PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ESCUELA DE INGENIERIA

ADVANCING DECOMPOSED
CONFORMANCE CHECKING IN PROCESS
MINING

WAI LAM JONATHAN LEE

Thesis submitted to the Office of Graduate Studies
in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Advisor:

JORGE MUNOZ GAMA

Santiago de Chile, July 2020

© 2020, WAI LAM JONATHAN LEE

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ESCUELA DE INGENIERIA

ADVANCING DECOMPOSED
CONFORMANCE CHECKING IN PROCESS
MINING

WAI LAM JONATHAN LEE

Members of the Committee:
JORGE MUNOZ GAMA

DENIS PARRA

MARCOS SEPUVEDA

MARIA CECILIA BASTARRICA
WIL VAN DER AALST
GUSTAVO LAGOS

Thesis submitted to the Office of Graduate Studies
in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Santiago de Chile, July 2020

© 2020, WAI LAM JONATHAN LEE

Gratefully to my parents and

brother

ACKNOWLEDGEMENTS

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

RESUMEN

Part I. Introduction

1. Introduction

I.1. Processmining
1.2. Conformance checking Lo

1.2.1. Conformance quality dimensions
1.3. Challenges e
1.4. Contributions of the thesis
1.5. Researchobjectives L oL
1.6. Hypothesis
1.7. Methodology
1.8, Impact
1.9. Document structure

2. Preliminaries

2.1.
2.2.
2.3.
24.
2.5.
2.6.

Basicnotations
Petrinetso
Events, trace, event logs, and event streams
Processminingo
Processdiscoveryo

Alignment-based conformance checking

v

v

XVvi

XVvil

XixX

12
13
13
13
14

2.77. Beyondfitness

Part II. A divide and conquer approach to alignment

3. Merging condition for decomposed sub-alignments
3.1. Introduction.
3.2. Decomposed alignment
3.3. Runningexample Lo
3.3.1. Border activities Lo
3.3.2. Alignment for subnets with border activities
3.3.3. Decomposed Fitness
3.4. Total border agreement and exact decomposed fitness
3.4.1. Properties of decomposed fitness
3.5. Limitations and extensions
3.5.1. Hide and reduce as an alternative replay approach

3.6. Conclusion L

4. Recomposing conformance checking framework
4.1. Introduction
4.2. Recomposing method for exact decomposed fitness
4.2.1. Decomposed fitness metric
4.2.2. Subnetrecomposition
4.2.3. New border agreement problems following recomposition
4.2.4. TIterative conformance checking
4.3. Recomposing method for interval decomposed fitness
4.3.1. Interval decomposed fitness conformance
4.3.2. Trace reject and termination conditions
4.4. Implementation and Evaluation
4.4.1. Implementation, datasets, and evaluations
4.4.2. Exact fitness in noiseless scenarios L.

4.4.3. Exact fitness in noisy scenarios

vi

4.4.4. Bottlenecks for the monolithic and recomposition approach 79

4.4.5. Feasibility and interval narrowing time constrained scenarios 86
4.4.6. Recomposed fitness in real-lifecases 88

45. Relatedwork 95
4.6. Conclusions 97

5. Improving merging conditions for recomposing conformance checking 99
5.1. Introduction 99
5.2. Runningexampleo o o 99
5.3. Recomposing conformance checking 100
5.4. Recompositionstepo 102
5.5. Limitations to the current recomposition strategies 103
5.6. Recomposition strategies 105
5.6.1. Net recomposition strategies 105
5.6.2. Logrecomposition strategy L. 106

S5.7. Experimentsetup 107
5.8. Results 107
5.9. Relatedwork 110
5.10. Conclusions 110
Part III. Algorithm selection 112
6. Use of decomposition as a classification problem 113
6.1. Introduction. 113
6.2. Background and general problem statement 114
6.2.1. Using machine learning to learn algorithm selectors 115

6.3. Predicting the use of decomposition by classification 115
6.3.1. Description of alignment algorithms 116
6.3.2. Performance of the algorithms 117
6.3.3. Model features 118
6.3.4. Classifiers e 119

6.4. Experimentalsetupo

6.4.1. Datadescription
6.4.2. Classificationdataclasses
6.4.3. Evaluation
6.4.4. Model selectiono
6.5. Results
6.5.1. Classification performance
6.5.2. Algorithm performance Lo
6.5.3. Analysis of feature importance
6.5.4. Analysis of infeasible instances
6.6. Limitations
6.7. Relatedwork o
6.7.1. Existing approacheso
6.7.2. Parameter tuning and algorithm selection
6.8. Conclusion L L

Part IV. Online conformance checking

7. A HMM-based approach to online conformance checking (HMMConf)

7.1. Introductiono
7.2. Proposed techniqueo
7210 OVerview oo
7.2.2. Walk-through of anexample
7.2.3. HMM-based conformance checking
7.2.4. Conformance metricso
7.2.5. Algorithm for online processing
7.3. Parameter computation and estimation L.
7.4. Experimental evaluation00
741, Stresstesto
7.4.2. Correlation with alternative conformance metrics

viii

7.5.
7.6.
7.7.

Part V.

Real-life dataset evaluation . .
Related work

Conclusion and future work .

Closure

8. Conclusions

8.1.
8.2.

Summary of contributions . .

Challenges and future work . .

8.3. Acknowledgement

REFERENCES

APPENDIX

A. Detail on parameter estimation of HMMConf

Al
A2.
A3.
A4

Forward probability

Emission probability matrix

Forward probability (prior to observation update)

State-transition probability matrixo

X

161

162
162
163
164

165

1.1

1.2

1.3

2.1

2.2

2.3

24

2.5

3.1

3.2

33

34

3.5

3.6

3.7

LIST OF FIGURES

Different XOR choice constructs of activities observed in event log at Table 1.1 3
Possible model of verification subprocess 6

Parallel construct with n activities 11

Running example: The system net S; that contains the (labeled) Petri net Ny . 17

Running example: Eventlogs Lyand Lo 22
Alignments foreventlog Lyo L L o 24
Alternative alignment fortrace ooo 26
Alignments foreventlog Lo 27

Running example: The system net S; that contains the (labeled) Petri net N; . 36
Running example: Eventlogs Ly and Ly 37

Components resulting from a possible valid decomposition D; of the system

NEE ST . . 38

Subalignments between the trace o3 = (a, ¢,4,1,d, g, j, h, k,n,p,q) in event

log L; and the valid decomposition D in Figure3.3 41

Subalignments between the trace o1 = (a,b,¢,14,1,d, g, j, h, k,n,p, q) in event

log L; and valid decomposition Dy in Figure 3.3 41

Subalignments between the trace oo = (a, ¢, f,m,d, g, j, k, h,n,p, q) in event

log L, and valid decomposition D; in Figure 3.3 42

Alignments foreventlog Ly 42

3.8

39

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Subalignments between the trace o = (a,b,e,1,l,d, g, h,n, j, k,p,q) in event

log L, and valid decomposition D; in Figure 3.3 45
Hidden sub-net using activity subset of sub-net S9 from Figure 3.3 51
Overview of the exact decomposed conformance metric 53

Vector showing the number of border agreement problems at each border

activity foreventlog Loo 55

Subalignments between trace o7 = (a,b,e,4,d, g, 7, h, k,b,e,i,l,d, g,j, h,k,n,p,q)

and valid decomposition Dy in Figure 3.3 0L 57

Valid decomposition D, of system net S; following the recomposition of

subnets S7, S3. St. S7. S9. ST of decomposition Dy in Figure 3.3 58

Subalignments between trace o7 = (a,b,e,4,d, g, 7, h, k,b,e,i,l,d, g,j,h,k,n,p,q)

and valid decomposition Dy in Figure 4.4 58

Alignment between trace o7 = (a,b,e,4,d, 9,7, h, k,b,e,i,l,d, g,j, h,k,n,p,q)

and system net Sy in Figure 3.1 59
Overview of the interval decomposed conformance metric 60
Resulting alignments for deviation diagnosis 66
Dialog for Replay using Recomposition 67

Initial manual decomposition of model P297 where border transitions are

coloredingreeno 70
Feasible computation times for synthetic logs without noise 71

Speedup factors from recomposition approach over monolithic approach for

synthetic logs withoutnoise 72

Speedup from recomposition approach in relation to average trace length for

synthetic logs withoutnoise 73

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

Feasible computation times for synthetic logs (infeasible replays are shown

using a dashed pattern instead of asolid fill) 76

Speedup factors from recomposition approach over monolithic approach for
synthetic logs (infeasible replays are shown using a dashed pattern instead of a

solid fill) oL 77

Speedup from recomposition approach in relation to average trace length for

synthethiclogs 78

Percentage of time spent in alignment computation in relation to total

computation time e 80

Total computation time in relation to number of recompositions for synthetic

logs at exact experiments under the recomposition approach 81

Total computation time in relation with to the percentage of time spent in replay

for synthetic logs at exact experiments under the recomposition approach . . 83

Percentage of time spent in replay in relation to number of recompositions for

synthetic logs at exact experiments under the recomposition approach 84

Number of remaining trace variants in relation to number of recompositions for

the experiments on datasets with “missing” noise 85

Handmade model for the BPIC2012 real-life dataset projected with the

deviation issues between the model andlog 89
Conformance diagnosis on transition O ACCEPTED 91

Alignment for case 173733 with model move on transition O ACCEPTED
(highlighted in white) 91

Discovered model for the BPIC2017 real-life dataset projected with the

deviation issues between the model andlog 93

Xii

4.26 Alignment for case Application 931736025 with a model move on transition
A _Cancelled+complete (highlighted in white) 93

4.27 Loop construct in the discovered model of the BPIC2017 real-life dataset

projected with deviationissues 95
5.1 System net S that models a loan application process 100
5.2 Running example: Eventlog Lo 100

5.3 Recomposing conformance checking framework with the recomposition step

highlighted indark blue 101

5.4 Sub-alignments v1 = (71, V12> V15, V14)> Y2 = (Y215 72, V25572,)» and

Y3 = (731, V34> V35, V3,) Of log Ly and net decomposition D; with merge

conflicts highlightedingrey 104

5.5 Bar chart showing fitness and overall time per net recomposition strategy
(including the monolithic approach). The time limit is shown as a dashed red
line and indicates infeasible replays. Best performing approaches and their

time gains from the second fastest times are specified by black arrows. 108

5.6 Comparing log strategies by showcasing the number of aligned traces (left)

and percentage of valid alignments (right) per iteration on the real-life dataset

BPICIS. 109
6.1 Workflow of alignment algorithm selection (adapted from [8]) 115
6.2 Histograms of alignment time statistics on model net!/ and log net/-60-60 . . 117
6.3 Class distribution of datasets 122
6.4 Experimental results of Rand, DT, and RF on two datasets 125

6.5 Normalized confusion matrices under random forest on two datasets 125

xiii

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Algorithm performance in terms of PAR10 scores and the number of feasible

replays. The single best solver (SB) is the RECOMPOSE-SP for both datasets. . 127

Top five features of decision tree (top) and random forest (bottom) trained on

2-difference dataseto 128
Running example: Petrinet model 134
Running example: Traces 134

Overview of the proposed approach. The online component is presented in

Section 7.2 and the offline component is presented in Section 7.3. 137

State estimation taken throughout trace og in Figure 7.2. Line style indicates
the conformance explanation of the corresponding execution where a solid
line indicates complete conformance, a dotted line indicates complete lack of
conformance, a dashed line indicates moderate conformance, and a dash-dotted
line indicates a possible model execution that non-conforming observation

might be referringto. oo 139
Graphical representation of HMMConf00 141

General idea of the two conformance indicators based on a running process

instance: conformance, completeness (based on a similar diagram in [16]) . . 143

Metric breakdown projected onto the evaluation of trace o4 in Figure 7.4. Same

as Figure 7.4, line style indicates various conformance explanations. 143

Performance during a stress test of ~ 2 million events (see colored version

online) 150

Bubble plots of total injection distance (with epsilon mass at initial distribution)

versus incremental alignmentcostso 152

Statistics comparing prefix alignment costs and three metrics 153

X1V

7.11

7.12

7.13

7.14

7.15

Petri net model extracted from 10 most frequent trace variants
Distribution plot showing concentration of cases on a few trace variants
Experiment resultsoncaselevel
Violin plots of the conformance per activity for non-conforming events

Non-conforming emission probability distributions at states [py] and [0]

XV

. 155

156

. 157

. 158

1.1

1.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

6.1

6.2

6.3

7.1

LIST OF TABLES

Example of event log for bank transfer process 4
Table summarizing the contributions of this thesis 10
Characteristics of the syntheticnets 67
MaxRecomposing configurationo 68
Replay feasibility and computation times for synthetic logs without noise . . 71
PLG2 log generation configurations for MissingTrace dataset 75

Replay feasibility and computation times for synthetic logs with MissingTrace

and Swapped noise 76

Time-constrained conformance analysis on synthetic logs with noise of dataset

using manual initial decompositiono 87
Replay feasibility and computation times for BPIC2012 88
Extracted features Lo 119
Statistics on models and logs used to produce predictive model data 121

Time difference statistics with respect to the best performing algorithm per data

Xvi

ABSTRACT

In the recent years, process mining has been gaining traction as a tool for analyzing
and improving processes in the industry as exemplified by companies such as Disco, Celo-
nis, and Minit. Furthermore, many commercial process mining tools are extending beyond
process discovery to conformance checking that allows stakeholders to compare observed
and modeled behavior to find discrepancies between how they expect their processes to
be executed and how their processes have actually been executing. Performing confor-
mance checking in industrial settings means that techniques have to be able to address the
different data dimensions. For example, conformance checking techniques have to scale
from processes of small companies to multinational organizations that may be handling
many cases per hour. This thesis focuses on conformance checking and specifically ad-
dresses the challenges arising from the application of conformance checking in different

scenarios.

Alignment-based techniques are the state of the art for identifying and explaining dis-
crepancies between observed and modeled behavior. However, due to the explosion of
state-space with processes with parallel constructs, alignment can be computationally ex-
pensive. The first part of the thesis focuses on extending decomposition techniques to
alignment computation. The thesis shows that alignment can be computed in a decom-
posed manner and presents a novel conformance checking framework that computes align-
ment using the divide and conquer paradigm. There are now many conformance checking
techniques available for end users. However, it can be difficult to select the best algorithm
for the job since this depends on the input data and the user’s objective. The second part of
the thesis investigates machine learning techniques to help users select the best algorithm
depending on their input data. Specifically, it applies machine learning to the classification
problem of whether if decomposition techniques can improve computation time given the

input model and log. The third part of the thesis turns to online conformance checking.

