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ABSTRACT 

 

Cardiac magnetic resonance imaging (MRI) is the gold standard technique for 

assessing cardiac function. Moreover, cardiac MRI also provides a unique technique 

called 4D Flow MRI that includes velocity images of the three-orthogonal planes 

within a 3D volume for the entire cardiovascular system throughout the cardiac 

cycle. It allows obtaining several hemodynamic parameters providing the evaluation 

of several cardiovascular diseases. Nevertheless, 4D Flow MRI and processing 

methods suffer from several issues, e.g., prolonged scanning times, incorrect flow 

measurements, and missing the clinical relevance through calculating several 

hemodynamic parameters. In this Thesis, three research articles intended to tackle 

some of these previous issues. 

The first article compares the uni-directional Dual Velocity-Encoding (VENC) 

PC-MRI methods for different noise levels and proposes a correction algorithm for 

the Optimal Dual-VENC (Carrillo et al., 2018), which is based on theoretical 

considerations. 

The second article describes a methodology for quantitative evaluation of 

intraventricular hemodynamics using a single segmentation from a 4D Flow dataset 

and a finite-element method. Our approach was able to identify abnormal flow 

patterns in a small cohort of dilated cardiomyopathy patients and can be applied to 

any other cardiovascular disease. 

The third article provides a comprehensive overview of the relative performance 

of different machine learning algorithms applied over 4D flow data for bicuspid 

aortic valve aortopathy classification. For that purpose, we analyzed and extracted 

multiple correlation patterns of hemodynamic parameters, finding which parameters 

showed high collinearity between them, which allows us to diminish their size to a 

few variables.  

This investigation of this thesis for assessing different Dual-VENC reconstruction 

techniques, image processing, data quantification, pattern recognition, and machine 
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learning in three independent articles. Thought the fact that the topics aborded in the 

articles were not tested together, future research may combine all these topics to 

investigate and improve the examination in the cardiovascular system. 

 

Keywords: Cardiovascular MRI, 4D Flow MRI, Hemodynamic Parameters, 

Unwrapping Methods in Dual-VENC MRI, Flow Quantification, Pattern 

Recognition, Machine Learning 
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RESUMEN 

 

La resonancia magnética (RM) cardíaca es la técnica estándar para evaluar la 

función cardíaca. Además, la RM cardíaca también proporciona una técnica única 

llamada RM de flujo 4D que incluye imágenes de velocidad de los tres planos 

ortogonales dentro de un volumen 3D para todo el sistema cardiovascular a lo largo 

del ciclo cardíaco. Permite obtener varios parámetros hemodinámicos 

proporcionando la evaluación de varias enfermedades cardiovasculares. No 

obstante, los métodos de procesamiento de imágenes de RM de flujo 4D sufren 

varios problemas, por ejemplo, tiempos de exploración prolongados, mediciones de 

flujo incorrectas y falta de relevancia clínica al calcular varios parámetros 

hemodinámicos. Por ello, tres artículos de investigación pretenden abordar algunos 

de estos problemas. 

El primer artículo compara los métodos unidireccionales de codificación de 

velocidad dual en PC-MRI para diferentes niveles de ruido agregado y propone una 

corrección para el método de Optimal Dual-VENC (Carrillo et al., 2018) que se 

basa en consideraciones teóricas. 

El segundo artículo describe una metodología para la evaluación cuantitativa de la 

hemodinámica intraventricular utilizando una segmentación única de un conjunto 

de datos de flujo 4D y un método de elementos finitos. Nuestro enfoque fue capaz 

de identificar patrones de flujo anormales en una pequeña cohorte de pacientes con 

miocardiopatía dilatada y puede aplicarse a cualquier otra enfermedad 

cardiovascular. 

El tercer artículo proporciona una descripción general completa del rendimiento 

relativo de diferentes algoritmos de aprendizaje de máquinas sobre datos de flujo 

4D para la clasificación de la aortopatía de la válvula aórtica bicúspide. Para ello, 

analizamos y calculamos múltiples patrones de correlación de parámetros 

hemodinámicos, encontrando qué parámetros presentaban alta colinealidad entre 

ellos, lo que nos permite reducir su tamaño a unas pocas variables. 
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Esta investigación analizó información relevante sobre técnicas de 

reconstrucción, procesamiento de imágenes, cuantificación de datos, 

reconocimiento de patrones y aprendizaje de máquinas en tres artículos 

independientes. Aunque los temas abordados en los artículos no fueron probados en 

conjunto, investigaciones futuras podrían combinar los tópicos abordados en esta 

Tesis con el objeto de mejorar el diagnóstico del sistema cardiovascular. 

 

 

Palabras Claves: RMI cardiovascular, Flujo 4D, Parámetros Hemodinámicos, 

Métodos de Desenvolvimiento en RMI Dual-VENC, Cuantificación de Flujo, 

Reconocimiento de Patrones, Aprendizaje de Máquinas 
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1. INTRODUCTION 

 

   Cardiovascular diseases have the highest worldwide mortality rates, 

representing 32% of all global deaths (World Health Organization, 2019). It is 

known that changes in anatomy and hemodynamic affect the cardiovascular 

system’s performance (Mark et al., 2012). Particularly, blood flow is an important 

factor in gaining insight into the occurrence and progression of this disease (Al-

Wakeel et al., 2015). 

 Modern imaging techniques such as Cardiac Magnetic Resonance (CMR) are 

now routinely being used to evaluate the function and structure of the 

cardiovascular system (Frangi et al., 2007). Furthermore, a 4D Flow Magnetic 

Resonance Imaging (MRI) technique has become available over the last years 

(Markl et al., 2012). This technique allows visualization and quantification of 

velocity-related parameters in all major blood vessels and the whole heart, time-

resolved over the cardiac cycle (Wu et al., 2004). Visualization tools aim to display 

the direction and magnitude of the blood flow velocity from 4D Flow data by using 

a vector glyph or streamline representation or by constructing pathlines from 

particle tracing (Wigstrom et al., 1999) (Kvitting et al., 2004) (Markl et al., 2007) 

(Stalder et al., 2008) (Uribe et al., 2009) (Markl et al., 2011). The quantitative 

assessment of 4D Flow data has allowed obtaining novel hemodynamics markers 

(Zajac et al., 2015) (Sotelo et al., 2016) (Sotelo et al., 2018). The flow information 

can be evaluated qualitatively and quantitatively for obtaining several 

hemodynamic parameters providing additional information about the heart's 

function globally and regionally (Dyverfeldt et al., 2008) (Lorenz et al., 2014) (Van 

Ooij et al., 2015). The evaluation of the intracardiac flow has proven to be useful 

for evaluating certain cardiovascular pathologies, such as some cardiomyopathies, 

vascular diseases, congenital heart disease, and others (Dragulescu et al., 2013) 

(Föll et al., 2013) (Cibis et al., 2015) (Sotelo et al., 2016) (Sotelo et al., 2017) 

(Sotelo et al., 2018). For example, figure 1-1 shows the left intraventricular 

hemodynamics in the left ventricle from 4D Flow MRI using a finite element 

method applied in a cohort of dilated cardiomyopathy patients. Consequently, this 
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technique provides a unique approach for a comprehensive hemodynamic analysis 

to identify biomarkers and their relationships with cardiovascular disease. It is 

thought that these novel biomarkers may play an important role in the diagnosis and 

follow-up of abnormalities in the cardiovascular system. 

 

Figure 1-1. Left intraventricular hemodynamics in the left ventricle from 4D 

Flow MRI using a finite element method. Binary mask, mesh, and 3D maps of 

velocity, kinetic energy, vorticity, helicity density, viscous dissipation, and energy 

loss from left to right. 

 

Therefore, this thesis aims to obtain accurate and non-invasively hemodynamic 

parameters in the heart and great vessels from velocity MRI. First, regarding Phase-

contrast (PC-MRI) reconstruction techniques, we implemented and compared the 

uni-directional Dual Velocity-Encoding (VENC) PC-MRI methods for different 

added noise levels and a correction algorithm for the Optimal Dual-VENC (Carrillo 

et al., 2018), which is based on theoretical considerations. Second, regarding image 

processing and data quantification, we developed a semi-automatic approach for 

quantifying intracardiac hemodynamic based on velocity data using the finite 

element method applied in a small cohort of dilated cardiopathy patients. Finally, 

regarding pattern recognition and machine learning, we analyzed and extracted 



23 

  

multiple correlation patterns of hemodynamic parameters from velocity data and 

found which parameters allow an accurate classification between healthy volunteers 

and bicuspid aortic patients with dilated and non-dilated ascending aorta using 

machine learning.  

In this thesis, the proposed methods were tested on different volunteers for 

developing the different technologies. Nevertheless, the proposed approaches could 

be applied to the same cohort of patients. This is, acquiring 4D Flow Dual-VENC 

data and using the ODV corrected method to unwrap the velocity data, then 

calculating hemodynamic parameters over the unwrapping Dual-VENC data, and 

finally applying machine learning over the cohort of patients to identify 

hemodynamic biomarkers. 

 

1.1. Overview  

 

This thesis is structured as follows: In Section 1.2., the generalities of MRI are 

explained. Section 1.3. explores cardiovascular magnetic resonance (CMR) 

imaging, including velocity and functional imaging and the application of machine 

learning in CMR. In Section 1.4., the main and specific objectives and the 

hypothesis. 

In Chapter 2, the first publication is presented. This research aimed to compare 

some dual-VENC unwrapping methods for different noise levels. We compare four 

unwrapping methods, the Standard Dual-VENC (SDV) (Lee et al., 1995), the 

Optimal Dual-VENC (ODV) (Carrillo et al., 2019), bi-, and tri-conditional (Ma et 

al., 2020). Also, we developed a correction of the ODV. 

In Chapter 3, the second publication is given. In this research, we adapted a 

method for quantifying 4D Flow in the aorta. We modified a methodology applied 

in the aorta, to obtain several hemodynamic parameters in the left ventricle from a 

single segmentation using 4D Flow and cine MRI. To show the applicability of this 

approach, we performed a proof-of-concept study in which we applied the method 

in a small cohort of dilated cardiomyopathy patients to find which parameters were 

different from volunteers. We obtained three-dimensional hemodynamic 
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parameters, including kinetic energy, vorticity, helicity density, viscous 

dissipations, and energy loss. 

In Chapter 4, the third article is provided. This study aimed to identify 

hemodynamic biomarkers for BAV patients and their relationships with aortic 

dilation. For that purpose, we analyzed and extracted multiple correlation patterns 

of hemodynamic parameters, finding which showed high collinearity between them, 

which allows us to reduce their size to few variables. And finally, we applied 

machine learning algorithms to discriminate between healthy volunteers and 

bicuspid aortic valve patients with and without ascending aorta dilation. 

Finally, in Chapters 5 and 6, the current work’s perspectives and the conclusions 

of this research are listed and discussed.  

 

1.2. Generalities of Magnetic Resonance Imaging 

 

Since its introduction in the medical field in the early 1980s, magnetic resonance 

(MR) has become an increasingly important imaging modality to study the human 

body, whose core equation is the Faraday-Maxwell Equation. It exploits ensemble 

phenomena in which the composition of a sample can be probed by sensing its 

magnetic properties through radio frequency (RF) waves. Here, we describe the 

various parts of MRI and their respective role in the whole. 

A rigorous understanding of MRI begins with the elementary particles that give 

rise to tissue's magnetic properties. Elementary particles have two independent 

properties which manifest magnetic moments: orbital angular momentum and 

intrinsic spin. These two properties are independent only to the first order. Their 

very interaction via spin-orbit coupling led to detectable energy differences in the 

hydrogen spectrum and, consequently, the discovery of intrinsic spin. The hydrogen 

atom (1H) is the most frequently targeted nucleus in MRI due to its biological 

abundance and high gyromagnetic ratio. The 1H nucleus consists of a single proton. 

Protons are made of quarks, specifically one down and two up quarks, each of them 

are of spin 1/2. The change and spin of the proton are both directly due to its quark 

composition. The down quark has a charge of -1/3 while the up quarks each have a 
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charge +2/3, which all sum up to +1. The nuclear spin is 1/2 by spin cancellation 

from the antiparallel alignment of two of the three quarks. 

 

1.2.1. Magnetism 

 

      Subatomic particles, i.e., electrons, protons and neutrons, are magnets. They 

derive their magnetism from intrinsic spin and orbital angular momentum. In the 

absence of an external magnetic field, each particle’s spin is oriented in an 

essentially arbitrary direction, as shown in Figure 1-2.a However, in the presence of 

an external magnetic field, a bulk magnetism of sample tissue occurs via spin 

alignment, as illustrated in Figure 1-2.b. The dipole moment, 𝜇, of a single unpaired 

e.g., proton is given by, 

 

where γ is the gyromagnetic ratio measured in Hz/T, γ1H/2π = 42.58 MHz T-1, and 

S is the spin observable. The spin observable has the following two defining   

properties, 

 (1.1) 

  

 (1.2) 
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Figure 1-2. (a) Randomized spin orientations. Nuclear spin orientations are 

random in the absence of an external magnetic field. (b) Nuclear spins align parallel 

or antiparallel to an applied external magnetic field. 

 

where  is spin eigenstate vector for a particle of spin s and magnetic spin 

quantum number m, S2 is the square of the spin, Sz is the z-component of spin, and ħ 

is the Planck’s constant (6.626 × 10-34 Js). For the proton s = 1/2 and m ∈ {-1/2, 

1/2}.  

1.2.2. The Magnetic Potential Energy 

 

The magnetic potential energy is, 

 

   The force on a magnetic moment, the torque on a magnetic moment, and the 

Larmor precession frequency, can be described in terms of the magnetic potential 

energy U. 

The magnetic moment aligns itself in parallel or antiparallel orientation to the 

external field B0. This process is called magnetization. In the case of a population 

sample, upon application B0, the spin orientations go from a somewhat arbitrary 

array of directions to being composed of only two directions, parallel and 

antiparallel. The parallel orientation is the lower energy state and is the more 

populous state for protons in the sample. The population distribution is temperature 

 (1.3) 
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dependent, such that the proportion of protons in the higher energy state increases 

with temperature. This is given by, 

 

 

where Nh is the higher energy state, Nl is the lower energy state, E is the energy 

difference between the two states, k is the Boltzmann constant (1.38 × 10-23 J K-1), 

and T is the absolute temperature in Kelvin. Since γħB0 << kT at body temperature 

and clinical field strengths, we can write the follows, 

 

This difference creates the net magnetization M0. If we replace Ntotal with proton 

density ρ we will get M0 per unit volume. We also know that the magnetic moment 

of the proton has a magnitude of , thus we can calculate, 

 

 

Since the water contains 6.67 × 1022 protons ml-1, we can show that at body 

temperature and 1.5 T we get M0 = 0.02 μT ml-1. Assuming that the human head has 

a volume of approximately 1500 ml and is about 80% water, M0 = 20 μT, which is 

small, but measurable.  

 

1.2.3. Precession 

 

When an external magnetic field, B0, is applied to a proton particle, the particle’s 

magnetic moment precesses about the direction of B0 at a frequency called the 

Larmor frequency given by, 

 

(1.4) 

 

 

 

(1.5) 

 

(1.6) 
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In the equilibrium magnetization state with  and Mxy = 0, there is no 

precession of the bulk magnetization M between M × B0 = 0. Figure 1-3 shows the 

magnetization of the individual spins, their precession about the applied field 

direction, and the net magnetization vector. 

Considering only the spin of a spin 1/2 proton in a magnetic field and De 

Broglie’s wave equation, which tells us that the frequency is associated with the 

energy, we get the Hamiltonian, 

 

 

Equation 1.10 leads us that the Hamiltonian is proportional to the z-component of 

spin. Therefore, the magnetic spin eigenstates are simultaneously energy 

eigenstates. Also, the energy eigenvalues are proportional to the magnetic spin 

quantum numbers. Specially, 

 

 (1.7) 

 (1.8) 

 

(1.9) 
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Figure 1-3. (a) Two possible orientations for the protons in an external magnetic 

field. (b) Precession of the magnetic moment. (c) Average of many protons 

produces the net magnetization. 

 

1.2.4. Pulse Magnetization 

 

The magnetization in the body is very small (e.g., 1 μT) compared to the main 

magnetic field (e.g., 1.5 T). It is virtually impossible to measure it at equilibrium, 

lying parallel with B0. Nevertheless, applying a 90° radiofrequency (RF) pulse of a 

weaker magnetic field, B1, will transition the individual protons from dephased to 

in-phase oscillation. This manifests as the acquisition of a transverse phase Mxy and 

oscillations of M about the z-axis at the Larmor frequency ω. This tilting of the 

magnetization vector also implies a decrease in Mz. Both effects are shown in 

Figure 1-4. The net external magnetic field is the sum of B0 and B1 during the pulse. 

If the pulse duration was extended indefinitely, the result would be an alignment of 

the bulk magnetization with a new direction, B0 + B1, and no resultant oscillation 

would be observed. 
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Figure 1-4. (a) The RF pulse produces a fixed magnetic field B1 in the rotating 

frame. (b) M processes about B1 until the RF is switched off. 

 

Having rotated M into the transverse plane, we measure it by detecting the 

voltage it induces in a receive coil which is sensitive only to magnetization 

perpendicular to B0. M is now precessing in the transverse plane, so the coil sees an 

oscillating magnetic field which induces a voltage varying at the Larmor frequency. 

The amplitude of the signal decays exponentially to zero in only a few milliseconds, 

because the protons rapidly dephase with respect to each other. This signal is 

known as Free Induction Decay (FID). 

 

 

1.2.5. Relaxation Times 

 

Having excited the protons to flip them into the transverse plane, they begin to 

relax back to their equilibrium position as soon as the RF pulse is switched off. 

There are two main features of the relaxation: a dephasing of the spins following 

their phase coherence after the pulse and realignment along the z-axis as they lose 

the energy they absorbed from the pulse. 
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Figure 1-5. (a) Longitudinal and (b) Transverse magnetization of two materials, 

A and B. In both relaxation times, the material B is quicker than A. 

 

1.2.5.1. Spin-Lattice Relaxation 

 

Then spin-lattice relaxation, also known as T1 relaxation or longitudinal 

relaxation is the process of longitudinal magnetization recovery following a B1 

perturbation. Specifically, T1 is the time that takes to recover 63% of the 

longitudinal magnetization, and is given by, 

 

where M0 is equilibrium magnetization, and Mz(0) is the longitudinal 

magnetization instantaneously after the excitation pulse. Figure 1-5a shows the T1 

recovery process of two materials with different T1 values. Material B is quicker 

than A, which means that material B had a lower T1 value than material A.  

 

1.2.5.2. Spin-Spin Relaxation 

 

The spin-spin relaxation, also known as T2 relaxation or transverse relaxation, is 

the process of transverse magnetization relaxation following a B1 perturbation. 

 
 

 

(1.10) 
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Specifically, T2 is the time that takes the magnetization to decay 37% of its original 

value, and is given by, 

 

where Mxy(0) is the transverse magnetization instantaneously after the excitation 

pulse, following the B1 induction of in-phase precession, the proton spins again 

begin to dephase according to T2 time. Figure 1-5b illustrates the T2 relaxation 

process of two materials: A and B. Material B had a lower T2 value than material A. 

Of note, the relaxation of transverse magnetization is faster than the recovery of 

longitudinal magnetization, i.e., T2 < T1. 

 

1.2.6. Gradients 

 

In MRI, the term gradient refers to an additionally spatially linear variation in the 

static field strength in the z-direction, i.e., along with B0. For instance, an x-gradient 

(Gx) will add to or subtract from the magnitude of the static field at different points 

along the x-direction. Gradients can be applied in any direction or orientation, and 

their field strength is measured in mili-tesla per meter (mT m-1). Three sets of 

gradient coils, Gx, Gy, and Gz, are included in the MR system. They are normally 

applied only for a short time as pulses. It is these three sets of gradients that give 

MR its three-dimensional capability. Mathematically the three-orthogonal spatial 

gradients of Bz are defined as, 

 

 

When a gradient is applied, the total field in the z-direction experienced by nuclei 

will be dependent upon the position in space, by 

 

 
 

 

(1.11) 

 

 
 

(1.12) 
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When a gradient is applied the Larmor frequency will depend upon the total z-

component of the magnetic field and thus becomes spatially dependent, 

 

 

1.2.7. Selective Excitation 

 

In selective excitation, we apply a specially designed RF excitation pulse 

simultaneously as a gradient. The designer RF pulse contains a narrow range of 

frequencies of RF, centered about the Larmor frequency. Mathematically, it is 

expressive as, 

The principle of slice selection is shown in Figure 1-6. The presence of the 

gradient causes the resonant frequency to vary with position in the gradient 

direction. At the isocenter where the additional value of the gradient is zero, the 

normal Larmor frequency will apply. Further away along the selection axis, either a 

higher or lower RF frequency will be needed. Resonance will happen if the required 

frequency is present within the RF pulse’s bandwidth, i.e., protons will be excited. 

Nothing will happen if the frequency necessary is not present within the RF pulse’s 

bandwidth. Thus, excitation for signal production can only take place at or close to 

the isocenter. If the slice-select gradient is applied along the z-axis, the resultant 

slab of excited nuclei or slice will form a transverse plane. 

 
 

(1.13) 

 

 
 

(1.14) 

 

 
 

(1.15) 
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Figure 1-6. Selective excitation of an image slice by applying a shaped RF pulse 

and a field gradient simultaneously. 

 

1.2.8. In-Plane Localization 

 

In MRI, we use the gradients to measure the two- (or three-) dimensional 

spectrum of the object being imaged. This spectrum is k-space consists of an array 

or matrix of individual spatial frequencies. Following the excitation of a localized 

slice, the next sections will explain the phase and frequency encoding gradients to 

manipulate the MR signal to encode spatial frequencies. 

 

1.2.8.1. Phase Encoding  

 

Consider the following in conjunction with Figure 1-7, which shows the effect of 

the phase-encoding gradient on the transverse magnetization at three different 

locations and times. Furthermore, suppose we already have an MR signal with all 

the spins in the phase. If we apply the phase-encode gradient (GPE) at time A in the 

y-direction, then the precession of the nuclei will speed up or slow down according 

to their position along the y-axis. This causes the spins to dephase or fan out 

progressively greater for as long as the gradient is applied. When we switch off the 

gradient at time B, all the nuclei will revert to their original frequency but keep their 

different phase angles. This is called phase-encode. The relative phase differences 
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between signals in other locations remain until either another gradient or the MR 

signal decays due to T2 relaxation. 

 

Figure 1-7. Phase encoding returns the signal to the Larmor frequency but with 

position-dependent phase changes. 

 

The MR experiment consist on the acquisition of several spatial frequencies. Each 

value of phase-encoding can be considered as a template or a filter that only 

responds to one spatial distribution of MR signal or spatial frequency. The entire 

range of possible spatial frequencies must be interrogated to build up a whole 

picture. When no gradients are applied, we get a signal from the whole object, 

called zero spatial frequency or zero k. 
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The MR sequence consists of multiple repetitions of the excitation process 

followed by a different phase-encode gradient until all possible spatial frequencies 

are collected. Once all these signals are collected, the application of a Fourier 

transform converts the spatial frequency distribution into the spatial distribution of 

the excited nuclei, i.e., an image of the patient. 

 

1.2.8.2. Frequency Encoding 

 

In frequency encoding we can acquire all the spatial frequency information 

needed from on MR signal following one RF excitation. In phase encoding, we 

required one MR excitation (RF pulse) for every line of data (i.e., every value of 

kPE). For a 256-pixel image we thus required 256 MR excitations, and this will take 

256 x time-repetitions (TR) ms. 

If we apply a gradient continuously and measure or sample the MR signal at 

different time points during the application of that gradient. The MR signal is 

affected by a different gradient moment at each point and has an additional amount 

of phase change. Therefore, each data point reflects a different amount of phase 

encoding and thus corresponds to a different spatial frequency. Hence, we can 

collect all the spatial frequencies for that direction from the evolving MR signal in 

real-time following a single RF excitation. This is analogous to the phase-encode 

acquisition, which works in pseudo-time, with a sampling separated by TR, as 

shown in Figure 1-8. The resulting raw data matrix is called k-space. 
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Figure 1-8. Central lines of k-space (magnified) show the equivalence of phase 

and frequency axes. Signal strength is shown in the vertical direction in the 

magnified portion. Each phase-encode (PE) line is separated by repetition-time 

(TR). FE: phase-encode. 

