Jonathan Lee, HMW Verbeek, Jorge Munoz-Gama, Wil MP van der Aalst,

and Marcos Sepúlveda. Recomposing conformance: Closing the circle on decom-

posed alignment-based conformance checking in process mining. Information Sci-

ences, 2018.

[39] Lee, W.L.J. (Jonathan), Verbeek, H.M.W. (Eric), Munoz-Gama, J. (Jorge), Van Der

Aalst, W.M.P. (Wil), and Seplveda, M. (Marcos). Recomposing conformance (ins

2018), 2018.

[40] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering block-

structured process models from event logs - A constructive approach. In José Manuel

Colom and Jörg Desel, editors, Application and Theory of Petri Nets and Concur-

rency - 34th International Conference, PETRI NETS 2013, Milan, Italy, June 24-28,

2013. Proceedings, volume 7927 of Lecture Notes in Computer Science, pages 311–

329. Springer, 2013.

170

[41] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable pro-

cess discovery with guarantees. In Khaled Gaaloul, Rainer Schmidt, Selmin Nurcan,

Sérgio Guerreiro, and Qin Ma, editors, Enterprise, Business-Process and Informa-

tion Systems Modeling - 16th International Conference, BPMDS 2015, 20th Interna-

tional Conference, EMMSAD 2015, Held at CAiSE 2015, Stockholm, Sweden, June

8-9, 2015, Proceedings, volume 214 of Lecture Notes in Business Information Pro-

cessing, pages 85–101. Springer, 2015.

[42] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable process

discovery and conformance checking. Software and System Modeling, 17(2):599–

631, 2018.

[43] Yujian Li. Hidden markov models with states depending on observations. Pattern

Recognition Letters, 26(7):977–984, 2005.

[44] Marı́a Teresa Gómez López, Diana Borrego, Josep Carmona, and Rafael M. Gasca.

Computing alignments with constraint programming: The acyclic case. In Proceed-

ings of the International Workshop on Algorithms & Theories for the Analysis of

Event Data 2016, Torun, Poland, June 20-21, 2016., pages 96–110, 2016.

[45] Mannhardt, F. (Felix). Hospital billing - event log, 2017.

[46] Mannhardt, F. (Felix). Multi-perspective Process Mining. PhD thesis, Technische

Universiteit Eindhoven, 2018.

[47] Jorge Munoz-Gama. Conformance Checking and Diagnosis in Process Mining -

Comparing Observed and Modeled Processes. Springer, 2016.

[48] Jorge Munoz-Gama. Conformance checking. In Sherif Sakr and Albert Y. Zomaya,

editors, Encyclopedia of Big Data Technologies. Springer, 2019.

[49] Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. Hierarchical Con-

formance Checking of Process Models Based on Event Logs. In José Manuel Colom

and Jörg Desel, editors, Application and Theory of Petri Nets and Concurrency -

34th International Conference, PETRI NETS 2013, Milan, Italy, June 24-28, 2013.

Proceedings, volume 7927 of Lecture Notes in Computer Science, pages 291–310.

Springer, 2013.

171

[50] Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. Single-Entry

Single-Exit decomposed conformance checking. Inf. Syst., 46:102–122, 2014.

[51] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.

[52] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive compu-

tation and machine learning series. MIT Press, 2012.

[53] Artem Polyvyanyy, Andreas Solti, Matthias Weidlich, Claudio Di Ciccio, and Jan

Mendling. Monotone precision and recall measures for comparing executions and

specifications of dynamic systems. CoRR, abs/1812.07334, 2018.

[54] Daniel Reißner, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Abel

Armas-Cervantes. Scalable conformance checking of business processes. In On

the Move to Meaningful Internet Systems. OTM 2017 Conferences - Confederated

International Conferences: CoopIS, C&TC, and ODBASE 2017, Rhodes, Greece,

October 23-27, 2017, Proceedings, Part I, pages 607–627, 2017.

[55] Joel Ribeiro, Josep Carmona, Mustafa Misir, and Michèle Sebag. A Recommender

System for Process Discovery. In Business Process Management - 12th International

Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceedings, pages

67–83, 2014.