Xvii

Given the volume and velocity at which event data comes, organizations may not store
all the generated data for offline analysis and instead have to resort to online techniques.
Moreover, performing analysis in real time allows process stakeholders to react to confor-
mance issues before it is too late. Performing conformance checking in an online settings
has its own unique challenges. For example, the conformance checking technique has to
balance between putting emphasis on the current information and ensuring that the confor-
mance result is somewhat stable as the running case unfolds. The thesis presents a novel
online conformance checking technique based on Hidden Markov Models that focuses on

this challenge.

Keywords: process mining, BPM, conformance checking, online processing, decomposi-
tion

XVviii

RESUMEN

En los ultimos afios, la “process mining” ha ido ganando terreno como herramienta
para analizar y mejorar los procesos en la industria, como lo ejemplifican empresas como
Disco, Celonis y Minit. Ademads, muchas herramientas comerciales de process mining se
estdn extendiendo mds alla del descubrimiento de procesos a la “conformance checking”
que permite comparar el comportamiento observado y modelado para encontrar diferen-
cias entre los dos. Realizar la conformance checking en entornos industriales significa
que las técnicas deben poder abordar las diferentes dimensiones de los datos. Por ejem-
plo, las técnicas de conformance checking tienen que escalar desde procesos de pequefias
empresas hasta organizaciones multinacionales que pueden estar manejando muchos ca-
sos por hora. Esta tesis se centra en la conformance checking y aborda especficamente los

desaf6os que surgen de la aplicacién de la conformance checking en diferentes escenarios.

Las técnicas basadas en alineacion (alignment) son el estado del arte para identificar y
explicar las discrepancias entre el comportamiento observado y modelado. Sin embargo,
debido a la explosion del espacio de estados con procesos con construcciones paralelas,
la alignment puede ser computacionalmente costosa. La primera parte de la tesis se cen-
tra en extender las técnicas de descomposicion al cdlculo de alignment. La tesis mues-
tra que la alignment se puede calcular de forma descompuesta y presenta un algoritmo
de conformance checking novedoso que calcula la alignment utilizando el paradigma de
dividir y conquistar. En la actualidad, existen muchas técnicas de conformance checking
disponibles para los usuarios. Sin embargo, puede resultar difcil seleccionar el mejor algo-
ritmo para el trabajo, ya que depende de los datos de entrada y del objetivo del usuario. La
segunda parte de la tesis investiga técnicas de machine learning para ayudar a los usuarios a
seleccionar el mejor algoritmo en funcién de sus datos de entrada. Especificamente, aplica
el machine learning al problema de clasificacion de si las técnicas de descomposicion

pueden mejorar el tiempo de cdlculo dado el modelo y el event log. La tercera parte de la

XiX

tesis se centra en la conformance checking en tiempo real. Dado el volumen y la velocidad
a la que llegan los datos de eventos, es posible que las organizaciones no almacenen todos
los datos generados para el anélisis offline y, en su lugar, tengan que recurrir a técnicas
en tiempo real. Ademas, realizar andlisis en tiempo real permite a los dueios del proceso
reaccionar y resolver los problemas en forma inmediato. Realizar la conformance check-
ing en una configuracién en tiempo real tiene sus propios desafios tinicos. Por ejemplo, la
técnica de conformance checking tiene que equilibrar el énfasis en la informacidn actual
y garantizar que el resultado de conformance sea algo estable a medida que se desarrolla
el caso en ejecucion. La tesis presenta una novedosa técnica de conformance checking en

tiempo real basada en Hidden Markov Model.

XX

Part I

Introduction

1. Introduction

Nowadays, large amount of information is being recorded by organizations during their
daily operations. For example, Wal-Mart is estimated to collect more than 2.5 petabytes
of data every hour from its customer transactions [27]. Other than to support their oper-
ations, business stakeholders are actively using data to drive their decision making [66].
Process mining applies data-driven approaches to analyze, improve and manage processes.
While it is not strictly limited to business processes, process mining is typically positioned
within the scope of business process management (BPM) due to much of its existing work.
By bringing a data perspective, process mining adds to the traditionally model-driven ap-

proaches in BPM.

More and more event data are made available with the increased adoption of informa-
tion systems [2]. This means that process mining techniques have to be able to handle the
analysis of large processes under various contexts. In this chapter, we present about the
challenges that existing techniques are facing and give an overview of the contributions of
this thesis towards the identified challenges. We first provide a brief introduction to pro-
cess mining and the problem of conformance checking as the main area of process mining

that this thesis focuses on.

1.1. Process mining

Information systems such as ERP (Enterprise Resource Planning) systems (SAP, Or-
acle, etc) and BPM (Business Process Management) systems (Pegasystems, Bizagi, Ap-
pian, IBM BPM, etc) support processes in different organizations. Event data from the
event logs of information systems can be ordered to describe instances of the underlying
process such that each event can be related to an activity and belongs to a particular case
of the process. In essence, these event logs can be seen as “footprints” left behind by
the execution of the process. Process mining uses these event logs as a starting point to

“discover, monitor and improve real processes” [66].

Start verification
Open overseas
bank form

Start bank transfer Start bank transfer » Open overseas
bank form

Open local
bank form

Open local
bank form

(a) Reflects the observed behavior . .
(b) Differs to the observed behavior

Figure 1.1. Different XOR choice constructs of activities observed in event
log at Table 1.1

Consider a bank transfer process in which a client makes a bank transfer from one
account (sender account) to another account (receiver account) which can be either a lo-
cal or an oversea bank. The process may begin by a bank operator initiating a new bank
transfer in the system (Start bank transfer). Then the operator would fill in the correspond-
ing forms and verify the client’s account and the receiver’s account before completing the
bank transfer. Table 1.1 shows an example of an event log, organized after extracting the
relevant information from the information system. Each row represents an event of the

log, and events can be grouped by their case ID to form instances of the process.

There are three main areas in process mining [66]. Process discovery takes an event
log as input and produces a model using different discovery algorithms. For example,
considering the event log in Table 1.1, one can see that after starting the bank transfer, the
operator can either open up an overseas bank form or open up a local bank form. This
part of the process can be visualized as an XOR choice construct as shown in Figure 1.1a.
In simple words, process discovery summarizes the relations between activities as seen in

observed data and represent these relations as a graphical construct.

In process discovery, at times, one does not want to include all of the observed be-
havior into the discovered model since that might result into a spaghetti-like model that

is impossible to understand. At other times, one might want their discovered model to

Case Event Timestamp Activity Employee Client

1 1 2020-01-01 09:00:00 Start bank transfer Jim Anna

1 4 2020-01-01 09:10:00 Open overseas bank form Jim Anna

1 6 2020-01-01 09:15:00 Enter oversea bank code Jim Anna

1 7 2020-01-01 09:23:00 Foreign currency conversion Jim Anna

1 9 2020-01-01 09:25:30 Update oversea bank form Jim Anna

1 10 2020-01-01 09:30:00 Start verification Tom Anna

1 12 2020-01-01 09:31:10 Enter sender account Tom Anna

1 14 2020-01-01 09:35:00 Verify sender account Tom Anna

1 15 2020-01-01 09:40:00 Enter receiver account Tom Anna

1 18 2020-01-01 09:45:00 Verify receiver account Tom Anna

1 19 2020-01-01 09:48:00 Complete verification Tom Anna

1 21 2020-01-01 09:50:00 Finish bank transfer Jim Anna

1 23 2020-01-01 09:55:00 Send bank transfer Jim Anna

2 2 2020-01-01 09:02:00 Start bank transfer Jerry William
2 3 2020-01-01 09:08:00 Open local bank form Jerry William
2 5 2020-01-01 09:13:00 Enter local bank code Jerry William
2 6 2020-01-01 09:20:00 Update local bank form Jerry William
2 8 2020-01-01 09:25:00 Start verification Jerry William
2 11 2020-01-01 09:30:20 Enter receiver account Jerry William
2 13 2020-01-01 09:34:00 Verify receiver account Jerry William
2 16 2020-01-01 09:41:00 Enter sender account Jerry William
2 17 2020-01-01 09:43:00 Verify sender account Jerry William
2 20 2020-01-01 09:49:00 Complete verification Jerry William
2 22 2020-01-01 09:53:00 Finish bank transfer Jerry William
2 24 2020-01-01 09:58:00 Send bank transfer Jerry William
3 25 2020-01-03 10:00:00 Start bank transfer Joanne Bobby

3 26 2020-01-03 10:12:00 Open overseas bank form Joanne Bobby

3 27 2020-01-03 10:15:00 Open local bank form Joanne

Bobby

Table 1.1. Example of event log for bank transfer process

include behavior that is unobserved but foreseeable to occur in the future. With differ-
ent discovery algorithm being proposed, the need of being able to compare the observed
behavior in the event log and the modeled behavior in the discovered model came about.
Conformance checking compares an event log with an existing process model of the same
process to identify commonalities and discrepancies. For example, it is clear that the XOR

construct shown in Figure 1.1b have discrepancies with the behavior observed in the event

log at Table 1.1. The activity Start verification seems to be a necessary step rather than
a choice amongst the options of opening overseas and local bank forms. A conformance

checking algorithm would identify such a difference.

Lastly, information from recorded data can also be aggregated to a process model.
Enhancement enriches an existing process model using information from recorded event

logs. This thesis focuses on conformance checking.

1.2. Conformance checking

There are different reasons for performing conformance checking [17]. For example,
it can be integrated into the audit of business processes [66, 48]. In businesses, there are
often protocols set by different stakeholders, e.g., managers, government, and others. Au-
dits are carried out to verify that these internal and external regulations are complied. By
comparing the events recorded during process execution and models describing business
protocols, it is clear that conformance checking can help and support the automation of
audits [70, 69, 29]. Other than ascertaining business compliance, process stakeholders
may also want to know whether if the current protocols are meeting the requirements of
its execution in a real-life context. In this sense, conformance checking can help with pro-
cess re-design and modification of the BPM lifecycle [24]. Finally, conformance checking
is essential within process mining to compare the quality of discovery algorithms [22], to
recommend discovery algorithms [55], and even to be integrated into discovery algorithms

[21, 10].

1.2.1. Conformance quality dimensions

There are four quality dimensions for measuring conformance between an event log

and a process model [66, 48].

Fitness measures the amount of observed behavior that is modeled by the process model.

For example, the subtrace of case 3 in the partial event log at Table 1.1 ({Start bank transfer,

Enter receiver

account

Verify receiver

account

Start verification @ 4’ Complete verification —>

Enter sender
account

Verify sender
account

Figure 1.2. Possible model of verification subprocess

Open overseas bank form, Open local bank form)) is clearly not fitting with the XOR con-
struct shown in Figure 1.1a. The operator is supposed to either open up an overseas bank

form or open up a local bank form but not both.

Precision measures the amount of modeled behavior that is actually observed in the event
data. For example, lets look at the verification process which includes the activities (Start
verification, Enter receiver account, Verify receiver account, Enter sender account, Verify
sender account, Complete verification). Figure 1.2 shows a possible model of the pro-
cess. This model is clearly fitting with the event log in Table 1.1 since the sequences
({Start verification, Enter sender account, Verify sender account, Enter receiver account,
Verify receiver account, Complete verification), and (Start verification, Enter receiver account,
Verify receiver account, Enter sender account, Verify sender account, Complete verification))
are both possible in the model. However, the model is imprecise since it also allows for
unseen behavior. For example, the model allows for the sequences ((Start verification,

Enter receiver account, Enter sender account, Verify sender account, Verify receiver account,

Complete verification), and (Start verification, Enter sender account, Enter receiver account,

Verify sender account, Verify receiver account, Complete verification)) which are not ob-

served in the event log.

Generalization measures whether if the model is too strict so that only observed behavior
is permitted in the model. In general, only a small percentage of possible behavior might
be observed in reality, especially with parallel constructs. This means that it is desirable
for the model to generalized beyond the observed behavior to include behavior that is not
observed but foreseeable to occur in the future. In this case, the model in Figure 1.2 would

score better in terms of generalization than precision.

Simplicity measures whether if the model is not overly complicated. Typically this quality

dimension is in isolation of the event log.

1.3. Challenges

Conformance checking has become a topic of interest, not only academic but also
commercially, where several process mining commercial tools such as Celonis and Lana

Labs have recently incorporated preliminary conformance analysis.

Moreover, as process mining tools in the industry mature, the characteristics of in-
coming event data used for process mining can vary a lot. For example, in the past, the
workflow of a process miner might consist of writing a custom script that pulls in data of
a time period and creates a case notion so that it can be saved as in the XES format [3].
This event log file would then be used for various process mining analysis. Nowadays,
commercial process mining tools, e.g. Celonis, can perform ETL (Extract, Transform,
Load) operations directly on existing data sources, e.g., Salesforce and SAP, so that pro-

cess mining results are immediately available.

This means that there is a need to address the challenges arising from the possible

varying characteristics of input data to process mining algorithms. One popular way of

categorizing these challenges is by the different dimensions of data - the “four V’s of

data”: Volume, Velocity, Variety, Veracity [33].

The first “V” (Volume) refers to the incredible amount of available data. The second
“V” (Velocity) refers to the rate at which data is coming in. The third “V” (Variety) refers
to the different forms in which data is being made available. The fourth “V” (Veracity)

refers to the different degrees of trustworthiness of the data.

Examining these different data dimensions and conformance checking, we identify
four challenges: computationally expensive techniques, decomposition techniques, mul-
titudes of algorithms for the same task, and online conformance checking. This thesis

addresses all of these challenges.

Challenge 1: Computationally expensive techniques. Good conformance checking algo-
rithms goes beyond replaying a given observed log trace on the process model to verify if
it is conforming. They may focus on specific conformance quality dimensions, as exem-
plified by techniques that focus on fitness [5, 6], precision [42, 47], generalization [76].
They may also try to yield robust explanation and diagnosis on the conformance issues
[49, 4, 6] or focus on tackling specific data type and conformance issues [44, 9]. However,
a fundamental problem in conformance checking is that the number of possible process
instances as described by a process model often increases exponentially with respect to the
number of activities. This means that sophisticated techniques that look at a large amount
of modeled behavior for conformance checking tend to be computationally expensive.
Conformance checking techniques need to be scalable with respect to the increasing vol-
ume of data, both in terms of the number of observed traces and the size and complexity
of process models.