 

1.2.9. Encoding for 2D Fourier Transform Imaging 

 

Following the excitation of a localized slice, frequency- and phase-encoding 

gradients are applied to manipulate the MR signal to encode spatial frequencies. 

The effect of frequency-encode gradient GFE applied along the x-direction following 

the initial excitation on a discrete signal element ∂s is,  

 

where ρ(x) is the proton density along the x-direction, and i is the square-root of -

1, denoting complex notation. This gradient is applied continuously during the 

signal acquisition. A dephasing gradient is usually applied prior to sampling to 

generate a symmetrical echo. 

The phase encoding is applied (along the y-direction) through a gradient GPE with 

a duration of τ prior to the signal measurements. The signal from a small element 

following the application of both gradients is, 

 

 (1.16) 
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The total MR signal is the integral of this with respect to x and y. In complete MR 

acquisition the signal is sampled M times at intervals Δt, and the pulse sequence 

repeated N times, each time incrementing the GPE amplitude such that, 

 

For n = (N/2) to (N/2 – 1). Now we define quantities kFE and kPE such that, 

 

The total signal S acquired in two dimensions time t and pseudo-time nτ is found 

by integrating over x and y,  

 

Which (except for the T*2 term) is the form of an inverse Fourier transform (FT) 

of the spin density ρ(x,y), i.e., S(m,n) = ρ(kFE, kPE), allows us to reconstruct the 

image of the patient’s body. 

 

1.3. Cardiovascular Magnetic Resonance Imaging 

 

Cardiac MRI has always been one of the most challenging clinical applications. 

Imaging in the presence of cardiac and respiratory motion and blood flow requires 

the development of robust methods to obtain good-quality images. Fortunately, 

developments in system hardware, pulse sequence, and reconstruction algorithms 

have improved the reliability of standard imaging methods and introduced new 

 (1.17) 
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techniques for myocardial tissue characterization and flow quantification. Given 

these technical advancements, challenges remain for the user in understanding and 

optimizing the sequences and methods. 

This section will explain 

▪ how to measure the velocity-induced phase shift. 

▪ the velocity imaging without an exogenous contrast agent using the 

phase-contrast and 4D Flow MRI sequences. 

▪ the meaning and role of velocity-encoding value in the velocity imaging 

sequences. 

▪ how to assess and quantify the velocity and flow imaging. 

▪ how to measure the functional imaging using the balanced steady-state-

free-precession sequence. 

▪ how to quantify and evaluate the functional cardiac analysis. 

▪ a review that summarizes machine learning applications in cardiac 

magnetic resonance. 

 

1.3.1. Velocity-Induced Phase Shift 

 

Velocity can be measured using velocity encoding gradients, leading to an image 

whose phase is proportional to the blood flow velocity. 

The phase dependency of the MR signal to moving spins can be derived from the 

precession frequency of spins in local magnetic fields (as shown in the Section 

1.2.3). The Larmor frequency, ω, of spins at spatial location r in a static magnetic 

field B0, local field inhomogeneity Δ B0, and a magnetic field gradient G is given 

by, 

 

 

where γ is the gyromagnetic constant, the acquired FID is demodulated 

concerning the Larmor frequency in the static magnetic field after signal reception. 

 
 

 

(1.21) 
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This corresponds to a transformation of the MR signal into a rotating reference 

frame such that the main field contribution to the signal frequency can be omitted 

for further calculations. The integration of equation 1.21 results in the phase of the 

precessing magnetization and thus the phase of the measured MR signal after an 

excitation pulse (at t0) at echo time TE, 

 

which can be expanded in the following Taylor series,  

where r(n) being the nth derivative of the time dependent spin position and  the 

corresponding nth order phase. The initial signal phase and field inhomogeneities 

result in an additional background phase . Suppose the motion of the tissue under 

investigation does not change fast concerning the temporal resolution of data 

acquisition. In that case, the corresponding velocities can be approximated to be 

constant during data acquisition. Thus r(t) can be introduced as first order 

displacement r(t) = r0 + v (t- r0), equation 1.23 can be simplified to,  

 

 

The second and third terms are the phase accumulations from the stationary and 

moving spins under the magnetic gradient G. The integral terms describing the 

influence of the magnetic gradient on the static and moving spins are named the 

zeroth and the first gradient moments, M0 and M1, respectively. 

 
 

 

(1.22) 

 

 

 
 

 

(1.23) 
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Velocity encoding is usually performed using bipolar gradients, as shown in 

Figure 1-9. Equation 1.24 results in zero M0, which does not lead to any phase 

encoding of stationary spins. However, moving spins will experience a linear 

velocity depending on phase change, which is proportional to the amplitude and 

timing of the gradient. 

 

Figure 1-9. A bipolar velocity-encoding gradient. Two lobes have equal areas 

with opposite polarities. No phase change is observed by stationary spins (i.e., M0 = 

0). However, flowing spins will yield a net phase change proportional to their 

velocity. 

 

By changing the polarity of the bipolar gradients and subtracting the two resulting 

phase images allows the quantitative assessment of the velocities of the underlying 

flow or motion. In this way, the desired velocity component can be calculated for 

every volume element simultaneously, since the difference of the phase is 

proportional to the velocity as, 

 

where ΔM1 = 2M1. 

 

 

 
 

 

 

(1.25) 
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1.3.2. Velocity Imaging without an Exogenous Contrast Agent 

 

Most velocity imaging without contrast is done with the techniques used to create 

angiograms without using an exogenous contrast agent, e.g., gadolinium, 

throughout the cardiac cycle. The original velocity imaging without contrast is 

based on the phase-contrast (PC) sequence that we will explore in the following 

section. 

 

1.3.2.1. Phase-Contrast Magnetic Resonance Imaging Sequence 

 

Phase-contrast magnetic resonance imaging (PC-MRI) exploits the changes in the 

phase of blood’s transverse magnetization as it moves along a magnetic field 

gradient. We have already seen how a bipolar gradient gives zero phase shift to 

stationary spins, but a non-zero phase shift for moving spins. Figure 1-10 shows the 

PC-MRI sequence in the x-direction.  

 

Figure 1-10. Phase-Contrast MRI sequence that allows acquiring images in the, 

e.g., x-direction. 
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1.3.2.2. 4D Flow Magnetic Resonance Imaging Sequence 

 

The PC-MRI sequence can be extended to construct the velocity vector along 

each of the three gradient directions to create a linear relationship between the 

velocity of the blood and the phase of the MR signal. This sequence is called 4D 

Flow MRI. Figure 1-11 shows the schematic illustration of the sequence.  

 

 

Figure 1-11. 4D Flow MRI sequence that allows acquiring images along each of 

the three directions. 

 

The individual phase images can be combined to produce a single 3D angiogram 

by calculating the result flow magnitude image |v| from the x, y, and z, i.e., slice-

select, phase encoding and frequency-encoding directions for each pixel using, 

The resultant magnitude image has no directional information and is often a 

called ‘speed’ image. Also, since each velocity value is squared in the calculation, 

all the positive and negative velocity information is eliminated, and so any 

 
 

 

(1.26) 
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directional information is lost. However, the greyscale is still proportional to the 

speed. 

In 4D Flow MRI, you excite a slab of tissue, with each slice encoding having 

velocity sensitization, applied along each of the required directions, all three. This 

makes 4D Flow MRI studies quite time-consuming. You may have to sacrifice 

some resolution in the phase-encoding direction or employ parallel imaging 

techniques to achieve an acceptable acquisition time. 

 

1.3.2.3. Velocity-Encoding in PC- and 4D Flow MRI 

 

Figure 1-12. PC-MRI with different VENCs (i-iv). The inlay in each image 

shows the ascending aorta. Black arrows point to locations of uncorrected velocity 

aliasing. Incrementing the value of VENC worsens the Velocity-to-Noise-Ratio 

(VNR) because sensitivity has decreased for changes in the velocity. 

 

The relationship between the blood velocity and the MR signal phase is scaled by 

setting a user-controlled velocity encoding (VENC) value. Since we have 360° of 

unique phase available, flow in one direction, relative to the gradient, is allocated 0° 

to + 180°, while flow in the opposite direction is allocated 0° to -180°. The VENC 
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is the maximum velocity, VENC = π/γΔM1, is defined as the (positive or negative) 

maximum velocity that can be detected within π. 

With PC- and 4D Flow MRI, you must set a VENC. If you know the velocities in 

the vessels in interest, you should set your VENC about half the peak velocity. It is 

possible to use a PC-MRI method whereby you prescribe just a single slice that is 

thick enough to cover the vessels of interest. This produces a projection angiogram 

of the blood flow within that thick slice. Since the method is quick, i.e., only a 

single slice, you can acquire images with different VENCs to find the most suitable 

value for your time-consuming 4D Flow MRI acquisition. 

It is essential to note that VENC is inversely proportional to the Velocity-to-

Noise-Ratio (VNR) in the final measured velocity map. Therefore, setting up the 

VENC is important to obtain velocity data with high VNR but without wrapping 

artifacts. If the images have wrapping artifact or low VNR, several images need to 

be acquired with different VENCs, as shown in Figure 1-12. This issue increases 

the total scanning time.  

 

1.3.2.4. Quantitative Velocity and Flow Imaging 

 

Quantitative blood flow imaging is a powerful technique for assessing cardiac 

pathologies such as dilated cardiomyopathy and quantifying stenotic valves. The 

last section explained how it is possible to encode the velocity of moving spins 

using PC-MRI or 4D Flow MRI sequences. In quantitative velocity/flow imaging, 

we usually perform a single-slice PC acquisition perpendicular to the vessel's 

direction or valve in which we wish to quantify the velocity. The velocity-encoding 

gradients are usually applied along the slice-selection direction to quantify 

velocities through the slice.  

Figure 1-13 shows a typical PC-MRI through the ascending aorta (AAo). Suppose 

the instantaneous flow is plotted against time for all the cardiac cycle. Then, the 

area under the curve represents the blood blow in one heartbeat. Multiplying this 

value by the heart rate gives the volume of blood ejected by minute, known as 

cardiac output. 
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Figure 1-13. PC-MRI through the ascending aorta (AAo) and descending aorta 

(DAo). (a) Phase-contrast image and (b) Magnitude image from at peak-systole.  (c) 

Phase-contrast images in the cardiac cycle. (d) The Flow vs. the time curve. The 

flow at each temporal phase is obtained by multiplying the average velocity in each 

region-of-interest (ROI) (cm/s) by the area of the ROI (cm2) to give a flow in cm3/s. 

 

On the other hand, in section 1.3.2.3, we defined the velocity-encoding (VENC) 

parameter that sets the velocity for which a 180° phase shift occurs. If the actual 

velocity exceeds the VENC then aliasing will occur.  

In several cases, it is important to obtain quantitative information of low and high 

blood flow velocities simultaneously, which can differ by order of magnitude, even 

in normal subjects. This can be observed in Figure 1-14 where velocity aliasing 

occurs in the AAo when velocity exceeds the VENC. To solve this issue, 

unwrapping methods approaches have been proposed to obtain low and high 

velocities simultaneously and, by consequence, obtain a unique image without 

aliasing (Lee et al., 1995) (Lan et al., 2008) (Johnson et al., 2010) (Zwart et 

al., 2013) (Schnell et al., 2017) (Carrillo et al., 2019) (Ma et al., 2020). Otherwise, 

it will be necessary to repeat the acquisition using a higher VENC. Nevertheless, 

velocity images will appear noisier as the VENC is increased. 
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Figure 1-14. PC velocity aliasing. Velocities in one direction are allocated the 

range 0° to 180° and velocities in the opposite direction 0° to -180°. The parula 

colormap 0° is represented by teal blue, while +180° is allocated yellow and -180° 

is allocated blue. The velocities in the ascending aorta (AAo) are shown as teal blue 

to yellow, while the descending aorta (DAo) are shown as teal blue to blue. (a) 

VENC is set to 150 cm/s, so a velocity of 112.5 cm/s results in a phase shift of 

+135°. (b) In this case, a VENC of 75 cm/s a velocity of -56.25 cm/s results in a 

shift of -135°. Due to the fact, velocity exceeds the VENC; aliasing velocity occurs 

in the AAo. 

Even though the phase images from positive and negative flow encoding are 

subtracted to eliminate background phase errors, there may be residual errors due to 

the different eddy currents produced by the different flow-encoding gradient 

polarities. These errors appear as offsets in the data, so the stationary background is 
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typically no longer zero. Correction of the data using the background signal offset 

may be required. 

Velocity mapping can also be performed in-plane by applying the flow-encoding 

gradients on the approximate axis. Furthermore, using 4D Flow MRI, it is possible 

to acquire velocity data along with all three directions at the cardiac cycle. These 

data can then be used to calculate temporally resolved 3D hemodynamic, as shown 

in Figure 1-15. These acquisitions are quite time-consuming and require respiratory 

gating. 

 

Figure 1-15. 3D maps of (a) velocity, (b) vorticity, (c) helicity density, and (d) 

energy loss (streamlines) of the left ventricle at peak-systole for a healthy 

representative volunteer and dilated cardiomyopathy (DCM) representative patient. 

We adjusted the color bar range for visualization purposes. 

 

 

 

1.3.3. Functional Imaging 

 

Functional cardiac imaging is designed to visualize the heart motion throughout 

the cardiac cycle. We use gradient-echo sequences triggered by the 
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vectorcardiography (VCG). Gradient-echo sequences have very short repetition 

times (TR), so data from the same slice location can be acquired at different time 

points through the cardiac cycle. Each time-point is known as a ‘cardiac phase’ or 

‘temporal phase’. Thanks to the flexibility of MR slice selection, it is possible to 

acquire multiphase ‘cine’ images in any plane (Bogarert et al., 2000). The following 

section will explain one MR technique that allows us to obtain functional imaging. 

 

1.3.3.1. Balanced Steady-State-Free-Precession 

 

Figure 1-16. b-SSFP images with different cardiac planes starting from (a) long-

axis, (b) short-axis, and (c) 4-chamber axis. RV: right ventricle, LV: left ventricle, 

LA: left atrium, RA: right atrium, MV: mitral valve, and TV: tricuspid valve. 

 

Cine imaging used spoiled gradient-echo sequences. These sequences relied on 

the in-flow of blood to provide the contrast between the bright blood pool and the 

darker myocardium. Hence, image quality could be quite variable. Therefore, 

cardiac MRI was improved with the development of cine balanced steady-state-

free-precession (b-SSFP). Since the contrast in b-SSFP depends mainly on the ratio 

T2/T1, the contrast between blood (where the ratio is high) and myocardium (where 
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it is less) is much better. These images can be used to extract functional information 

of the heart. Note that cardiac MRI does not typically use standard, axial, sagittal, 

and coronal views. Most imaging planes are oblique, orientated to the heart 

chambers the valves, as shown in Figure 1-16. 

 

1.3.3.2. Functional Cardiac Analysis 

 

In the short-axis stack of cine slices covering the entire left ventricle, we can 

measure the blood pool volume at the end-systolic (smallest ventricular volume) 

and end-diastolic (largest ventricular volume) phases calculate the percentage of 

blood ejected in each heartbeat (Bogaert et al., 2000). This is known as the ejection 

fraction (EF) and is an important measure of cardiac function. Specialized cardiac 

processing software can be used to either manually or (semi-) automatically define 

the endocardial border between the blood pool and the myocardium. Summing the 

left ventricular blood pool volume (blood pool area × slice thickness) across all 

slices acquired at the end-diastolic phase gives the left ventricle end-diastolic 

volume (LVEDV). Similarly, summing all the volumes at the end-systolic phase 

gives the left ventricle end-diastolic volume (LVESV). The left ventricular stroke 

volume (LVSV), the volume of blood ejected during each heartbeat, is calculated as 

the differences between LVEDV and LVESV, 

 

 

The ejection fraction (EF) as a percentage can be calculated from, 

 

 

If we also define the outer contour of the myocardium, called the epicardial 

border, we can then measure the volume of the myocardium. Multiplying the 

myocardial volume by the density of tissue (1.06 g ml-1) gives us an estimate of the 

 
 

(1.28) 

 

(1.29) 
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myocardial mass. This is another quantitative metric than can be used to monitor 

patients who have thickened ventricular walls (American Heart Association, 2020). 

The last measure is the cardiac output (CO), which corresponds to the volume of 

blood the heart pumps per minute. Cardiac output is calculated by multiplying the 

left ventricular stroke volume by the heart rate (HR), 

 

 

The normal range for cardiac output is about 4 to 8 L/min, but it can vary 

depending on the body’s metabolic needs. Cardiac output is important because it 

predicts oxygen delivery to cells (American Heart Association, 2020). 

 

1.3.4. Machine Learning in Cardiovascular Magnetic Resonance  

 

Artificial intelligence (AI) methods have gained increased attention in cardiology 

and cardiovascular imaging (Damini et al., 2019). The application of AI may reduce 

cost and improve value at all image acquisition, interpretation, decision-making 

stages, and subsequent clinical pathways. For instance, in CMR, AI methods have 

been applied to segment left and right ventricles and thoracic aorta to automatic 

cardiovascular volume assessment and enhance reproducibility in clinical 

assessments (Avendi et al., 2017) (Tan et al., 2018) (Tao et al., 2019) (Campello et 

al., 2021) (Aviles et al., 2021).  

Machine learning, i.e., the technique used to give AI to learn. This technique can 

learn rules and progressively identify patterns from large datasets without explicitly 

programmed or prior assumptions. For a compelling performance of the ML 

algorithm, it must be considered: (1) data that are relevant and detailed enough to 

answer the question being asked, and (2) a computational ML algorithm appropriate 

for the type of data available (Ciaburro 2017). Therefore, the quality, accuracy, and 

richness of features in data will determine how effective computational techniques 

can deliver an AI. Provision of inappropriate or incorrectly categorized data 

effectively means that the dataset does not closely resemble the real world enough 

 (1.30) 
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for ML to create a representative model, which may result in inappropriate 

decisions (Mester et al., 2011) (Singh et al., 2019). 

The following sections will explain the different types of ML algorithms, 

selecting the correct algorithm, and the proper construction of an ML model. 

 

1.3.4.1. Types of Machine Learning 

 

We already discussed that ML's power is due to the quality of its algorithms. 

There are divided into several types depending on the nature of the dataset used for 

learning or the type of feedback adopted by the system. 

 

1.3.4.1.1. Supervised Machine Learning Algorithms 

 

The algorithm generates a function that links input values to the desired output by 

observing a set of examples. Each data input has its relative output data, which is 

used to construct predictive models. Table 1-1 summarizes some examples of these 

types of algorithms. These algorithms are based on the following concept: similar 

inputs correspond to similar outputs. Nevertheless, this assumption is not valid in 

the real world. The proper functioning of such algorithms depends significantly on 

the input data. If there are only a few training inputs, the algorithm might not have 

enough experience to correct output. Another issue is that the algorithm will 

function excessively slow if there is much input. Moreover, this type of algorithm 

are very sensitive to noise. 

In supervised ML, it is possible to split problems based on the nature of the data. 

If the output value is categorical, such as female/male to a particular class, it is a 

classification problem. If the output is a continuous real value in a certain range, it 

is a regression problem. 

Table 1-1. Examples of supervised ML algorithms with their description. 

Algorithm Description 

Regression Analysis Uncomplicated form of supervised ML that generates an algorithm 

to describe a relation between multiple variables and an outcome of 



53 

  

interest. Stepwise models automatically add or remove variables 

based on the strength of their association with the outcome variable, 

until a significant model is developed or learned (Mayr et al., 2014). 

Support Vector Machine 

(SVM) 

SVM provides nonlinear models by defining planes in higher 

dimension that best separate out features into groups that predict 

certain outcomes (Chykekuk et al., 2011) (Domingos et al., 2014). 

Random Forest (RF) RF identifies the best outpoint values in different features of 

individual groups of related data to be able to separate them out to 

predict a particular outcome (Chykekuk et al., 2011) (Domingos et 

al., 2014). 

Neural Networks Features are fed through a nodal network of decision points, meant 

to mimic human neural processing (Mery 2015). 

Convoluted Neural 

Networks 

A multilayered network, often applied to image processing, 

simulating some pf the properties of the human visual cortex (Mayr 

et al., 2014).  

Deep Learning (DL) DL is defined as a class of artificial neural network algorithms, in 

which more internal layers are used than in traditional neural 

network approaches (Lee et al., 2017) (Krittanawong et al., 2017). 

 

 

1.3.4.1.2. Unsupervised Machine Learning Algorithms 

 

The algorithm tries to derive knowledge from a general input without the help of 

a set of pre-classified examples used to build descriptive models. A typical example 

of the application of these algorithms is search engines. Table 1-2 summarizes some 

examples of unsupervised ML algorithms. Unlike supervised algorithms, there is no 

information on gender classes of the example or generally on the output 

corresponding to a certain input. The objective is to get a model that can discover 

interesting properties, i.e., groups with similar or different characteristics 

(clustering). Hence, given one or more keywords, they are able to create a list of 

links related to our search. 

 

Table 1-2. Examples of unsupervised ML algorithms with their description. 
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Algorithm Description 

Principal Component 

Analysis (PCA) 

PCA can identify the most variations in the features (Mery 2015). 

Hierarchical clustering This method grants a dataset into a multilevel cluster tree or 

dendrogram. The distance (dissimilarity) is defined as one minus 

Pearson’s correlation coefficient. It expressed that if two features 

have a shorter distance, they are similar, i.e., the distance is 0, the 

correlation coefficient is 1. The variable that quantifies an effective 

representation of the pattern dissimilarities in the dendrogram is the 

cophenetic correlation. (Gu et al., 2010) (Ciaburro 2017). 

Partitioning algorithms 

(e.g., K-means clustering) 

The cluster analysis identifies the degree of separation of different 

features within a dataset and tries to find groupings in which features 

are most differentiated. It does this by defining similarity based on 

proximity to the cluster's centroid. The algorithm modulates the data 

to build the cluster by iteratively evaluating the distance from the 

centroid (Ciaburro 2017). 

Model-based clustering 

(e.g., Expectation-

Maximization Algorithm) 

This clustering algorithm makes a general assumption that the data 

in each cluster is generated from probabilistic model (Ciaburro 

2017). 

 

 

1.3.4.2. Choosing the Right Algorithm 

 

In the previous section, we learned the difference between various types of ML 

algorithms. Now it is time to find which algorithm is the most suitable for our 

needs. If we have a classification problem, there are two options available: 

▪ Classify based on input: We have a supervised learning problem, if we can 

label the input data. In the opposite option, it is unsupervised. 

▪ Classify based on output: If our model output is a number, we must deal 

with a regression problem. But it is a classification problem if the model's 

output is a class. Finally, we have a clustering problem if the model's 

output is a set of input groups. 

Having identified the tools, we need to evaluate their performance. We simply 

apply the selected algorithms on the datasets at our disposal to do this. 
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Subsequently, based on a series of carefully selected evaluation criteria, we 

compare the performance of each algorithm (Ciaburro 2017). 

 

1.3.4.3. Construct the Proper Machine Learning Model 

 

Finally, an algorithm has been defined; we will follow a procedure characterized 

by the following steps: 

i. Collect the data: The data is collected in a database to then be analyzed to 

derive knowledge. 

ii. Preparing the data: Once we have the database, we must make sure it is a 

format usable by the algorithm we want to use. To do this, we may need to 

do some formatting, e.g., recall that some algorithms need data in an 

integer format. 

iii. Exploring the data: Using plots, we can recognize patterns or whether 

some data points are vastly different from the rest of the dataset. 

iv. Training the algorithm: In this step, the ML begins to work with the 

definition of the model and the next training. The model starts to extract 

knowledge from large amounts of data that we had available, and that 

nothing has been explained so far. There is no training step for 

unsupervised learning because we do not have a target value. 

v. Testing the algorithm: In this step, we use the information learned in the 

previous step to see if the model works. The evaluation of an algorithm is 

for seeing how well the model approximates the real system. In the case of 

supervised learning, we have some known values that we can use to 

evaluate the algorithm. 

vi. Evaluating the algorithm: We can assess the approximation ability of the 

model by applying it to real data. The model preventively trained and 

tested is valued in this phase. 

vii. Improving algorithm performance: Now that we have verified that the 

model works, we must evaluate the performance to analyze the whole 

process. 
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1.4. Hypothesis and Objectives 

 

1.4.1. Hypothesis  

 

We hypothesize that using more robust acquisition strategies, processing imaging 

techniques, and machine learning on velocity MR images will lead to more accurate 

and precise hemodynamic parameters than current methodologies. 