[56] Anne Rozinat. Process Mining: Conformance and Extension. PhD thesis, Technische

Universiteit Eindhoven, 2010.

[57] Anne Rozinat and Wil M. P. van der Aalst. Conformance testing: Measuring the

fit and appropriateness of event logs and process models. In Christoph Bussler and

Armin Haller, editors, Business Process Management Workshops, BPM 2005 Inter-

national Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France,

September 5, 2005, Revised Selected Papers, volume 3812, pages 163–176, 2005.

[58] Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of processes

based on monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

[59] Anne Rozinat, Manuela M. Veloso, and Wil M. P. van der Aalst. Using Hidden

Markov Models to Evaluate the Quality of Discovered Process Models. BPM Center

172

Report, BPM-08-10, 2008.

[60] Niek Tax, Xixi Lu, Natalia Sidorova, Dirk Fahland, and Wil M. P. van der Aalst. The

imprecisions of precision measures in process mining. Inf. Process. Lett., 135:1–8,

2018.

[61] Farbod Taymouri and Josep Carmona. A Recursive Paradigm for Aligning Observed

Behavior of Large Structured Process Models. In Business Process Management -

14th International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22,

2016. Proceedings, pages 197–214, 2016.

[62] Farbod Taymouri and Josep Carmona. Model and Event Log Reductions to Boost

the Computation of Alignments. In SIMPDA 2016, Graz, Austria, December 15-16,

2016., pages 50–62, 2016.

[63] Farbod Taymouri and Josep Carmona. An evolutionary technique to approximate

multiple optimal alignments. In Business Process Management - 16th International

Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceed-

ings, pages 215–232, 2018.

[64] Wil M. P. van der Aalst. Decomposing Process Mining Problems Using Passages.

In Serge Haddad and Lucia Pomello, editors, Application and Theory of Petri Nets

- 33rd International Conference, PETRI NETS 2012, Hamburg, Germany, June 25-

29, 2012. Proceedings, volume 7347 of Lecture Notes in Computer Science, pages

72–91. Springer, 2012.

[65] Wil M. P. van der Aalst. Decomposing Petri nets for process mining: A generic

approach. Distributed and Parallel Databases, 31(4):471–507, 2013.

[66] Wil M. P. van der Aalst. Process Mining - Data Science in Action. Springer, 2016.

[67] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Replay-

ing history on process models for conformance checking and performance analysis.

Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

[68] Wil M. P. van der Aalst, Alfredo Bolt, and Sebastiaan J. van Zelst. Rapidprom: Mine

your processes and not just your data. CoRR, abs/1703.03740, 2017.

173

[69] Wil M. P. van der Aalst, Kees M. van Hee, Jan Martijn E. M. van der Werf, Akhil

Kumar, and Marc Verdonk. Conceptual model for online auditing. Decision Support

Systems, 50(3):636–647, 2011.

[70] Wil M. P. van der Aalst, Kees M. van Hee, Jan Martijn E. M. van der Werf, and Marc

Verdonk. Auditing 2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE

Computer, 43(3):90–93, 2010.

[71] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:

Discovering process models from event logs. IEEE Trans. Knowl. Data Eng.,

16(9):1128–1142, 2004.

[72] B. F. van Dongen. BPI Challenge 2012, 2012.

[73] B. F. van Dongen. BPI Challenge 2017, 2017.

[74] B. F. van Dongen and F. Borchert. BPI Challenge 2018, 2018.

[75] Boudewijn F. van Dongen. Efficiently computing alignments - using the extended

marking equation. In Business Process Management - 16th International Conference,

BPM 2018, Sydney, NSW, Australia, September 9-14, 2018, Proceedings, pages 197–

214, 2018.

[76] Boudewijn F. van Dongen, Josep Carmona, and Thomas Chatain. A unified ap-

proach for measuring precision and generalization based on anti-alignments. In Mar-

cello La Rosa, Peter Loos, and Oscar Pastor, editors, Business Process Management

- 14th International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-

22, 2016. Proceedings, volume 9850 of Lecture Notes in Computer Science, pages

39–56. Springer, 2016.