Challenge 2: Decomposition techniques. Decomposition techniques have emerged as a
promising way of tackling increasing sizes and complexities of processes. By partition-
ing the process before running conformance checking algorithms on the smaller pieces,
decomposition techniques can often achieve substantial performance gains. One family

of conformance checking algorithms that decomposition techniques have been applied on

are alignment-based techniques [65, 84, 85, 50, 49]. However, these techniques solves the
decisional problem of classifying whether if a given log trace is conforming or yields a
lower bound on misalignment costs. The challenge here is being able to apply the divide
and conquer paradigm to yield exact conformance results as computed by its monolithic
counterpart.

Challenge 3: Multitudes of algorithms for the same task. There can be many conformance
checking algorithms for the same task, i.e., same input and output. For example, for
alignment-based techniques, there are many techniques that focus on being really good at
specific aspects, e.g., computation time, specific data type and conformance issues [75,
44,9, 6, 19]. If the end user is aware of their pros and cons under different circumstances,
she would be able to choose the right technique for the job. However, the end user may not
have the expert knowledge to always select the most appropriate algorithm. One solution
is to have an oracle that have been configured to help users with the decision given their
objectives. For example, users may want an algorithm that would quickly process their
data, such oracle would help them choose the best algorithm for the job.

Challenge 4: Online conformance checking. Given the volume and velocity at which
event data comes in, organizations may not store these data for offline analysis and have
to resort to online techniques. Moreover, performing analysis in real time allows process
stakeholders to react to conformance issues. However, performing conformance checking
in an online context pose challenges in various aspects, €.g., computational time and space
requirement, warm start scenarios, and uncertainty to how a case may unfold. There are

only a few existing online conformance checking works in the literature [15, 16, 78].

1.4. Contributions of the thesis

Table 1.2 summarizes the contributions of this thesis. The table includes a description
of the contribution, the chapter in which they are presented, the conformance challenges
they address, and their corresponding publications. The remainder of this section gives an

overview of the contributions.

10

Contribution Chapter Challenge Publication

Condition under which sub-alignments com- 3 1,2 [38, 37, 34, 36]
puted under decomposition techniques can

be merged as an overall alignment with ex-

act misalignment costs

Recomposing conformance checking frame- 4,5 1,2 [38, 37, 34, 36]
work that computes fitness with configurable

accuracy

Application of machine learning to predict 6 3

the alignment technique that minimizes com-
putation time

Online conformance checking technique 7 4 [35]
based on Hidden Markov Model (HMM)

Table 1.2. Table summarizing the contributions of this thesis

For many conformance checking techniques, one challenge is that process models
often contains parallelism and loop constructs which make the set of possible modeled
behavior large and at times infinite. Having to compare observed behavior against such
a large set of possible modeled behavior can be computationally expensive even under
an offline scenario. To illustrate this, consider the parallel construct shown in Figure 1.3.
The number of possible traces n! increases extremely quickly with respect to n, the num-
ber of activities. Moreover, if the process model also includes slightly more complex yet
common constructs such as a non free choice construct, simpler conformance checking
techniques such as comparing the footprint matrices of the model and log would not suf-

fice.

One possible solution is apply a divide-and-conquer approach so that the model is
decomposed into fragments. Upon performing conformance checking on the fragments,
their conformance results are merged back together as an overall result. To appreciate the
effect, suppose that there are 10 activities, i.e., n = 10. The number of possible traces
equals to 10! = 3628800. However, if the model could somehow be split into two equal

fragments that can be checked separately, then we would only have to compare 5! = 120

11

a1

a2

= \ Zom>—{om)

Figure 1.3. Parallel construct with n activities

traces two times, 1.e., 240 traces. This is a 15000 x difference. Towards this, this thesis

contributes:

e Results that show the condition under which alignment results using decomposition
techniques can be merged as overall results that have exact conformance values as
would have been computed under its monolithic counterpart.

e A novel framework that computes alignment-based fitness using a divide and conquer
approach. Furthermore, the framework allows user configuration to adjust the degree
of accuracy of the conformance result.

e Extension of the proposed framework to include heuristics that encourages the merge-

able condition of decomposed conformance results.

There are many techniques that do the same conformance checking task but each spe-
cialize in certain aspects, e.g., finding specific conformance issues, and can have drasti-
cally different performance depending on the input data. This means that the end users
need expert knowledge to choose the appropriate algorithm depending on their data and

objectives. Towards this, the thesis contributes:

e Classifiers that tackle the algorithm selection problem of deciding whether to apply

decomposition techniques for a given model and log trace.

12

Organizations may have to perform conformance checking in online context due to
storage limitation, desire to intervene in the occurrence of conformance issues, and other
reasons. Online conformance checking brings along several challenges that do not exist in

offline conformance checking. Towards this, this thesis contributes:

e An online conformance checking framework that focuses on the problem of balancing
between making sense at the process level as the case reaches completion and putting

emphasis on the current information at the same time.

1.5. Research objectives

In view of the challenges, the thesis focuses on the following research objectives:

Objective 1: Existing decomposed conformance checking approaches are limited to
the decision problem of deciding whether or not an event log is perfectly fitting with
a process model. This means that the exact degree of deviation severity, i.e., cost-
based fitness, and the exact deviating alignments cannot be yielded. This objective
addresses this issue by relaxing the conditions under which results from decomposed
subcomponents can be merged back to an overall result.

Objective 2: While it has been shown that decomposition of alignment-based con-
formance checking can lead to significant performance gains, there is little work on
identifying and investigating the different circumstances under which decomposition
techniques can contribute significant performance gains. Further understanding of such
circumstances and characteristics can enable the appropriate application of different de-
composition strategies at different scenarios and drive the design of new decomposition
strategies.

Objective 3: Investigate online conformance checking techniques that address the fun-
damental challenge of explaining the conformance of a running case is in balancing
between making sense at the process level as the case reaches completion and putting

emphasis on the current information at the same time.

13

1.6. Hypothesis

This research proposes the following hypothesis: “Given a model and event log, de-
composition techniques can be applied for alignment-based conformance checking to
yield the overall conformance result.” For the online conformance checking problem, the
research proposes the following hypothesis: “Given an event stream and model, confor-
mance of the event stream with respect to the model can be computed under the required

complexity of stream processing”.

1.7. Methodology

To achieve the proposed research goals, the design science research methodology is
followed [28] where the produced artifacts are novel approaches that computes the con-
formance of a model and log in a decomposed manner. The utility and efficacy of the ar-
tifacts are demonstrated through mathematical proofs and empirical experiments on both

synthetic and real-life datasets.

1.8. Impact

The publications related to this thesis are as follows:
Journal papers

[38] Wai Lam Jonathan Lee, HMW Verbeek, Jorge Munoz-Gama, Wil MP van der Aalst,
and Marcos Sepulveda. Recomposing conformance: Closing the circle on decomposed

alignment-based conformance checking in process mining. Information Sciences, 2018

[35] Wai Lam Jonathan Lee, Andrea Burattin, Jorge Munoz-Gama, and Marcos
Sepiveda. Orientation and conformance: A HMM-based approach to online confor-

mance checking. Information System (under review), 2019

14

Conference and poster presentations

[36] Wai Lam Jonathan Lee, Jorge Munoz-Gama, H. M. W. Verbeek, Wil M. P. van der
Aalst, and Marcos Sepulveda. Improving Merging Conditions for Recomposing Con-
formance Checking. In Business Process Management Workshops - BPM 2018 Interna-

tional Workshops, Sydney, Australia, September 10, 2018. Revised Papers, 2018

[34] Wai Lam Jonathan Lee. Advancing Decomposed Conformance Checking in Pro-
cess Mining. In Business Process Management Doctoral Consortium, Sydney, Australia,

September 09, 2018., 2018

[37] Wai Lam Jonathan Lee, H. M. W. Verbeek, Jorge Munoz-Gama, Wil M. P. van der
Aalst, and Marcos Sepulveda. Replay using recomposition: Alignment-based confor-
mance checking in the large. In Proceedings of the BPM Demo Track and BPM Disser-
tation Award, Barcelona, Spain, September 13, 2017., volume 1920 of CEUR Workshop
Proceedings. CEUR-WS.org, 2017

1.9. Document structure

The thesis in structured in four parts:

e Part | presents the introduction that you are currently reading. Also it introduces the
necessary preliminaries used throughout the thesis.

e Part Il presents our work on extending decomposition techniques to alignment-based
conformance checking. Chapter 3 presents the merging condition that allows merged
sub-alignments to have the exact misalignment costs as an optimal alignment com-
puted under the monolithic approach. Chapter 4 make use of this property to present
an iterative framework that computes optimal alignments in a divide and conquer
manner. Chapter 5 presents further extension to the proposed framework to address

the bottleneck identified in extensive experimental studies.

15

e Part III moves to investigate the problem of selecting the best algorithm for the
conformance checking job given the input data. Specifically, the chapter applies
machine learning to identify scenarios in which decomposition techniques can com-
pute optimal alignments in less time than the monolithic approach.

e Part IV presents our work on online conformance checking where we present a Hid-
den Markov Model (HMM) based approach that tries to balance between computing
conformance results that make sense at the process level as the running case reaches
completion and putting emphasis on the current information at the same time.

e Lastly, Part V concludes the thesis, summarizing the main results and discusses

possible extensions of the presented work.

16

2. Preliminaries

In this chapter, we present the preliminaries that will be used later in the thesis. We
first recall basic concepts such as sets, multisets, functions, and projections. Then, we
present concepts commonly used in process mining such as events, trace, event logs, and
process models. We also give a general overview on process mining and an in-depth view

on alignment-based conformance checking.

2.1. Basic notations

To facilitate the definition of later concepts, we first introduce some basic notations.

Definition 2.1 (Multisets). Let X be a set, a multiset of X is a mapping M : X — N.
B(X) denotes the set of all multisets over X. Let M and M' be multisets over X. M
contains M’', denoted M > M’, if and only if Ve x M (x) > M'(z). The union of M and
M'" is denoted M + M', and is defined by V,cx(M + M')(x) = M(zx) + M'(x). The
difference between M and M' is denoted M — M' and is defined by ¥ e x (M — M')(z) =

mazx (M (x) — M'(x),0).

Note that (M — M') + M’ = M only holds if M > M’. For sets X and X’ such that
X' C X, we consider every set X’ to be an element of B(X), where V,cx/ X'(z) = 1 and
VxeX\X/X,(ilf) = 0.

Definition 2.2 (Projection on sequences and multisets). Let X be a set, let X' C X be
a subset of X, let 0 € X* be a sequence over X, and let M € B(X) be a multiset over X.
With 7 x: (o) we denote the projection of o on X', e.g. mz A((x,2,y,y,y,2)) = (@, z, 2).

with wx/ (M) we denote the projection of M on X', e.g. . 1 ([22, 4%, 2]) = [22, z].

Definition 2.3 (Function domains and ranges). Let f € X - X' be a (partial) func-
tion. With dom(f) C X we denote the set of elements from X that are mapped onto some
value in X' by f. With rng(f) C X' we denote the set of elements in X' that are mapped
onto by some value in X, i.e., rng(f) = {f(x) | z € dom(f)}.

17

Definition 2.4 (Functions on sequences and multisets). Let f € X - X' be a (partial)

function, let o € X* be a sequence of X, and let M € B(X) be a multiset of X. With

f (o) we denote the application of f on all elements in o, e.g., if dom(f) = {z, 2z}, then
fUz,z,y,y,y,2) = (f(x), f(z), f(2)). With f(M) we denote the application of f on all
elements in M, e.g., if dom(f) = {x, 2z}, then f([x? 33, 2]) = [f(x)?, f(2)].

2.2. Petri nets

a = start bank transfer

b = open overseas bank form
¢ = open local bank form

d = start verification

e = enter oversea bank code

f = enter local bank code

g = enter sender account

h = enter receiver account

i = foreign currency conversion
j = verify sender account

k = verify receiver account

1 = update oversea bank form

m = update local bank form
n = complete verification

o = redo bank transfer

p = finish bank transfer

q = send bank transfer

Figure 2.1. Running example: The system net S; that contains the (la-

beled) Petri net V;

As previously mentioned, processes are depicted using process models. There are
many different process modeling languages, e.g., the Business Process Modeling and

Notation (BPMN), Event-Driven Process Chains (EPCs), Unified Modeling Language

(UML) Activity diagrams, Yet Another Workflow Language (YAWL) and others [24].

18

In this thesis, we use Petri nets to present our ideas [51], as this is the most often-used pro-
cess modeling notation in process mining. We stress that process models denoted using

Petri nets can be translated to models using other process modeling languages.

Definition 2.5 (Petri net). A Petrinet is a tuple N = (P, T, F) with P the set of places,
T the set of transitions, PNT = () and F = (P x T) U (T x P) the set of arcs, which is

sometimes referred to as the flow relation.

Places are typically visualized by circles, whereas transitions are typically visualized
by squares (or rectangles). Consider the Petri net N; = (P, 17, F7) in Figure 2.1. N; has
the set of places P, = {p1,pa, ..., P19}, the set of transitions 7} = {t1,%s,...,113} and
the set of arcs F} = {(p1,t1), (t1,p2), - - -, (t1s, P19) }-

The state of a Petri net is called a marking, and corresponds to a multiset of places.
A marking is typically visualized by putting as many so-called tokens (black dots) at a
place as the place occurs in the marking. For example, a possible marking of the net /V; is

[pa, p3%] which is visualized by one token at place p, and two tokens at place ps.

Definition 2.6 (Marking). Let N = (P, T, F') be a Petri net. A marking M is a multiset
of places, i.e. M € B(P)

Let N = (P,T,F) be a Petri net. For anode n € P UT (a place or a transition),
on = {n' | (n’,n) € F} denotes the set of input nodes and ne = {n’ | (n,n’) € F}

denotes the set of output nodes.