 

1.4.2. Objectives 

 

This research aims to obtain accurate and non-invasively hemodynamic 

parameters in the heart and great vessels from velocity MR images, improving data 

acquisition and reconstruction techniques regarding the velocity aliasing correction, 

image processing, and data quantification applying pattern recognition and machine 

learning. Therefore, the specific objectives of this investigation are: (1) to compare 

the uni-directional Dual Velocity-Encoding PC-MRI methods for different added 

noise levels and to propose a correction algorithm for the Optimal Dual-VENC 

method (Carrillo et. al., 2018), which is based on theoretical considerations. (2) To 

develop a semi-automatic approach for quantifying intracardiac hemodynamic 

based on velocity data using the finite element method applied in a small cohort of 

dilated cardiomyopathy patients. And (3), to analyze and extract multiple 

correlation patterns of hemodynamic parameters from velocity data and find which 

parameters allow an accurate classification between healthy volunteers and bicuspid 

aorta valve patients with dilated and non-dilated ascending aorta using machine 

learning.  
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2. FIRST ARTICLE:  COMPARISON OF AND IMPROVED UNI-

DIRECTIONAL DUAL VELOCITY-ENCODING MRI 

 

2.1. Introduction 

 

Phase-contrast (PC) MRI enables the quantification of velocities by subtracting 

two measured phases of the complex transverse magnetization (Markl et al., 2012). 

This method, extended to 4D Flow, allows several applications for the quantitative 

analysis of cardiovascular diseases (Wigstrom et al., 1999) (Wu et al., 2004) 

(Kvitting et al., 2004) (Markl et al., 2007) (Stalder et al., 2008) (Markl et al., 2011). 

However, the applications of such techniques are limited by the Velocity-to-Noise-

Ratio (VNR) of the images. The VNR is mainly managed by setting a velocity-

encoding sensitivity (VENC). VENC is inversely proportional to VNR in the final 

measured velocity map. However, if VENC is lower than the true velocity, it leads 

to phase wrapping in the velocity map (Stalder et al., 2007). Furthermore, even for 

VENC values slightly larger than the true velocity, velocity aliasing may occur due 

to measurement noise (Pelc et al., 1991) (Ha et al., 2016).  

Therefore, setting up the VENC is important to obtain velocity data with high 

VNR without wrapping artifacts. If the images have wrapping artifacts or low VNR, 

several images may need to be re-acquired with different VENCs. This issue 

increases the total scanning time (Markl et al., 2012).  

In some cases, it is necessary to obtain quantitative information of low and high 

blood flow velocities simultaneously within the same field of view. For instance, 

velocities from veins and arteries can differ by orders of magnitude, even in normal 

subjects. Therefore, the images with high VNR can be obtained based on 

unwrapping low-VENC images by using the high-VENC reconstruction to correct 

those areas with velocity aliasing (Ghiglia et al., 2012). In principle, phase 

unwrapping seems like a simple operation, which detects phase jumps and adds (or 

subtracts) the appropriate multiple of 2π to discrepant signal values. Nevertheless, 

the presence of noise, processing errors, undersampling, and spurious artifacts 



58 

  

converts this problem to a cumbersome process. To solve this issue, dual-VENC 

approaches have been proposed. 

Lee et al. made the first implementation of dual-VENC 2D PC-MRI with 

through-plane velocity encoding that acquired three phases with different velocity 

encoding gradients, allowing reconstruction of two sets of velocity images 

corresponding to a high- and low-VENC. The low-VENC image is then unwrapped 

using the high-VENC (Lee et al., 1995). We call here this method Standard Dual-

VENC (SDV). The result is a single dataset with the favorable VNR of the low-

VENC scan but without velocity aliasing.  

Furthermore, Schnell et al. developed a dual-VENC 4D flow MRI sequence using 

a shared reference scan followed by two successive interleaved, which allowed the 

encoding of 3D blood flow velocities within 7-point (Schnell et al., 2017). In this 

context, a different dual-VENC reconstruction method consisting of the high VENC 

data to correct for aliasing in the low VENC data based on empirically defined 

thresholds. Recently, Ma et al. proposed two improved ways to perform the dual-

VENC reconstruction based on fixed thresholds using biconditional and 

triconditional statements (Ma et al., 2020).   

Carrillo et al. reformulated the phase-contrast velocity as a least-squares 

estimator. The method was called Optimal Dual-VENC (ODV) and justified 

theoretically high/low VENC ratios such that the aliasing velocity can be minimized 

(Carrillo et al., 2019). The ODV formulation can be generalized to multiple-motion 

encoding in a straightforward manner, as it was done by Herthum et al. (Herthum et 

al., 2022), where it was also successfully applied to MR Elastography in the brain.  

In this study, we aimed to compare the SDV, ODV, bi-, and tri-conditional 

unwrapping methods under different noise conditions. In addition, we proposed a 

correction algorithm for the ODV method to improve the success of the methods, 

which is based on theoretical considerations. 

 

2.2. Theory 

 

2.2.1. Assumptions 
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We assume three measurements with gradients G0 = 0 < GH < GL, this results in 

three measured phases φ0, φH, and φL. Two motion images with normal distribution 

can then be estimated that share the background phase, φ0, from the three-phase 

measurements: 

 

 and  are related to velocities acquired with high- and low-VENCs, where 

,  and  are the mean velocity of the high- and 

low-VENCs, respectively, the value of   depends on the SNR of the 

magnetization measurements, and the variance of  and  - after successful 

unwrapping - are respectively,  and 

. 

The four unwrapping methods that were investigated in this study are further 

described below.  

 

2.2.1.1. Standard Dual-VENC Approach 

 

Given two images with different VENC values, dual-VENC reconstructions aim 

to unwrap a velocity reconstructed with low VENC using images acquired with a 

high VENC as follows: 

 

 

 
 

(1.1) 

 

 

 
 

(1.2) 
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with N.I. the nearest integer operator and uhigh computed as, 

 

 

where ui is defined as, 

 

 

with 

 

This method is a slightly modification of the Standard Dual-VENC (SDV) 

reported in (Lee et al., 1995). In order to make a fair comparison with the other 

methods, we took full advantage of the VENCs used. In case iVENC > VENCH, we 

used ui rather than uH as the original SDV would have used, maintaining the 

effective VENC value. Note that VENCL < VENCH ≤ iVENC.  

 

 

2.2.1.2. Bi-conditional Approach  

 

Following the logic of Dual-VENC methods proposed by Schnell et al. (Schnell 

et al., 2017), in Ma et al. (Ma et al., 2020) the three sets of phase-contrast images 

(ui, uH, uL) are used to identify wrapped voxels in the lowest VENC image.  

 
 

 

(1.3) 

 
 

 

(1.4) 

 
 

 

(1.5) 
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First, a biconditional unwrapping method was proposed by an extension of 

Equation (1.2), where the aliased velocities fell into two categories: 

 

 

2.2.1.3 Tri-conditional Approach  

 

Also, in Ma et al. (Ma et al., 2020), following the same strategy refers in the bi-

conditional unwrapping method, the tri-conditional reconstruction algorithm also 

considered the relationship between the low- and high-VENC images, using the 

same two aliased velocity categories, with a new last condition. It brings the high- 

and low-VENCs into the same VENC domain and adds an additional constraint to 

prevent incorrect unwrapping of aliased voxels. 

 

 

 

 

 

 
and 

 

 

 

 

 

(1.6) 

 

 

 

 

and 

 

 

 

(1.7) 
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2.2.1.4 Optimal Dual-VENC Approach 

 

Carrillo et al. (Carrillo et al., 2018) proposed the Optimal Dual-VENC (ODV) 

method. This method is based on the formulation of the Dual-VENC problem as 

least-squares sum function. The cost function has the form: 

 

In the ODV, the unwrapped motion corresponds to the global minimum with the 

smallest magnitude, which we will denote u*. Note that the periodicity of Jdual(u) is 

the least common multiplier between the periodicity of the single-VENC functions 

if VENC1/VENC2 is a rational number. That was recently mathematically proven in 

(Herthum et al., 2020). Therefore, unwrapping is produced when half-of the 

periodicity of Jdual is larger than the true velocity. This allows VENCH to be smaller 

than the true velocity, and it is not required to construct a third velocity with 

iVENC. The periodicity depends on β and it corresponds to 2aVENCH, β = a/b, with 

a, b positive integers. It can be verified that iVENC match with aVENCH and 

iVENC when b = a + 1. 

It is important to mention that u* results in a combined version of uH and uL. 

Therefore, its variance is not the same as the one of uL. In case that uH and uL are 

 

or 

 

 

 

 

 

 

 
 

 

 
 

(1.8) 
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i.i.d., the variance is reduced as it was proven in (Herthum et al., 2020). However, 

this is no longer the case when u1 and u2 share the background phase. In that case 

the variance of u* maybe even larger than for uL depending on β. The detailed 

theoretical analysis is given in Appendix A.1.  

In order to obtain comparable results with the other methods in terms of the 

variance of the unwrapped velocity, in this work we will adopt a simpler (and also 

computationally cheaper) version of ODV. To just use Jdual(u) to guide the 

unwrapping of uL, i.e., to find u* by solving, 

 

 

where the effective VENC is  and then to set 

 This leads to , as in the 

other methods. This approach was introduced - and applied to MR Elastography 

recently (Herthum et al., 2020). 

 

2.2.1.5. Optimal Dual-VENC Correction Algorithm 

 

Here we propose a new approach to improve the results of the ODV method. In 

the presence of noise, all methods may fail unwrap appropriately. However, in the 

case of the ODV, the cost function can be used to automatically detect potential 

failures and propose a corrected value. 

To explain our ODV correction algorithm, an example is shown in the ascending 

aorta of a representative volunteer, Figure 2-1.a, with two pixels that the ODV 

method for (VENC1, VENC2) = (75, 50) was not able to correct, restricted in the red 

rectangle. We analyzed four points in the region of interest (ROI), two of them still 

had aliasing (points 1 and 3), and the other pixels the ODV found the true velocity 

values (points 2 and 4) as shown in Figure 2-1.b. The presence of noise deforms the 

dual-VENC functions, as in Figure 2-1.c, then the global minima with the smallest 

 
 

(1.9) 



64 

  

absolute value will not be (close to) utrue, and velocity aliasing occurs, such as it 

occurs in points 1 and 3. Nevertheless, using the ODV formulation, we can correct 

it using the cost function values. Based on the considerations above, the ODV 

correction algorithm is as follows: 

 

1. Locate 8-connected pixels for every image pixel for 2D. 

2. Calculate the mean velocity of the neighborhood. 

3. If this result does not have the same sign as the central pixel. Then, find the local 

minimum of Jdual(u) with the smallest velocity value of the same sign as the 

neighborhood of the central pixel.  

4. And finally, replace the velocity value corresponding to that local minimum of 

Jdual(u) in the pixel of interest. The final result can be found in the Figure 2-1.d. 

 

Figure 2-1. 2D PC-MRI for an ascending aorta of volunteer 1. (a) ODV 75,50 

marking ROI, red rectangle. (b) ROI’s zoom with points of interest. (c) Cost 

functions vs. velocity for each point of interest, with the global minimum marked as 
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asterisks. And (d) results of the ODV corrected methods marked the points of 

interest.  

  

 

2.3. Methods 

2.3.1. In-vivo Dataset 

 

2D PC-MRI data were acquired in twenty-six volunteers, age 32.4 ± 11.6 years 

(range 22-73 years, nine females) using a clinical 1.5 T MR Scanner (Philips 

Achieva, Philips Medical Systems, Best, The Netherlands). The local committee 

approved the study, and informed consent was obtained from all participants. The 

protocol consisted of a through-plane 2D PC-MRI sequence perpendicular to 

ascending aorta above the Valsalva sinus. Acquisition parameters were: TE of 3.7 

ms, TR of 5.5 ms, FA of 15°, VENCs of 50, 75, and 150 cm/s, Field-of-View 

(FOV) of 320 × 116 mm, Trigger Time 27 ms, 25 cardiac phases using prospective 

ECG triggering, in-plane resolution 1 × 1 × 8 mm3, and temporal resolution 

between 35-48 ms. The raw data was obtained, and the reconstruction of each 

bipolar gradient was performed offline using MATLAB. Data from a 5 elements 

phased-array cardiac coil were combined using the method proposed by Bernstein 

et al.19 and Nett et al.20. Since the acquisitions were performed using single-VENC 

protocols, we used the background phase from the scan with VENCH to reconstruct 

velocity image with the VENCL. To compare the methods, we only used 

representative peak-systolic phase, when more aliasing occurs.  

The in-vivo dataset was processed using an in-house MATLAB library (The 

MathWorks Inc., Natick, MA, USA), running in a 2.3 GHz Intel i7 processor 

equipped with 8GB of RAM, which included the data reconstruction, the 

implementation of the unwrapping methods (SDV, ODV, and bi- and tri-

conditional), the ODV correction algorithm, the addition of artificial noise, and the 

analysis of the results.  

 

 



66 

  

2.3.2. Additional (Synthetic) Noise 

 

We simulated different levels of noise for the in-vivo datasets. We assume three 

measurements with velocity encoding gradients G0 = 0 < GH < GL, resulting in three 

measured complex magnetizations Z0k, Z1k, and Z2k, for each coil k = 1,…,5, 

 

 
(1.10) 

 
 

 
 

 

The modulus of Zk provides the single-coil magnitude image, Mk, and the 

subscripts H and L are related to phases acquired with high- and low-VENCs, 

respectively, and 0 to the background phase. For all magnetizations measurements, 

i.i.d. complex Gaussian noise  was added with a variance of σ = M {0, 5, 

10, 15} %, with M the maximal magnitude for all coils, voxels and encoding 

gradients. Denoting the perturbed measurements with a “hat”, the phase-difference 

used in the velocity reconstruction for each voxel  

 

where * denotes complex conjugate and  is the angle between the 

positive real axis and the line joining 0 and , in radians. Finally, the 

velocities  are given by, 

 

 

(1.12) 

 

 

 
 

(1.11) 
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In order to compute the statistics of the results, we used 100 realizations of the 

noise. 

 

2.3.3. VENC Combinations 

 

In order to compare the methods, all used cases the VENC combinations: 

(VENCH, VENCL) = (150,75) cm/s, (VENCH, VENCL) = (150,50) cm/s, and 

(VENCH, VENCL) = (75,50) cm/s. The reasoning is that, according to the theory, 

this provides an effective VENC values of 150 cm/s, respectively, for all methods, 

since β = VENCL/VENCH = 1/2, 1/3, and 2/3. Combining closer VENC values has 

been reported to have reduced noise robustness (Herthum et al., 2020).  

 

2.3.4. Unwrapping Performance Quantification  

 

To quantify and compare the performance of the methods, we counted the number 

of aliased of pixels after the unwrapping methods for each set of additional noise 

levels.  

In order to analyze only the results within the aortic lumen, we applied binary 

masks. First, we converted the magnitude image into a binary image. Then, we 

calculated the distance transform for the binary image. Due to the fact that the 

ascending (AAo) aorta has a circular geometry, we used the watershed transform 

(Preim et al., 2013). Consequently, we identified the circle with the most extensive 

area. The segmentations were visually inspected and manually corrected if needed. 

Finally, we cropped the circles and automatically created the binary masks. 

Then, we applied the mask to the result of each unwrapping method and VENCs 

combination and counted the pixels whose sign differed from the iVENC data.  
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2.3.5. Statistical Analysis 

 

The datasets were checked for normality using a Shapiro-Wilk’s normality test. 

The two-way ANOVA was conducted to examine the unwrap pixels by using the 

unwrapping methods with different noise levels. Homogeneity of variances was 

performed using Levene’s test, with a p-value < 0.05 indicating statistical 

significance. Tukey’s multiple post hoc analysis with Bonferroni correction were 

performed for pair-wise comparison of unwrapping methods and two groups of 

noise levels. The results of the in-vivo datasets were displayed in box-whisker plots. 

The statistical analysis was performed using the software R 4.1.1 (R Foundation for 

Statistical Computing, Vienna, Austria) (R Core Team 2013). 

 

2.4. Results 

 

       Figure 2-2 illustrates the comparison of the unwrapping methods with 

different noise levels (0% and 10%) and VENCs combinations of a particular 

volunteer (26 years old, male).  Figure A-1 shows the results for the same volunteer 

with 5% and 15% noise level. These examples demonstrated that without synthetic 

noise, all the methods delivered similar results. As expected, increasing the noise 

made all unwrapping methods less robust, making the difference in the results of 

the methods more appreciable. Moreover, the figure shows the pixels where there 

was a difference between the ODV and the ODV corrected method (eighth column). 

It is important to mention that with β = 1/2, the number of pixels corrected was less 

than β = 1/3 and β = 2/3.  

To quantify the performance of the methods, the results in terms of unwrapping 

success in the AAo of all volunteers with a different VENCs combination are 

shown in Figure 3-2 and Figure A-2. Statistical analysis revealed that there were no 

extreme outliers, residuals were normally distributed (p > 0.05), and there was 

homogeneity of variances (p > 0.05). On the other hand, there was a statistically 

significant interaction between noise levels and the unwrapping method for the 

different VENCs combinations (iVENC, VENCH, VENCL) = (150, 150, 75), 
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(iVENC, VENCH, VENCL) = (75, 150, 50), (iVENC, VENCH, VENCL) = (150, 75, 

50). Consequently, we found which pairs of unwrapping methods differed using the 

Turkey test receiving a Bonferroni adjustment, indicated with the line mark and 

asterisk. These results revealed a significant difference between the ODV corrected 

and the other methods for β = 1/2, β = 1/3, and β = 2/3 for both noise levels 

analyzed ( ). Also, the ODV method presented statistically significant 

differences from the other methods with β = 1/3 and a noise level of 10%. 

Moreover, the figure shows the pixels where there was a difference between the 

ODV and the ODV corrected method (eighth column). It is important to mention 

that with β = 1/2, the number of pixels corrected were fewer than with β = 1/3 and β 

= 2/3.  

For all methods and noise levels, the most robust VENC combination appeared to 

be , where  and , e.g., 

(VENCH, VENCL) = (150, 75) cm/s for (iVENC, VENCH, VENCL) = (150, 150, 75) 

cm/s. For , the reconstruction became less robust when increasing the noise 

level where  and e.g., (VENCH, 

VENCL) = (150, 50) cm/s for (iVENC, VENCH, VENCL) = (75, 150, 50) cm/s. And 

finally, we obtained the less robust results with  where 

 and  e.g., (VENCH, VENCL) = (75, 

50) cm/s for (iVENC, VENCH, VENCL) = (150, 75, 50) cm/s.  Eventually, if  

increased the distance in the cost functional is much smaller, which explained the 

errors of the method with , see details in (Herthum et al. 2022). 

When comparing all methods, for each combination and noise level, the original 

ODV method showed the largest percentage of aliased pixels compared to the other 

of the methods for all VENC combinations and added noise. After that, the SDV, 

bi-conditional, and tri-conditional showed similar results. The best-performing 

method was the corrected ODV.  

Computation times for a single volunteer dataset analyzed, the ODV and 

ODVcorrected were slower than the bi- and tri-conditional, and the SDV (ODV: ≈ 
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1.11 s, ODVcorrected: ≈ 1.242 s, biconditional: ≈ 0.007 s, tri-conditional: ≈ 0.008 s, 

and SDV: ≈ 0.003 s). 

 

Figure 2-2. Ascending aorta at peak systole of a representative volunteer. (a) 

Magnitude Images: slice prescription and region-of-interest. Phase-differences 

images with VENCs combination of (b) (iVENC, VENCH, VENCL) = (150, 150, 

75), (c) (iVENC, VENCH, VENCL) = (75, 150, 50) cm/s and (d) (iVENC, VENCH, 

VENCL) = (150, 75, 50) cm/s with different levels of synthetic noise, σ. The 

VENCs used by the SDV and ODV methods are in the top part of the figures. First 

column: iVENC, second column: VENCH, third column VENCL, fourth column: 

SDV, fifth column: ODV, sixth column: ODV corrected, seventh column: Different 

between the ODV and ODC corrected method, eighth column: bi-conditional, and 

ninth column: tri-conditional methods. 
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Figure 2-3. Box whisker plots for the evaluation of unwrapping methods of the 

volunteers at peak-systole in the ascending aorta with different levels of synthetic 

noise, σ, with VENCs combination of (first column) (iVENC, VENCH, VENCL) = 

(150, 150, 75) cm/s, (second column) (iVENC, VENCH, VENCL) = (75, 150, 50) 

cm/s, and (third column) (iVENC, VENCH, VENCL) = (150, 75, 50) cm/s. The 

SDV and ODV methods used in (first column) (VENCH, VENCL) = (150,75) cm/s β 

=1/2, (second column) (VENCH, VENCL) = (150, 50) cm/s β = 1/3, and (third 

column) the SDV (iVENC, VENCL) = (150, 50) cm/s β = 1/3 and the ODV method 

(VENCH, VENCL) = (75, 50) cm/s β = 2/3. Aliased number of pixels after the 

unwrapping methods were performed as a percentage. On each box, the central 

mark is the median, the bottom and top edges of the box are the 25th and 75th 

percentiles, respectively, and the whiskers extend to the most extreme data points 

not considered outliers. The significance of the interaction between noise levels and 

the unwrapping method for the different VENCs combinations is in the top part of 

the figures with their p-values. The symbol * indicates statistically significant 

differences (p < 0.05). 
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2.5. Discussion 

 

This work reviewed, theoretically analyzed, and compared five unwrapping 

methods based on an in-vivo dataset based on two acquired VENCs: the SDV, 

ODV, ODV corrected, and bi- and tri- conditional methods, where we developed 

the ODV corrected method based on theoretical considerations. This is the first 

reported comparison of all these methods.  

It was shown that the most robust unwrapping method appeared to be the 

corrected ODV method without noise. In contrast, the other methods showed 

similar performance in unwrapping success for all values of β tested in this work.  

With the addition of synthetic noise to the in-vivo datasets, the percentage of 

failed unwrapping increased for all values of β. We found that for β = VENCL/ 

VENCH = ½ all methods performed similarly. These results were consistent with 

Carrillo et al. (Carrillo et al. 2018) and Herthum et al. (Herthum et al. 2022).  For 

that β value, the most robust unwrapping methods appeared to be the corrected 

ODV method (p < 0.005), obtaining the lowest failure percentage (mean values for: 

β = 1/2, 0.68% and 0.93% for noise levels of 0% and 10%, respectively; β = 1/3, 

0.99% and 1.83% for noise levels of 0% and 10%, respectively; and β = 2/3, 3.94% 

and 4.36% for noise levels of 0% and 10%, respectively) compared with the other 

methods. Our statistical analysis can adequately determine the difference between 

the pair of unwrapping methods. We considered the mean percentage of aliased 

pixels after two unwrapping methods of 10% and 11%, respectively, and a standard 

deviation of 1% with a power of 0.8. Furthermore, the unwrapping method had 

similar behavior independent of the noise level. As expected, as noise level 

increased of the number of aliased pixels increases as well. 

To make a fair comparison among all methods, we took full advantage of the 

VENCs proposed by Ma et al. (Ma et al. 2020).  For the SDV approach, in case 

iVENC > VENCH, we used  rather than  as the original SDV would have 

used it, maintaining the effective VENC value. Otherwise, Lee et al. (Le et al. 

1995) reported that the SDV method cannot handle the aliasing when both VENC 

values are lower than the maximum velocity. 
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Carrillo et all did not perform a detailed analysis of robustness of unwrapping 

methods to noise, only qualitatively on synthetic data. Here, we presented such 

analysis both numerically and theoretically. For the ODV method, here we used the 

“reduced” version recently reported by Herthum et al. (Herthum et al. 2022). This 

is based on the statistical analysis in Appendix A, which includes the fact that the 

velocity images shared the background phase with different VENC values. 