[77] Boudewijn F. van Dongen, Josep Carmona, Thomas Chatain, and Farbod Taymouri.

Aligning modeled and observed behavior: A compromise between computation com-

plexity and quality. In Advanced Information Systems Engineering - 29th Interna-

tional Conference, CAiSE 2017, Essen, Germany, pages 94–109, 2017.

[78] Sebastiaan J. van Zelst, Alfredo Bolt, Marwan Hassani, Boudewijn F. van Dongen,

and Wil M. P. van der Aalst. Online conformance checking: relating event streams to

process models using prefix-alignments. International Journal of Data Science and

174

Analytics, Oct 2017.

[79] Sebastiaan J. van Zelst, Alfredo Bolt, and Boudewijn F. van Dongen. Tuning align-

ment computation: An experimental evaluation. In ATAED@Petri Nets/ACSD, vol-

ume 1847 of CEUR Workshop Proceedings, pages 6–20. CEUR-WS.org, 2017.

[80] Sebastiaan J. van Zelst, Alfredo Bolt, and Boudewijn F. van Dongen. Computing

alignments of event data and process models. T. Petri Nets and Other Models of

Concurrency, 13:1–26, 2018.

[81] Sebastiaan J. van Zelst, Boudewijn F. van Dongen, Wil M. P. van der Aalst, and

H. M. W. Verbeek. Discovering workflow nets using integer linear programming.

Computing, 100(5):529–556, 2018.

[82] Seppe K. L. M. vanden Broucke, Jorge Munoz-Gama, Josep Carmona, Bart Bae-

sens, and Jan Vanthienen. Event-Based Real-Time Decomposed Conformance Anal-

ysis. In Robert Meersman, Hervé Panetto, Tharam S. Dillon, Michele Missikoff, Lin

Liu, Oscar Pastor, Alfredo Cuzzocrea, and Timos K. Sellis, editors, On the Move to

Meaningful Internet Systems: OTM 2014 Conferences - Confederated International

Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31, 2014,

Proceedings, volume 8841 of Lecture Notes in Computer Science, pages 345–363.

Springer, 2014.

[83] Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Bae-

sens. Determining process model precision and generalization with weighted artifi-

cial negative events. IEEE Trans. Knowl. Data Eng., 26(8):1877–1889, 2014.

[84] H. M. W. Verbeek. Decomposed Replay using Hiding and Reduction. In L. Cabac,

L. Kristensen, and H. Rölke, editors, PNSE 2016 Workshop Proceedings, pages 233–

252, Torun, Poland, June 2016.

[85] H. M. W. Verbeek. Decomposed replay using hiding and reduction as abstraction. T.

Petri Nets and Other Models of Concurrency, 12:166–186, 2017.

[86] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst.

ProM 6: The Process Mining Toolkit. In M. La Rosa, editor, Proc. of BPM Demon-

stration Track 2010, volume 615 of CEUR Workshop Proceedings, pages 34–39,

175

Hoboken, USA, September 2010. CEUR-WS.org.

[87] H. M. W. Verbeek and Wil M. P. van der Aalst. Decomposed Process Mining: The

ILP Case. In Fabiana Fournier and Jan Mendling, editors, Business Process Manage-

ment Workshops - BPM 2014 International Workshops, Eindhoven, The Netherlands,

September 7-8, 2014, Revised Papers, volume 202 of Lecture Notes in Business In-

formation Processing, pages 264–276. Springer, 2014.

[88] H. M. W. Verbeek and Wil M. P. van der Aalst. Merging Alignments for Decomposed

Replay. In Fabrice Kordon and Daniel Moldt, editors, PETRI NETS 2016, Toruń,

Poland, June 19-24, 2016. Proceedings, volume 9698 of Lecture Notes in Computer

Science, pages 219–239. Springer, 2016.

[89] H. M. W. Verbeek, Wil M. P. van der Aalst, and Jorge Munoz-Gama. Divide and Con-

quer: A Tool Framework for Supporting Decomposed Discovery in Process Mining.

The Computer Journal, pages 1–26, 2017.