A transition ¢t € T'is enabled by a marking M if and only if each of its input places
et contains at least one token in M, that is, if and only if M > etf. An enabled transition
may fire by removing one token from each of the input places ot and producing one token
at each of the output places ¢t e . The firing of an enabled transition ¢ in marking M is

denoted as (N, M)[t)(N, M"), where M’ = (M — ot) + te is the resulting new marking.

19

A marking M’ is reachable from a marking M if and only if there is a sequence
of transitions o = (t',¢* ... t") € T* such that Vo<;<,, (N, MO)[t"1) (N, M) with
M°® = M and M™ = M'. For example, (Ny, [p1])[o) (N, [p2, p17]) with the sequence
o = (t1,t4, 17,18, t11, t12, t15) for the Petri net N; in Figure 2.1.

Definition 2.7 (Labeled Petri net). A labeled Petri net N = (P, T, F\l) is a Petri net
(P, T, F) with labeling function | € T - U4 where U, is some universe of activity labels.
Let o, = (a*,d?, ..., a") € U} be a sequence of activities. (N, M)[o, > (N, M) if and
only if there is a sequence o € T* such that (N, M)[o)(N, M') and l(0) = o,.

A transition t is called invisible if and only if it is not mapped to any activity label by
the labeling function, that is, if and only if ¢ ¢ dom(l). Otherwise, transition ¢ is visible

and corresponds to an observable activity a = [(t).

Consider the labeled Petri net Ny = (P, T, F1,1;) in Figure 2.1. It has a labeling
function /; that maps transition ¢; onto activity label a, ¢, onto b, etc. Note that ¢,y &

dom(ly), hence this transition is an invisible transition.

(N1, [p1))[o) (N, [pro]) with o = (t1, t3, te, t1o, t1a, ta, t7, ts, ti1, ti2, tas, tir, tis) and [y (o) =

0,. Note that since %1, is not mapped to any activity label, it is not observable in o,.

In the context of process mining, the focus is mainly on processes with an initial state
and a well-defined final state. For the net Ny, we are interested in complete firing se-
quences, starting from marking [p;] and ending at marking [p19]. The notion of a system

net is defined to include the initial and final marking.

Definition 2.8 (System net). A system net is a triplet S = (N,1,0) where N =
(P, T, F,l) is a labeled Petri net, I € B(P) is the initial marking and O € B(P) is the

final marking. Us is the universe of system nets.

20

The net S; = (Ny, I1,O1) in Figure 2.1 is a system net, with an initial marking [; =
[p1] and a final marking O; = [p1o]. This system net models a bank transfer process in
which a client makes a bank transfer from one account (sender account) to another account

(receiver account). The receiver account can be of a local bank or an overseas bank.

Consider the visible sequence o, = (a, b, e,1,l,d, g, h, j, k,n, p, q). This sequence de-
scribes the activities that are executed for a bank transfer to an overseas bank account. It
is initiated with activity a (start bank transfer) and is ended with activity q (send bank
transfer). For an overseas bank transfer, the bank employee has to open a new overseas
bank form, enter the overseas bank code, convert the transfer amount into the foreign cur-
rency and fill in the bank form with the converted amount. The bank employee also has
to verify both the sender and receiver account before making the transfer. The comple-
tion of the bank form and the account verification can be done concurrently as shown in

S1. In o, the bank form is completed ({...,b,e,,1,...)) before the account verification

(<"'7d7g7h7.j7k7"'>)'

Definition 2.9 (System net notations). Let S = (N, 1,0) € Us be a system net with
N = (P,T,F,l).

e T,(S) = dom(l) is the set of visible transitions in S.

o A,(S) = rng(l) is the set of corresponding observable activities in S.

o T'(S) ={t € T,(9) | Veer,sl(t) = I(t') = t = t'} is the set of unique visible
transitions in SN (such that no other transition has the same visible label).

o AU(S) = {I(t) | t € TX(S)} is the set of corresponding unique observable

activities in S.

For a given system net, the set of visible traces starting from marking / to marking O

is projected onto observable activities yields set ¢(.5).

Definition 2.10 (Traces). Let S = (N,1,0) € Ug be a system net. ¢(S) = {0, |
(N, I)[o,>> (N, O)} is the set of visible traces starting in marking I and ending in marking

O. ¢5(S) ={o | (N,I)[o)(N,O)} is the corresponding set of complete firing sequences.

21

For the system net S; in Figure 2.1, ¢(S1) = {{a,b,e,4,1,d, g,j, h,k,n,p,q), (a,c, f,
m, d7 g)j7 h) k:v n,p, (1)7 s } and ¢f(Sl) = {<t1a t2a t57 t97 t137 t47 t77 tll) t87 tl?) t157 t17a t18>7
<t1, t3, t6, th; t14, t4, t7, tll; tg, tlg, t15, t17, t18>, . } Due to the 100p il’lVOlViIlg transition

t16 there is an infinite number of visible traces and complete firing sequences.

The union of two system nets is defined for composing and decomposing of process

models.

Definition 2.11 (Union of nets). Let S = (N,I,0) € Us with N = (P, T, F,l) and
S"'=(N',I';0") € Us with N = (P, T', F',l') be two system nets.

o " € (TUT') - Uy with dom(l") = dom(l) U dom(l'), I"(t) = I(t) if t €
dom(l), and I"(t) =U'(t) if t € dom(l") \ dom(l) is the union of | and l'.

e NUN =(PUP ,TUT' FUF'I") is the union of N and N'.

e SUS'"=(NUN' I+ 1,0+ O') is the union of systems nets S and S'.

Note that since the unioned labeling function I”(t) = [(t) rather than {"(t) = I'(¢) if

t € dom(l) and t € dom(l’), the union of nets is not commutative, i.e., S U S’ # S"U S.

2.3. Events, trace, event logs, and event streams

Event logs serve as the starting point for process mining. An event log is a multiset
of traces. Each trace describes a particular case, i.e., a process instance, in terms of the

activities executed.

Definition 2.12 (Trace, Event log). Let A C U, be a set of activities. A trace o € A*

is a sequence of activities. An event log L € B(A*) is a multiset of traces.

In this simple definition of an event log, an event refers to just an activity. Often event
logs store additional information about events such as resources, timestamps or additional
data elements recorded with the event log. In this thesis, we abstract from such information

and limit conformance to solely the control flow aspect.

22

Ll = [Ul = <a’b7€)i7l)d7g7j7 h7 k7n7p7 Q>207
09 = <CL,C, fyma d7g7.j7 k:7 h7n7p7 Q>57
03 = <a7€7i7l7dagvja hakvnvp’ q>5]

L2:[0-4:<a7c7f7m7d7g7j7h7k7n7p7q>207
0-5:<a7b7e7i7l7d7j797h7k7n7p?Q>57
0-6:<a7b767i7l7d’g’h’n’j’k’p7Q>5]

Figure 2.2. Running example: Event logs L, and Lo

Consider the event logs L, and L in Figure 2.2. Both event logs have three distinct
traces. L, contains 30 traces, with 20 o traces, 5 o, traces and 5 o3 traces. Lo contains
30 traces with 20 o4 traces, 5 o5 traces and 5 o traces. Note that an event log is a multiset

of traces as a distinct trace (like o) can occur multiple times.

The projection function [x as introduced earlier also directly applies to event logs. For
example, consider the event log L; in Figure 2.1, m(qpc3(L1) = [(a,b,e)*°, (a)?, (a, €)®]
and 7y, (L1) = [(a,0)®, (a)°]. For alog Ly = [()] with an empty trace, the projection
Tiape}(Ls) = [()] returns a log with an empty trace. These projected event logs are

referred to as sublogs and the traces in sublogs are referred to as subtraces.

While process mining is often done offline on event data of completed process ex-
ecutions, it is desirable perform online analysis on streams of incoming event data on
ongoing process executions. Similar to [16], we conceptualize event streams as streams of

observable units where each observable unit contains process information of an event.

Definition 2.13 (Observable unit). Let C' C Uy denote the set of case ids, and let
A C Uy, denote the set of activities. An observable unit o = (c,a) € C x A is a pair

describing an activity a observed in context of case id c. The universe of all possible

observable units is defined as O = C' x A.

The activities of observable units correspond to observations of fired transitions in the

corresponding Petri net model. Projection operators can be used to extract the case id and

23

the activity, i.e., given o = (¢, a), m.(0) = c and 7,(0) = a. Moreover, an event stream is

simply an infinite sequence of observable units.

Definition 2.14 (Event stream). Given the universe of observable units O = C X A,

an event stream is defined as an infinite sequence of observable units: S : N> — O.

As such, an event stream can be seen as an unbounded sequence of observable units
for which the sequence order corresponds to the chronological order of the corresponding
events. Where it is clear that we are referring to an event stream of only one case, we will
directly refer to the corresponding activities rather than apply the projection operators for

each observable unit.

2.4. Process mining

In Section 2.2 and Section 2.3, we have presented various concepts on process models
and event data. In this thesis, we propose techniques that improve conformance checking
in process mining. As such, we recall two common problems in process mining, namely

process discovery and conformance checking to provide context for the rest of the thesis.

2.5. Process discovery

Process discovery involves discovering a process model from an event log with the
purpose of helping users to understand various aspects of the underlying process. There
are many process discovery algorithms [71, 41, 40, 81]. However, in most cases, the
discovered model might not encompass all the observed behavior in the event log or might
allow behavior unseen in the observed behavior. This motivates conformance checking for
identifying commonalities and discrepancies between the observed behavior in the event

log and the modeled behavior in the discovered process model.

24

2.6. Alignment-based conformance checking

The main idea of conformance checking is to compare the observed behavior of an
event log L € B(A*) with the modeled behavior of the related model, i.e. the related
system net S = (N, I,0).

Similar to process discovery, many techniques have been proposed for conformance
checking [1, 6, 18, 92, 58]. In this thesis, we mainly focus on alignment-based techniques

due to their robustness and level of detail on analysis.

Mm =lal|lblelil|l|d|g|j|h|k|in|p|g
ty |to|ts |t |t13|ta | L7 [E11| ts [t12|t15|t17|E18

Tim|d|g|j|>|h|k|{n|p|q
ty |t |te |t10|t1a|ta | L7 |T11 ts [t12|t15|t17|t18

Figure 2.3. Alignments for event log [,

Alignment-based techniques mostly focus on the fitness metric to identify discrepan-
cies between the model and event log. As hinted by the name, these techniques compute
alignments between the traces in the event log and the visible traces of the process model.
Consider the alignments of the three traces in the event log L; in Figure 2.3. For each
alignment, the top row corresponds to the trace in the event log, the middle row cor-
responds to the visible trace in the model, whereas the bottom row corresponds to the

corresponding firing sequence in the model.

25

If an activity in the model cannot be mimicked by an activity in the log, then a > (“no
step”) appears in the top row. Similarly, if an activity in the log cannot be mimicked by an
activity in the model, then a > (“no step”) appears in the bottom row. Note that we use

the symbol 7 as the surrogate activity label for invisible transitions.

For example, the fourth column of 7, indicates that the net S} has fired transition ¢,
which is an invisible transition, and that the log trace o5 could not mimic this firing. The
ninth column indicates that the activity k£ was performed in the log trace o5, but that the
net .S; could not mimic this. These columns containing > point to deviations between

model and log.

A move is a pair (a, m) where the first element a refers to the activity in the log and

the second element m refers to the transition in the net.

Definition 2.15 (Legal moves). Let L € 3(A*) be an event log andlet S = (N, 1,0) €
Us be a system net with N = (P, T, F,l). Ayy = {(a,(a,t)) |la€ A ANLET N It) =
a} U{(>(a,t)) | a € ANt €T ANIt)=alU{(>(rt)|teT Nt¢g
dom (1)} U{(a, >) | a € A} is the set of legal moves. The function o« € Ayy — AU {7}
provides the activity (possibly T) associated with a move: for allt € T and a € A,
a(a, (a,t)) = a, a(>,(a,t)) = a, a(>,(1,t)) = 7, and a(a, >) = a.

An alignment is a sequence of legal moves. This means that, after removing all >
symbols, the top row corresponds to a log trace and the bottom row corresponds to a firing
sequence in the net from marking / to marking O. The middle row corresponds to a visible

trace after also removing all 7 symbols.

Definition 2.16 (Alignment). Let L. € B(A*) be an event log with A C U, letop, € L
be a log trace and o) € ¢;(S) a complete firing sequence of system net S. An alignment
of o1, and oy is a sequence v € A}, such that the projection on the first element (ignoring

any >>) yields oy, and the projection on the last element (ignoring any) yields o ;.

26

Lale|f[>m|d|g|j|k|h]>[>[>n|p|q]|
f d{>>>h|k|lg|y plq
to ty tg t12| t7 [t11|t15]t17|t1s

Y2 T |a

ty

¢
t3

T|m n

tio|t14 t15

Figure 2.4. Alternative alignment for trace o,

Given a log trace and a model, there could be multiple or even infinitely many align-
ments. Consider trace o, in event log L, in Figure 2.2. One possible alignment is 7, at
Figure 2.3 while another could be ~} at Figure 2.4. Tt is clear that , is a better alignment
as it better matches the log trace with the model trace. In general, costs can be assigned
to different types of moves so that an optimal alignment with the lowest costs can be

computed.

Definition 2.17 (Cost of alignment). The cost function 6 € Ay — Q assigns costs to
legal moves. Moves where the log and the model agree have no costs, i.e. 6(a, (a,t)) =0
for all a € A. A move in the model also has no costs if the transition is invisible, i.e.
(>, (r,t)) = 0ift & dom(l). A move in the model has a cost of 6(>>, (a,t)) > 0 if
l(t) = aand a € A. Similarly, a move in the log has a cost of (a, >) > 0. The cost of

an alignment y € Ay is the sum of all costs: 6(7) = >, myey 0(a, m).

In this paper, we assume a standard cost function 0, that assigns unit costs: 01 (a, (a,t)) =
0, 01(>, (7,t)) = 0 and 6, (>, (a,t)) = d1(a, (>,t)) = 1 for all a € A. For example,
01(71) = d1(7a) = 0, 01(72) = 01(75) = 01(76) = 2:and 61 (y5) = 1.

Definition 2.18 (Optimal alignment). Let L € B(A*) be an event log with A C Ux
and let S € Us be a system net with ¢(S) # (.

e For op € L, an alignment v between o, and a complete firing sequence of the
systemnet oy € ¢5(S) is optimal if the associated misalignment costs are lower

or equal to the costs of any other possible alignment '

27

e \Nop,S) € A* — A3, is a deterministic mapping that assigns any log trace oy,

to an optimal alignment.