Furthermore, we developed a correction method for the ODV based on the 

additional information provided by the method. Although it works for single 

isolated pixels with incorrect values, it is important to mention that our algorithm 

may fail in a region with contiguous and wrapped pixels if the number of aliased 

pixels is similar to the number of pixels in the window kernel. Nevertheless, as we 

observed in the experiments, the correction algorithm worked adequately, even in 

extreme cases as when we added 15% noise to the images. In that case, we had a 

few contiguous pixels aliased, and the algorithm unwrapped most of them. Also, 

our correction required more computational time than the ODV method. However, 

the ODV method was slower than SDV, bi-, and tri-conditional methods. 

Nevertheless, the computing time remained in the order of seconds, and therefore, it 

should not affect the applicability of the (corrected) ODV methods in clinical 

practice. It is important to clarify that we limited our study to methods where the 

velocity encoding is varied within the same spatial direction. Approaches using 

“diagonal” directions such as Johnson et al. and Zwart et al. (Johnson et al. 2010) 

(Zwart et al. 2013) were not included in the analysis since they dealt with different 

input images. 

 

 

2.6. Limitations 

 

From the acquisition point of view, the PC- MRI data were acquired using 

standard single-VENC PC-MRI sequences. Nevertheless, we performed the 

acquisitions so that all other acquisition parameters except VENC had the same 

value. Further, we only used one common phase to process all data for all methods, 
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and therefore, this single VENC acquisition would not affect the comparison of all 

methods.   Another limitation is that all methods were assessed in healthy 

volunteers; future studies will investigate all methods in patients with stenotic 

valves, areas with high velocity, or in 4D flow sequences of a large FOV. Another 

issue is that phase errors could arise from a patient's motion during the MRI 

acquisition (Bernstein et al. 1992). We attempted to control this factor to the best of 

our ability, as the acquisition was performed under breath-holds; any residual 

motion may have affected all methods similarly as all methods were acquired in the 

same scan session. Finally, although we tested the method on 26 volunteers, future 

work will use a flow phantom to test these methods in a controlled experiment. 

Using a phantom flow will allow us to test the Dual-VENC unwrapping methods 

under different conditions of flow (turbulent and retrograde conditions), noise, and 

resolutions (Montalba et al. 2018). 

 

 

2.7. Conclusions 

 

In this study, we found that the quality of the results depends on the proportion of 

the VENCs of the input images, with VENCH/VENCL = 0.5 being the best 

performing combination for all methods. For that VENC combination, the most 

robust unwrapping methods to noise was the corrected ODV approach, while the 

other methods show a similar performance in terms of unwrapping success. 
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3. SECOND ARTICLE: COMPREHENSIVE ASSESSMENT OF LEFT 

INTRAVENTRICULAR HEMODYNAMIC USING A FINITE ELEMENT 

METHOD: AND APPLICATION TO DILATED CARDIOMYOPATHY 

PATIENTS 

 

3.1. Introduction 

 

  Dilated cardiomyopathy (DCM) is more common than non-ischemic 

cardiomyopathy and leads to left ventricular dilation and systolic and diastolic 

dysfunction (Hershberger et al., 2007) (Mahmaljv, et al., 2021). The process that 

alters the heart’s size, geometry, and function is associated with increased 

hemodynamic demands, which cause abnormal mechanical stress in the muscle 

(Hill, et al., 2008) (Wong et al., 2004). The progression is associated with an 

incremented risk of heart failure and sudden cardiac death (McNally et al., 2007). 

However, poor survival and high mortality rate reveal that effective treatment of 

DCM-related heart failure remains challenging. Pharmacological and 

resynchronization therapies have improved DCM treatment by halting disease 

progression and leading to reverse remodeling (Hershberger et al., 2007). 

   The preferred imaging technique for assessing the heat in DCM patients is 

cardiovascular magnetic resonance (CMR). CMR allows the acquisition of 

anatomical, cine, and velocity images, including 4D Flow MR (McNally et al., 

2007) (Frangi et al., 2007) (Markl et al., 2012) (Dyverfeldt et al., 2015).    

4D Flow allows a qualitative and quantitative analysis of several hemodynamic 

parameters. It has been applied extensively in the great vessels, particularly in the 

aorta (Sotelo et al., 2016) (Sotelo et al., 2018) and in the left ventricle (LV) for 

assessing intraventricular flow in some cardiovascular diseases (Wong et al., 2009) 

(Töger et al., 2012) (Al-Wakeel et al., 2015) (Svalbring et al., 2016) (Hirtler et al., 

2016) (Suwa et al., 2016) (Browning et al., 2017) (Fredriksson et al., 2018). 

Previous studies have demonstrated that lower kinetic energy values in diastole are 

associated with the deterioration of ventricular filling, induced by morphological 
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alteration commonly found in Fontan patients, mitral regurgitation, and LV 

dysfunction or remodeling (Al-Wakeel et al., 2015) (Svalbring et al., 2016) 

(Fredriksson et al., 2018). Additionally, turbulent kinetic energy has shown a 

stronger association with the ventricle’s remodeling in patients with Tetralogy of 

Fallot and higher values in DCM patients compared with normal subjects (Töger et 

al., 2012). Vortex formation has been studied qualitatively (vortex size and 

location) and quantitatively (Lagrangian Coherent Structures and the curl of 

velocity) (Kanski et al., 2015) (Hirtler et al., 2016) (Suwa et al., 2016) (Browning 

et al., 2017). These studies suggest that parameters associated with the 3D 

intraventricular flow may be critical for LV filling and ejection and could be 

relevant to the development of dilation, dysfunction, and prognosis in patients with 

heart diseases. While these measures have a potential role in describing 

intraventricular flow, the difficulties of implementing them have led to the analysis 

of only a few combinations of these parameters in a single cohort of patients 

(Kanski et al., 2015) (Hirtler et al., 2016) (Suwa et al., 2016) (Sotelo et al., 2016) 

(Browning et al., 2017) (Sotelo et al., 2018).  

   Due to the multidirectional velocity data, although impressively comprehensive, 

it may need to be supplemented by more selective flow imaging at high temporal 

and spatial resolutions or computational fluid dynamics simulation. Reaching 

conclusions regarding small-scale methodology, which comprehensively describes 

the characteristics of intraventricular flow, could improve the use of intraventricular 

4D Flow for clinical research and potential translation to clinical settings. 

   In this work, we adapted a method for quantifying 4D Flow in the aorta (Kanski 

et al., 2015) (Sotelo et al., 2016) (Sotelo et al., 2018). We modified the 

methodology applied in the left ventricle to obtain several hemodynamic parameters 

from a single segmentation from a 4D Flow dataset and cine MRI. To show the 

applicability of this approach, we performed a proof-of-concept study in which we 

applied the method in a small cohort of DCM patients to find which parameters 

were different from volunteers. We obtained three-dimensional hemodynamic 

parameters, including kinetic energy, vorticity, helicity density, viscous dissipation, 

and energy loss (Pedrizzetti et al., 2014) (Sotelo et al., 2015) (Al-Wakeel et al., 
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2015) (Zajac et al., 2015) (Arvidsson et al., 2016) (Sjöberg et al., 2017) (Sotelo et 

al., 2018). 

 

3.2. Materials and Methods 

 

3.2.1. Population 

 

Table 3-1. Demographical and clinical data for healthy and DCM patients. All 

quantitative data are expressed as the median (range). HR: Heart Rate, EF: Ejection 

Fraction, LVSV: Left Ventricle Stroke Volume, CO: Cardiac Output, LVEDV: Left 

Ventricle End-Diastolic Volume, and LVESV: Left Ventricle End-Systolic Volume. 

* indicates statistically significant differences (p < 0.05). 

 

   DCM Group 

HV DCM p-Value 

LVEF ≥ 50 

(Complete-

Responders) 

LVEF < 50 

(Non-

Responders) 

p-Value 

N 12 13  5 8  

Age (years) 39 (27,55) 51 (29,62) 0.060 40 (29,62) 53 (44,58) 0.502 

Gender 

(female:male) 
5:7 6:7 0.821 3:2 3:5 0.429 

Weight (kg) 68 (50,111) 83 (43,116) 0.213 90 (72,116) 72.5 (43,95) 0.071 

Height (cm) 173 (163,188) 168 (155,178) 0.203 168 (163,178) 166.5(155,175) 0.454 

HR (bpm) 64 (58,78) 65 (56,101) 0.743 65 (56,101) 67.5 (57,89) 0.698 

EF (%) 62.7 (54,69) 46 (29,66)  < 0.001* 55 (51,66)  44 (29,48) 0.002* 

LVSV (mL) 
95.5 

(66.3,122.9) 
62 (53,132.1) 0.039* 61 (53,89) 79 (55,132,1) 0.183 

CO (L/min) 6.4 (4.8,7.9) 6.1 (4.4,7.9) 0.327 6.3 (5.2,7.9)  5.9 (4.4,7.7) 0.524 

LVEDV (mL) 
153 

(105.6,197.1) 
199(125,364.2) 0.015* 187 (151,201)  

219.5 

(125,364.2) 
0.050* 

LVESV (mL) 51 (39,88) 92 (37,232.1) 0.004* 75 (37,92)  125 (68,232.1) 0.045* 

 

 

   A total of twelve healthy volunteers (HV), mean age 40.8 years (range 27–55 

years), and thirteen DCM patients, mean age 48.7 years (range 29–62 years), 
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matched according to age and gender, were included in this research. 

Demographical and clinical data are described in Table 1. At the time of diagnosis, 

DCM was defined as the presence of symptoms and signs of heart failure with 

echocardiographic signs of ventricular enlargement and systolic myocardial 

dysfunction in the absence of hypertension, valve diseases, or significant coronary 

artery diseases sufficient to cause global systolic impairment, by the definition of 

the European Society of Cardiology (Elliott et al., 2008). Our DCM cohort all 

received treatment with an improved LV ejection fraction (range 51–66%) and LV 

volume indices at CMR imaging. All patients received standard guideline-directed 

treatment for DCM following the 2008 heart failure guidelines from the European 

society of cardiology. The details of treatments were not available, as our center is 

the referral center for several clinics for cardiac CMR. The HV had normal 

electrocardiograms and echocardiographic examinations without valvular or 

ventricular dysfunction. All subjects participated under informed consent, with data 

collection approved by the Regional Ethics Committee, South East London, UK 

(REC, 12/LO/1456). 

 

3.2.2. Data Acquisition 

 

   Multi-slice 2D cine balanced steady-state free precession (b-SSFP) and 4D 

Flow MRI data were acquired in all subjects using a clinical 1.5 T MT Scanner 

(Philips Achieva, Philips Medical Systems, Best, The Netherlands). During the 

MRI examination, multi-slice b-SSFP was used to acquire short-axis morphological 

images in 40 frames with 8 mm slice thickness, using retrospective cardiac gating. 

Acquisition parameters were echo time (TE) 1.4 ms, repetition time (TR) of 2.8 ms, 

flip angle (FA) of 60° and acquired and reconstructed pixel sizes were 2.47 × 2.53 

mm2 and 1.45 mm2, respectively. 4D Flow MRI data were acquired during free-

breathing with MR parameters, as follows: TE of 2.3 ms, TR of 4.7 ms, FA of 6°, 

velocity encoding of 130 cm/s, and spatial resolution (acquired and reconstructed) 

2.5 × 2.5 × 2.5 mm3. These settings gave a temporal resolution of 58 ms. After the 
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acquisition, the 4D Flow MRI data were reconstructed into 24 cardiac phases on the 

MRI system. 

 

3.2.3. Data Analysis 

 

   The 4D Flow MRI datasets were processed using an-house MATLAB library 

(The MathWorks Inc., Natick, MA, USA), which included the registration of the b-

SSFP cine and 4D Flow MR images, interpolation of the b-SSFP images, 

segmentation of the LV, and generation of the finite element mesh (Figure 3-1). The 

Eidolon software was used to perform the registration between the multi-slice b-

SSFP and the 4D Flow MRI (King’s College London, London, UK) (Kerfoot et al., 

2016). To obtain a smooth tetrahedral mesh, we doubled the number of slices in the 

b-SSFP images by using a cubic interpolation of values at neighboring grid points 

in each respective dimension, obtaining a final voxel size of 1.43 × 1.43 × 4.04 

mm3. LV endocardium was automatically segmented throughout all cardiac phases 

in the short-axis cine b-SSFP images, using the image analysis software Segment 

v2.2R6410 (Medviso AB, Lund, Sweden) (Heiberg et al., 2005) (Heiberg et al., 

2010) (Tufversson et al., 2015). The segmentation was visually inspected and 

manually corrected if needed. Segmentations were then used to generate a binary 

mask. Afterward, we created a tetrahedral mesh using the iso2mesh MATLAB 

Toolbox (Fang et al., 2009). Once the mesh was constructed, we computed the 

velocity vector at each mesh node from the 4D Flow datasets using a cubic 

interpolation. 3D maps of vorticity, helicity density, viscous dissipation, energy 

loss, and kinetic energy fields were then calculated using a previously published 

finite element approach (Sotelo et al., 2015) (Sotelo et al., 2016) (Sotelo et al., 

2018). The description of the equations used to calculate each hemodynamic 

parameter is presented in Table B.1. The parameters were averaged at peak systole, 

e-wave, and end-diastole using one timeframe before and after to reduce noise in 

the data. 
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3.2.4. Local Hemodynamics 

 

   A 16-segment model was used to divide the LV. In contrast to a standardized 

nomenclature, a minor adjustment was made (Elliott et al., 2008). Due to the 

generally intricate shape of the apical region of the LV, region 17 was excluded 

from our analysis. Accordingly, LV mesh was divided into 16 segmentations. The 

centerline of the LV was calculated automatically by detecting the centroid of the 

LV contour in each slice and connected to create a line. To determine the three 

sections of the LV, we divided the centerline into three equal parts perpendicular to 

the long axis of the heart. An additional point was then manually placed at the 

junction between the right ventricular free wall and the interventricular septum on 

the LV. Based on these positions, landmarks were uniformly distributed along the 

boundaries. Each section was then partitioned into six segments of 60° each on 

basal and mid-cavity sections and four segments of 90° each on apical section 

(Figure 3-1f). Finally, for visualization purposes, we used the scientific software 

ParaView version 5.3.0 (Kitware, Clifton Park, NY, USA). 
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Figure 3-1. Schematic description of the quantification process. (a) First, we 

performed registration of the 4D Flow with the b-SSFP images. (b) Second, we 

doubled the number of slices in the b-SSFP images, (c) then the LV segmentation 

and tetrahedral mesh were generated. (d) We estimated the cardiac phases under 

study (e), and we transferred the velocity information at each node of the mesh from 

the 4D Flow MRI datasets using cubic interpolation. (f) Then, we calculated 

hemodynamic parameters under study. (g) Finally, the mean values of 

hemodynamic parameters were included in a bullseye plot to compare volunteers 

and DCM patients.    

 

 

3.2.5. Statistical Analyses 

 

   Normal distribution in population demographics was evaluated using the 

Shapiro-Wilk test. Differences between groups for continuous parameters were 
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assessed by a Student t-test if they presented a normal distribution, and the Mann-

Whitney U test otherwise. The χ2 test was applied for categorical variables, which 

were reported as percentages. A p-value < 0.05 was considered statistically 

significant. The statistical analyses were performed using GraphPad Prism version 

6.0.1 (GraphPad Software Inc., San Diego, CA, USA). 

   These data were displayed in box-whisker and bullseye plots for global and 

local analyses, respectively. Additionality, a correlation matrix-based hierarchical 

clustering method was introduced to extract multiple correlation patterns from 

hemodynamic parameters. This method can effectively identify highly correlated 

data. The results are described with a tree structure plot called a dendrogram. The 

present study used Pearson’s correlation method to measure the similarity between 

hemodynamic parameters (Gu et al., 2010). 

   Furthermore, a sensitivity study was performed by looking at changes in the 

hemodynamic parameters subjected to the LV segmentation changes. We increased 

and decreased the size of the LV cavity from the first segmentations by moving the 

segmentation contour in 0.5 to 2 pixels of the b-SSFP image, equivalent to 0.72 to 

2.89 mm. We compared the results with the original LV segmentation’s respective 

mean value at each cardiac phase studied. We used the Kruskal-Wallis test to 

compare the variables across the different LV segmentation, with a p-value < 0.05 

indicating statistical significance. The significance level was adjusted by using 

Dunn’s test correction. 

   To assess the inter-observer agreement, data were analyzed by two independent 

observers, one with three years of experience in MR LV quantification and the other 

a medical technologist with no previous experience in this field. In addition, re-

analyzed images with a 1-month interval to evaluate the intra-observer 

reproducibility. Inter- and intra-observer reproducibility were analyzed using 

Bland-Altman plots, and the results are shown in Appendix B. 
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3.3. Results 

 

3.3.1. Study Population 

 

   There were no significant differences in age and heart rate (Table 3-1). 

However, ejection fraction and stroke volume were lower in DCM patients than 

volunteers, while end diastolic and end-systolic volumes were larger. These 

changes indicated that the LV in DCM patients was enlarged and its cardiac 

function was reduced, which is consistent with the pathological characteristics of 

DCM (Hershberger et al., 2007) (Mashmaljy et al., 2021). Additionally, eight 

patients still showed significantly impaired systolic function at CMR’s time (non-

responders), and five patients showed a complete response to treatment (complete 

responders). Between DCM groups, complete- vs. non-responders, there were 

differences in ejection fraction, end-diastolic volume, and end-systolic volume. 

 

3.3.2. Global Hemodynamics 

 

   Assessment of global hemodynamic parameters is shown in Figure 3-2 and 

Table 3-2. Volunteers showed higher hemodynamics values than patients at peak 

systole and e-wave, except for helicity density. Remarkably, hemodynamic 

parameters in complete responder DCM patients remained low compared to 

volunteers. We found statistical differences between HV and DCM patients: non- 

and complete responders at peak systole and e-wave in velocity, vorticity, viscous 

dissipation, energy loss, and kinetic energy. In all cases, p-values were lower or 

equal to 0.005. There were no statistical differences in the parameters at end-

diastole. Furthermore, we did not find statistical differences between DCM groups. 

In addition, ROC curves showed that previous parameters discriminated between 

HV and DCM patients (Figure A.7).  
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Table 3-2. Global hemodynamics data for HV, complete-, and non-responders 

DCM patients. All quantitative data are expressed as the mean ± standard deviation. 

*,+ Indicates statistically significant differences (p < 0.05). 

  DCM Group p-Value 

 HV 
Complete-

Responders 

Non-

Responders 

HV vs. Complete-

Responders 

HV vs. Non-

Responders 

Peak-systole      

Velocity (m/s) 0.140 ± 0.014 0.099 ± 0.007 
0.096 ± 

0.008 
<0.001 * <0.001 + 

Kinetic Energy (µJ) 43.722 ± 4.592 29.335 ± 1.917 
31.288 ± 

2.044 
<0.001 * <0.001 + 

Vorticity (1/s) 20.306 ± 2.075 12.934 ± 0.814 
13.331 ± 

1.251 
<0.001 * <0.001 + 

Helicity Density 

(m/s2) 

−0.042 ± 

0.004 
0.036 ± 0.161 

−0.077 ± 

0.139 
0.125 0.417 

Viscous Dissipation 

(1/s2) 

970.840 ± 

412.093 
412.093 ± 61.107 

421.080 ± 

54.870 
<0.001 * <0.001 + 

Energy Loss (ηW) 
173.080 ± 

39.387 
35.284 ± 14.144 

47.734 ± 

12.935 
<0.001 * <0.001 + 

E-wave      

Velocity (m/s) 0.187 ± 0.059 0.097 ± 0.004 
0.099 ± 

0.014 
0.007 * <0.001 + 

Kinetic Energy (µJ) 5.567 ± 1.810 3.008 ± 0.074 
3.005 ± 

0.423 
0.007 * <0.001 + 

Vorticity (1/s) 26.309 ± 7.895 14.633 ± 0.755 
14.931 ± 

1.963 
0.005 * <0.001 + 

Helicity Density 

(m/s2) 
0.106 ± 0.441 0.077 ± 0.065 

0.056 ± 

0.119 
0.907 0.785  

Viscous Dissipation 

(1/s2) 

1208.091 ± 

574.696 
393.994 ± 26.632 

370.314 ± 

80.785 
0.007 * <0.001 + 

Energy Loss (ηW) 
217.440 ± 

126.751 
28.408 ± 6.340 

24.329 ± 

11.540 
0.005 * <0.001 + 

End-Diastole      

Velocity (m/s) 0.075 ± 0.015 0.077 ± 0.005 
0.073 ± 

0.002 
0.796 0.673 

Kinetic Energy (µJ) 2.291 ± 0.423 2.359 ± 0.165 
2.266 ± 

0.063 
0.739 0.871 

Vorticity (1/s) 13.629 ± 2.255 12.444 ± 0.633 
12.203 ± 

0.552 
0.273 0.099 

Helicity Density 

(m/s2) 

−0.025 ± 

0.084 
−0.082 ± 0.064 

−0.027 ± 

0.096 
0.201 0.979 

Viscous Dissipation 

(1/s2) 

300.577 ± 

89.250 
289.131 ± 54.300 

256.496 ± 

16.779 
0.795 0.188 

Energy Loss (ηW) 11.162 ± 7.191 10.459 ± 7.757 
8.875 ± 

1.896 
0.859 0.395 
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Figure 3-2. Box whisker plots for hemodynamic parameters (a–f) in the entire 

LV cavity of HV and DCM patients groups at peak systole, e-wave, and end-

diastole. On each box, the central mark is the median, the bottom and top edges of 

the box are the 25th and 75th percentiles, respectively, and the whiskers extend to 

the most extreme data points not considered outliers. *,+ Indicates statistically 

significant differences (p < 0.05).extreme data points not considered outliers. *,+ 

Indicates statistically significant differences (p < 0.05). 

 

   The total computational time used to process the data, once the multi-slice b-

SSFP was segmented and registered, varied between 30–40 s for one cardiac phase, 

using a standard computer (3.4 GHz Intel ® Core i7TM, 16 GB RAM). 

   Hierarchical cluster analysis (Figure 3-3) provides an alternative method for 

reliable identification of correlation between ejection fraction and hemodynamics 

parameters from 4D-flow MRI. According to their similarities, they are classified 

into two clusters identified at peak-systole, e-wave, and end-diastole. At peak-

systole and e-wave, cluster 1 (black): helicity density; and cluster 2 (red): ejection 
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fraction, energy loss, vorticity, viscous dissipation, velocity, and kinetic energy. 

Finally, at end-diastole, cluster 1 (red): helicity density and ejection fraction, and 

cluster 2 (red): energy loss, viscous dissipation, vorticity, velocity, and kinetic 

energy. This means that ejection fraction correlates with all parameters except 

helicity density at peak systole and e-wave. 

 

3.3.3. Sensitivity Study, Intra-, and Inter-Observer Reproducibility 

 

   Figure 3-4 shows a sensitivity analysis at peak-systole. The relative error in LV 

cardiac volumes and helicity density did not show significant differences between 

groups across LV segmentation. There were significant differences for some 

segmentation for the other parameters, particularly for the velocity magnitude, 

energy loss, and kinetic energy. The hemodynamic parameters showed a relative 

error proportional to the dilatation or erosion of the contour in the segmentation. 

When the segmentation was dilated or eroded 1 pixel or less, the relative error 

differences, with respect to the original segmentation for volunteers and DCM 

patients, were: velocity magnitude (9.03%, 6.78%), vorticity magnitude (5.49%, 

2.74%), helicity density (12.11%, 13.98%), viscous dissipation (6.31%, 3.34%), 

energy loss (3.59%, 5.89%), and kinetic energy (7.66%, 6.09%). Similar results 

were obtained at e-wave and end-diastole, as shown in Figures B.8 and B.9. Those 

errors were more significant, particularly when the segmentation was dilated or 

eroded by more than 1 pixel. Helicity density and energy loss showed greater 

dependency on the segmentation error. 