[90] Jianmin Wang, Raymond K. Wong, Jianwei Ding, Qinlong Guo, and Lijie Wen.

Efficient selection of process mining algorithms. IEEE Trans. Services Computing,

6(4):484–496, 2013.

[91] Lu Wang, YuYue Du, and Wei Liu. Aligning observed and modelled behaviour based

on workflow decomposition. Enterprise Information Systems, 0(0):1–21, 2016.

[92] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Math-

ias Weske. Process compliance analysis based on behavioural profiles. Inf. Syst.,

36(7):1009–1025, 2011.

176

APPENDIX

177

A. DETAIL ON PARAMETER ESTIMATION OF HMMCONF

Here we detail various parts of the proposed approach in Chapter 7.

A.1. Forward probability (prior to observation update)

Let P (X1:t−1, Zt) be the desired log forward probability prior to update from the cur-

rent observation Xt at time t. We show that it can be computed using the conformance

dependent state-transition probability, i.e., P (Zt|Zt−1, Xt−1), and the log forward proba-

bility from the previous time step, i.e., P (X1:t−1, Zt−1), as

P (X1:t−1, Zt) =
∑
z∈Z

P (X1:t−1, Zt−1 = z)P (Zt|Zt−1 = z,Xt−1) (A.1)

P (X1:t−1, Zt) =
∑
z∈Z

P (X1:t−1, Zt, Zt−1 = z)

=
∑
z∈Z

P (X1:t−2, Xt−1, Zt, Zt−1 = z)

=
∑
z∈Z

P (Zt, X1:t−2|Xt−1, Zt−1 = z)P (Xt−1, Zt−1 = z)

=
∑
z∈Z

[
P (Zt|Xt−1, Zt−1 = z)P (X1:t−2|Xt−1, Zt−1 = z)

]
P (Xt−1, Zt−1 = z)

=
∑
z∈Z

P (Zt|Xt−1, Zt−1 = z)P (X1:t−2, Xt−1, Zt−1 = z)

=
∑
z∈Z

P (Zt|Xt−1, Zt−1 = z)P (X1:t−1, Zt−1 = z)

178

A.2. Forward probability

Let P (X1:t, Zt) be the desired log forward probability with update from the current

observation Xt at time t. We show that it can be computed using the conformance de-

pendent state-transition probability, i.e., P (Zt|Zt−1, Xt−1), the conformance dependent

observation probability, i.e., P (Xt|Zt), and the log forward probability from the previous

time step, i.e., P (X1:t−1, Zt−1), as

P (X1:t, Zt) = P (Xt|Zt)
∑
z∈Z

P (X1:t−1, Zt−1 = z)P (Zt|Zt−1 = z,Xt−1) (A.2)

P (X1:t−1, Zt) =
∑
z∈Z

P (X1:t, Zt, Zt−1 = z)

=
∑
z∈Z

P (X1:t−2, Xt−1, Xt, Zt, Zt−1 = z)

=
∑
z∈Z

P (X1:t−2, Xt, Zt|Xt−1, Zt−1 = z)P (Xt−1, Zt−1 = z)

=
∑
z∈Z

P (Xt, Zt|Xt−1, Zt−1 = z)P (X1:t−2|Xt−1, Zt−1 = z)P (Xt−1, Zt−1 = z)

=
∑
z∈Z

P (Xt, Zt|Xt−1, Zt−1 = z)P (X1:t−1, Zt−1 = z)

=
∑
z∈Z

P (Xt|Zt, Xt−1, Zt−1 = z)P (Zt|Xt−1, Zt−1 = z)P (X1:t−1, Zt−1 = z)

=
∑
z∈Z

P (Xt|Zt)P (Zt|Xt−1, Zt−1 = z)P (X1:t−1, Zt−1 = z)

= P (Xt|Zt)
∑
z∈Z

P (Zt|Xt−1, Zt−1 = z)P (X1:t−1, Zt−1 = z)

A.3. State-transition probability matrix

Here we detail the closed form update of the non-conforming state-transition probabil-

ity matrices. As recalled from Section 7.3, the goal is to find parameters that maximizes