Yo =|al|ble|i|l]|d

<
>
v
<.
™
N
hS]
LS

Figure 2.5. Alignments for event log Lo

Consider the system net .S; in Figure 2.1 and the event logs L, and L. in Figure 2.2.
The alignments 7, 2, and 73 in Figure 2.3 are possible optimal alignments for the traces
in L, and their corresponding firing sequences in the system net S;. The alignments v,
vs, and s in Figure 2.5 are possible optimal alignments for the traces in L, and their
corresponding firing sequences in the same system net. The mapping function would
return one of the possible optimal alignments in a deterministic manner so that the same

one is always returned.

With an optimal alignment y between o, and .S, we can quantify fitness by comparing

its associated misalignment costs with the costs of a default alignment.

Definition 2.19 (Fitness metric). Let L € B(A*) be an event log andlet S = (N,I,0) €
Us be a system net with N = (P, T,F,l). Let " € T — A be such that I"(t) =
I(t)ift € dom(l) and I"(t) = 7 if t & dom(l). Let o, € L be a log trace. Let

28

moven (S) = MiNgyep,(5) D eay, 0> (I7(t), 1)) be the minimal costs of an align-
ment between an empty log trace and a complete firing sequence of the system net. Let
mover(0r) = Y ,c,, 0(a,) be the costs of an alignment between o, and an empty

model trace.

Given the single-trace fitness function fit, the fitness of the trace oy is computed as

follows:

5(/\S))

move (S) + mover(or)

ﬁt<aL7S7 5) =1-

The fitness function is also overloaded to compute the fitness of the event log L as

follows:
2oer 901, 5))
|L| x moven (S) +), ; mover(or)

fit(L,S,6) =1—

This is a relative fitness metric presented in many conformance related papers [5, 4,
67]. The metric normalizes the misalignment costs associated to v by the costs of the
extreme case, a default alignment where all the steps in the log trace are aligned as log
moves and all the steps of the minimum model trace are aligned as model moves. Using
an optimal alignment v = A(o, S), the fitness metric computes a value between 0 and 1.
A trace that perfectly fits the system net would yield a fitness value of 1 and a trace that

does not fit the system net at all would yield a fitness value of 0.

Consider the trace o3 in Figure 2.2 and the net S; in Figure 2.1. Assuming that

the optimal alignment 73 = \(03,S7) in Figure 2.3 is used, the fitness of o3 and S is

fit(og, S1,01) = 1 — ﬁ = 2 ~ 0.958. The fitness of the event log L, and S is
0x2042x5+1x5 15 _ 145
fit(L1,51,601) = 1 — 5ontssocionsriss = 1 — 75 = 118 ~ 0.980. Recall that the

cost function ¢ as a function is defined for multisets. This means that the cost function &

is applied to a trace o multiple times if there are multiple cases with the trace o.

29

2.7. Beyond fitness

While fitness is often an important concern for process stakeholders, there are other
metrics that one should attend to. In fact, there are four commonly accepted quality di-
mensions for comparing a model and a log: (1) fitness, (2) precision, (3) simplicity and

(4) generalization [56].

As previously presented, a model has good fitness if it can mimic the behavior of the
event log. Yet a fitting model is not necessarily a good model. For example, Figure 2.6a
shows a “flower model” which is able to replay all the traces in the event log L; and L,
and allows sequences that are not seen in the event log. Such a model does not contain
any knowledge of the process other than its activities and is unlikely to be of much use. A
model is precise if it does not allow “too much” behavior. A model that lacks precision is

underfitting.

In contrary, Figure 2.6b shows a model that does not allow any behaviour other than
the traces in the event log L;. While it is perfectly fitting and precise with respect to log
L4, it is also unlikely to be a good model. An event log often does not contain all the
possible runs of the process. Generalization means that a model should not be overfitting.
Lastly, the simplicity dimension refers to Occam’s Razor; a model should be as simple as

possible.

(b) Non-generalizing model that only allow ob-

(a) Imprecise flower model served traces in event log L

that yields perfect fitness

30

Similar to the fitness metric, different techniques have been proposed to measure pre-
cision, generalization, and simplicity. For example, the escaping arc precision metric
computes precision quickly. It first performs a log traversal over the model to compute
a prefix automaton where there is a state for each unique prefix of the event log. Then
it measures the proportion of enabled transitions that are unseen in the observed log be-
havior as “escaping arcs” [47]. Computing the escaping arc precision is fast since it only
looks at the markings reached by replaying log traces over the model instead of explor-
ing the entire state-space of the model. In the case where there are non-fitting log traces
that cannot be replayed onto the model, one can use the model projection of an optimal
alignment between the log trace and model as the corresponding replayable trace. This is
known as the one-alignment approach [47]. However, as shown in [60], there are several
limitations of the escaping arc precision metric. For example, since there can be multi-
ple optimal alignments between a log trace and model, the escaping arc precision becomes

non-deterministic which is certainly undesirable (imagine a very puzzled process analyst)!

Another precision metric is the Markovian Abstraction Precision (MAP) [7]. This
metric works by abstracting both the model and log into a so-called k*"*-order Markovian
abstraction (M *-abstraction) for comparison. A M* abstraction is a graph where each
node is a sub-trace of at most length £ and each edge connects nodes with overlapping
and consecutive sub-traces. After constructing the M*-abstractions for both the log and
model, precisioln is computed with respect to the best matching of edges of the model
MP*-abstraction to the log M*-abstraction. By having a configurable maximum sub-trace
length, this metric is able to tackle the problem of potentially having to check an expo-
nential number of reachable points in the model for unobserved yet permitted behavior.
Furthermore, it was shown that the metric fulfills the proposed five precision axioms [60]
for some k. However, as reported by the authors, the needed %k for computing accurate
precision may be large. This can make both the construction and edge matching compu-

tationally expensive.

31

Yet another precision metric can be derived from the notion of anti-alignments [18, 76].
An anti-alignment is a model trace that most deviates from all of the observed traces in
the log. The idea here is that if a model is precise with respect to the log, then its anti-
alignments will resemble closely to the observed traces. To capture the notion of “most
deviation”, Hamming distance is used, and truncation and padding are adopted to enable
the comparison of traces with different lengths. As such, an anti-alignment is defined
with parameters (n, m) where n corresponds to the length of the anti-alignment and m
corresponds to the minimum distance between the anti-alignment and all the log traces.
Anti-alignments can be computed as SAT problems. Since the number of mismatches
between an (n, m)-anti-alignment is bounded within [1, n], it reflects how dissimilar the
model is with respect to the observed behavior. Moreover, it can be converted into a pre-
cision metric that monotonically increases with log size. The use of anti-alignments to
compute conformance metrics was further investigated in [76]. In that work, the authors
proposed that precision can be computed by computing anti-alignments at both the trace
and log level. At the trace level, the idea is that if the model is precise then the anti-
alignment of the model with respect to the log excluding a single trace would correspond
to the excluded log trace. One can see that with the overly precise model in Figure 2.6b
where if one would exclude a single trace in log L; and compute the anti-alignment be-
tween the model and log, the excluded log trace would be the model trace that differs
most with respect to the modified log. Then the trace-based precision is computed using
the distance between the anti-alignment and the excluded log trace. At the log level, the
anti-alignment is computed against the entire log and the log-based precision is computed
by comparing the anti-alignment and the log. The paper also extends to the generalization
quality dimension that we have yet to present much about. As recalled, generalization
is about the model permitting unobserved behavior so that it has some flexibility. In the
paper, the concept of recovery distance was proposed. Recovery distance refers to the
maximum distance between any of the states reached in the anti-alignment and the states
visited by the log [76]. Then, the idea is that a generalizing model introduces new behav-

ior but not new states. This is conceptualized as a generalization metric that favors high

32

anti-alignment distance and low recovery distance. Similar to the precision metric, gener-
alization can be computed at both the trace and log level. Similar to cost-based alignment,
computing anti-alignment can be computationally expensive, specifically it was shown to

be NP-complete.

We have now presented several existing conformance metrics that measure different
conformance dimensions. We emphasize that there are many other metrics that we have
not talked about, e.g., advanced behavioral appropriateness [57], projected conformance
checking [42], negative events precision [83] and many more. However, while many
of these metrics work on small, often toy, examples, they can have difficulty scaling to
industrial-sized processes that one might find in real settings. This marks the theme of
this thesis where we explore different ways of enabling conformance checking under dif-
ferent contexts. One principal avenue of research was on decomposition techniques for

computing cost-based alignments.

Part 11

A divide and conquer approach to alignment

34

3. Merging decomposed sub-alignments

3.1. Introduction

As of current, alignment-based techniques is the state of the art for measuring fitness
between a given event log and model. However, alignments are computationally expen-
sive as the algorithm has to explore a large amount of states to yield an optimal alignment
that provides a “best” explanation of the discrepancies between the observed and modeled
behavior. Decomposition techniques have emerged as a promising approach to reduce
the computational complexity. Rather than aligning the overall event log and model, de-
composition techniques first partition them into a set of sub-models and sub-logs so that
the alignment procedure is performed on these smaller sub-components [65]. If a devia-
tion is found at one of the subcomponents, then it is clear that there is a deviation in the
overall component. Otherwise, the overall process and the overall log are perfectly fit-
ting. As such, alignment problems can be decomposed and distributed over a network of
computers. Experimental results based on large-scale applications of decomposition tech-
niques have shown significant improvements in performance, especially in computation

time [50].

Following this idea, existing decomposition techniques have tackled the original prob-
lem in two different ways. One is the computation of conformance at the decomposed
subcomponents level [50, 91, 65], where instead of solving the overall problem, it fo-
cuses on identifying local conformance issues at individual subcomponents. The other
is the approximation of the overall conformance between the process and the log, such
as pseudo-alignments [88] or approximate alignments [61]. As such, it is clear that cur-
rent decomposition techniques do not address the problem of computing the exact fitness

between a given log and model.

This chapter presents results that show the required condition for merging optimal de-

composed pseudo-alignments into optimal valid alignments. The merged alignments are

35

then shown to have the same costs as the alignments computed under the monolithic ap-
proach. This approach creates a full circle approach for decomposed alignment (‘there and
back again’), and makes it possible to solve alignment-based conformance problems that
current techniques cannot handle. The remainder of this chapter is organized as follows:
Section 3.2 presents valid decompositions and decomposed alignment-based conformance
checking. Section 3.4 presents the condition under which merged sub-alignments have the

optimal misalignment cost and exact overall fitness.

3.2. Decomposed alignment

Alignment-based conformance checking can be time consuming. This is because the
time needed for computing conformance and optimal alignments is heavily influenced by
the size of the net and the log, as well as by the complexity of the underlying process.
One of the ways to tackle this limitation is through decomposition techniques. The align-
ment problem can be decomposed by splitting the overall net and the overall log into
subcomponents (subnets and sublogs) and then solving this set of smaller problems. Un-
der the assumption that the complexity of the alignment algorithm is significantly worse
than linear, solving multiple small alignment problems is often faster than solving one
large alignment problem. In addition, the set of decomposed alignment problems can be

distributed over a network of computer nodes to further reduce computation time.

However, existing decomposition techniques have limited applicability in computing
the overall conformance between the net and the log at the alignment level, i.e., comput-
ing conformance using optimal alignments between the net and log traces. Following the
decomposition of the overall net and the overall log, existing decomposition techniques
only guarantee that the aggregation of conformance results from subcomponents will re-
flect the exact overall conformance if there is perfect fitness between the net and the log
[65]. This has led to the focus on using decomposition to identify problematic sections of

the process.

36

Pe t11 P14

t7 P1o

tg

t1o

P11

16
a = start bank transfer g = enter sender account m = update local bank form
b = open overseas bank form h = enter receiver account n = complete verification
¢ = open local bank form i = foreign currency conversion o = redo bank transfer
d = start verification j = verify sender account p = finish bank transfer
e = enter oversea bank code k = verify receiver account q = send bank transfer
f = enter local bank code 1 = update oversea bank form

Figure 3.1. Running example: The system net S; that contains the (la-
beled) Petri net V;

As previously mentioned, there are many scenarios where the precise alignments or
costs are required. This motivates our work on extending the conditions under which the
conformance results from subcomponents can be aggregated to reflect the exact overall
conformance. In this section, we present the core ideas that will extend the applicability
of decomposition techniques in computing the overall fitness. These ideas will be later
used in two novel alignment-based conformance checking methods to compute an exact

or an interval overall fitness result.

3.3. Running example

We first recall the running examples of system net .S; and logs L, and Ly from Chap-

ter 2.7.

37

Ll = [01 = <a7b767i7l7d7g7j7 h) k7n7p7q>207

09 = <CL,C, fvma d7g7j7 k7 h7n7p7 Q>57

03 = <a767i7l7d797ja hakanvpa q>5]

9

L2 = [0-4 = <CL,C, f?madagaju hakvnvpa q>20
— ; ; 5
0-5_<a7b7677'7l7d7jagahak7nap7Q>)

0-6 - <a7 b7€77;7l7d797 h7n7j7 k7p?Q>5]

Figure 3.2. Running example: Event logs L, and L,

Next, we define valid decompositions of Petri nets and show how alignments computed

using valid decompositions can be used to bound the exact fitness value within an interval.

3.3.1. Border activities

In [65] the author presented the concept of valid decomposition of a Petri net. A
decomposition of a Petri net is valid if each place and invisible transition resides in just
one subnet. Moreover, if there are multiple transitions with the same label, they should
reside in the same subnet. Only unique visible transitions can be shared among different

subnets.

Definition 3.1 (Valid decomposition [65]). Let S € Ugy be a system net with labeling
function I. D = {S',S8%8"} C Us is a valid decomposition if and only if the
following properties are fulfilled:

o S'=(N' I',O") is a system net with N* = (P*, T*, F",[') forall 1 <i < n.

o ' =mpi(l)forall1 <i<n.

e PPNPI=0foralll <i<j<n.