   Regarding reproducibility, there was an excellent agreement of inter- and intra-

observer analysis of global hemodynamic parameters. Details are given in the 

Appendix B. 
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Figure 3-3. Dendrogram and hierarchical clustering results based on average 

linkage method for ejection fraction and hemodynamic parameters. EF: ejection 

fraction, V: velocity, KE: kinetic energy, Vo: vorticity, HD: helicity density, VD: 

viscous dissipation, and EL: energy loss. 
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Figure 3-4. Relative error values of the volume (a) and each hemodynamic 

parameter (b-g) obtained comparing the reference segmentation with segmentations 

given by erosion or dilatation for each group of volunteers and patients at peak 

systole. * indicates statistically significant differences (p < 0.05). 

 

3.3.4. Local Hemodynamics 

 

   Figure 3-5 shows the bullseye plots of the hemodynamic parameters for 

volunteers and DCM patients at peak systole. More areas with statistical differences 

were observed mainly in velocity magnitude and kinetic energy, particularly in 

anteroseptal, inferior, inferolateral basal, anterior, inferoseptal, inferior, inferolateral 

mid-cavity, anterior, septal, and lateral apical segments (all p-values < 0.033). 

Additionally, vorticity magnitude showed statistical differences in anteroseptal 

basal (p = 0.045) and inferoseptal mid-cavity (p = 0.046) segments. Energy loss 

showed statistical differences in inferoseptal (p = 0.029) and inferolateral (p = 

0.046) mid-cavity segments and in anterior (p = 0.023), septal (p = 0.070), and 

inferior (p = 0.077) apical segments. Helicity density and viscous dissipation did 

not show statistical differences in any parcellation. 
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   Figure B.10 shows the comparison at the e-wave. Similar to peak systole, 

statistical differences were in velocity magnitude and kinetic energy. Statistical 

differences in viscous dissipation and energy loss were found in inferolateral basal 

and septal, anterior, and lateral apical segments (all p-values < 0.049). Vorticity 

magnitude showed statistical differences in anteroseptal basal (p = 0.049) and septal 

(p = 0.039) and lateral (p = 0.039) apical segments. Helicity density did not show 

statistical differences in any parcellation of the LV.  

 

Figure 3-5. Bullseye plots of mean hemodynamic parameters (a–f) across 16 

segments for volunteers (i) and patients (ii) at the peak systole. * indicates 

statistically significant differences (p < 0.05). 
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   We did not find statistical differences in any segment at end-diastole. 

   The mean values of local hemodynamic parameters for both groups under study 

at peak systole, e-wave, and end-diastole are available in Tables A.2–A.4, 

respectively. 

 

3.4. Discussion 

 

   We developed a method to characterize the left intraventricular hemodynamics 

in the LV from 4D Flow MRI using a finite element method, applied in a cohort of 

DCM patients. This approach estimates vorticity, helicity density, viscous 

dissipation, energy loss, and kinetic energy fields from a single segmentation. The 

hemodynamics results indicated that velocity magnitude, vorticity magnitude, 

viscous dissipation, energy loss, and kinetic energy revealed statistical differences 

between volunteers and patients, particularly at peak systole and e-wave. 

    Some of the parameters reported in this study have been reported before. 

Nevertheless, those parameters have been obtained from different methodologies in 

different cohorts of patients. In our case, we calculated several parameters from a 

single segmentation at once from only one 4D Flow dataset, which is difficult to 

determine with other methods. Some other methods are based on a finite difference 

approach, as in Lorenz et al. (Lorenz et al., 2014). However, it is well known that 

finite difference cannot effectively handle complex geometries, such as those found 

in the cardiovascular system. Neither can impose boundary conditions on irregular 

surfaces directly but they are both sensitive to noise. Fouras et al. showed that this 

approach suffers from a loss of accuracy in estimating hemodynamic parameters 

due to the omission of out-of-plane velocity information (Fouras et al., 1998). On 

the other hand, Sotelo et al. demonstrated the convergence and robustness of the 

finite element method in cardiovascular flow (Sotelo et al., 2016) (Sotelo et al., 

2018). Further, they also showed that the finite element method is both stable and 

accurate in the presence of noise. 

Although DCM mainly affects the systolic function, we evaluated the 

hemodynamic parameters at systole and diastole, as several papers have shown that 
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diastolic function is also affected by this disease. For instance, Friedberg et al. and 

Dragulescu et al. reported that diastolic wall-motion abnormalities are prevalent in 

pediatric DCM. Their presence is associated with diastolic ventricular dysfunction 

and adverse outcomes (Friedberg et al., 2008) (Amorin et al., 2017). Some papers 

have assessed diastolic function in DCM patients using 4D Flow data (Dragulescu 

et al., 2013) (Eriksson et al., 2013). They have described alterations in the flow 

components related to velocity, vorticity, and kinetic energy in a different cohort of 

patients, consistent with our results (Pedrizzetti et al., 2014) (Zajac et al., 2015) 

(Sotelo et al., 2015) (Arvidsson et al., 2016) (Sjöberg et al., 2017).  

   As we showed in this study, intraventricular flow in DCM patients was altered 

compared to healthy volunteers at diastole. In addition, it is interesting to observe 

that, while end-diastolic volume was significantly larger in patients than healthy 

subjects, the maximum hemodynamic values for e-wave and end-diastole were 

smaller in patients than in volunteers. For instance, we found that in the normal LV, 

kinetic energy values were high. The highest kinetic energy values were observed 

during early diastole and regionally distributed near basal LV regions. In contrast, 

early- and end-diastole kinetic energy was lower than normal in a heterogeneous 

group of DCM patients and decreased with the LV volume. As we found in our 

results, this decrease of kinetic energy throughout diastole is associated with 

viscous dissipation and energy loss. That agrees with a previous study, where 

comparisons of inflow characteristics in healthy subjects and DCM patients showed 

more differences at e-wave between the two groups (Friedberg et al., 2008) 

(Dragulescu v 2013) (Eriksson et al., 2013) (Foell et al., 2013) (Eriksson et al., 

2016) (Stoll et al., 2019). These ventricular diastolic function aspects can be 

influenced by dynamic load and contractility; these may vary within the spectrum 

of normal conditions. Furthermore, large ventricles lead to weak suction pumps and 

have high wall tension, which has been previously suggested to cause energy waste 

and alter vortex ring dynamics (Pedrizzetti et al., 2014) (Arvidsson et al., 2016). 

These results indicate that, despite the complex nature of ventricular finding factors, 

clinically useful information regarding left ventricular diastolic function is 
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associated with distinct mitral flow velocity patterns. Therefore, these alterations of 

blood flow may be a factor in developing systolic and diastolic dysfunctions. 

   While eight patients showed significantly impaired systolic function at CMR’s 

time, five showed a complete response to treatment. Despite a nearly normalized 

LV ejection fraction, it showed similar hemodynamic values to non-responders 

DCM patients that were markedly different from volunteers. These results suggest a 

significant increase in the ratio of outflow to inflow during systole in responders 

DCM patients, but the volumes were significantly smaller. Therefore, LV ejection 

fraction cannot reflect subtle ventricular dysfunction, which potentially can be 

better assessed using flow-based parameters because 

of the sensitivity to abnormal pumping function (Friedberg et al., 2008). 

Therefore, the problem of using LV ejection fraction as the pivotal risk marker for 

DCM patients is that this single parameter does not recapitulate the complexity of 

the disease. 

   The location and extent of the changes in intraventricular blood flow, for 

example, the depth (base to apex) of the vorticity changes or the spread of impaired 

flow through the ventricular cavity, can potentially be a sensitive marker of the 

severity of diseases or the progress of the treatment but are hard to quantify because 

of the 3D nature of the flow. We proposed to use the bullseye plots to depict this 

data. These plots allow us to display the most important regional differences and 

extend flow changes in a familiar way to many clinicians. These results could 

facilitate homogeneity among 4D Flow quantifiable analysis for clinical researchers 

and clinicians. 

    The sensitivity study showed a significant relative error, particularly in helicity 

density, when the differences in the segmentations were greater than 1 pixel in 

dilation and erosion cases. We performed this sensitivity study even under the pixel 

resolution of the 4D Flow data. In each pixel, there were four or five elements from 

the mesh, whose flow values were interpolated from neighborhood pixels. When the 

segmentation error was lower or equal to 1 pixel, the maximum mean relative error 

was less than 10% in most hemodynamic parameters studied. Previous research has 

shown that DCM patients have a lower mean value of velocity magnitude than 
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healthy volunteers (Pedrizzetti et al., 2014) (Zajac et al., 2015) (Sotelo et al., 2015) 

(Arvidsson et al., 2016) (Sjöberg et al., 2017). These results were considered when 

the segmentation contour fell inside the LV blood pool. In general, we also 

observed that lower errors were obtained for almost all hemodynamic parameters 

when the segmentation underestimated the LV volumes. 

Inter-observer and intra-observer assessments showed excellent reproducibility of 

the results with negligible mean differences and small limits of an agreement at 

peak systole, e-wave, and end-diastole for all the parameters assessed. It is 

important to note that the high intra- e inter-observer variability was obtained 

because we performed an automatic segmentation process using the software 

Segment. Therefore, the difference in segmentations was minimal, as previously 

reported by Tufvesson et al. (Tufversson et al., 2015). The automated process 

corrections were also minimal, which led to a high intra- and interobserver 

variability. On the other hand, the sensitivity study was performed by modifying a 

reference segmentation in the entire contour by applying erosion or dilatation. This 

result implies a more significant volume difference concerning the reference, and, 

as a result, high sensitivity to the segmentation was obtained. 

   The limited size of this proof-of-concept study did not allow us to investigate 

the prognostic impact, but this will be our aim in future research. Nevertheless, in 

this small cohort of patients, we have shown that the velocity, vorticity, kinetic 

energy, viscous dissipation, and energy loss revealed statistical differences between 

volunteers and patients. This finding could be relevant to assess changes in a 

longitudinal study or to study the response to a particular therapy. Additionally, 4D 

Flow derived parameters showed that, in responding DCM patients, hemodynamics 

parameters were low, even though they had a recovered ejection fraction. 

Nevertheless, hierarchical cluster analysis underlined that a moderate correlation 

may exist between ejection fraction and 4D Flow-based metrics, which needs to be 

studied further. A clinical study involving more DCM patients should be performed 

in order to corroborate a prognostic impact and hence a clinical relevance of 4D 

Flow analysis in monitoring DCM patients. 
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  The segmentation of the data need was performed over the multi-slice b-SSFP. 

Additionally, multi-slice b-SSFP and 4D Flow images need to be registered before 

analyzing the 4D Flow data. Ideally, the segmentation would be made directly on 

the 4D Flow data. However, the contrast between the blood pool and myocardium 

in our 4D Flow data was insufficient to perform accurate segmentation. New 

sequence developments will likely improve contrast in 4D Flow acquisitions, 

potentially allowing direct segmentation from the 4D Flow data. 

 

3.5. Conclusions 

 

   This study describes a methodology for quantitative evaluation of 

intraventricular hemodynamics using a single segmentation from a 4D Flow dataset. 

We demonstrate that velocity, vorticity, viscous dissipation, energy loss, and kinetic 

energy can characterize changes in intraventricular flow in DCM patients compared 

to healthy volunteers. Further studies should focus on the impact of different 

treatments of DCM patients on those parameters. Our evidence shows that, although 

ejection fraction may be recovered, the hemodynamic parameters remain low. 
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4. THIRD ARTICLE: IDENTIFICATION OF HEMODYNAMIC 

BIOMARKERS FOR BICUSPID AORTIC VALVE INDUCED AORTIC 

DILATION USING MACHINE LEARNING 

 

4.1. Introduction 

 

   Bicuspid aortic valve (BAV) is the most common congenital cardiac defect 

(Kang et al., 2013) with a prevalence of 1-2% in the general population (Siu et al., 

2010). Clinical manifestations of BAV are aortic dilation, aneurysm, and dissection, 

which typically develop in the ascending aorta (AAo) (Evangelista et al., 2018) 

(Girdauskas et al., 2018) and often extend to the aortic arch (AArch) (Dux-Santoy 

et al., 2019). Current clinical management of aneurysms in BAV patients relies on 

quantifying aortic diameter, but its predictive capacity is limited (Pape et al., 2007). 

Therefore, there is a need for new biomarkers to refine disease monitoring and 

improve patient risk stratification. 

   The most common BAV leaflet fusion phenotype involves the right-left cusps 

and right-non-coronary cups, with a prevalence of around 80% and 17%, 

respectively (Schaefer et al., 2008) (Evangelista et al., 2018). Recent studies have 

demonstrated that BAVs cause altered blood flow hemodynamic in the AAo, which 

implies increased flow asymmetry, helicity, and wall shear stress (WSS) overloads 

on the aortic wall (Liu et al., 2018). The WSS abnormalities are associated with 

histological and proteolytic of the aortic wall damage demonstrating a role for 

hemodynamics in the etiology of BAV aortopathy (Bissell et al., 2013) (Atkins et 

al., 2014) (Allen et al., 2015) (Pasipoularides et al., 2019) (Soulat et al., 2021) 

(Guala et al., 2021). Nevertheless, increased WSS is not a unique feature in BAV 

disease. Aortic valve stenosis can also subject the aortic wall to high WSS 

(Boudoulas et al., 2015). Furthermore, many other hemodynamic parameters 

beyond WSS can be used to study aortic blood flow in BAV patients, making it 

difficult to conclude which has more association to BAV aortopathy, especially 

with traditional statistical assessment.  
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   Artificial intelligence (AI) methods have gained increased attention in 

cardiology and cardiovascular imaging (Dey et al., 2019). For instance, in cardiac 

magnetic resonance (CMR), AI methods have been applied to segment left and right 

ventricles and aorta to enable automatic cardiovascular volume assessment and 

enhance reproducibility in clinical assessments (Avendi et al., 2017) (Tan et al., 

2018) (Tao et al., 2019) (Campello et al., 2021) (Aviles et al., 2021). Pattern 

recognition, i.e., the automatic discovery of regularities in data through machine 

learning (ML), has been recently applied to genomic data to stratify BAV patients, 

identify distinct patterns of aortopathy, and characterize their association with valve 

morphology (Ambale-Venkatesh et al., 2017) (Wonjnarski et al., 2018) (Cantor et 

al., 2021). The absence of clear associations between several hemodynamics 

parameters has limited the use of a few uncorrelated parameters to characterize 

BAV pathology (Girdauskas et al., 2011).  

   Assessing the impact of several hemodynamic parameters in BAV dilation is 

difficult due to extensive data. Different methods of feature selection (FS) can be 

used to reduce dimensionality and redundancy of data, which allows determining 

which features discriminate best between two or more classes. Given the increasing 

capacity to extract a large amount of data from images, FS methods have become 

essential to achieve effective classifications. FS selection method is mainly used to 

provide accurate classifier models for classification tasks (Mery 2015).  

   This study aimed to identify hemodynamic biomarkers for BAV patients and 

their relationships with aortic dilation. For that purpose, we analyzed and extracted 

multiple correlation patterns of hemodynamic parameters, finding which showed 

high collinearity between them, which allows us to reduce their size to few 

variables. And finally, we applied machine learning algorithms to discriminate 

between healthy volunteers (HV) and BAV patients with and without ascending 

aorta dilation.  
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4.2. Methods 

 

4.2.1. Study Population 

 

    Data obtained from a previous prospective study (Dux-Santoy et al., 2019) was 

used in this work. We included sixty-seven BAV patients with a fusion of right and 

left coronary cusps (67.16 %) or right and noncoronary cusps, AAo diameters were 

less or equal than 45 mm, and had no severe aortic valve disease (aortic 

regurgitation ≤ 3, maximum aortic valve velocity < 3 m/s by echocardiography). 

Patients were recruited at the Hospital Universitari Vall d’Hebron (Barcelona, 

Spain). Other inclusion criteria include age > 18 years; without any congenital heart 

disease, including aortic coarctation; no connective tissue disorders; no previous 

aortic surgery or aortic valve replacement; and no contraindication for CMR. Forty-

eight healthy volunteers (HV) matched for age, sex, and body surface area (BSA) 

were also included. The local ethics committee approved the study, and informed 

consent was obtained from all participants. 

 

4.2.2. Cardiovascular Magnetic Resonance Protocol 

 

    Multi-slice two-dimensional balanced steady-state free precession (b-SSFP) 

and 4D Flow MRI using Vastly undersampled Isotropic Projection Reconstruction 

(VIPR) (Gu et al., 2005) (Johnson et al., 2010) were acquired in a clinical GE 1.5T 

scanner (Signa, General Electric Healthcare, Waukesha, Wisconsin, USA). MRI 

datasets of the thoracic aorta were acquired with retrospective ECG cardiac gating 

with free breathing and without administration of an endovenous contrast agent. 

Acquisitions parameters were: velocity encoding of (VENC) 200 cm/s, a field of 

view of 400×400×400 mm3, scan matrix of 160×160×160 (voxel size of 

2.5×2.5×2.5 mm3), flip angle of 8°, repetition time between 4.2-6.4 ms, and echo 

time between 1.9-3.7 ms. The data were reconstructed offline with corrections for 

background phase, eddy currents, and trajectory errors (Johnson et al., 2012) 



98 

  

according to each patient's nominal temporal resolution, which was ranged between 

21-36 ms.  

 

4.2.3. Aortic Diameters and Valve Morphotype 

 

    BAV morphotype and aortic diameters were assessed using cine MR images 

(Rodríguez-Palomares et al., 2018). The three aortic root cusp-to-commissure 

diameters were measured using double-oblique cine images at the aortic root level 

at end-diastole, and the maximum value was retained for the analysis. AAo 

diameter was measured at the level of the pulmonary artery bifurcation at the end-

diastolic phase. To determine the existence of aortic root or ascending dilation, 

aortic diameters were adjusted with a logarithm transformation to calculate the z-

score for both sinuses (zSoV) and AAo (zAAo) accounting for sex, age, and BSA 

as described by Campens et al. (Campens et al., 2014). A z-core cut-off value was 

used to define the aortic dilation of two standard estimate errors. According to Della 

Corte's classification, patients were categorized concerning the aorta segment 

predominantly or exclusively involved in dilation (Della Corte et al., 2 2014). 

Therefore, patients were classified as non-dilated (NON-DIL BAV) (zSoV ≤ 2 and 

zAAo ≤ 2) and dilated (DIL BAV) (zAAo > 2 and zAAo > zSoV) ascending aorta. 

Patients with only aortic root dilation were excluded from the study. 

 

4.2.4. 3D Quantification of Hemodynamics Parameters  

 

    A detailed description of methods used to quantify hemodynamics descriptors 

is described in previous publications (Sotelo et al., 2016) (Sotelo et al., 2018) (Dux-

Santoy et al., 2020). We briefly explain the methods next. The quantifications were 

done through an in-house MATLAB toolbox (The MathWorks Inc., Natick, 

Massachusetts, USA) [37]. The thoracic aorta was semiautomatically segmented, 

and a segmentation mask was used to generate a tetrahedral mesh (Fang et al., 

2009). Afterward, we used cubic interpolation to compute the velocity vector at 

each mesh node. Thereafter, a finite-element least-squares projection method was 
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used to obtain several continuous 3D maps, including eccentricity, velocity, forward 

velocity, backward velocity, velocity angle, regurgitation fraction, WSS, WSS 

axial, WSS circumferential, oscillatory shear index (OSI), vorticity, axial vorticity, 

axial circulation, helicity density, viscous dissipation, energy loss, and kinetic 

energy were generated. Finally, eight different regions were analyzed in the thoracic 

aorta, four for each segment in the AAo and AArch. In each region, we analyzed the 

mean value for each hemodynamic parameter at an averaged peak systolic data, 

corresponding to the average at one time-frame before peak systole, one at peak 

systole, and one time-frame after to reduce noise in the data, except for 

regurgitation fraction and oscillatory shear index (OSI). These parameters were 

calculated using information along the entire cardiac cycle (Rodríguez-Palomares et 

al., 2018). 

 

4.2.5. Hemodynamic Parameters Analysis: Machine Learning Algorithm 

 

   A machine learning model was designed to select hemodynamic parameters that 

differentiate among three classes: HV, NON-DIL BAV, and DIL BAV. The 

imaging process pipelines extract seventeen hemodynamic features in each of the 

two segments of the aorta. Then, the classifiers assigned the extracted features from 

4D-flow CMR to one of these classes. 

   To build the classifiers, we firstly reduced the dimensionality of the data. For 

this purpose, hemodynamic parameters were selected using sequential forward 

selection (SFS) and principal component analysis (PCA). We chose five features 

using SFS with Fisher objective function and exhaustive search, as shown in 

Supplementary Table C.1.  We used singular value decomposition to perform PCA. 

PCA generates a set of new features; each being a linear transformation of the 

original elements. We decompose the data matrix X of n × p size, where n is the 

number of subjects and p the number of features, using singular value 

decomposition, i.e. 

 (4.1) 
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where U is a unitary matrix, S is the diagonal matrix of singular values si and V 

the right singular vector. Therefore, we can write the covariance matrix as 

 

 

(4.2) 

 

    Meaning that the right singular vector V are principal directions and that 

singular values are related to the eigenvalues of covariance matrix C, via λi = si
2/(n-

1). The principal components are defined by V = USVTV = US. We selected only 

the dominant eigenvectors, representing 95% of the data. Then, we took each 

vector's norm in the new space and leveraged scores. Finally, we obtained the 

indices of the vectors with the largest leverage scores (see Supplementary Table S2) 

(Wall et al., 2003).  

   After features selection, we tested different classifiers. We used the following 

classifiers: k-nearest neighbors (KNN) with 5, 7, 9 neighbors, linear discriminant 

analysis (LDA), quadratic discriminant analysis (QDA), minimum distance, 

Mahalanobis distance, support vector machine (SVM) using both the linear and 

radial basis function kernel (RBF), neural network, and random forest. We used a 

neural network with multilayer perceptron architecture with one hidden layer that 

contains 15 nodes. In our network, the activation function in the output layer was a 

"softmax" unit. Of note, in our experiments, this configuration obtained the highest 

accuracy. We did not use individual decision trees to develop the random forest 

because they tend to overfit. To reduce the effects of overfitting and improve 

generalization, we used bootstrap-aggregated decision trees to combine the results 

of many decision trees. Therefore, to maximize the variance explanation of the 

dependent variable, a variable is selected at each spit/node. In each round of 

training, 1000 decision trees were generated with a maximum allowed tree depth of 

five. 

   We used stratified cross-validation to evaluate the performance of the 

classification. The holdout method was used to divide the data into ten folds (90% 

of the data were used for training and 10% for testing) because it has become the 
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standard method in practical terms (Sotelo 2021). To evaluate the stability of the 

classifier, we repeated this experiment ten times, interchanging training and testing 

data. For each time, the performance defined as the rate of samples correctly 

classified was computed as ηi, for i = 1,…,10. A confusion matrix was constructed 

based on prediction results in each training and validation sample, and the 

corresponding accuracy, precision, sensitivity, and specificity were calculated as the 

mean of the ten percentages of the true classifications that are tabulated in each 

case: η = (η1 + … + η10)/10. In addition, the mean ROC area under the curve (AUC) 

and 95% confidence interval were computed.  

   To validate both the algorithms and hemodynamic features, the performance of 

different pattern recognition classifiers was measured to quantify the amount of 

variance between the three classes of subjects. High classification accuracy shows 

that the proposed system of algorithms and features can be used to differentiate 

among the groups.  

On the other hand, we used t-Distributed Stochastic Neighbor Embedding (t-

SNE) to visualize high-dimensional datasets (classification with all features, SFS, 

and PCA features selected) (van der Maaten et al., 2008).  

   The algorithms were implemented in MATLAB using Balu (Mery 2011) and 

the Statistics and Machine Learning MATLAB Toolbox.  

 

4.2.6. Hemodynamic Parameters Analysis: Hierarchical Clustering  

 

   In order to extract multiple correlation patterns from hemodynamic parameters 

and identify highly correlated data, we used the correlation matrix-based 

hierarchical clustering method. This method grants a dataset into a multilevel 

cluster tree or dendrogram. The distance (dissimilarity) is defined as one minus 

Pearson’s correlation coefficient. It expressed that if two hemodynamic parameters 

had a shorter distance, they are similar, i.e., the distance is 0, the correlation 

coefficient is 1. The variable that quantifies an effective representation of the 

pattern dissimilarities in the dendrogram is the cophenetic correlation (the 

correlation between original and cophenetic distances).  We used the average 
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linkage method to calculate the cophenetic distance to get an average inter-cluster 

distance that allows higher cophenetic correlations. It provided the dendrogram 

illustrating the correlation matrix's hierarchical structure and derived the final 

cluster. At last, based on inconsistency coefficients, we broke down the dendrogram 

obtaining clusters visually differentiated by colors (Gu et al., 2010) (Ciaburro et al., 

2017). 