179

the expected log likelihood with respect to all latent state sequences with a constraint on

their sum.

maximize
W d
a,i,j

∑
z1:T

Q(z1:T)

[
T∑
t=2

logwzt−1,zt(xt−1)

]

subject to
|Z|∑
j=1

W d
a,i,j = 1

While the matrix is substochastic where a case does not transition to another state once

the final state is reached, deviating behavior might actually transition a case from the final

state. We construct the Lagrangian:

L(W d
a,i,j) =

∑
z1:T

Q(z1:T)

[
T∑
t=2

|Z|∑
i=1

|Z|∑
j=1

|A|∑
a=1

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

logwzt−1,zt(xt−1)

]
+

|A|∑
a=1

|Z|∑
i=1

λa,i(1−
|Z|∑
j=1

W d
a,i,j)

Similar to before, taking the partial derivatives and setting them to zero with respect to

W d
a,i,j and λa,i yield the parameter estimation:

∇W d
a,i,j
L(W d

a,i,j)

= ∇W d
a,i,j

∑
z1:T

Q(z1:T)

{
T∑
t=2

|Z|∑
i=1

|Z|∑
j=1

|A|∑
a=1

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

log
[
conf(~1i, a)Wa,i,j + (1− conf(~1i, a))W d

a,i,j

]}
+

|A|∑
a=1

|Z|∑
i=1

λa,i(1−
|Z|∑
j=1

W d
a,i,j)

=
∑
z1:T

Q(z1:T)

[
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

1− conf(~1i, a)

conf(~1i, a)Wa,i,j + (1− conf(~1i, a))W d
a,i,j

]
− λa,i = 0

180

We only need to update W d
a,i,j when conf(~1i, a) = 0 (note that an activity is either con-

forming or non-conforming to a given state), in which case:

=
∑
z1:T

Q(z1:T)

[
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1} 1

W d
a,i,j

]
− λa,i = 0

W d
a,i,j =

1

λa,i

∑
z1:T

Q(z1:T)
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

(A.3)

The partial derivative of the Lagrangian can then be computed as:

∇λa,iL(W d
a,i,j) = 1−

|Z|∑
j=1

W d
a,i,j = 0

= 1−
|Z|∑
j=1

1

λa,i

∑
z1:T

Q(z1:T)
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1} = 0

Then, the Lagrange multiplier can be derived so that it can be substituted into the

update of the parameter.

λa,i =

|Z|∑
j=1

∑
z1:T

Q(z1:T)
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

=
∑
z1:T

Q(z1:T)
T∑
t=2

1{zt−1 = i ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1} (A.4)

W d
a,i,j =

∑
z1:T

Q(z1:T)
∑T

t=2 1{zt−1 = i ∧ zt = j ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}∑
z1:T

Q(z1:T)
∑T

t=2 1{zt−1 = i ∧ xt−1 = a ∧ conf(~zt−1, xt−1) < 1}
(A.5)

181

Similar to before, we can use the forward and backward probabilities to efficiently

compute
∑

z1:T
Q(z1:T)

∑T
t=2 1{zt−1 = i ∧ zt = j ∧ xt−1 = a}:

∑
z1:T

Q(z1:T)
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a}

=
∑
z1:T

P (Z1:T = z1:T |X1:T = x1:T)
T∑
t=2

1{zt−1 = i ∧ zt = j ∧ xt−1 = a}

=
T∑
t=2

∑
z1:T

1{zt−1 = i ∧ zt = j ∧ xt−1 = a}P (Z1:T = z1:T |X1:T = x1:T)

=
T∑
t=2

∑
z1:T

1{zt−1 = i ∧ zt = j ∧ xt−1 = a}P (Z1:T = z1:T , X1:T = x1:T)

P (X1:T = x1:T)

=
1

P (X1:T = x1:T)

T∑
t=2

∑
z1:T

1{zt−1 = i ∧ zt = j ∧ xt−1 = a}P (Z1:T = z1:T , X1:T = x1:T)

=
1

P (X1:T = x1:T)