38

o T'NTY CTHS) foralll <i<j<n.
o S =Ucicn 5"

D(S) is the set of all valid decompositions of S.

tz P4 t5 V43 tg P12 t13
nrernesne

SN}
ts Ps tg P9 tio P13ty

Lo 0 (=)

SN ti7 DPis tig

(9>
|
O N0 108" nI™e hs i

b7 s Pu tiz P15 gno| b Dir

SN}

O

P1 tl

SN} t16 SNB

Figure 3.3. Components resulting from a possible valid decomposition D,
of the system net S

For example, the decomposition D; in Figure 3.3 is a valid decomposition of the sys-

tem net Sy, that is, D; € D(S;). The system nets in D, are referred to as the subnets of
Si.

Given a valid decomposition, an activity may be shared by multiple subnets. We define
these activities as the border activities of the decomposition. This overlapping property

will be used later as a common ground between subcomponents in order to obtain an

overall result from local results.

Definition 3.2 (Border activities). Let S = (N,I,0) € Us be a system net with
N = (P, T,F,l). Let D = {S', 5% ...,5"} € D(S) be a valid decomposition of S. For
alll <i<mn, 8= (NI 0")is asubnet with N' = (P", T, F' 1*). Ay(D) = {I(t) |

Ji<icj<n t € T"NT7} is the set of border activities of the valid decomposition D.

39

For an activity a € rng(l), Sp(a, D) = {S" | S* € D ANa € A,(S")} is the set of

subnets that contain a as an observable activity.

Due to the properties of a valid decomposition, a border activity can only be an activity
that has a unique label, i.e., A,(D) C A%(S). For example, the valid decomposition D; in

Figure 3.3 has the set of border activities of {a, b, ¢, d, [, m,n, 0, p}.

In addition, non-unique activities will appear in precisely one subnet, i.e., for all @ €
A, (S) \ AL(S) it holds that |Sy(a, D)| = 1. Contrastingly, unique activities may appear
in multiple subnets, i.e., for all a € A¥(S) it holds that | S,(a, D)| > 1. Border activities
are unique activities that appear in multiple subnets, i.e., for all a € A,(D) it holds that

1Sy(a, D)| > 1.

For example with the valid decomposition D; in Figure 3.3, Sy(a, D) = {S}, 5%, 53}

as the border activity a is shared by the subnets S}, S7 and S73.

3.3.2. Alignment for subnets with border activities

Following a valid decomposition, it can be the case where border activities would
either have no input places or output places in the subnets which share the border activities
but do not contain the corresponding places. This means that these subnets would have an

empty initial marking and/or an empty final marking.

For example, in the valid decomposition D; in Figure 3.3, the activity set of S consists
of the border activities n and p. For subnet S%, border activity n has no input places and
border activity p has no output places. This means subnet S? has an empty initial and final
marking. We note that the computation of an optimal alignment remains the same as for

system nets with non-empty initial and final markings.

For the sake of simplicity, say we are aligning the subtrace 0§ = 7 as(03) = (n,p)
with subnet S%, i.e., subtrace o35 is obtained by projecting trace o3 onto the activity set of

subnet S%. At the start of the alignment procedure, we would yield an empty alignment

40

since no legal moves have been added yet. Since the initial marking equals the final
marking (both are empty), by Definition 2.10, an empty sequence is a valid complete
firing sequence. However, the empty alignment is not a valid alignment in this case since
Definition 2.16 requires the projection on the first element (ignoring any >>) to yield the
log trace, i.e., 05, and the projection on the last element (ignoring any >>) to yield a
complete firing sequence of the net. While the projection on the last element of an empty
alignment gives a complete firing sequence, the projection on the first element does not
yield o5. As such, we try to fire the corresponding transition of activity n from subtrace
oS. Transition ¢;5 is always enabled in subnet S5 since it has no input places. Firing
transition 15 produces a token in place p;; and enables transition ¢;7. This means that
the log and model execution of activity n corresponds to a synchronous move. Similarly,
the corresponding transition of activity p, which is the next activity in subtrace o3, can be
fired in the model as there is a token in its input place p;7. This means that the log and
model execution of activity p corresponds to a synchronous move. Since transition ¢;; has
no output places, the marking reached by its firing is an empty multiset. This corresponds
to the final marking and is therefore a complete firing sequence. The produced alignment
corresponds to subalignment 74 in Figure 3.4. This is a valid alignment as the projection

on the first element (ignoring any >>) yields o3 and the projection on the last element

(ignoring any >>>) yields a complete firing sequence.

We note that there are alternative decomposed replay approaches that do not involve
removing all irrelevant transitions, places, and arcs. The paper [85] presents the Hide
and Hide and Reduce decomposed replay approaches which create subnets by making
irrelevant transitions invisible. Lastly, we refer interested readers to the paper [65] for

further details on the replay of subnets created by valid decompositions.

3.3.3. Decomposed Fitness

Let us consider trace 03 = (a,e,14,l,d, g, j, h, k,n, p, q) and the system net S; in Fig-

ure 3.1. Under a decomposition, the optimal subalignments i, ...~ can be obtained

41

a d >lelill -
= a i = = d Y3 =|ble|i]|l =

t ty |ty ta |5 | tg |t13

dlgljlh Llp n|p 1plq
% =1ldlgljl|h =|1l|p W= np T |plq

g |t7 |t11| s tis|t1r t1s|tir t17|t1s
Figure = 3.4. Subalignments between the trace o3 =

(a,e,i,l,d,g,j,h,k,n,p,q) in event log L; and the valid decompo-
sition D, in Figure 3.3

by first projecting o3 onto the subnets Si, .

subtrace with the corresponding subnet as shown in Figure 3.4.

..,SY in Figure 3.3 and later aligning each

la | d blel1 ‘ l ‘
" =la| 7= = dl v =|blelill 7 o=

T t1|ta ta|ts | to|t13

dlgljln Lp n|p pla
w =|dlgl|ljlh =|1llp W =n|p W =|plq

Ly |l7 |t1n|ts |t t13(t17 ti5(t17 t17(t1s
Figure 3.5. Subalignments between the trace o, =

<a7 b? 67 7;7 l? d?g?j? h? k? n7p7 Q>
tion D, in Figure 3.3

in event log

Ly and valid decomposi-

All moves in alignments 71, 73, 75, 74, 75 and ~§ are synchronized. Alignment 73 is

an empty alignment. Alignments 2 and 3 both have a model move involving transition

to with the label b. Similarly, optimal subalignments for the traces o; and o5 are shown in

Figures 3.5 and 3.6 respectively.

A naive approach to aggregate the results per subcomponent, would be to sum up

all the misalignment costs of the subalignments under the standard cost function. For

42

| a| alc a|d ‘ c ‘ f1=>m
7 =la % =lalc % =lald v = B =lecl|f|T|m
131 l1|ts 11| ta 3| te |t1o[t14
dg‘j‘k: h>>n‘ mp‘ n|p pl4q
W =ldlgl|lj|>hlk|n v =|m|p B =|n|p % =|plgq
ly|t7 [tin| | ts [t12|t1s L1afta7 t1s(t17 l17|t1s
Figure = 3.6. Subalignments between the trace o9 =

{(a,c, f,m,d,g,j,k,h,n,p,q) in event log L; and valid decomposi-

tion Dy in Figure 3.3

it

tg ts

>

Y2 >

t1o

>lel|r |l

73

t ts

Figure 3.7. Alignments for event log L

YA, v2 ..., 73, we would get a total of 2. However the misalignment costs associated to
the optimal overall alignment 3 is 1 as shown in Figure 3.7. The wrong result is pro-
duced because border activities appear in multiple subnets and therefore moves involving
these transitions will be counted multiple times when their associated costs are simply
aggregated. We would like the result computed using 73, . .., 73 to equal the optimal cost
computed using a overall alignment such as ;. Hence, we use the adapted cost function

presented in [65], to avoid counting moves that involve border activities multiple times.

43

Definition 3.3 (Adapted cost function [65]). Let D = {S*,S?,...,5"} € D(S) be a
valid decomposition of some system net S and § € Ay; — Q a cost function. The adapted

cost function dp € Ay — Q for decomposition D is defined as follows:

5((17771) ’ .
alam if a(a,m) # 7;
Spla,m) = 1S (a(a,m), D)

d(a,m) otherwise.

The cost of each legal move is divided by the number of subnets in which the corre-

sponding activity may appear, for example, dp(a, >) = ‘gi‘z;?)‘

. This avoids counting
misalignment costs of the same legal move multiple times. For example, consider the
set of subalignments 3, . ..,~3 in Figure 3.4, [S,(b, Dy)| = |{S%, S{}| and |Sy(d, Dy)| =
{53, 5§ }|. For the adapted standard cost function dp,, dp, (>, (b, t2)) = 5 and dp, (d, (d, 1)) =

0. The aggregated cost of 73, ...,~3 is 1, i.e. identical to the costs of the overall optimal

alignment -3 as shown in Figure 3.7.

Having defined the adapted cost function, the fitness values associated with the optimal
subalignments per sublog and subnet can then be aggregated. This gives a decomposed

fitness metric.

Definition 3.4 (Decomposed fitness metric). Let L € B(A*) be an event log and let
S = (N,1,0) € Us be a system net with N = (P, T, F\1).

Let D = {S',S?% ..., 8"} € D(S) be a valid decomposition of S. Forall 1 < i < n,
St = (N, I*, O") is a subnet with an observable activity set A\ = A,(S?).

For a log trace o, € L, ot = 7ai (01) is the projection of o, on the activity set of

subnet S*.

t 0) =1 — ———=
ﬁ D(UL7S7) mOUeM(S)+mOU€L(0L)

For an event log L, its decomposed fitness metric is computed as follows:

44

ZULGL Zie{l,...,n} 5D()‘(UE= Sl))

th(L,S,0)=1-—
fitp(L, 5,0) |L| x moverr(S) + 3, < mover(or)

In the decomposed fitness metric, the misalignment costs of each subalignment are
first aggregated using the adapted cost function. Afterwards, the total is normalized using
the same value as the undecomposed relative fitness metric so that both metric values are
normalized in the same manner. In the paper [65], it is shown that the decomposed fitness
metric provides an upper bound to the fitness computed using the full alignment between

the overall log and model.

Let us consider again the trace o3 = (a,e,4,1,d,g,7j, h,k,n,p,q) and the valid de-
composition D; in Figure 3.3. Assuming that for S}, ..., S?, A gives the subalignments
Y4, ...,7; as shown in Figure 3.4. The decomposed fitness metric between the trace and
the subnets is computed as fit, (03, 51,61) = § ~ 0.958. This is identical to the fitness

value for the overall trace and the overall net.

Similarly, the formula can be applied to the log. Let the three subalignments shown
in Figure 3.5, Figure 3.6 and Figure 3.4 be the optimal subalignments that correspond to
the traces oy, 0o and o3. The decomposed fitness value of the event log L, and 5; is

. 0x20+2x5+(3+3)X5 145
fitp, (L1,51,01) = 1 — 5aommmirianering = 15 ~ 0.980. This is again identical

to the fitness value for the overall log and the overall net. As such, the approach has
decomposed the conformance checking problem whilst providing a conformance value
for the overall log and net as output. However, this is not always the case, and cannot be
generalized for the general case but only for cases satisfying specific properties. These

properties relate to alignment moves corresponding to border activities.

3.4. Total border agreement and exact decomposed fitness

As mentioned earlier, the decomposed fitness does not always match the overall fit-
ness metric in the general case. That is because the legal moves involving a partic-

ular activity may differ from one subnet to another. Let us consider the trace o5 =

45

| a| alb ‘a d ‘b el l‘]
% =|a % =lalb % =lald Y% = |bleli]|l 8 =

(31 1|tz t1 |14 lo|l5|tg |t13

d g‘h‘n jlk >>‘ l p‘ n|p ‘p q
W =ldlg|h|>jlk|n Yo =11l |p Y% T |n|p Y6 T |plq

ta|tz|ts| [t1n|tiz|tis ti|t17 t1s(t17 li7|tis

Figure 3.8. Subalignments between the trace oy =

{(a,b,e,i,l,d,g,h,n,j,k,p,q) in event log L, and valid decomposi-

tion Dy in Figure 3.3
{a,b,e,i,l,d,g,h,n,j k,p,q) and the valid decomposition D; in Figure 3.3. A set of
optimal subalignments between the trace and the subnets is shown in Figure 3.8. Accord-
ing to the system net S in Figure 3.1, transition 5 with label n is to be executed after
transitions ¢, with label j and ¢,, with label £; in the trace og, t15 is executed before ¢1;
and t15. This results in a log move of activity n at the fourth position and a model move

of transition ¢;5 with label n at the seventh position of alignment .

As activities j and k are not present in the subnet S¢, the move in the log and the move
in the model are synchronized for transition n at alignment 3. Therefore, the moves
involving border activity n are not identical between subalignments 7§ and +§; the moves
involving border activity n in the two subalignments are not in agreement. In this case,
the decomposed fitness metric would not result in a value that is equal to the fitness value

of the overall log and the overall net.

To compute the exact fitness value, a specific property must be satisfied: sequences of
moves involving the same border activity have to be in agreement across all subalignments.
We define that property as border agreement of subalignments and we formalize it as

follows:

Definition 3.5 (Border agreement). Let L € B(A*) be an event log and let S =
(N, 1,0) € Us be a system net with N = (P, T, F\1).

46

Let D = {S',5?,...,5"} € D(S) be a valid decomposition of S. Forall 1 < i < n,
St = (N, I',0") is a subnet with an observable activity set A’ = A,(S?).

For a border activity a € Ay(D), let ay; = {(a, (a,t)), (>, (a,t)), (a, =)} be the set

of legal moves for activity a, where t € T such that [(t) = a.

Let S' € Sp(a, D) be a subnet that has the border activity a. For a log trace o, € L,
o = mai(0L) is the projection of o1 on the activity set of Si. 4% € A%, denotes an
optimal alignment between the sublog trace o' and some complete firing sequence of a

subnet o'y, € ¢;(S°).

The set of subalignments v', ..., ™ are under border agreement on a border activity

a € Ay(D) if, and only if, Tay, (1) = 7y, (7). for all ', 57 € Sy(a, D).

The set of subalignments ~*, ..., ~" are under total border agreement (t.b.a.) if, and
only if, border agreement is achieved one by one on all the border activities in v, ..., "
following the order of their occurrences across y', . .., ", starting with the first occurring

border activity in subnet S* € D where I' > 1.