 

4.2.7. Statistical Analysis  

 

   The software GraphPad Prism version 6.0.1 (GraphPad Software Inc., San 

Diego, California, USA) was used for statistical analysis. In population 

demographics, normal distribution was evaluated using the Shapiro-Wilk test. 

Student t-test and Mann-Whitney U test were applied to find differences between 

groups for continuous parameters with normal and non-normal distributions, 

respectively. For categorical variables we applied χ2 test. A p-value < 0.05 was 

considered statistically significant.  

 

4.3. Results 

 

4.3.1. Demographics 

 

   Demographical and clinical data are described in Table 4.1. HV and BAV 

patients were matched in terms of age, sex, and body surface area. The BAV 

patients presented higher diameter and Z-score than HV at both the aortic root and 

AAo. Seventy-three percent of BAV patients had AAo dilation. We did not find any 

differences other than aortic diameters, and Z scores between patients with and 

without aortic dilation. 

 

Table 4.1. Demographical and clinical data for the healthy volunteers (HV) and 

BAV patients. Quantitative data are expressed as the mean ± SD. BSA, body 

surface area; DBP, diastolic blood pressure; EAo, aortic stenosis; SBP, systolic 
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blood pressure; IAo, aortic insufficiency; and SoV, sinus of Valsalva. * indicates 

statistically significant differences (p < 0.05). 

    BAV Dilation Group 

HV BAV p-value NON-DIL DIL p-value 

N 48 67  18 49  

Age (year) 48.71 ± 

12.57 

47.74 ± 

15.06 

0.998 46.68 ± 

14.35 

48.28 ± 

15.44 

0.698 

Sex 

(female:male) 

23:25 31:44 0.514 5:13 24:25 0.121 

Weight (kg) 70.81 ± 

10.53 

72.18 ± 

13.25 

0.587 74.72 ± 

13.05 

72.42 ± 

13.59 

0.534 

Height (cm) 171.23 ± 

7.82 

169.45 ± 

10.85 

0.364 172.33 ± 

8.60 

168.69 ± 

11.33 

0.221 

BSA (m2) 1.83 ± 0.16 1.83 ± 0.21 0.995 1.88 ± 0.20 1.82 ± 0.22 0.349 

IAo (%)   …   0.246 

None … 73.33  88.89 75.51  

Mild … 10.67  5.56 12.25  

Moderate … 16  5.56 12.24  

EAo (%)      0.359 

None … 89.55  94.44 87.76  

Mild … 5.97  5.56 6.12  

Moderate … 4.48   6.12  

SBP (mmHg) 130.15 ± 

18.85 

134.88 ± 

17.55 

0.114 133.78 ± 

18.12 

135.17 ± 

17.05 

0.773 

DBP (mmHg) 73.41 ± 

10.09 

76.43 ± 8.73 0.128 77.39 ± 6.99 77.33 ± 9.03 0.981 

Diameter SoV 

(mm) 

30.32 ± 3.92 35.91 ± 4.69 < 0.001* 33.28 ±3.74 36.08 ± 4.41 0.019* 

Diameter AAo 

(mm) 

27.89 ± 3.71 39.37 ± 6.74 < 0.001* 32.72 ± 4.17 42.82 ± 5.19 < 0.001* 

Z score SoV -0.25 ± 1.18 1.30 ± 1.30 < 0.001* 0.27 ± 0.82 1.33 ± 1.05 < 0.001* 

Z score AAo -0.14 ± 0.91 2.89 ± 1.52 < 0.001* 0.98 ± 1.07 3.71 ± 0.98 < 0.001* 
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4.3.2. Hemodynamic Biomarkers Selection with SFS and PCA 

 

   From the seventeen hemodynamic features obtained, the five features that best 

differentiated the three classes (HV, NON-DIL BAV, and DIL BAV) were selected 

using both SFS and PCA by eliminating highly correlated or constant features that 

maximized accuracy (see Supplementary Table C.1).  

 

   Regarding SFS, figure 4-1.a shows the maximum separability obtained by each 

of the seventeen hemodynamic features as assessed in both aortic regions. The five 

variables presenting with the lowest separability and resulting in the higher 

accuracy once used in the different classifiers (Supplementary Figure C.1) were 

retained. They correspond to velocity angle, forward velocity, vorticity, backward 

velocity in AAo, and helicity density in AArch. Figure 4-1.b shows the 3D feature 

space obtained using three features (velocity angle in AAo, forward velocity in 

AAo, and helicity density in AArch) for visualization purposes, showing good 

separability among classes. Figure 4-2. a. shows the two principal components of 

PCA. Dimension 1 explains 45.21% variation in the data while Dimension 2 

explains 23.73% variation. Together they explain 68.94% of the variation.  
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Figure 4-1. (a): Feature selection using sequential forward selection (SFS). There 

are five selected features, and they correspond to velocity angle in AAo, forward 

velocity in AAo, helicity density in AArch, vorticity in AAo, and backward velocity 

in AAo (red rectangle). (b): Feature Space in 3D. 
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Figure 4-2. (a) The two principal components PCA. The distance between 

variables and the origin measures the quality of the variables on the factor map. 

Variables that are away from the origin are well represented on the factor map. (b) 

PCA correlation circle that represented the quality of representation of the features 

on factor map. The better its representation on the factor map, is the variable closer 

to the circle’s center. This means that variables located closer than to the center of 

the plot are less important (c) Bar graph of quality of representation. There are five 

selected features, and they correspond to velocity in AArch, forward velocity in 
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AAo, velocity in AAo, energy loss in AArch, and velocity angle in AAo (red 

rectangle). 

   Regarding PCA, figure 4-2.b shows PCA correlation circle that represented the 

quality of representation of the features on a factor map. The better its 

representation on the factor map, is the variable closer to the circle's center. This 

means that variables located closer than to the center of the plot are less important. 

Finally, figure 4-2.c shows a bar graph of the quality of representation of the 

variables on factor maps on all the dimensions. The five top-performing features 

were forward velocity, velocity, velocity angle in AAo, and velocity and energy 

loss in AArch. 

   The computational time of the feature selection is short (approximate 0.05s) 

because we are dealing with a small number of features.  

 

4.3.3. Classification Results 

 

Figure 4-3. t-SNE: t-Distributed Stochastic Neighbor Embedding. (a) All 

features, five selected features by: (b) SFS, and (c) PCA. SFS and PCA results show 

a good separation of the groups. But PCA results show a lower distance between 
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groups, and more NON-DIL BAV subjects can be classified as DIL BAV compared 

to SFS results. 

 

Table 4-2. Accuracy, precision, specificity, and sensitivity of different 

combinations of classifiers and all features, and five features selected by SFS and 

PCA. Each experiment was done using 10-fold cross-validation and repeated 10 

times with a confidence interval of 95%. Bold type means statistically significant 

between the LDA and random forest for all features, SFS, and PCA, respectively 

(p-value < 0.05).  

 LDA Random Forest 

All features SFS PCA All features SFS PCA 

HV class Precision (%) 100.00 ± 0.00 100.00 ± 

0.00 

100 .00 ± 

0.00 

98.01 ± 1.19 99.49 ± 1.12 99.09 ± 1.30 

Specificity (%) 100.00 ± 0.00 100.00 ± 

0.00 

100.00 ± 

0.00 

99.05 ± 0.81 99.45 ± 0.84 100.00 ± 

0.93 

Sensitivity (%) 94.17 ± 2.01 97.49 ± 6.51 97.48 ± 7.44 95.39 ± 1.51 94.22 ± 1.30 97.13 ± 1.62 

NON-DIL 

BAV class 

Precision 69.38 ± 48.42 88.42 ± 

32.40 

63.49 ± 4.80 67.44 ± 9.45 78.02 ± 4.16 79.83 ± 9.80 

Specificity (%) 96.49 ± 5.51 98.41 ± 4.15 95.33 ± 7.51 94.32 ± 1.53 96.39 ± 0.65 96.43 ± 1.70 

Sensitivity (%) 80.36 ± 37.39 86.03 ± 

22.05 

78.42 ± 4.29 80.39 ± 6.41 99.40 ± 2.71 95.02 ± 9.57 

DIL BAV 

class 

Precision 92.48 ± 7.02 93.01 ± 1.38 94.01 ± 1.00 95.50 ± 3.22 100.00 ± 

0.75 

99.03 ± 2.84 

Specificity (%) 95.32 ± 9.80 96.44 ± 7.12 96.43 ± 7.71 97.09 ± 2.19 100.00 ± 

0.55 

99.44 ± 2.09 

Sensitivity (%) 98.05 ± 6.33 99.59 ± 2.60 93.29 ± 1.10 93.44 ± 2.70 97.04 ± 1.32 95.32 ± 2.70 

Accuracy (%) 93.86 ± 2.24 96.31 ± 1.76 91.05 ± 2.29 92.00 ± 1.80 96.00 ± 0.83 96.00 ± 2.70 

    

Both simple (e.g., minimum distance and linear discriminant analysis) and more 

complex (e.g., SVM and neural networks) classifiers were tested using as input 

either all features or the five selected by SFS or PCA. 

   First, we used t-SNE as a tool to visualize high-dimensional data, as showing in 

Figure 4-3. Figure 4-3.a shows t-SNE with 34 features (17 parameters in each of the 

two segments). HV (red) and DIL BAV (blue) groups are separated, but few HV are 
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located close to the DIL BAV group. Nevertheless, the NON-DIL BAV group is not 

clearly separated from the DIL BAV group, and two NON-DIL BAV subjects are 

grouped in the HV class. Figure 4-3.b shows t-SNE with five selected features from 

SFS. Three groups are visualized; still, a few NON-DIL BAV subjects are grouped 

into HV and DIL BAV groups, respectively. Finally, Figure 4-3.c shows t-SNE 

with five selected features from PCA. Their behavior is similar to SFS’s figure, but 

the distance in the three groups is lower, and more NON-DIL BAV subjects can be 

classified as DIL BAV compared to SFS results.  

   The best result was obtained by combining the five features selected by SFS in 

LDA, getting a 96.31 ± 1.76 % classification accuracy on HV, NON-DIL, and DIL 

BAV datasets. Other classifiers, as KNN and SVM-Linear, resulted in an accuracy 

of over 86% and 91.34% using SFS (Supplementary Table C.2). Using PCA as a 

feature selection, almost all classifiers were close to 90% accuracy.  

   The second-best result was obtained by combining the five hemodynamic 

features selected by SFS and random forest, with a 96.00 ± 0.83 % accuracy. 

Actually, there were not statistical differences between random forest and the LDA 

in precision, sensitivity, and specificity in DIL BAV and HV classes, but in NON-

DIL BAV class (Table 4-2). The LDA had a better overall performance in the 

NON-DIL BAV class. However, it showed a larger variance than random forest for 

precision, sensitivity, and specificity in the cross-validation experiment. A diagram 

is showing in Supplementary Figure C.1. Each node contains the feature ID and 

threshold used for splitting. The position of some features, e.g., the relative distance 

from the root, in the random forest reflects the strength of association between 

diameter and hemodynamic parameters and BAV disease. For example, backward 

velocity in AAo is the optimal splitting feature. The optimal splitting feature found 

for the subsets is forward and backward velocity in AAo in the second layer. We 

can measure the association between aortic dilation and hemodynamic parameters 

in BAV disease by summarizing each feature's overall random forest based on these 

ranks. Moreover, we computed the predictor importance estimates from the random 

forest that grows trees using all variables extracted, as showed in Figure 4-4. Bar 

graph stores the increase in mean square error (MSE) averaged over all trees in 



110 

  

ensemble and divided by the standard deviation taken over the trees for each 

feature. The bars with the highest values contain the information of the most 

important features. This suggests that velocity angle in AAo is the most important 

predictor, followed by backward velocity, eccentricity, axial circulation, and 

regurgitation in AAo. The average processing time for feature selection and 

classification was 42s in a 2.3 GHz Intel i7 processor equipped with 8GB of RAM. 

 

Figure 4-4. Predictors’ importance estimation from random forest. The five top-

performing features were: velocity angle, backward velocity, eccentricity, axial 

circulation, and regurgitation fraction in AAo (red rectangle). 

 

   Figure 4-5 shows ROC curves for both combinations with the best performance 

(LDA and random forest) using five features selected by SFS. We noted that the 

ROC curves for HV and DIL BAV classes are high similar, indicating that the 

methods can distinguish these classes. Nevertheless, the NON-DIL BAV class has 

lower results, and this class's imbalance may jeopardize the results. These 

classification methods achieved the best ROC AUC, sensitivity, specificity, 

precision across training and validation samples, and stratified cross-validations 

(Table 4-2). 
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Figure 4-5. The ROC – curve for LDA and random forest with five features 

selected by SFS, displaying for the three classes in the mean ± SD. The NON-DIL 

BAV class has lower results in both classifiers, and this class’s imbalance may 

jeopardize the results. 

 

   Additionally, we performed another experiment to classify only two classes 

(NON-DIL BAV and DIL BAV groups).  We applied the methodology previously 

described and used hemodynamic features in AAo and AArch. Feature selection 

algorithm SFS found their five-top performing features were: velocity angle in 

AAo, regurgitation fraction in AArch, eccentricity in AAo, backward velocity in 

AAo, and oscillatory shear index in AAo. PCA's five best-performing features 

were: velocity in AArch, forward velocity in AArch, velocity in AAo, kinetic 

energy in AArch, and forward velocity in AAo. Using features selected by PCA, 

almost all classifiers get close to 86% accuracy. The best results were obtained by 

combining SFS-selected features using an LDA classifier with 96.18 ± 2.34% (see 

Supplementary Table C.3).  

 

4.3.4. Hemodynamic Parameters Correlation 

 

   Figure 4-6.a shows the Pearson correlation matrix among all hemodynamic 

parameters for all regions and subjects. Supplementary Figure C.2 shows p-values 

obtained by the linear regression between all hemodynamic parameters. Several 



112 

  

parameters show good correlations (e.g., eccentricity and WSS in AAo), which 

indicate that some hemodynamic parameters are highly correlated and can be 

divided into clusters.  

 

Figure 4-6. (a) Correlation matrix obtained by the linear regression, (b) 

dendrogram and hierarchical clustering result based on average linkage method, for 

all hemodynamic parameters of HV and BAV patients, in AAo and AArch regions. 

 

   A total of three clusters were identified as shown in Figure 4-6.b All three 

clusters combine at a much higher dendrogram distance and can be treated as 

individual groups for analysis. Cluster 1 (green): OSI, regurgitation fraction, 

velocity angle, and eccentricity in all regions; and backward velocity in AAo. 

Cluster 2 (red): axial circulation, WSS circumferential, and axial vorticity in all 

regions; backward velocity in AArch; and helicity density, vorticity, viscous 

dissipation, and energy loss in AAo. Finally, cluster 3 (blue): kinetic energy, 

velocity, WSS, WSS axial, and forward velocity in all regions; and energy loss, 

viscous dissipation, vorticity, and helicity density in AArch. This analysis shows 

high collinearity between the variables, which would allow us to reduce their size to 

a few variables. 

   According to hierarchical cluster analysis, we determined the clustering 

corresponding to each feature selected by SFS and PCA. SFS: cluster 1(green): 

velocity angle and backward velocity in AAo, cluster 2 (red): vorticity in AAo; and 
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cluster 3 (blue): forward velocity and helicity density in AAo and Aarch, 

respectively. PCA: cluster 1(green): velocity angle in AAo, cluster 2 (red): velocity 

in AAo, and cluster 3 (blue): forward velocity in AAo, energy loss, and velocity in 

AArch. Hence, we can assume that features by SFS have a better performance than 

those selected by PCA because it has a wide representation of each clustering. 

   Since most parameters were selected from the AAo, we repeated the 

methodology previously described, by selecting only three features from SFS and 

PCA in the AAo, by eliminating highly correlated or constant features that 

maximized accuracy. Each classification experiment is shown in Supplementary 

Table C.4 and C.5. The best result was obtained with the QDA classifier using three 

features selected by SFS: cluster 1 (green): velocity angle, cluster 2 (red): vorticity, 

and cluster 3 (blue): forward velocity, achieving an average of 94.90 ± 2.05 % 

classification accuracy. 

 

4.4. Discussion 

 

   Using ML, we have devised a differentiation algorithm for BAV with aortic 

dilation based on hemodynamic parameters derived from 4D Flow CMR. After 

comparing multiple ML methods, the results showed that the accuracy gained with 

feature selection vs. all features in the final classifiers used is not that considerable 

(Bissell et al., 2013) (Atkins et al., 2014) (Allen et al., 2015) (Boudoulas et al., 

2015) (Pasipoularides et al., 2019) (Soulat et al., 2021) (Guala et al., 2021). 

Nevertheless, considering the large number of flow descriptors proposed to classify 

BAV patients with aortic dilation., the use of feature selection algorithms allows for 

the reduction of the number of input variables used to develop a predictive model 

without losing accuracy. Therefore, we found that combining five hemodynamic 

features selected by SFS and applying them to the LDA classification algorithm 

achieves the best performance with an accuracy of 96.31 ± 1.76%, which is higher 

than the accuracy of random forest (96.00 ± 2.70 %).    

   Both classification tasks with LDA and random forest showed better 

performance when including AAo and AArch than only features in AAo (SFS 
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reaching 93.27 ± 2.34% accuracy and random forest resulting in 94.00 ± 2.00% 

accuracy). This result suggests that for the classification it is important to include 

parameters in AAo and AArch. Further, both classifiers did not show significant 

differences, but in the NON-DIL BAV class. For this class, the LDA was sensitive 

to the selected test data as showed large variance for precision, sensitivity, and 

specificity in the cross-validation experiment.  

   Feature selection algorithm SFS found five-top performing features including: 

velocity angle, forward velocity, vorticity, backward velocity in the AAo, and 

helicity density in the AArch. PCA's five best-performing features were: velocity 

angle, forward velocity and velocity, in the AAo, and velocity and energy loss in 

the AArch. Interestingly, the most important parameters found by Random Forest 

were velocity angle, backward velocity, eccentricity, axial circulation, and 

regurgitation all of them localized in the AAo. Thus, algorithms consistently 

identify velocity angle as key descriptors of BAV hemodynamics, a result in line 

with previous research, and most of them highlighted the importance of forward and 

backward velocity components and the role of rotational flow descriptors, such as 

helicity, circulation and vorticity (Bissel et al., 2013) (Lorenz et al., 2014).    

   Notably, the algorithms did not select WSS or its components, all previously 

related cross-sectional and longitudinal data with dilation in BAV. This may have 

resulted from averaging these biomarkers over aortic wall regions or reflect their 

relatively lower reproducibility than bulk flow measures. Furthermore, the present 

WSS assessment may be limited in evaluating the spatiotemporal complexity of this 

biomarker (Calò et al., 2021). Alternatively, the Eulerian method to analyze WSS 

topological skeleton by identifying and classifying WSS fixed points and manifolds 

in complex vascular geometries can increase the chance of finding mechanistic 

explanations to clinical observations as presented by Mazzi et al. (Mazzi et al., 

2020), analysis that may be added in the ML classification algorithms in future 

works. 

   The structure and information of bootstrap-aggregated decision trees were 

extracted to count and analyze the extent of the influence of various hemodynamic 

parameters on BAV dilation to determine the parameters most closely related to the 
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dilation of the aorta in this disease. This suggests that velocity angle in AAo is the 

most important predictor, followed by backward velocity, eccentricity, axial 

circulation, and regurgitation in AAo. These variables align with those identified in 

previous studies, which related high asymmetrical shear stresses with aortic dilation 

in BAV disease (Rodríguez-Palomares et al., 2018) (Mahadevia et al., 2014). 

However, a decision tree further allows for the identification of the relative 

importance of each flow descriptor in the classification task, showing how velocity 

angle and flow eccentricity, two descriptors of asymmetric flow, backward velocity 

and axial circulation, and regurgitation bringing information of flow rotation are the 

dominant factors. The proposed decision tree model could differentiate the three 

classes with 96.00 ± 0.83 accuracy using five features selected by SFS. 

Nevertheless, this decision tree was our second-best result and appeared to be most 

helpful in determining HV and DIL BAV classes. Instead of the LDA that 

ascertains better the three classes, including the NON-DIL BAV class. 

   Aortic stenosis in BAV patients has been reported that increased with the 

patient’s age (Ferencik et al., 2013) (Lewin et al., 2015). Therefore, the patient’s 

age can be a possible confounding factor in the classifiers. We executed another 

experiment, including age as an input parameter. However, features selection 

algorithms, SFS and PCA, did not find age as their top-best performing features 

(see Supplementary Table C.6). 

   In this study, the hierarchical clustering method provided an alternative for 

reliable correlation between hemodynamic parameters from 4D-flow CMR. By 

classifying them into three different clusters according to their similarities, the 

resulting dendrogram provides a good representation of the relationship of various 

parameters in two aorta regions. According to hierarchical cluster analysis, we can 

assume that features by SFS have a better performance than those selected by other 

feature selection algorithms because it has a wide representation of each clustering: 

cluster 1(green) velocity angle and backward velocity in AAo, cluster 2 (red) 

vorticity in AAo; and cluster 3 (blue): forward velocity and helicity density in AAo 

and AArch, respectively. When statistical modeling is used to pursue a predictive 

aim, Gregorich et al., showed that two highly correlated independent variables will 
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lead to high variance in the predictions, even if both variables are relevant for 

prediction. In small samples, it may then be beneficial to omit one of the pair to 

decrease that variance, even if this incurs some new bias in the predictions 

(Gregorich et al., 2021). Further, O’Brien shows that multicollinearity is not a 

sufficient reason to eliminate variables from a model. A more important criterion to 

consider when contemplating dropping a variable from model is ‘model influence’ 

(O’Brien et al., 2017). Although, we studied the correlation and clustering of the 

features, this information was not used to intervene in the ML model since the latter 

selects the features automatically. Instead, we used the cluster information to 

explain the relation of the features selected by ML and the localization of these 

parameter across the different clusters.  

   One of the strengths of our study is that it provides a comprehensive overview 

of the relative performance of different ML algorithms for BAV aortopathy 

classification. These results can be used to guide researchers in the selection of an 

appropriate ML algorithm for their studies. Hence, non-linear interactions can be 

associated with the selected features that better identify HV and BAV patients. 

 

4.4.1. Limitations 

 

   Considering the small number of subject data, we did not explore the use of 

advanced deep learning algorithms. Instead, we used classical ML algorithms such 

as random forest and SVM. However, with both methods, we achieved a high 

classification accuracy. Deep networks require extremely large datasets to achieve 

high performance. In future studies, we will include more data in our dataset to 

perform advanced deep learning methods and compared them with classical ML 

algorithms results. Another limitation of the current study is the small number of 

NON-DIL BAV types, which unbalanced the analyzed classes. However, the cross-

validation assessment aimed to reduce the effect of this issue in the classification 

output.  

   Additionally, from the acquisition point of view, the movement of the aorta 

along the cardiac cycle was not considered in this study since technical limitations 
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in 4D-flow CMR acquisitions, as poor contrast and low signal-to-noise ratio, make 

it challenging to obtain a time-resolved segmentation of the aorta.  

    Further, in this study, we averaged parameters along the circumference of each 

region, which can induce a sub-estimation of local values. Nevertheless, assessing 

the local impact of all hemodynamic parameters for classification would require 

more patients from a statistical point of view, as there would be more parameters 

than subjects.  

   Finally, another limitation is the absence of longitudinal data. Performing a 

similar study would elucidate if the parameters that best classify BAV patients with 

and without aortic dilation would also be the best predictor for aortic dilation in 

those patients. A paper with longitudinal outcomes was recently published; 

however, only WSS was assessed as a predictor for dilation in that study 

(Boudoulas et al., 2015).  