T∑
t=2

αi(t− 1)wi,j(a)vj(xt)βj(t)

This means that to update the weights for the non-conforming transition matrices:

W d
a,i,j =

∑T
t=2 αi(t− 1)wi,j(a)vj(xt)βj(t) 1{xt−1 = a ∧ conf(~zt−1, xt−1) < 1}∑|Z|

j=1

∑T
t=2 αi(t− 1)wi,j(a)vj(xt)βj(t) 1{xt−1 = a ∧ conf(~zt−1, xt−1) < 1}

(A.6)

A.4. Emission probability matrix

Same as for the state-transition probability matrix, the goal is to find parameters that

maximizes the expected log likelihood with respect to all latent state sequences with a

constraint on their sum.

maximize
V dk,j

∑
z1:T

Q(z1:T)

[
T∑
t=1

log vzt(xt)

]

subject to
|A|∑
a=1

V d
a,j = 1

182

Similar to the state-transition matrix, for conforming behavior, the matrix is substochastic

where a case at the final state would not emit any activity observation. However, deviating

behavior might mean that a case can emit an activity observation despite being in the final

state. We construct the Lagrangian:

L(V d
a,j) =

∑
z1:T

Q(z1:T)

[
T∑
t=1

|Z|∑
j=1

|A|∑
a=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1)} log vzt(xt)
]

+ λj(1−
|A|∑
a=1

V d
a,j)

Taking the partial derivatives and setting them to zero with respect to V d
j,a and λj,a

yield the parameter estimation:

∇V da,j
L(V d

a,j) =
∑
z1:T

Q(z1:T)

[
T∑
t=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}

1− conf(~1j, a)

conf(~1j, a)Va,j + (1− conf(~1j, a))V d
a,j

]
− λj = 0

183

The non-conforming observation matrices V d
a,j would be updated when conf(~1j, a) =

0,

=
∑
z1:T

Q(z1:T)

[
T∑
t=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1} 1

V d
a,j

]
− λj = 0

V d
a,j =

1

λj

∑
z1:T

Q(z1:T)
T∑
t=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1} (A.7)

∇λjL(V d
a,j) = 1−

|A|∑
a=1

V d
a,j = 0

= 1−
|A|∑
a=1

1

λj

∑
z1:T

Q(z1:T)
T∑
t=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1} = 0

λj =

|A|∑
a=1

∑
z1:T

Q(z1:T)
T∑
t=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}

=
∑
z1:T

Q(z1:T)
T∑
t=1

1{zt = j ∧ conf(~zt, xt) < 1} (A.8)

V d
a,j =

∑
z1:T

Q(z1:T)
∑T

t=1 1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}∑
z1:T

Q(z1:T)
∑T

t=1 1{zt = j ∧ conf(~zt, xt) < 1}
(A.9)

184

Similar to before, we can use the forward and backward probabilities to efficiently

compute
∑

z1:T
Q(z1:T)

∑T
t=1 1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}:

∑
z1:T

Q(z1:T)
T∑
t=1

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}

=
T∑
t=1

∑
z1:T

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}Q(z1:T)

=
T∑
t=1

∑
z1:T

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}P (Z1:T = z1:T |X1:T = x1:T)

=
1

P (X1:T = x1:T)

T∑
t=1

∑
z1:T

1{zt = j ∧ xt = a ∧ conf(~zt, xt) < 1}P (Z1:T = z1:T , X1:T = x1:T)

=
1

P (X1:T = x1:T)

T∑
t=1

1{xt = a ∧ conf(~zt, xt) < 1}αj(t)βj(t)

This means that

V d
a,j =

∑T
t=1 1{xt = a ∧ conf(~zt, xt) < 1}αj(t)βj(t)∑T

t=1 1{conf(~zt, xt) < 1}αj(t)βj(t)
(A.10)

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	Part I. Introduction
	1. Introduction
	1.1. Process mining
	1.2. Conformance checking
	1.2.1. Conformance quality dimensions

	1.3. Challenges
	1.4. Contributions of the thesis
	1.5. Research objectives
	1.6. Hypothesis
	1.7. Methodology
	1.8. Impact
	1.9. Document structure