Given the properties of a sequence, there is border agreement if the following three

conditions are satisfied:

(i) 7a,,(7") has an equal number of moves as 7,,, (7).
(i) 74,,(7") has the same move types as 7,,,(7/), i.e. if 7,,,(7") has one log move,
then 7,,, (7/) must also have one log move.

(iii) The order of moves in 7,,,(7") and 7,,, (77) are the same.

Note that if the subalignment ~* is empty then the projection of the subalignment will

also be an empty sequence.

47

For example, there is total border agreement between the valid decomposition D; in
Figure 3.3 and the log trace 03 = (a,e,i,l,d,g,7, h,k,n,p,q). As shown by the corre-
sponding subalignments in Figure 3.4, all the moves corresponding to each border activity

are under border agreement.

Contrastingly, the subalignments of the trace o = (a,b,¢,14,l,d, g, h,n, j, k,p, q) are
not under total border agreement. The moves involving border activity n in subalignment
78 is a log move followed by a model move which does not “agree” with the synchronous

move in subalignment 5.

3.4.1. Properties of decomposed fitness

We now formalize the properties of the decomposed fitness metric with consideration
to the border agreements of subalignments, i.e., if the total border agreement is not satis-
fied, the decomposed fitness metric corresponds only with an upper bound of the overall
metric; when the total border agreement is satisfied, the decomposed fitness matches ex-
actly the overall fitness. This results will be used in Sections 4.2 and 4.3 as part of the

proposed conformance methods.

First, we note that the metric is an upper bound to the fitness metric computed using
the full alignment between the overall log and model. This has been shown as Theorem 3

in the earlier paper [65].

However, under total border agreement, we can prove that the decomposed fitness
value from the set of subalignments corresponds to the exact fitness value computed with
the overall alignment. This applies to the decomposed log fitness value as well. We extend
the properties of the decomposed fitness metric to include the capability of computing a
conformance result that corresponds to an exact overall fitness value regardless of the

conformance level.

Theorem 3.1 (Exact value for decomposed fitness metric under total border agree-

ment). Let L. € B(A*) be an event log and let o1, € L be a log trace. Let S = (N, 1,0) €

48

Us be a system net and let D = {S', 5% ..., S"} € D(S) be a valid decomposition of
S. Forall1 < i < mn, S" = (N I',0") is a subnet with an observable activity set
Al = A,(SY). o1,...,0% are the subtraces from the projection of o1, onto the activity sets
of S',...,S" such that 0}, = m4i (o). ' is an optimal subalignment between o and

some complete firing sequence of the corresponding subnet o'y, € ¢;(S").

Let ~Y, ..., ™ be the set of subalignments and let them be under total border agree-
ment. The decomposed fitness metric computed using this set of subalignments equals the

relative fitness metric computed with the overall alignment between o, and S':

ﬁt(aL> S> 5) = ﬁtD(UL> S> 5)

For the log L, if for all the log traces in L, their corresponding set of subalignments is

under total border agreement,

fit(L, S,d) = fitp(L, S, 9)

PROOF. The paper [88] presents a stitching function that merges a set of subalign-
ments into an optimal alignment if all the legal moves from the subalignments can be
stitched together without conflict and a trace pseudo-alignment otherwise. We prove by
contradiction that under total border agreement, the set v*, ..., ~" can always be stitched

together as an optimal alignment without conflict.

Suppose that 7!, ..., ~" is a set of subalignments and are under total border agreement
but cannot be stitched together without conflict. The set of subalignments are comprised
of only legal moves and therefore it must be that there is a stitching conflict for particular

moves between the subalignments.

Let (a;,m) € Ay be a move involved in the first conflict as 7', ... 4" are being

stitched together. As for a conflict we need another move, and hence another subnet,

49

we know that |Sy(a(a;,m), D)| > 1. Therefore, the activity a(a;, m) must be a border
activity. Under total border agreement, all subalignments for this activity are the same

across all subalignments. Therefore, there cannot be a conflict.

Furthermore, since border agreement is achieved according to the occurrence order of
the border activities across the subalignments, 7!, ..., 7" can be stitched together without

occurring any conflicts.

Asaresult, v, ..., 4" can always be merged into an optimal alignment between o and
a complete firing sequence o, € ¢(S). With the merged optimal alignment , the sum of
misalignment costs associated with 7!, ..., ™ under the adapted cost function equals the
misalignment cost of . Therefore, the decomposed fitness value with «%, ..., " equals

the fitness value with ~.

The decomposed log fitness metric compares the sum of the misalignment costs from
the sets of subalignments with the sum of the worst-case scenario costs for all the log
traces. Since the set of subalignments corresponding to each log trace is under total border
agreement, all sets of subalignments can be merged into optimal alignments. This means
that the sum of the misalignment costs under the adapted cost function equals the sum of
optimal misalignment costs associated with all the log traces. The decomposed log fitness

value equals the log fitness value. U

As previously shown, the event log L, has the exact same value under both the decom-

posed fitness metric and the undecomposed fitness metric at about 0.980.

3.5. Limitations and extensions

While valid decompositions indeed yield sub-models and sub-logs whose activity sets
is a subset of the overall activity set and that the overall model behavior is captured within

the decomposed model behavior, the decomposed sub-models can actually allow more

50

behavior than before. This means that the A* algorithm might have to explore a large

number of irrelevant states to compute the optimal sub-alignment.

Consider sub-net S¢ from Figure 3.3. Within the context of the overall process model
S, transition ¢, should be executed once in a complete model firing sequence unless the
loop transition ¢4 is also executed during the firing sequence, in which case transition ¢,
should be executed once for every firing of transition ¢145. As such, projecting on activities
d and o, the set of possible model traces should match with d(od)* where we use the
regular expression symbol * to indicate that there can be zero or more od sub-sequences.
However, if we consider the set of possible sub-traces permitted by sub-net S¢, transition
t16 can always be fired because as a border activity, it does not have a input place to restrict

its behavior.

3.5.1. Hide and reduce as an alternative replay approach

Instead of doing an edge partition to get a valid decomposition, in practice, the hide and
reduce decomposed replay approach is used [84]. First, the hiding abstraction is applied
to the net model given a subset of activities so that transitions that do not have an activity
label in the given activity subset are made invisible. Figure 3.9 shows net S after the hiding
abstraction given sub-net S$’s activity set {d, g, j, h, k,n}. After the hiding abstraction,
one can elect to reduce the abstracted net using well-known Petri net reduction rules [51]

so that redundant invisible transitions are reduced away.

Examining the hidden sub-net in Figure 3.9 shows that transition ¢4 is no longer always
enabled and instead can only be fired once per complete firing sequence from the initial
marking [p;] to the final marking [p9] unless the loop transition t¢ is fired as well. As
such, in practice, we make use of this hide and reduce approach to perform decomposed

alignment.

51

t1s

ti6

Figure 3.9. Hidden sub-net using activity subset of sub-net S¢ from Figure 3.3

3.6. Conclusion

This chapter presented the total border agreement condition as a sufficient condition
so that merging sub-alignments gives an overall alignment that has the same misalignment
costs as an optimal alignment computed under the monolithic approach. Furthermore,
this chapter includes a discussion on how decomposed replay is done in practice to avoid
creation of extra behavior by border activities that are always enabled. Next, we make use
of the total border agreement property to design a conformance checking algorithm that

computes alignments using the divide and conquer paradigm.

52

4. Recomposing conformance checking framework

4.1. Introduction

In the previous chapter, we presented the total border agreement as a sufficient condi-
tion for merging a set of decomposed sub-alignments to yield an overall alignment that has
optimal misalignment costs. In this chapter we present an iterative approach that computes
optimal alignments and thereby fitness in a divide and conquer manner. In a nutshell, this
approach checks for the total border agreement condition for decomposed sub-alignments
and resolves those which do not meet the condition using a coarser valid decomposi-
tion in the following iteration. This approach creates a full circle approach for decom-
posed alignment (‘there and back again’), and makes it possible to solve alignment-based
conformance problems that current techniques cannot handle. Importantly, our approach
can balance quality and computation time. For example, in the experimental section, we
demonstrate our approach on a real-life dataset (BPIC2012) for which the existing state-
of-the-art monolithic conformance checking approach is not feasible while our proposed
approach can compute an almost perfect approximation of the overall conformance in

reasonable time, obtaining information about the specific problems of the model.

The methodology of this work can be seen as being under the paradigm of Design Sci-
ence and it appropriately follows the seven accepted guidelines as presented in [28]. The
resulting artifact of this work is a novel conformance checking approach that computes
the overall fitness of a process and a log in a divide-and-conquer manner (Guideline 1).
The motivating general problem relating to the rapid data growth and the limitations of
the existing techniques have been aptly presented above (Guideline 2 and 6). The utility
and efficacy of the artifact is demonstrated through mathematical proofs and empirical ex-
periments (Guideline 3 and 5). The artifact and new insights drawn from it are produced
as the contributions (Guideline 4). Lastly, we have taken care to present the ideas with a

balanced level of detail so that the described artifact can be implemented (Guideline 7).

In this chapter, as the main contributions:

53

e.g. maximal
decomposition, SESE

1. initial
decomposition

5. Merge
subnets

— decompose *
model

i
.

D

On border agreement

4. All traces

2. conformance conformance 3. Decomposed
- check by alignment :> aligned

check by alignment fitness

i
L

decompose *
- traces Ln
eventlog eventlog event log

Exact decomposed -H+HHHHH
fitness metric HHH

HHHH

e
(50 @
1

&l
..::>

P

Figure 4.1. Overview of the exact decomposed conformance metric

e We present a novel decomposed conformance checking method — recomposing con-
formance — to compute the overall fitness between a process and a log (Section 4.2).

e Sometimes, exactness is not the top priority. We also modify the exact recomposing
conformance method to compute an interval as an approximation of the overall fitness
between a process and a log (Section 4.3).

e The two methods are implemented as one configurable conformance checking ap-
proach. The performance gains from the proposed methods are demonstrated through

extensive experimental results using both synthetic and real-life datasets (Section 4.4).

4.2. Recomposing method for exact decomposed fitness

As previously mentioned, the main contribution of this work is to make decomposition

techniques more applicable in computing the overall conformance between a net and log.

54

We now use the border properties formalized in the last section in a novel method to

compute the overall conformance between a net and a log: recomposing conformance.

Similar to many existing decomposition techniques, the net is decomposed into sub-
nets by activities and the log is projected onto the subnets to create sublogs. For each
pair of subnet and sublog, alignments are created for the subnet and each subtrace in the
sublog. Each of the sublogs can be analyzed in parallel, and together with the reduced
size and complexity of the net, the approach obtains a significant performance gain in
time [50, 91, 82, 87, 20]. Following the per subcomponent computation, the results are
aggregated if there was agreement on the border. Otherwise, some disagreeing subnets are
“recomposed” to get a more coarse-grained decomposition of the net, in which the dis-
agreeing subnets have become a single subnet. As a result, they cannot disagree anymore.
Traces whose conformance results disagreed on the border previously are recomputed un-
der the new decomposition. This iterative process is repeated until completion. Figure 4.1
shows an overview of the summarized method. In this work, we apply this approach to

decompose the relative fitness metric.

4.2.1. Decomposed fitness metric

As illustrated in Figure 4.1, the first step of the approach is to decompose the system
net. This enables the performance gain in the conformance checking process. The de-
composition of the system net has to fulfill the properties of a valid decomposition, first

defined in [65].

Following the initial decomposition, the log is projected onto the subnets of the de-

composition to get the sublogs for alignment.

The alignment of subnets and sublogs and the computation of the decomposed fitness
metric are marked as step two and three of the algorithm in Figure 4.1. Decomposed
fitness values of subalignments computed under total border agreement are recorded. Af-

terwards, their associated traces are taken out of the process and are marked as completed.

55

As for the remaining traces, we resolve their border agreement problems by selectively

“recomposing” subnets by their matching border activities on which they disagree.

4.2.2. Subnet recomposition

As illustrated in step five in Figure 4.1, the existing set of subnets are recomposed as a
new set of subnets. Recomposing subnets by their matching border activities resolves any
border agreement problems associated with the recomposed border activities as it ceases
to be shared between multiple subnets. “Recomposition” can be done on single or multiple
border activities and different selection criteria can be used to select the border activities.
For example, recomposing the subnets by multiple border activities is likely to resolve
more border agreement problems than if the subnets were to be recomposed on only one
border activity. However, there would be less performance gain under the multiple border

activities selection approach as the resulting subnets would be larger and more complex.

‘t1‘t2‘t3‘t4‘t13‘t14‘t15‘t16‘t17‘
ofofofofofofs[o]o]

Figure 4.2. Vector showing the number of border agreement problems at
each border activity for event log Lo

For the sake of simplicity, we consider selecting the single activity that has the highest
number of border agreement problems. This selection criterion resolves the most prob-
lematic border activity at each recomposition. Following the valid decomposition in Fig-
ure 3.3, for event log Lo, there is a border agreement issue with trace os = (a, b, ¢,1,1,d, g,
h,n,j, k,p,q) on activity n. At the recomposition, activity n is identified and selected
since it is the activity with the highest number of border agreement issues as shown in
Figure 4.2. Retrieval of all the subnets that have the selected border activity is done by the
shared function defined in Definition 3.2. These subnets are then merged, after which the

set of recomposed subnets is a new valid decomposition of the system net.

56

Theorem 4.1 (Recomposition results in valid decomposition). Let S = (N, 1,0) €
Us be a system net with N = (P, T, F,l). Let D = {S',S5? ..., 5"} € D(S) be a valid

decomposition of S.

Let a € Ay(D) be a border activity that is shared between |Sy(a, D)| subnets in
D. Recomposing S, S? ..., S™ on border activity a joins all the subnets in Sy(a, D)
on the activity a. Following the recomposition, which leads to a new decomposition D/,

|Sp(a, D")| = 1and a & Ay(D') i.e., a ceases to be a border activity.

Let A C Ay(D) be a subset of the border activities of D. Let D' be the recomposition

of D on A, i.e., decomposition D' is recomposed on all activities a € A'.

D' € Ug i.e., D' is a valid decomposition of S.