 

4.5. Conclusions 

 

   The main contributions of the paper are twofold. On the one hand, we analyzed 

and extracted multiple correlation patterns of hemodynamic parameters, finding 

which parameters showed high collinearity between them, which allows us to 

diminish their size to a few variables. Also, we defined five hemodynamic features 

that best classify HV and BAV with and without aortic dilation using SFS: velocity 

angle, forward velocity, vorticity, and backward velocity in AAo, and helicity 

density in AArch. The best-performing methods were with features selected by SFS 

in LDA and random forest classifiers with 96.31 ± 1.76 % and 96.00 ± 0.83 %, 

respectively. Moreover, we found five features by SFS: velocity angle, eccentricity, 

backward velocity, and oscillatory shear index in AAo, and regurgitation fraction in 

AArch, that best classified BAV patients’ groups (NON-DIL BAV and DIL BAV 

classes) using LDA classifier with 96.18 ± 2.34 % accuracy. 
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5. FUTURE WORK AND PERSPECTIVES 

 

This section shows three general ideas regarding the three articles to deeper 

analyze particular issues, and new proposals of different methods. 

 

5.1. First Article: Comparison of Unwrapping Methods in Patients 

 

Concerning the limitations of our study, the method was not assessed in a cohort 

of patients, only in two volunteers (volunteer 15: female, 60-year-old, and volunteer 

22: male, 73-year-old) from our cohort had cardiovascular disease. Specifically, the 

first one was affected by hypertension and slightly prominent left ventricular walls. 

The second one suffered from diabetes (Figure 5-1.a). Left ventricular hypertrophy 

leads to weak suction pumps and has high wall tension, implying lower velocity 

values than healthy volunteers (Pedrizzetti et al., 2014) (Arvidsson et al., 2016). 

And diabetes is associated with high blood pressure, which decreases blood and 

oxygen flow to the heart (Leon et al., 2015). Although the hemodynamic is affected 

in this particular case, the unwrapping methods had the same behavior as healthy 

volunteers (Figure 5-1.b.). 

Considering the previous results, it will be interesting to compare the unwrapping 

methods in a cohort of cardiovascular disease patients, especially in aortic stenosis 

patients. We hypothesize that the unwrapping method will probably have the same 

behavior as in healthy volunteers. Nevertheless, a noise analysis will be an 

interesting performance considering the abnormal flows. 
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Figure 5-1. Cardiac magnetic resonance images: (a) 60 years old woman 

(volunteer 15) affected by hypertension and slightly prominent left ventricular walls 

(white arrow). (b) 73 years old men (volunteer 22) affected by diabetes. From left to 

right: (left) Multi-slice 2D cine balanced steady-state free precession (b-SSFP) four-

chamber images at peak-systole and end-diastole. LA: left atrium; LV: left 

ventricle; RA: right atrium; RV: right ventricle. (right) Ascending and descending 

aorta at peak systole. First row: magnitude image, second row: triple-VENC 

images, third row: SDV images, fourth row: ODV images, fifth row: ODV 

corrected with masking ROI images, and sixth row: TV bi- and tri-conditional 

images. PC: single-VENC PC-MRI; SDV: Standard Dual-VENC Method; ODV: 

Optimal Dual-VENC Method; TV: Triple-VENC Method. 
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5.2. Second Article: Assessment of Right Intraventricular Hemodynamic Parameters 

 

Figure 5-2. (a) 15- and 16- segment models for the RV and LV, respectively. (b) 

The LV and RV segmentation from short-axis b-SSFP images. (c) Illustration of a 

tetrahedral mesh of the RV. RV: right ventricle; LV: left ventricle. 

 

The second article developed a method to characterize the left intraventricular 

hemodynamics in the left ventricle (LV) from 4D Flow MRI using a finite element 

method, applied in a cohort of dilated cardiomyopathy (DCM) patients. 

Nevertheless, this methodology could be expanded into more cardiovascular 

diseases or even in the assessment of right intraventricular hemodynamic 

parameters (Arvidsson et al., 2016) (Hirtler et al., 2016) (Browning et al., 2017) 
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(Fredriksson et al., 2018) (Ding et al., 2021). In hypertrophic cardiomyopathy 

(HCM), its main characteristic is symmetrical or asymmetrical hypertrophy of the 

LV and/or right ventricle (RV). Most previous studies mainly include the LV for 

the definition of HCM, thus neglecting the RV. But recently, many studies have 

reported right ventricular involvement in HCM (Ding et al., 2021). 

We must consider that the local hemodynamic analysis is different in the RV than 

in the LV due to the 15-segment model, as shown in Figure 5-2.a (Tokodi et 

al., 2021). Therefore, we proposed the following methodology for quantitative 

evaluated the intraventricular hemodynamics from both LV and RV segmentations 

from a 4D Flow dataset: First, we can perform registration of the 4D Flow with the 

b-SSFP images. Second, we double the number of slices in the b-SSFP images. 

Then, the LV and RV endocardium will be automatically segmented throughout all 

cardiac phases in the sort-axis b-SSFP images, using the image analysis software 

Segment, as shown in Figure 5-2.b. The LV and RV centerlines will be calculated 

automatically by detecting the centroid of the LV and RV contours in each slice and 

connected to create a line. To determine the three sections of the ventricles (basal, 

mid-cavity, and apical), we will divide the centerline into three equal parts 

perpendicular to the long axis of the heart. Note that an additional point (magenta) 

will be manually placed at the junction between the RV free wall and the 

interventricular septum from the LV. Landmarks will be uniformly distributed 

along the boundaries based on these positions and apply the segment-model 

corresponding to each ventricle. Afterward, we will create a tetrahedral mesh 

(Figure 5-2.c) and transfer the velocity information at each mesh node from the 4D 

Flow MRI datasets using cubic interpolation. Finally, we will calculate the 

hemodynamic parameters under study. 

Therefore, this study allows us to estimate global and local analyses of both 

ventricles. Hence, if the dataset’s size is appropriate, we would find the 

hemodynamic biomarkers of the particular cardiovascular disease, e.g., HCM, using 

a similar machine learning strategy presented in the third article. 
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5.3. Third Article: Age as an Output Feature and Longitudinal Study of Bicuspid 

Aortic Valve 

 

Figure 5-3. Machine Learning Strategies. (a) In our published article, we 

considered three different classes as input it implies that the output will we one of 

the three-classes. (b) Nevertheless, our model output is age’s patient (a number), we 

have to deal with a regression problem.  

 

Our machine learning strategy showed that including age as an input parameter. 

The features selection algorithms, SFS and PCA, did not find their top-best 

performing features even if Ferencik et al. and Lewin et al. reported that increased 

aortic stenosis in bicuspid aortic valve (BAV) with patient’s age (Ferencik et al., 

2003) (Lewin et al., 2005). Therefore, we would like to reformulate the machine 

learning strategy and use age as an output using a regression algorithm, e.g., linear 

regression, as shown in Figure 5-3. 

On the other hand, we would like to perform a similar study as published using a 

longitudinal study of BAV patients with and without aortic dilation. Performing a 

similar analysis would elucidate if the parameters that best classify BAV patients 

would also be the best predictor for aortic dilation in those patients. An article with 
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longitudinal outcomes was recently published; however, this study assessed only 

wall shear stress as a predictor for dilation (Soulat et al., 2021). 

Therefore, we proposed the following strategy to performance a longitudinal 

study in BAV patients using machine learning, as shown Figure 5-4. The figure 

illustrates how we can define the observation and prediction window. It also shows 

how we can model longitudinal hemodynamic parameters in BAV patients. First, 

we will aggregate each feature across the 3 to 5-year observation window (e.g., 

velocity, velocity angle in AAo and AArch). Second, we will extract each year 

value of each feature and concatenate the temporal values from all BAV patients in 

a two-dimensional matrix for a classifier (e.g., random forest). Finally, we will 

perform a tensor representation on temporal values from all patients for 

convolutional neural networks and recurrent neural networks with long short-term 

memory. 

Note that we can also performance a prediction of 10-year using the 

hemodynamic parameters, comparing to a gold standard achieved.  
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Figure 5-4. A longitudinal study over a, e.g., five years follow-up period review 

bicuspid aortic valve (BAV) patients using Machine Learning. 
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6. CONCLUSIONS 

 

In the preceding chapters, a complete framework that allows us to estimate 

accurate hemodynamic parameters in the heart and great vessels from velocity MR 

images were presented in a totally non-invasive manner. This investigation 

performed relevant information on reconstruction techniques, image processing, 

data quantification, pattern recognition, and machine learning in three independent 

articles.  

The first article reviews and compares dual-VENC unwrapping methods when 

strictly unidirectional measurements. Furthermore, we developed a correction 

method based on the information provided by the Optimal Dual-VENC method 

(ODV). We also present a noise analysis of the velocity estimates of the different 

methods. We found that the quality of the results depends on the proportion of the 

VENCs of the input images, with VENCL/VENCH = 0.5 being the best performing 

combination for all methods. For that VENC combination, the most robust 

unwrapping method appears to be the corrected ODV method, while the other 

methods show similar performance in terms of unwrapping success. 

The second article describes a methodology for quantitative evaluation of 

intraventricular hemodynamics using a single segmentation from a 4D Flow dataset 

and a finite-element method. To show the applicability in a small cohort of dilated 

cardiopathy (DCM) patients to find which parameters were different from healthy 

volunteers (HV). We demonstrate that velocity, vorticity, viscous dissipation, 

energy loss, and kinetic energy can characterize changes in intraventricular flow in 

DCM patients compared to HV. Moreover, our evidence shows that although 

ejection fraction may be recovered, the hemodynamic remain low. Therefore, our 

approach was able to identify abnormal flow patterns in DCM patients compared to 

HV and can be applied to any other cardiovascular disease. 

The third article provides a comprehensive overview of the relative performance 

of different machine learning (ML) algorithms for bicuspid aortic valve (BAV) 

aortopathy classification. We defined five hemodynamic features that best classify 

HV and BAV with and without aortic dilation using SFS: velocity angle, forward 
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velocity, vorticity, and backward velocity in ascending aorta (AAo), and helicity 

density in the aortic arch (AArch). The best-performing methods were with features 

selected by SFS in LDA and random forest classifiers with 96.31 ± 1.76% and 

96.00 ± 0.83%, respectively. Moreover, we found five features by SFS: velocity 

angle, eccentricity, backward velocity, oscillatory shear index in AAo, and 

regurgitation fraction in AArch, that best classified BAV patients’ groups (NON-

DIL BAV and DIL BAV classes) using LDA classifier with 96.18 ± 2.34% 

accuracy. These results can be used to guide researchers in the selection of an 

appropriate machine learning algorithm for their studies. 

Thought the fact that the topics developed in this thesis were not tested together, 

future research may combine all these topics to investigate and improve the 

examination in the cardiovascular system. Therefore, the methods proposed in this 

thesis could improve the use of 4D Flow MRI for clinical research and potential 

translation to clinical settings.  
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APPENDIX 

 

A. APPENDIX FOR PUBLICATION I 

 

A.1. Variance Analysis of the ODV Method 

 

In order to calculate the statistical properties of u*, in the ODV method, we first 

need to obtain a closed expression for (an approximation of) it. Indeed, since the 

global minimum is also a local minimum, we calculated u* using the fact that the 

solution is a local minimum of the cost function. Namely, we search for J’dual(u*) = 

0, with 

 

 

(A.1) 

 

In consequence, we can approximate the sin-terms by its arguments leading to: 

 
 

(A.2) 

 

Note first that the phases φ0, φH, and φL are statistically independent with an 

expected value of , where I = H,L are related to velocities 

acquired with high and low VENCs. As a consequence, uH and uL are statistically 

dependent because both VENC images share the background phase. Therefore, the 

variance of u* (equation A.2) has the form, 
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(A.3) 

For this calculation, we considered , , 

and . Note that the covariance is defined as the expected 

value of the product of their deviations from their individual expected values 

 and the expression for the variance 

e.g., for the  can be expanded as, 

. 

 

Now we want to calculate the β values (VENCL = βVENCH, 0 < β < 1) such that 

the variance of the result with the ODV method is equal to or lower than the low 

VENC image, i.e., Var(u*) ≤ Var(uL),  

 

 

 

(A.4) 

 

Equation (A.3) becomes 
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(A.5) 

 

We could find the solutions for equation (A.5), factorizing by β and using the 

zero-factor theorem for β ≠ 0,  

 

 

(A.6) 

 

Therefore, an improved estimate in terms of variance is obtained,  

 

  , if   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A.7) 
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A.2. Supplementary Material 

 

Figure A.1. Ascending aorta at peak systole of a representative volunteer (same 

as Figure 2). (a) Magnitude Images: slice prescription and region-of-interest. Phase-

differences images with VENCs combination of (b) (iVENC, VENCH, VENCL) = 

(150, 150, 75), (c) (iVENC, VENCH, VENCL) = (75, 150, 50) cm/s and (d) 

(iVENC, VENCH, VENCL) = (150, 75, 50) cm/s with different levels of synthetic 

noise,σ. The VENCs used by the SDV and ODV methods are in the top part of the 

figures. First column: iVENC, second column: VENCH, third column VENCL, 

fourth column: SDV, fifth column: ODV, sixth column: ODV corrected, seventh 

column: Different between the ODV and ODC corrected method, eighth column: 

bi-conditional, and ninth column: tri-conditional methods. 
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Figure A.2. Box whisker plots for the evaluation of unwrapping methods of the 

volunteers at peak-systole in the ascending aorta with different levels of synthetic 

noise, σ, with VENCs combination of (first column) (iVENC, VENCH, VENCL) = 

(150, 150, 75) cm/s, (second column) (iVENC, VENCH, VENCL) = (75, 150, 50) 

cm/s, and (third column) (iVENC, VENCH, VENCL) = (150, 75, 50) cm/s. The 

SDV and ODV methods used in (first column) (VENCH, VENCL) = (150,75) cm/s β 

=1/2, (second column) (VENCH, VENCL) = (150, 50) cm/s β = 1/3, and (third 

column) the SDV (iVENC, VENCL) = (150, 50) cm/s β = 1/3 and the ODV method 

(VENCH, VENCL) = (75, 50) cm/s β = 2/3. Aliased number of pixels after the 

unwrapping methods were performed as a percentage. On each box, the central 

mark is the median, the bottom and top edges of the box are the 25th and 75th 

percentiles, respectively, and the whiskers extend to the most extreme data points 

not considered outliers. The significance of the interaction between noise levels and 

the unwrapping method for the different VENCs combinations is in the top part of 

the figures with their p-values. The symbol * indicates statistically significant 

differences (p < 0.05). 

 

 

 

 



144 

  

B. APPENDIX FOR PUBLICATION II 

 

B.1. Intra- and Inter-Observer Reproducibility 

 

   As shown in Figure B.1, excellent intra-observer agreement with minimal mean 

differences and small limits of agreement were found for peak systole. Mean 

differences were: velocity magnitude −0.0003 ± 0.0118 m/s, kinetic energy 

(−0.4580 ± 0.7490) × 10−9 J, vorticity magnitude 0.0029 ± 0.0249 1/s, helicity 

density (−0.0978 ± 0.5345) × 10−3 m/s2, viscous dissipation −0.0070 ± 0.0578 1/s2, 

and energy loss (−0.0124 ± 0.2563) × 10−9 W. Similar results were obtained at e-

wave and end-diastole, as shown in Figures B.2 and B.3, respectively. Figure B.4 

demonstrates excellent inter-observer analysis agreement for peak systole. Mean 

differences were: velocity magnitude −0.0024 ± 0.0124 m/s, kinetic energy 

(−0.0349 ± 0.1093) × 10−5 J, vorticity magnitude 0.1122 ± 0.7634 1/s, helicity 

density −0.0001 ± 0.0139 m/s2, viscous dissipation −2.1652 ± 11.8205 1/s2, and 

energy loss (0.0012 ± 0.3008) × 10−8 W. Figures B.5 and B.6 show the results 

obtained at e-wave and end-diastole, respectively, with comparable results at peak 

systole. 
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Figure B.1. Bland-Altman plots represent the intra-observer reproducibility in the 

measurements of LV global hemodynamic parameters (a–f) at peak systole. The 

thick line represents the mean difference, and the thin lines represent the limits 

agreement (1.96 SD). 
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Figure B.2. Bland-Altman plots represent the intra-observer reproducibility in the 

measurements of LV global hemodynamic parameters (a–f) at e-wave. The thick 

line represents the mean difference, and the thin lines represent the limits agreement 

(1.96 SD). 
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Figure B.3. Bland-Altman plots represent the intra-observer reproducibility in the 

measurements of LV global hemodynamic parameters (a–f) at end-diastole. The 

thick line represents the mean difference, and the thin lines represent the limits 

agreement (1.96 SD). 
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Figure B.4. Bland-Altman plots represent the inter-observer reproducibility in the 

exams of LV global hemodynamic parameters (a–f) at peak systole. The thick line 

represents the mean difference, and the thin lines represent the limits agreement 

(1.96 SD). 
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Figure B.5. Bland-Altman plots represent the inter-observer reproducibility in the 

exams of LV global hemodynamic parameters (a–f) at e-wave. The thick line 

represents the mean difference, and the thin lines represent the limits agreement 

(1.96 SD). 
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Figure B.6. Bland-Altman plots represent the inter-observer reproducibility in the 

exams of LV global hemodynamic parameters (a–f) at end-diastole. The thick line 

represents the mean difference, and the thin lines represent the limits agreement 

(1.96 SD). 
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B.2 Supplementary Material 

 

 

Table B.1. Equations used to calculate each hemodynamic parameter 

Parameter 

name 
Equation Description 

   

Kinetic energy 

(J)  

Where  is the density (1060 

kg/m3),  is the Voronoi 

volume around each node, 

and  is the velocity vector. 

Vorticity (1/s)  
operator  is the curl of the 

velocity vector . 

Helicity 

Density (m/s2) 
 

 is the velocity vector.  is 

the vorticity. 

Viscous 

Dissipation 

(1/s2) 
 

 is the velocity vector.  

are the component of the 

vector  (directions ).  

is the identity matrix. 

Energy Loss 

(W) 
 

 is the viscosity (4.5 cP).  

is the Voronoi volume 

around each node 
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Table B.2. Mean parameter values across 16 segments of the LV, during peak 

systole. Where bold type means statistically significant between volunteers and 

patients (p < 0.05). υ: Velocity Magnitude, ω: vorticity magnitude, Hd: helicity 

density, VD: viscous dissipation, EL: energy loss, and K: kinetic energy. 

 

 

 

 

 

 

 

Segmental 

Area 

LV 

Segment 

Group Peak Systole 

  (m/s)  (1/s) Hd (m/s2) VD  (k 1/s2) EL (µW) K × 10-4 (J) 

Basal 1 V 0.18 21.72 0.41 1.29 0.26 0.05 

P 0.07 11.31 0.03 0.24 0.01 0.02 

2 V 0.12 18.00 -0.01 0.77 0.11 0.03 

P 0.06 10.75 0.08 0.28 0.02 0.02 

3 V 0.13 24.77 0.17 1.20 0.23 0.04 

P 0.11 21.39 -0.01 0.79 0.10 0.04 

4 V 0.37 40.67 -3.17 3.49 0.80 0.11 

P 0.35 33.01 -0.55 2.3 0.51 0.10 

5 V 0.19 32.45 0.44 2.33 0.53 0.06 

P 0.18 23.97 0.38 1.12 0.16 0.05 

6 V 0.11 21.65 -0.08 1.05 0.20 0.03 

P 0.07 13.43 0.06 0.28 0.01 0.02 

Mid-

cavity 

7 V 0.11 14.68 0.13 0.48 0.04 0.03 

P 0.06 9.03 -0.06 0.15 0.00 0.02 

8 V 0.11 15.88 -0.14 0.49 0.03 0.03 

P 0.06 9.52 0.13 0.15 0.00 0.02 

9 V 0.13 17.31 -0.40 0.65 0.07 0.04 

P 0.11 15.11 0.39 0.41 0.02 0.03 

10 V 0.19 24.29 -1.99 1.07 0.17 0.06 

P 0.19 20.79 0.69 0.76 0.07 0.06 

11 V 0.14 23.14 -0.89 0.93 0.16 0.04 

P 0.13 17.74 -0.14 0.56 0.04 0.04 

12 V 0.10 16.23 0.15 0.54 0.07 0.03 

P 0.06 10.89 -0.17 0.24 0.01 0.02 

Apical 13 V 0.07 10.11 -0.23 0.20 0.00 0.02 

P 0.05 7.36 -0.10 0.10 0.00 0.01 

14 V 0.06 9.19 -0.17 0.16 0.00 0.02 

P 0.04 6.13 -0.04 0.10 0.00 0.01 

15 V 0.08 10.66 -0.32 0.21 0.00 0.02 

P 0.07 9.60 0.17 0.15 0.00 0.02 

16 V 0.08 11.25 -0.37 0.25 0.00 0.02 

P 0.08 9.15 0.05 0.18 0.01 0.02 
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Table B.3. Mean parameter values across 16 segments of the LV, during e-wave. 

Where bold type means statistically significant between volunteers and patients (p < 

0.05). υ: Velocity Magnitude, ω: vorticity magnitude, Hd: helicity density, VD: 

viscous dissipation, EL: energy loss, and K: kinetic energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Segmental 

Area 

LV 

Segment 

Group E - Wave 

 (m/s)   (1/s) Hd (m/s2) VD (k 1/s2) EL (µW) K × 10-5 (J) 

Basal 1 V 0.20 33.46 0.88 1.79 0.36 0.61 

P 0.16 24.96 0.58 0.85 0.13 0.51 

2 V 0.28 35.11 1.97 1.80 0.33 0.85 

P 0.20 29.27 0.86 1.10 0.16 0.63 

3 V 0.31 33.50 1.69 0.53 0.25 0.91 

P 0.17 23.65 0.24 0.64 0.05 0.53 

4 V 0.27 36.75 0.74 1.95 0.38 0.78 

P 0.11 20.90 -0.05 0.50 0.03 0.34 

5 V 0.23 35.52 -0.10 1.74 0.34 0.67 

P 0.14 24.07 0.08 0.63 0.05 0.44 

6 V 0.19 32.07 -0.06 1.54 0.29 0.58 

P 0.18 25.59 0.28 0.81 0.10 0.56 

Mid-

cavity 

7 V 0.16 25.16 0.42 1.16 0.21 0.49 

P 0.09 14.09 0.21 0.37 0.02 0.29 

8 V 0.22 27.96 0.94 1.48 0.26 0.65 

P 0.11 13.83 0.14 0.43 0.03 0.35 

9 V 0.23 26.99 0.28 1.27 0.23 0.68 

P 0.11 14.2 0.02 0.35 0.01 0.33 

10 V 0.18 28.78 -0.07 1.25 0.23 0.55 

P 0.09 15.43 -0.12 0.31 0.01 0.30 

11 V 0.13 24.72 0.07 1.04 0.20 0.40 

P 0.10 15.01 -0.59 0.33 0.01 0.31 

12 V 0.13 23.64 0.11 0.96 0.18 0.41 

P 0.08 13.39 -0.01 0.39 0.03 0.27 

Apical 13 V 0.07 10.43 0.03 0.24 0.01 0.18 

P 0.04 6.63 -0.08 0.08 0.00 0.12 

14 V 0.08 10.88 -0.09 0.27 0.01 0.21 

P 0.04 6.98 -0.02 0.09 0.00 0.12 

15 V 0.10 12.68 0.01 0.40 0.03 0.26 

P 0.05 6.56 -0.02 0.09 0.00 0.14 

16 V 0.08 10.38 0.18 0.29 0.01 0.20 

P 0.05 6.49 -0.06 0.09 0.00 0.16 
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Table B.4. Mean parameter values across 16 segments of the LV, during e-wave. 

Where bold type means statistically significant between volunteers and patients (p < 

0.05). υ: Velocity Magnitude, ω: vorticity magnitude, Hd: helicity density, VD: 

viscous dissipation, EL: energy loss, and K: kinetic energy. 