	2. Preliminaries
	2.1. Basic notations
	2.2. Petri nets
	2.3. Events, trace, event logs, and event streams
	2.4. Process mining
	2.5. Process discovery
	2.6. Alignment-based conformance checking
	2.7. Beyond fitness

	Part II. A divide and conquer approach to alignment
	3. Merging condition for decomposed sub-alignments
	3.1. Introduction
	3.2. Decomposed alignment
	3.3. Running example
	3.3.1. Border activities
	3.3.2. Alignment for subnets with border activities
	3.3.3. Decomposed Fitness

	3.4. Total border agreement and exact decomposed fitness
	3.4.1. Properties of decomposed fitness

	3.5. Limitations and extensions
	3.5.1. Hide and reduce as an alternative replay approach

	3.6. Conclusion

	4. Recomposing conformance checking framework
	4.1. Introduction
	4.2. Recomposing method for exact decomposed fitness
	4.2.1. Decomposed fitness metric
	4.2.2. Subnet recomposition
	4.2.3. New border agreement problems following recomposition
	4.2.4. Iterative conformance checking

	4.3. Recomposing method for interval decomposed fitness
	4.3.1. Interval decomposed fitness conformance
	4.3.2. Trace reject and termination conditions

	4.4. Implementation and Evaluation
	4.4.1. Implementation, datasets, and evaluations
	4.4.2. Exact fitness in noiseless scenarios
	4.4.3. Exact fitness in noisy scenarios
	4.4.4. Bottlenecks for the monolithic and recomposition approach
	4.4.5. Feasibility and interval narrowing time constrained scenarios
	4.4.6. Recomposed fitness in real-life cases

	4.5. Related work
	4.6. Conclusions

	5. Improving merging conditions for recomposing conformance checking
	5.1. Introduction
	5.2. Running example
	5.3. Recomposing conformance checking
	5.4. Recomposition step
	5.5. Limitations to the current recomposition strategies
	5.6. Recomposition strategies
	5.6.1. Net recomposition strategies
	5.6.2. Log recomposition strategy

	5.7. Experiment setup
	5.8. Results
	5.9. Related work
	5.10. Conclusions

	Part III. Algorithm selection
	6. Use of decomposition as a classification problem
	6.1. Introduction
	6.2. Background and general problem statement
	6.2.1. Using machine learning to learn algorithm selectors

	6.3. Predicting the use of decomposition by classification
	6.3.1. Description of alignment algorithms
	6.3.2. Performance of the algorithms
	6.3.3. Model features
	6.3.4. Classifiers

	6.4. Experimental setup
	6.4.1. Data description
	6.4.2. Classification data classes
	6.4.3. Evaluation
	6.4.4. Model selection

	6.5. Results
	6.5.1. Classification performance
	6.5.2. Algorithm performance
	6.5.3. Analysis of feature importance
	6.5.4. Analysis of infeasible instances

	6.6. Limitations
	6.7. Related work
	6.7.1. Existing approaches
	6.7.2. Parameter tuning and algorithm selection

	6.8. Conclusion

	Part IV. Online conformance checking
	7. A HMM-based approach to online conformance checking (HMMConf)
	7.1. Introduction
	7.2. Proposed technique
	7.2.1. Overview
	7.2.2. Walk-through of an example
	7.2.3. HMM-based conformance checking
	7.2.4. Conformance metrics
	7.2.5. Algorithm for online processing

	7.3. Parameter computation and estimation
	7.4. Experimental evaluation
	7.4.1. Stress test
	7.4.2. Correlation with alternative conformance metrics

	7.5. Real-life dataset evaluation
	7.6. Related work
	7.7. Conclusion and future work

	Part V. Closure
	8. Conclusions
	8.1. Summary of contributions
	8.2. Challenges and future work
	8.3. Acknowledgement

	REFERENCES
	APPENDIX
	A. Detail on parameter estimation of HMMConf
	A.1. Forward probability (prior to observation update)
	A.2. Forward probability
	A.3. State-transition probability matrix
	A.4. Emission probability matrix