PROOF. Recomposing S*, 52, ..., S™ on a particular border activity a € A’ joins the
set of subnets Sy(a, D) on activity a into one single subnet ST = J Sy(a, D). ST has
the same set of edges as Sy(a, D) has. Therefore, D' = (D \ Sy(a,D)) U {ST}is a
partitioning of the edges in S. Given that there was no creation of a new transition or a
new place in the recomposition to ST, it follows trivially that D’ is a valid decomposition.
The recomposition on any remaining border activities a’ € A’ \ {a} can be done in the

same manner, and hence also yields a valid decomposition. U

4.2.3. New border agreement problems following recomposition

While recomposition can solve existing border agreement problems at merged border
activities, new border agreement problems may arise at locations where there were no
issues previously. Here we showcase such a case using the running example net .S; in
Figure 3.1 to explain the underlying intuition. This example is slightly more involved than

the previous log examples in that it involves the loop construct of the net.

Consider trace o7 = <CL, bv €, ia da gaja h7 ka ba €, ia la da 9g; ja hv ka n, P, Q> Replaylng trace

o7 on decomposition D, in Figure 3.3 would produce the set of subalignments as shown

57

la | a|lblb add‘ be‘?ﬁ‘>>‘bei l‘ L
w=la|l 7= bis>| 9 =lal|d|> % =|ble|li|l|ble|ill] 7#=

ty ty|t2 ty |ty to | T5 |ty [T13|t2 | T5 o |13

dg‘j‘hk>>dg‘j‘hkn ‘lp n|p pq‘
v =ld|g|jlh|kin|d|g|i|lh|k|n o=11]p % =|n|p # =Iplg

tq |ty |ti1| s [t1aftis| ta | tr |t11| Ls |t12|l1s t13(t17 tis(t17 ti7|t1s
Figure 4.3. Subalignments between trace o7 =

(a,b,e,i,d,g,j,h,k,be il d g,j hkmnpq and valid decompo-

sition D, in Figure 3.3
in Figure 4.3. There are border agreement problems with border activities b, d, [, and n.
This is caused by the fact that S7, S, ST, and S are not aware that most of the subsequent
activities of the branches associated to border activity b and d have been executed in trace
o7. This indicates that border activities b, d, [, and n should not be marked as log moves.
This shows that the information asymmetry or disparity between subnets on conformance
is the cause of the border agreement problems. To resolve the border agreement problems,
the subnets 5%, S3. S{. S7. S9. ST. and S? are recomposed so that activity b, d, [, and
n are no longer border activities. This produces the valid decomposition D5 as shown in
Figure 4.4. Replaying trace o7 on decomposition DD, would produce the set of subalign-
ments as shown in Figure 4.5. There are border agreement problems with border activities
p. Similar to the previous iteration, this is caused by the fact that subnet S{? is not aware
of the need for a model move on border activity p. One further recomposition on border
activity p is required until the set of subalignments can be merged as the overall alignment

as shown in Figure 4.6.

4.2.4. Iterative conformance checking

As such, at each iteration, a new valid decomposition is created from the recomposed

subnets. Then, traces which had border agreement problems in the previous iteration are

58

SNt to P4 ts 23 to P12 ti3
P2 b e ()i ()= 1] P
e

O O)

SNLO

ho

D1 tl

ti6 SNi?

(=9 == ()
O 0,110

p7 ts P11 ti2 P15

SNi? t16

Figure 4.4. Valid decomposition Dy of system net S; following the re-
composition of subnets S7, S3. St. S7. SP. ST of decomposition D; in

Figure 3.3
K adgjhk>>>>>>‘d‘gjhk"n‘p‘
% =la w=lal|d|gl|j|lh|k|n|plo|d|g|j|lh|k|n|p
ty t1|ta | T7 [t11| L [t12|tis|tir|tie| La | t7 |E11)| T8 [E12|t15|t17
b|e‘z’>>>>>>bei [p plq
v =lalbleli|l|plo|lble|i|l]|p % =1p|q
ty |to | ts | tg |t13|t17|l16| L2 | L5 | Lo |t13]t17 ti7(tis
Figure 4.5. Subalignments between trace o7 =

(a,b,e,i,d,g,j,h,kbe il dg,jhkmnpq and valid decompo-
sition Dy in Figure 4.4

projected onto the new valid decomposition to be rechecked. Recomposition and con-
formance checking can be repeated until the decomposed fitness metric of all traces are

computed under total border agreement.

59

lalblelil>ld|gli|n|k[>[>>ble|i|lt|d]|g|i|h|k|n|p|q]
b lld|g|jlh|k|n|p b lld|g|j|h|k plq
ty t13|ta | t7 [t11] L |t12|t15|t17 ta t13|ta | L7 |t11] ts [L12|l1s|t17|t1s

VT 1

ty

)
ty

a
ty

e
ts

n o (&

is

n

t15(t17|t1e t1s

Figure 4.6. Alignment between trace o7 =
(a,b,e,i,d,g,j,hkbe il dg,jhkmnp,q and system net S; in
Figure 3.1

At completion, the set of alignments and the decomposed fitness value of the log are

returned as output. This fitness value corresponds to the exact fitness value of the overall

log and overall net.

While it can be crucial to have an exact fitness value of the overall log and net, in some

scenarios an interval value may suffice. This is addressed in the next section.

4.3. Recomposing method for interval decomposed fitness

In some conformance checking scenarios, it may be sufficient to have an interval fit-
ness value of the overall log and the overall net. For example, in the selection of candidates
of genetic algorithms for the creation of a new generation of models, an interval value of
each candidate model might already be sufficient to decide whether or not it should be
kept. In addition, not requiring an exact fitness value can increase performance gain as
there can potentially be less iterations of the recomposition and checking steps. More-
over, we note that while recomposition guarantees that any border agreement problems
at the merged border activities will be gone in the next conformance checking iteration,
new border agreement problems may arise at other border activities which had no prob-
lems previously. Lastly, it is possible that there are a few traces whose decomposed fitness
value cannot be computed under total border agreement for many iterations or unless the
overall trace and the overall net are used. As shown in Figure 4.7, the exact decomposed

conformance algorithm is modified to compute an interval decomposed fitness value.

60

e.g. maximal
decomposition, SESE

1. initial
decomposition

5. Merge
subnets

— decompose *
model

D

On border agreement

D
SISOAING
.y

4. Termination

2. conformance conformance 3. Decomposed
- check by alignment :> condition

check by alignment fitness

decompose
- 2
traces

----1 L

event log

EH-D—

event log eventlog

&l
..::>

Rejected traces

P

Interval decomposed HHHHHH
fitness metric HHH

HHHH

Figure 4.7. Overview of the interval decomposed conformance metric

4.3.1. Interval decomposed fitness conformance

As previously mentioned, the decomposed fitness metric has been shown to be an
upper bound to the fitness metric of the overall log and the overall net. Using this property,
an interval can be computed such that the fitness value of the overall log and the overall

net is within the interval.

Definition 4.1 (Decomposed fitness interval). Let L € B(A*) be an event log and let
S =(N,I,0) € Ug be a system net with N = (P, T, Fl). Let o1, € L be a log trace.

Let D ={S',5% ...,5"} € D(S) be a valid decomposition of S.

ﬁtgbt(o-b 57 5) = [ﬁtlDow <0L7 S? 5)7ﬁtD<UL7 Sv 5)]

61

ﬁtlD"w(aL, S,) defines the lower bound of the decomposed fitness interval such that
it equals the decomposed fitness metric if the optimal subalignments v*, ..., y" (where

vt = Not, S")) are under total border agreement (t.b.a.):

i op(A(of, S° if under t.b.a.;
COStD(UL,S,5): ZZE{I n} D((L)) if

moven (S) + mover (o) otherwise.

costp(or, S, 9)
movey(S) + mover(or)

ﬁtlDow(JL7S7 5) =1-

The decomposed fitness interval of the event log L is computed as follows:

fitp' (L, S,8) = [fit5" (L, S, 6), fitp(L, S,)],

ZULGL costp(or, S, 9)
|L| x mover(S) + 3, ¢ mover(or)

fitlow(L,8,0) =1 —

Consider the subalignments for the trace o5 = (a, b, e,4,l,d, g, h,n,j, k,p,q) in Fig-
ure 3.8. Due to the border agreement problem with activity n, the decomposed fitness
interval for the trace is fit}}' (o6, S1,61) =~ [0,0.962]. The decomposed fitness interval
for event log L, is computed as fit}}' (Lo, S1,61) =~ [0.815,0.979]. We note that for
both the trace o¢ and the log Lo, their fitness values are within the respective intervals:

fit(o,51,61) = 0.923 € [0,0.962] and fit(Ls, S, 6;) = 0.973 € [0.815,0.979)].

Theorem 4.2 (Overall fitness is within interval fitness). Let L € B(A*) be an event
log and let S = (N,I,0) € Us be a system net with N = (P, T, F).

Let D = {S',S? ...,S"} € D(S) be a valid decomposition of S. Forall 1 < i < n,
St = (N, I',0") is a subnet with an observable activity set A’ = A,(S").

For a log trace o1, € L, 0% = 7m,i(0y) is the projection of o1, on the activity set of

subnet S*.

62

fit(o1. 8.0) € fitp' (o1, S, 9)

For log L,

fit(L, 8,9) € fitp'(L, S, 9)

PROOF. We prove the theorem by cases.

For S',...,S™ let',...,+™ be the optimal subalignments where 7' = \(o%,S?) is

the optimal subalignment of 0% and S’. There are two cases.
Case 1: +',...,~™ are under total border agreement

fit™(or,S,0) = [fitp(or,S,9), fitp(or,S,6)]. By Theorem 3.1, the fitness of the
overall trace and net equals the decomposed fitness metric. Hence the overall fitness value

is within the interval.
Case 2: 7',...,~" are not under total border agreement

fit"(or, S,8) = [0, fitp (o1, S, 8)]. The overall fitness is within the interval since the
decomposed fitness metric computes an upper bound of the fitness value for the overall

trace and net.

For the decomposed log fitness interval, the upper bound of the interval is the de-
composed log fitness which has been shown to be an upper bound to the exact overall
log fitness. The lower bound of the interval uses the total misalignment costs of the sub-
alignments under the adapted cost function if there is total border agreement. Otherwise,
it defaults to the worst-case scenario cost. In Theorem 3.1, it was proven that the exact
misalignment cost is obtained if the set of subalignments is under total border agreement.
This means that the sum of misalignment cost is an upper bound to the overall misalign-

ment costs and therefore the lower bound of the decomposed log fitness interval is a lower

63

bound to the exact overall log fitness value. Hence, the exact overall log fitness is within

the decomposed log fitness interval. U

As previously shown, the fitness value for the log Lo, fit(Ls, S1,91) ~ 0.973 is within
its decomposed fitness interval fit}}' (Lo, S1, 1) ~ [0.815,0.979]. To compute the interval
decomposed metric, traces are exempted from the computation of an exact decomposed

fitness value through trace reject and termination conditions.

4.3.2. Trace reject and termination conditions

As previously mentioned, it is possible that there are a few problematic traces which
cannot be checked within a short time. As such, trace reject and termination conditions

can be used to configure the balance between result quality and computation time.

Let L € B(A*) be an event log and let S = (N,I,0) € Ug be a system net with
N = (P, T,F,l). Let D = {S*, 5% ...,58"} € D(S) be a valid decomposition of S. For
alll <i<n,S" = (N’ I O is a subnet with an observable activity set A° = A,(S).

For a log trace o, € L, 0% = m4:(0oy) is the projection of o, on the activity set of
subnet S’. For 1 < i < n, 4 is a subalignment between subnet S* and subtrace o%.

~Y, ..., ™ is the set of subalignments corresponding to o7..

Following the computation of the decomposed fitness metric in step three of Figure 4.7,
the traces in log L are partitioned over C, R, and B, i.e., L = C + R + B. Traces
that are computed under total border agreement are added to the accepted traces multiset
C' € B(A*). Due to the number of border agreement issues or alignment time, traces that
are not computed under total border agreement may be added to the rejected traces multiset
R € B(A*). Otherwise, traces are added to the to-be-aligned multiset B € B(A*).Let the

recomposition algorithm be at its kth iteration.

For trace o, if its corresponding set of subalignments ~,...,~™ is not under total

border agreement, the trace is added to multiset R if,

64

e the number of border agreement issues of subalignments 7!, ..., ~" is greater than the
given threshold = € IN, i.e., [{a € Ay(D) | Ji<icj<n Ta} (V') # Tay (V7)) }H > 2.
e The time spent on aligning a subtrace o' with a subnet S’ is higher than the given

threshold y € Q, e.g. a threshold of y = 1 millisecond per subalignment.

A rejected trace 07 € {0, € L | R(or) > 0} is not checked in future iterations.
The criteria for the trace reject conditions can be adjusted to reflect the trade-off be-
tween result quality and computation time. A decomposed fitness interval is computed

if 3,, e R(or) > 0, i.e., at least one trace is rejected.

At the end of each iteration, termination conditions are examined to decide whether
to proceed to the next iteration of the algorithm. If termination conditions are met, the
int

decomposed fitness interval fit}y' (L, S,) is returned. These termination conditions are

defined on the log level. The termination conditions are as follows:

e All log traces have been either aligned under total border agreement or have been re-
jected, ie., C + R = L.

e Surpassing the overall time threshold z € Q for conformance checking, e.g., if more
than z = 1 minute is needed in the conformance checking process.

e Having aligned a target percentage of traces 0 < v < 1 in the log under total border
2oper Clor)
? ZaLeL L(UL)

traces in the event log have been aligned under total border agreement.

agreement, i.e. > v. For example, if more than v = 0.9 = 90% of the

e The overall fitness interval value 0 < w < 1 is narrow enough, i.e., fit,(L,S,0) —
fit's (D, L,) < w. For example, if the interval range is less than w = 0.1.

e The maximum number of iterations m &€ NN is reached, i.e., & > m. For example, if

k = 100 iterations have been done.

As illustrated in Figure 4.7, if the termination conditions are met in step four, the algo-
rithm terminates and returns a decomposed fitness interval value fit};'(L, S,) and the
alignments of traces whose decomposed fitness value had been computed under total bor-

der agreement.

65

4.4. Implementation and Evaluation

We have implemented the proposed conformance checking framework, and evaluated
it on both artificial and real-life datasets. Our evaluations demonstrate the following main

contributions:

(i) Recomposing conformance checking enables replays of model-log pairs that were pre-
viously not feasible under the monolithic approach. This increases the applicability of
alignment-based conformance checking.

(i) Logs assoc