 

Segmental 

Area 

LV 

Segment 

Group End-diastole 

 (m/s)  (1/s) Hd (m/s2) VD  (k 1/s2) EL × 10-7 

(W) 

K × 10-5 (J) 

Basal 1 V 0.08 14.92 0.21 0.35 0.13 0.24 

P 0.06 12.72 0.13 0.29 0.07 0.20 

2 V 0.09 15.58 0.26 0.37 0.13 0.28 

P 0.06 12.62 0.01 0.29 0.07 0.20 

3 V 0.10 16.82 0.15 0.41 0.19 0.30 

P 0.08 14.50 0.23 0.33 0.14 0.24 

4 V 0.12 20.44 0.00 0.64 0.72 0.35 

P 0.13 19.57 0.07 0.68 0.67 0.39 

5 V 0.09 17.92 -0.06 0.48 0.29 0.27 

P 0.11 19.15 -0.02 0.51 0.33 0.35 

6 V 0.09 15.31 0.14 0.39 0.16 0.26 

P 0.08 14.49 0.07 0.31 0.07 0.25 

Mid-

cavity 

7 V 0.07 13.77 -0.13 0.28 0.03 0.21 

P 0.07 11.12 0.07 0.22 0.02 0.22 

8 V 0.09 14.62 0.07 0.34 0.06 0.29 

P 0.06 10.79 0.09 0.18 0.01 0.20 

9 V 0.09 15.81 -0.11 0.31 0.05 0.28 

P 0.07 12.30 0.12 0.25 0.05 0.23 

10 V 0.08 15.06 0.18 0.30 0.07 0.23 

P 0.11 16.08 0.24 0.37 0.22 0.35 

11 V 0.07 12.99 -0.22 0.27 0.02 0.20 

P 0.09 14.83 -0.32 0.29 0.07 0.28 

12 V 0.06 11.75 -0.06 0.23 0.04 0.17 

P 0.07 11.59 0.15 0.26 0.08 0.22 

Apical 13 V 0.04 8.25 -0.11 0.12 0.00 0.12 

P 0.05 7.67 -0.07 0.11 0.00 0.15 

14 V 0.05 9.64 -0.11 0.15 0.00 0.14 

P 0.04 7.36 0.02 0.10 0.00 0.13 

15 V 0.06 9.78 -0.08 0.18 0.00 0.18 

P 0.06 8.98 0.07 0.14 0.00 0.17 

16 V 0.05 8.63 0.01 0.15 0.00 0.14 

P 0.07 8.73 -0.04 0.16 0.00 0.21 
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Figure B.7. ROC-curves for hemodynamic parameters (a–f) in the entire LV 

cavity of the groups of volunteers and patients at peak-systole, e-wave, and end-

diastole. 
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Figure B.8. Relative error values of volume (a) and each hemodynamic 

parameter (b–g), obtained comparing the reference segmentation with 

segmentations given by erosion or dilation, for each group of volunteers and 

patients at e-wave. * indicates statistical significant differences (p < 0.05). 
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Figure B.9. Relative error values of volume (a) and each hemodynamic 

parameter (b–g), obtained comparing the reference segmentation with 

segmentations given by erosion or dilation, for each group of volunteers and 

patients at end-diastole. * indicates statistical significant differences (p < 0.05). 
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Figure B.10. Bullseye plots of mean hemodynamic parameters (a–f), across 16 

segments for volunteers (i) and patients (ii), at the e-wave. * indicates statistical 

significant differences (p < 0.05). 
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C. APPENDIX FOR PUBLICATION 3 

 

C.1. Supplementary Material 

 

Table C.1. Election of a number of features selected using SFS and PCA, 

according to the increased accuracy (mean ± standard deviation) of different 

classifiers with different chosen features. Each experiment was done using 10-fold 

cross-validation and repeated 10 times with confidence interval 95%.  
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Table C.2. Precision, specificity, sensitivity, and accuracy of different 

combinations of classifiers and features. Each experiment was done using 10-fold 

cross-validation and repeated 10 times with confidence interval 95%. 
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Table C.3. Average accuracy and standard deviation of different combinations of 

classifiers and features for two classes (NON-DIL BAV and DIL BAV). Each 

experiment was done using 10-fold cross-validation and repeated 10 times with 

confidence interval 95%. 

Classifiers 

 Accuracy (%)  

Hemodynamic 

Parameters 

Hemodynamic 

Parameters + Age SFS PCA (*) PCA (**) 

KNN-5 87.91 ± 3.98 81.27 ± 4.77 85.73 ± 4.27 84.82 ± 4.38 82.36 ± 4.66 

KNN-7 82.82 ± 4.61 88.36 ± 3.92 87.73 ± 4.01 86.82 ± 4.13 82.82 ± 4.61 

KNN-9 80.36 ± 4.85 82.36 ± 4.66 82.36 ± 4.66 75.91 ± 5.22 87.45 ± 4.05 

LDA 89.45 ± 3.75 89.73 ± 3.71 96.18 ± 2.34 82.64 ± 4.63 85.27 ± 4.33 

QDA 24.09 ± 5.22 20.09 ± 4.90 92.64 ± 3.19 86.82 ± 4.13 80.82 ± 4.81 

Minimum 

Distance 53.91 ± 6.09 57.45 ± 6.04 82.64 ± 4.63 53.91 ± 6.09 60.36 ± 5.98 

Mahalanobis 

Distance 52.36 ± 6.10 57.45 ± 6.04 89.27 ± 3.78 86.64 ± 4.16 84.82 ± 4.38 

SVM – Linear 80.82 ± 4.81 87.27 ± 4.07 93.73 ± 2.96 88.64 ± 3.88 82.18 ± 4.68 

SVM - RBF 77.91 ± 5.07 77.91 ± 5.07 75.91 ± 5.22 77.91 ± 5.07 77.91 ± 5.07 

Neural Network 81.27 ± 4.77 82.82 ± 4.61 88.82 ± 3.85 88.18 ± 3.94 88.64 ± 3.88 

Random Forest 95.00 ± 2.80 95.00 ± 2.90 91.00 ± 1.90 95.00 ± 1.18 93.00 ± 2.10 

SFS’s five top-performing features were: velocity angle in AAo, regurgitation fraction in AArch, eccentricity in 

AAo, backward velocity in AAo, and Oscillatory Shear Index in AAo 

PCA’s five top-performing features were: velocity in AArch, forward velocity in AArch, velocity in AAo, kinetic 

energy in AArch, and forward velocity in AAo 

 

Hemodynamic Parameters (*) 

Hemodynamic Parameters + Age (**) 
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Table C.4. Election of the number of features selected using SFS (velocity angle, 

forward velocity, and vorticity) and PCA (forward velocity, velocity, and velocity 

angle), according to the increased in the accuracy (mean ± standard deviation) of 

different classifiers with different features selected, using only hemodynamic 

features in AAo. Each experiment was done using 10-fold cross-validation and 

repeated 10 times with confidence interval 95%. 

 

Classifiers Accuracy (%) 

All 

features 
SFS PCA 

1 2 3 4 1 2 3 4 

KNN-5 89.35 ± 

2.88 

78.17 ± 

3.85 

87.35 ± 

3.10 

86.83 ± 

3.15 

87.94 ± 

3.04 

75.13 ± 

3.85 

 89.80 ± 

3.10 

89.05 ± 

3.15 

90.98 ± 

3.04 

KNN-7 87.65 ± 
3.07 

87.35 ± 
3.10 

 84.90 ± 
3.34 

86.54 ± 
3.18 

 84.90 ± 
3.34 

81.21 ± 
3.10 

87.06 ± 
3.34 

87.35 ± 
3.18 

 91.80 ± 
3.34 

KNN-9 88.99 ± 

2.92 

85.42 ± 

3.29 

89.05 ± 

2.91 

89.58 ± 

2.85 

89.05 ± 

2.91 

 81.80 ± 

3.29 

86.54 ± 

2.91 

84.54 ± 

2.85 

84.31 ± 

2.91 
LDA 91.93 ± 

2.54 

89.87 ± 

2.81 

89.35 ± 

2.88 

93.27 ± 

2.34 

92.97 ± 

2.38 

77.58 ± 

2.81 

 91.50 ± 

2.88 

88.76 ± 

2.34 

86.01 ± 

2.38 
QDA 53.59 ± 

4.65 

84.61 ± 

3.37 

91.27 ± 

2.63 

 94.90 ± 

2.05 

89.12 ± 

2.90 

81.21 ± 

3.37 

87.94 ± 

2.63 

86.01± 

2.05 

86.54 ± 

2.90 

Euclidean 

Distance 

69.80 ± 
4.28 

87.12 ± 
3.12 

87.94 ± 
3.04 

89.05 ± 
2.91 

86.83 ± 
3.15 

67.06 ± 
3.12 

71.44 ± 
3.04 

73.07 ± 
2.91 

69.05 ± 
3.15 

Mahalanobis 

Distance 

56.86 ± 

4.62 

81.27 ± 

3.64 

82.16 ± 

3.57 

92.16 ± 

2.51 

91.05 ± 

2.66 

67.06 ± 

3.64 

84.61 ± 

3.57 

 84.90 ± 

2.51 

81.05 ± 

2.66 
SVM – Linear 89.05 ± 

2.91 

85.72 ± 

3.26 

89.05 ± 

2.91 

89.35 ± 

2.88 

87.88 ± 

3.04 

 81.50 ± 

3.26 

89.05 ± 

2.91 

87.71 ± 

2.88 

89.58 ± 

3.04 

SVM - RBF 48.86 ± 
4.66 

86.54 ± 
3.18 

88.46 ± 
2.98 

67.22 ± 
4.38 

70.26 ± 
4.26 

57.81 ± 
3.18 

50.49 ± 
2.98 

46.05 ± 
4.38 

45.52 ± 
4.26 

Neural 

Network 

85.95 ± 

3.24 

87.94 ± 

3.04 

87.42 ± 

3.09 

91.86 ± 

2.55 

86.83 ± 

3.15 

 81.50 ± 

3.04 

87.94 ± 

3.09 

90.69 ± 

2.55 

87.35 ± 

3.15 
Random 

Forest 

94.00 ± 

2.60 

78.17 ± 

3.85 

87.35 ± 

3.10 

94.00 ± 

2.00 

87.94 ± 

3.04 

75.13 ± 

3.85 

 89.80 ± 

3.10 

92.00 ± 

0.99 

90.98 ± 

3.04 
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Table C.5. Precision, specificity, sensitivity, and accuracy of different 

combinations of classifiers and features in AAo. Each experiment was done using 

10-fold cross-validation and repeated 10 times with confidence interval 95%. 

 

 

 

 HV class NON-DIL BAV class DIL BAV class Accuracy 
 (%) 

Precision 
 (%) 

Specificity 
 (%) 

Sensitivity  
(%) 

Precision 
 (%) 

Specificity 
 (%) 

Sensitivity 
 (%) 

Precision 
 (%) 

Specificity  
(%) 

Sensitivity  
(%) 

KNN-5 All 
features 

92.50 ±  
1.69 

95.14 ± 
1.04 

94.07 ± 
9.87 

62.22 ± 
4.92 

94.34 ±  
7.90 

66.67 ±  
3.88 

95.00 ± 
1.05 

96.67 ±  
7.03 95.22 ± 1.02 

89.35 ± 
2.88 

SFS 97.50 ±  
7.91 

98.33 ± 
5.27 

96.57 ± 
7.35 

44.44 ± 
4.97 

92.50 ±  
6.65 

61.90 ±  
4.88 

92.50 ± 
1.69 

95.14 ± 
1.04 89.63 ± 1.11 

86.83 ±  
3.15 

PCA 95.00 ±  
1.05 

96.33 ± 
7.77 

96.07 ± 
8.66 

51.11 ± 
5.16 

92.78 ±  
8.58 

56.25 ±  
4.17 

94.23 ± 
1.04 

95.71 ± 
7.69 90.17 ± 1.32 

89.05 ± 
3.15 

KNN-7 All 
features 

95.00 ±  
1.05 

96.67 ± 
7.03 

96.57 ± 
7.35 

51.11 ± 
5.16 

92.92 ±  
8.50 

64.29 ±  
3.78 

96.73 ± 
8.01 

97.71 ± 
5.42 90.67 ± 1.27 

87.65 ± 
3.07 

SFS 97.50 ± 
7.91 

98.33 ± 
5.27 

96.57 ± 
7.35 

44.44 ± 
4.97 

92.50 ±  
6.65 

61.90 ±  
4.88 

92.5 ±  
1.69 

95.14 ± 
1.04 89.63 ± 1.11 

86.54 ± 
3.18 

PCA 95.00 ± 
1.05 

96.67 ± 
7.03 

96.57 ± 
7.35 

51.11 ± 
5.16 

93.06 ±  
8.41 

75.00 ±  
2.74 

96.73 ± 
8.01 

97.71 ± 
5.42 89.33 ± 1.45 

87.35 ± 
3.18 

KNN-9 All 
features 

96.67 ± 
8.05 

97.86 ± 
5.32 

95.13 ± 
1.11 

41.11 ± 
5.08 

92.02 ±  
7.95 

70.00 ±  
2.74 

92.50 ± 
1.21 

95.00 ± 
8.05 88.50 ± 1.29 

88.99 ± 
2.92 

SFS 97.50 ± 
7.91 

98.33 ± 
5.27 

92.00 ± 
1.03 

33.33 ± 
4.71 

91.12 ±  
6.60 

58.33 ±  
4.92 

92.50 ± 
1.69 

95.48 ± 
9.94 90.13 ± 1.04 

89.58 ± 
2.85 

PCA 92.50 ± 
1.21 

94.67 ± 
8.64 

94.73 ± 
9.47 

52.22 ± 
5.08 

92.98 ±  
8.11 

73.81 ±  
3.83 

96.73 ± 
8.01 

97.38 ± 
6.41 90.17 ± 1.32 

84.54 ± 
2.85 

LDA All 
features 

99.17 ±  
2.64 

99.50 ± 
1.58 

97.86 ± 
6.78 

86.67 ± 
3.22 

97.78 ±  
4.68 

81.75 ±  
2.43 

91.73 ± 
1.18 

94.52 ± 
7.86 97.23 ± 6.52 

91.93 ± 
2.54 

SFS 100.00 ±  
0.00 

100.00 ± 
0.00 

97.23 ± 
6.52 

67.78 ± 
4.73 

95.80 ±  
5.47 

94.81 ±  
1.37 

96.92 ± 
9.73 

98.33 ± 
5.27 

95.00 ±  
8.50 

93.27 ± 
2.34 

PCA 100.00 ±  
0.00 

100.00 ± 
0.00 

96.00 ± 
8.43 

53.33 ± 
5.02 

93.14 ±  
7.61 

63.89 ±  
4.86 

91.73 ± 
1.18 

94.04 ± 
8.43 92.17 ± 1.30 

88.76 ± 
2.34 

QDA All 
features 

87.50 ±  
3.17 

94.80 ± 
1.18 

95.56 ± 
8.82 

70.00 ± 
4.83 

96.30 ±  
5.56 

89.50 ±  
2.78 

90.00 ± 
3.16 

96.18 ± 
1.21 95.56±8.82 

53.59 ± 
4.65 

SFS 97.50 ±  
7.91 

98.33 ± 
5.27 

98.57 ± 
4.52 

75.56 ± 
4.22 

96.26 ±  
6.06 

77.78 ±  
3.63 

95.00 ± 
1.05 

96.67 ± 
7.03 94.67±8.78 

94.90 ± 
2.05 

PCA 99.17 ±  
2.64 

99.55 ± 
1.44 

99.17 ± 
2.64 

43.33 ± 
4.98 

92.06 ±  
7.42 

60.00 ±  
3.74 

88.46 ± 
1.72 

92.16 ± 
1.15 85.14±13.94 

86.01 ± 
2.05 

Minimum 
Distance 

All 
features 

90.00 ±  
1.29 

92.17 ± 
1.04 

90.73 ± 
1.42 

34.44 ± 
4.73 

88.97 ±  
7.99 

16.42 ±  
2.11 

51.15 ± 
2.66 

71.94 ± 
1.32 81.67±21.08 

69.80 ± 
4.28 

SFS 93.33 ±  
1.61 

96.23 ± 
9.17 

96.33 ± 
7.77 

77.78 ± 
4.16 

96.59 ±  
5.57 

49.17 ±  
3.39 

82.69 ± 
1.19 

88.42 ± 
8.19 

97.50 ± 
7.91 

89.05 ± 
2.91 

PCA 95.00 ±  
1.05 

97.08 ± 
6.23 

93.00 ± 
9.49 

44.44 ± 
4.97 

90.80 ±  
9.01 

18.33 ±  
1.58 

53.85 ± 
2.88 

73.97 ± 
1.51 

84.72 ± 
2.08 

73.07 ± 
2.91 

Mahalanobis 
Distance 

All 
features 

87.50 ± 
3.17 

94.80 ± 
1.18 

100.00 ± 
0.00 

58.89 ± 
5.08 

85.56 ±  
3.06 

87.37 ±  
3.09 

90.00 ± 
3.16 

96.06 ± 
1.25 80.00 ± 2.98 

56.86 ± 
4.62 

SFS 96.67 ± 
8.05 

97.88 ± 
5.31 

97.17 ± 
6.58 

78.89 ± 
4.17 

97.38 ±  
4.64 

69.44 ±  
3.06 

87.50 ± 
2.13 

92.62 ± 
1.23 98.00 ± 6.32 

92.16 ± 
2.51 

PCA 87.50 ± 
2.43 

92.92 ± 
1.27 

98.00 ± 
6.32 

67.78 ± 
4.73 

95.62 ±  
5.80 

43.06 ±  
3.49 

84.23 ± 
1.69 

89.64 ± 
1.06 94.07 ± 9.87 

84.90 ± 
2.51 

SVM-Linear All 
features 

95.00 ± 
1.05 

96.75 ± 
7.08 

92.50 ± 
1.04 

64.44 ± 
4.77 

94.54 ±  
7.31 

61.90 ±  
4.15 

90.00 ± 
1.75 

93.81 ± 
1.05 95.65 ± 9.21 

89.05 ± 
2.91 

SFS 95.00 ± 
1.05 

96.67 ± 
7.03 

96.00 ± 
8.43 

43.33 ± 
4.98 

91.99 ±  
7.37 

60.71 ±  
4.53 

94.23 ± 
1.04 

95.81 ± 
7.67 89.50 ± 1.12 

89.35 ± 
2.88 

PCA 95.00 ± 
1.05 

96.67 ± 
7.03 

95.23 ± 
8.38 

27.78 ± 
4.51 

90.94 ±  
4.91 

27.27 ±  
3.03 

89.42 ± 
1.38 

93.00 ± 
9.09 88.50 ± 1.06 

87.71 ± 
2.88 

SVM-RBF All 
features 

11.67 ± 
1.26 

59.65 ± 
4.70 

100.00 ± 
0.00 

0.00 ± 
0.00 

87.35 ±  
4.86 

0.00 ±  
0.00 

100.00 ± 
0.00 

100.00 ± 
0.00 46.28 ± 3.40 

48.86 ± 
4.66 

SFS 61.67 ± 
2.76 

78.45 ± 
1.56 

88.00 ± 
1.78 

0.00 ± 
0.00 

87.21 ±  
4.83 

0.00 ±  
0.00 

97.50 ± 
7.91 

96.67 ± 
1.54 65.17 ± 1.67 

67.22 ± 
4.38 

PCA 5.00 ± 
1.05 

57.86 ± 
3.76 

100.00 ± 
0.00 

0.00 ± 
0.00 

87.35 ±  
4.86 

0.00 ±  
0.00 

100.00 ± 
0.00 

100.00 ± 
0.00 44.93 ± 3.30 

46.05 ± 
4.38 

Neural 
Network 

All 
features 

86.67 ± 
1.26 

90.11 ± 
9.48 

89.38 ± 
1.38 

45.56 ± 
4.98 

92.55 ±  
6.49 

58.93 ±  
4.97 

88.65 ±  
1.52 

91.83 ± 
1.06 82.44 ± 1.27 

85.95 ± 
3.24 

SFS 95.00 ± 
1.05 

96.33 ± 
7.77 

96.73 ± 
8.01 

75.56 ± 
4.22 

96.35 ±  
5.94 

83.33 ±  
2.67 

94.23 ± 
1.04 

96.14 ± 
6.95 94.00 ± 9.66 

91.86 ± 
2.55 

PCA 99.17 ± 
2.64 

99.55 ± 
1.44 

99.17 ± 
2.64 

43.33 ± 
4.98 

92.3 ±  
7.33 

70.00 ±  
2.74 

93.46 ± 
1.09 

95.56 ± 
7.31 86.88 ± 1.18 

90.69 ± 
2.55 

Random 
Forest 

All 
features 

99.73 ± 
1.13 

99.81 ± 
0.77 

96.85 ± 
1.30 

76.04 ± 
7.72 

95.70 ±  
1.29 

90.37 ±  
9.79 

96.67 ± 
4.40 

97.60 ± 
2.93 94.49 ± 2.22 

94.00 ± 
2.60 

SFS 98.91 ± 
2.97 

99.24 ± 
2.02 

95.80 ± 
0.76 

67.26 ± 
7.91 

94.23 ±  
1.25 

89.13 ±  
9.62 

97.61 ± 
2.02 

98.19 ± 
1.51 92.75 ± 2.42 

94.00 ± 
2.00 

PCA 97.41 ± 
0.78 

98.10 ± 
0.55 

93.97 ± 
1.02 

69.87 ± 
5.10 

94.52 ± 
0.84 

78.68 ±  
4.39 

95.46 ± 
1.61 

96.65 ± 
1.12 95.10 ± 1.12 

92.00 ± 
0.99 
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Table C.6. Average accuracy and standard deviation of different combinations of 

classifiers and features for three classes (HV, NON-DIL BAV, and DIL BAV). 

Each experiment was done using 10-fold cross-validation and repeated 10 times 

with confidence interval 95%. 

 

Classifiers 

 Accuracy (%)  

Hemodynamic 

Parameters 

Hemodynamic 

Parameters + Age SFS PCA (*) PCA (**) 

KNN-5 87.65 ± 3.07 85.42 ± 3.29 87.65 ± 3.07 86.54 ± 3.04 87.35 ± 3.10 

KNN-7 84.61 ± 3.37 84.84 ± 3.34 86.54 ± 3.18 87.94 ± 3.21 84.31 ± 3.39 

KNN-9 86.24 ± 3.21 89.87 ± 2.81 88.46 ± 2.98 86.24 ± 2.52 86.24 ± 3.21 

LDA 93.86 ± 2.24 93.86 ± 2.24 96.31 ± 1.76 91.05 ± 2.29 93.04 ± 2.37 

QDA 13.76 ± 3.21 15.98 ± 3.42 88.27 ± 3.00 89.35 ± 2.20 12.65 ± 3.10 

Minimum 

Distance 71.21 ± 4.22 67.12 ± 4.38 87.94 ± 3.04 67.88 ± 3.31  70.10 ± 4.27 

Mahalanobis 

Distance 27.75 ± 4.18 37.97 ± 4.53 88.92 ± 2.93 92.39 ± 2.35 48.86 ± 4.66 

SVM – 

Linear 86.83 ± 3.15 86.01 ± 3.23 91.34 ± 2.62 92.09 ± 2.81 77.71 ± 3.88 

SVM - RBF 45.23 ± 4.64 45.23 ± 4.64 61.37 ± 4.54 45.23 ± 4.18 46.05 ± 4.65 

Neural 

Network 81.80 ± 3.60 89.05 ± 2.91 84.08 ± 3.41 93.79 ± 2.66 89.35 ± 2.88 

Random 

Forest 92.00 ± 1.80 92.00 ± 1.90 96.00 ± 2.70 96.00 ± 0.83 96.00 ± 0.78 

SFS’s five top-performing features were: velocity angle in AAo, forward velocity in AAo, helicity density 

in AArch, vorticity in AAo, and backward velocity in AAo 

PCA’s five top-performing features were: forward velocity in AAo, velocity in AArch, velocity in AAo, 

velocity angle in AAo, and kinetic energy in AArch. 

 

Hemodynamic Parameters (*) 

Hemodynamic Parameters + Age (**) 
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Figure C.1. Schematic diagram of random forest with five features selected by 

SFS. Random forest has nodes, and every node includes a feature ID and split 

threshold. 
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Figure C.2. Correlation matrix (p-values) obtained by the linear regression 

between all hemodynamic parameters of volunteers and BAV patients, for AAo and 

AArch regions. 
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